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Improved sequential optimization method (SOM) and dimension reduction optimization method (DROM) are presented for high 

dimensional optimization design problems of electromagnetic devices. Improved SOM can simultaneously optimize the statistical 
approximate models and optimization algorithms more efficiently compared with SOM. Using DROM, a high dimensional problem can 
be converted into a low dimensional problem with expert experience or some design of experiment techniques. Then two TEAM 
benchmark problems (Problem 22 and Problem 25) are investigated to illustrate the efficiency of the proposed methods. From the 
experimental results, we can see that the presented methods can obviously reduce the computational cost of finite element analysis, 
while the optimal results also satisfy design specification. 
 

Index Terms—Analysis of variance, DROM, electromagnetic devices, improved SOM. 
 

I. INTRODUCTION 
any electromagnetic devices are designed by means of 
finite element models with direct optimization 

algorithms. However, the higher the accuracy of design 
objective is, the more expensive direct optimization is 
expected to be. Sometimes, this cost may be prohibitive. As an 
alternative, many statistical approximate models are employed 
to ease computational burden of direct optimization method. 
They are proved fast, but not very accurate. Furthermore, as 
models and algorithms were almost discussed separately in 
traditional optimization methods, and this may induce the 
waste of computation cost [1], [2]. 

In order to make up for the low fidelity of approximate 
model and the expensive cost of optimization algorithm, we 
have introduced sequential optimization method (SOM) to low 
dimensional design problems [2]. SOM can optimize the 
approximate model and algorithm simultaneously. However, 
SOM is difficult to deal with high dimensional design 
problems. For example, the points of five level full factorial 
design in the model construction might be impractical if there 
were seven variables to study instead of just three. Therefore, 
it is essential to develop a set of new methods for high 
dimensional design problems.  

II. IMPROVED SOM 

Fig. 1 is the flowchart of improved SOM which includes 
six main steps. Improved SOM is also composed of coarse 
optimization process (COP: step 2, 3 and 4) and fine 
optimization process (FOP: step 5 and 6). The main purpose of 
the former is to reduce the design space, while the target of the 
latter is to update the optimal design parameters. Table I lists 
all the relevant abbreviations used in this paper. 

 
 

Fig. 1.  The flowchart of improved SOM 
 

TABLE I 
ABBREVIATIONS AND DEFINITION 

 
Abbreviation Definition 

ANOVA Analysis of variance 

COP Coarse optimization process 

DEA Differential evolution algorithm 

DROM Dimension reduction optimization method 

FESP Finite element sample points 

FOP Fine optimization process 

SMES Superconducting magnetic energy storage 

SOM Sequential optimization method 
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Kriging model is selected as the approximate model in this 

work. Essentially, it is a multivariate statistical regression 
model. It has been widely applied to the design problems of 
electromagnetic devices [3], [4]. 

In the Fig. 1, ( )kx  is design space of the kth optimization 
process, ( )kl is interval, ( )kh is step size, ( )kN  is the number of 
sample points and ( )S k  is sample set. ( )k

ox  and ( )kf  are the 
optimization results of Kriging model which is constructed 
with ( )S k . Differential evolution algorithm (DEA) is selected 
as the optimization algorithm in this work. The main DEA 
parameters are set as: mutation scaling factor is 0.8, crossover 
factor is 0.8, population number is 5*D (D is the dimension of 
the designed problem), and the maximum stall generation is 
50, which is selected for the stop criterion [5]. Four main 
improvements have been made in the improved SOM. 

The first improvement is new space reduction equation in 
the COP. Generally, we reduce the sampling space after each 
COP to get the most interesting design space. Under the 
boundary condition of the design space, the design space of 
next step is updated as follows. 

{ }( 1) ( ) ( )max , [( ) / ]k k k
li li oix x round x l h h+ = − ∆ ∆ ∆ ,            (1) 

{ }( 1) ( ) ( )min , [( ) / ]k k k
ui ui oