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Using Gaussian numerical integration formula, the problem of estimating the particle size distribution (PSD) in ferrofluids can be 

converted into an electromagnetic inverse problem. Then we present two Bayesian analytical estimators, minimum mean square error 
estimator and maximum a posterior estimator, to reconstruct the PSD of magnetic particles. In the implementation, weighted minimum 
norm approach, maximum likelihood estimator and weighted least square estimator are employed to determine prior information for 
the unknown parameter. And we also present two methods to provide the noise information for the error term. Finally, using Monte 
Carlo method, we give a ferrofluid example to illustrate the efficiency of the proposed methods. 
 

Index Terms—Bayesian estimator, ferrofluid, noise information, prior information, particle size distribution. 
 

I. INTRODUCTION 
ferrofluid is a colloidal suspension of very fine magnetic 
particles. Since the particles are not uniform in size, the 

magnetic property of ferrofluid is strongly affected not only by 
the average particle size, but also by the particle size 
distribution (PSD) [1], [2]. So the PSD estimation problem is 
an important issue in fundamental research and industry 
application as well.  

Many devices have been employed as a direct extraction 
technique to estimate the PSD of magnetic particles, such as 
transmission electron microscopy (TEM), X-ray diffraction 
and atomic force microscopy [3]. Meanwhile, many indirect 
extraction techniques are also widely used to solve this 
problem. And some of them are discussed with the 
consideration of magnetization data and curve. Generally, all 
these indirect methods can be classified according to whether 
some prior information are given or not. Singular value 
decomposition (SVD) technique is a classical inference 
method, which is discussed without any prior information [2]. 

However, TEM is complicated and time consuming. SVD 
technique is highly sensitive to the noise [2].  So some prior 
information about the PSD (such as lognormal distribution) are 
widely introduced in many researches [4]-[7]. And that prior 
information has been considered in the framework of Bayesian 
statistical inference method [6], [7].  

As we know, the efficiency of Bayesian method depends a 
lot on the determination of the prior and noise information. 
But some prior information selection methods are not very 
reasonable from the physical point of view, such as maximum 
entropy method [6], [7]. And there are very few discussions 
about the determination of noise information. Unlike other 
papers, we first give a systemic discussion about the PSD 
estimation problem within the framework of Bayesian theory 

in this work. Then we give some methods to provide prior and 
noise information for the Bayesian inversion process.  

II. BAYESIAN ESTIMATION METHOD 
According to the Langevin theory of superparamagnetism, 

the magnetization of ferrofluid can be expressed as an integral 
equation with respect of the given PSD [1]-[3]. However, there 
are many unavoidable errors in the actual measurement 
process, so the magnetization (M) in the external field (H) can 
be expressed as 

s/ ( ) ( ) ( )M M L x p D dD N H= +∫ ,                         (1) 

where D is the diameter of the particle, L(x) = coth(x)−1/x is 
the Langevin function ( 3

s / 6x I D H kTπ= ), k is the Boltzmann 
constant, T is the absolute temperature, Is is the saturation 
magnetization of the bulk material, and Ms is the saturation 
magnetization of the particle system, N(H) represents the error 
term in the external field H. 

In the numerical calculation of the integral equation (1), 
Newton formula is always used as the numerical integration 
algorithm. However, we use Gauss formula in this work 
because its results can reach the same precision with less 
discrete points. And more importantly, the dimension of matrix 
which needs to be inversed can be reduced with Gauss 
formula. Then (1) has a discrete form as  

( )3
s s

1
/ I / 6 ( ) ( )

m

m i i
i

M M B G L D H kT p D N Hπ
=

 = + ∑ ,      (2) 

where B is an integral coefficient, Gms are the weight 
coefficient of Gauss formula. For n sample data, (2) can be 
simplified as a matrix notation. 

 =  + y Aθw ,                                             (3) 
where y is a n×1 standardization magnetization vector, w is a 
n×1 error vector, θ is a m×1 unknown vector of PSD, A is a 
n×m observation matrix with respect to L(x), D and H. 
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where 3
s( ; ) ( / 6 )i j i jf D H L I D H kT Dπ= ∆ , D∆ is the step size.  

Given the experimental data A and y, the PSD and its 
statistical property can be estimated with the following two 
Bayesian estimators. 

A. Minimum mean square error estimator  
Proceeding to the minimum mean square error estimator, we 

assume that θ is a random vector with probability density 
function ( , )N θθμC  , w is an noise vector independent of θ and 
have probability density function ( , )N w0 C , that is  

1( ) ( )1( ) exp
2(2 ) [det( )]

T

n
p

π

− − −
=  

− 
w

w

y AθC y Aθ
yθ

C
.   (4) 

Then from Bayesian theory, the posterior probability density 
function of θ is 

( ) ( ) ( )p p p∝θy yθθ .                                   (5) 
The minimum mean square error estimator of θ is the 
mathematical expectation of p(θ|y). Then we have 

1ˆ ( ) ( )T T −= +θθθwθθμ+ C A AC A C y - Aμ ,            (6) 
and covariance is 
             1Cov( ) ( )T T −= − +θθθwθθC C A AC A C AC .            (7) 

As we know, the above estimator is the minimum variance 
unbiased estimator, which is the one whose variance for each 
component is minimum among all unbiased estimators [8]. It is 
an optimal estimator in the statistical sense. 

B. Maximum a posterior estimator 
Maximum a posterior estimator (MAP) is a very commonly 

estimator in Bayesian statistics. It is derived from choosing a 
feasible parameter to maximize the posterior probability 
density function. That is to say, 

MAP
ˆ arg max{ ( )}p=

θ
θθy ,                            (8) 

Substitute the probability density function and we have 
1 1

MAP
ˆ arg min{( ) ( ) }T T− −= − −wθ

θ
θy AθC y Aθ+θCθ .          (9) 

Because the peak location of the normal probability density 
function is equal to its mean, the MAP estimator is identical to 
(6). It should be noted that both methods have the same 
solution for this problem. But their starting points are very 
different; the former is the mean of posterior probability 
density function; while the latter is obtained from maximizing 
the posterior probability density function. 

III. DETERMINATION OF PRIOR INFORMATION 
There are two important issues in Bayesian inference 

method. One is the selection of prior information for the 
unknown parameter θ; the other is the determination of noise 
information for w. In this section, we present three methods to 
provide the prior information.  

A. Weighted minimum norm approach  
Weighted minimum norm (WMN) approach has been 

successfully used in biomedical electromagnetic inverse 
problems, such as neuronal current sources localization and 
imaging [9]. It typically finds solutions which match the 
experimental data while minimizing a weighted 2-norm on the 
solution vector. Namely, it involves solving the constrained 
optimization problem as 

1ˆ arg min{ }T −= θ
θ

θθCθ ,  subject to 2 0− =y Aθ .        (10) 

where Cθ (m×m) is an arbitrary symmetric positive definite 
matrix, and the solution is 

1
WMN

ˆ T T −= θθθC A (AC A ) y .                          (11) 
Now we give some discussion about the correlation of this 

approach and SVD technique. Using Cholesky decomposition 
of Cθ = WWT, then the WMN solution can also be expressed 
as the SVD form [2]. 

WMN 1
ˆ ( / )n T

i i ii
s

=
= ⋅∑θW u b v ,                        (12) 

where si, ui and vi are the i th singular value, left and right 
singular vectors of AW, respectively [9]. 

However, exact matching of the data in (10) results in many 
problems, such as the solution is ill-conditioning and highly 
sensitive to the noise. Fortunately, regularized forms of WMN 
methods can lower the noise sensitivity and one commonly 
used technique is termed as truncated SVD. In this method, the 
original problem (10) is converted into an unconstrained 
minimization of a combination of the residual error norm and 
weighted norm of the solution vector by a regularization 
method, and it has the form as  

2 1ˆ arg min{ }Tλ −= − + θ
θ

θy AθθCθ .                      (13) 

For any value of the regularization parameter λ, we can find 
the solution of (13) as 

1ˆ T T λ −= +θθθC A (AC A I) y .                          (14) 
The optimal value of λ can be derived from some other 
methods, such as L-curve method. Furthermore, assuming that 
µθ = 0 and Cw = λI in (6), we can get the same results in (14).  

From the above discussion, we can see that the results of 
SVD technique are the equivalent form of WMN estimators. 
Furthermore, WMN estimators can be expressed as a more 
succinct form. As all WMN estimators are the special cases of 
Bayesian estimators, we only discuss it in theory in this work. 

B. Maximum likelihood estimator  
Maximum likelihood estimation is an analytic maximization 

approach and a popular statistical method used for fitting a 
mathematical model to some data. Under the model 
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assumption of (3) and (4), we can find the maximum 
likelihood estimator (MLE) of θ by minimizing 

          1( ) ( ) ( )TL −= − −wθy AθC y Aθ .                             (15) 

This is a quadratic function of θ, and 1−
wC  is a positive definite 

matrix. Upon setting the gradient equal to zero and we can get 
the MLE as 
                1 1 1

MLE
ˆ T T− − −= w wθ(A C A) A C y .                               (16) 

C. Weighted least square estimator 
Least square method is a very popular technique used to 

find or estimate the optimal values of the parameters to fit a 
function to a set of data. It is perhaps the most widely used 
technique in engineering data analysis. Unlike maximum 
likelihood method presented above, it can be applied to any 
problem for which we don’t know the general form of the joint 
probability density function. In practical application, weighted 
least square estimator (WLSE) is always used as an extension 
of least square estimator. Generally, we can get the WLSE of θ 
by minimizing  

( ) ( ) ( )TJ = − −θy AθU y Aθ ,                          (17) 
where U is a weighted matrix,  and the solution is 

1
WLSE

ˆ T T−=θ(A UA) A Uy .                              (18) 

Obviously, if we let 1−= wU C  in (18), we can get the same 
results of MLE in (16).  

IV. DETERMINATION OF NOISE INFORMATION 
In this section, we give two methods to offer the noise 

information for Bayesian inverse process. One is the unbiased 
estimation within the framework of statistical regression model; 
the other is the correlation matrix from Kriging method.  

Firstly, assuming that all the noise terms are independent 
and have the same sampling distribution, that is to say, 
               2(H ) (0, ),    1, 2,..., .iN N i nσ =                         (19) 
In this assumption, model (3) is a normal multivariable linear 
regression model. Cw is a diagonal matrix with variance σ2 and 
zero covariance. The unbiased estimator of variance can be 
obtained from maximum likelihood method and it has the form 
as 

              2 ˆˆˆ [( ) ( )] /( )T n mσ = − − −y Aθy Aθ .                (20) 
Moreover, we give an alternative method for some readers. 

This method is derived from Kriging method in which Cw=[cij] 
is a nonzero covariance matrix and cij = σ2 R [r(zi, zj)], where 
R is the correlation matrix, r is the user-specified correlation 
function [10]. It should be noted that this solution is more 
accurate but more complex than the former. As the 
determination of prior information for Bayesian method is 
more important than that of noise information, we focus our 
attention on the selection of prior information. In the following 
experiment, we use the former method to estimate the noise 
information.  

V. EXPERIMENTS AND RESULTS 
In order to illustrate the efficiency of the proposed methods, 

we give an example of the application to the PSD estimation in 
a ferrofluid. It follows the assumption that the PSD is a 
lognormal distribution, which is the most widely used in the 
research of ferrofluids. 

This sample was chemically synthesized at room 
temperature from an aqueous solution containing the metal 
nitrates by coprecipitation method [5]. And TEM indicates that 
the PSD of this sample appears to be a lognormal distribution 
with a mean particle size of 10 nm and a standard deviation of 
0.24 nm. It can be abbreviated as LN (10.0, 0.24). With the 
same experiment parameters (Ms is 19.2 emu/g, Is is 84 emu/g), 
we can get the normalized magnetization data and curve.  

It should be noted that the PSD reconstruction quality 
depends drastically on the magnitude (standard deviation σ) of 
experimental error as the ill-conditioned nature of this problem.  
And this is a very important issue in the fundamental research. 
So we use Monte Carlo method to illustrate the dependence of 
reconstruction quality on the experimental error magnitude σ. 
Three cases of error magnitude are considered, which are σ = 
0.1%, σ = 0.5% and σ = 1%. Now we give the detailed 
reconstruction processes for each case of σ. 

1) Use Monte Carlo method to generate 104 sets of 
experiment data (H and M) with an σ. 

2) Set the range of D. In order to ensure the reconstruction 
quality of Bayesian method, the range of D should satisfy that 
p(D)>0.02; otherwise the matrix may be singular in the matrix 
inversion process. Here we let D be in the range 6–15 nm. 

3) Determine MLE and WLSE. As the special property of 
Langevin function, the sample points of D should not be too 
many to avoid the matrix to be singular [7]. Five points 
Gaussian formula was used in (2) in this work. Meanwhile, the 
same weighted matrix (σ2I) is chosen in MLE and WLSE, and 
parameter σ2 can be estimated by (20). It should be noted that 
the result given by MLE and WLSE is a multidimensional 
normal distribution. But the estimating PSD is a one 
dimensional lognormal distribution, so a conversion must be 
done here.  

4) Obtain Bayesian estimator. Bayesian estimator can be 
gained with MLE and WLSE as its prior distribution. As the 
matrix which needs to be inversed in Bayesian estimation is 
less singular compared with that in MLE, we use seven points 
Gaussian formula in (2) to get the Bayesian estimator. Then 
we can easily obtain the Bayesian solution from (6). Noting 
that this solution is also a multidimensional normal distribution, 
a conversion was also done here.  

From the above discussion, we can get the PSD estimation 
with different methods for each error magnitude σ. Actually, 
MLE and WLSE are also widely considered as classic 
statistical estimators. Now we give a comparison of all 
estimators. 

Table I shows the root mean square error (RMSE) of these 
estimators. Here error means the absolute error between the 
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results of TEM and our estimators. Fig. 1 shows the RMSE of 
these estimators. 

From the table and the figure, we can see that the RMSE of 
mean and standard deviation increases with the increase of 
error magnitude σ. And Bayesian estimators are superior to 
those of classic estimators. Obviously, the curves of Bayesian 
estimators are smoother compared with classic estimators, so 
the Bayesian estimators are less sensitive to the noise 
compared with classic estimators.  

 
TABLE I 

RMSE data of classic and Bayesian estimators 
(CE means classic estimators; BE means Bayesian estimators) 

 
RMSE Unit σ = 0.1% σ = 0.5% σ = 1% 

Mean of CE nm 0.0838 0.3706 0.6897 

Standard 
deviation of CE nm 0.0165 0.0713 0.1069 

Mean of BE nm 0.0478 0.1113 0.2000 

Standard 
deviation of BE nm 0.0073 0.0198 0.0308 
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Fig. 1.  RMSE curves with error magnitude  

 
         Fig. 2.  Magnetization curve and PSD curve (insert) 

Finally, as an example, we give an illustration for the case of 
σ = 1%. Fig. 2 is the magnetization curve and magnetization 

values (red o) of a sample. Obviously, there are some points 
which are not fitting the curve very well, and this is very 
reasonable for real experiments. With the proposed methods, 
the obtained PSD of MLE and WLSE is LN (9.19, 0.36). After 
a conversion, prior distribution of µθ is N (9.81, 3.68), it is a 
normal distribution. Then the Bayesian estimator is LN (9.87, 
0.25). Obviously, it is better than MLE and WLSE compared 
with the result of TEM. The PSD distribution curves are 
inserted in Fig.2. 

VI. CONCLUSIONS 
This work presents two Bayesian estimators to reconstruct 

the PSD of magnetic particles based on magnetization data. 
Meanwhile, we give some estimators to provide the prior and 
noise information, and we have presented the correlation of 
these estimators. Experiment results demonstrate that Bayesian 
method can be easily implemented and can induce satisfied 
results. And Bayesian estimators are superior to classical 
estimators, including the accuracy and the sensitivity to the 
noise. All these methods can be seen as effective direct 
extraction procedures of PSD from the magnetization curve 
and experimental data.  
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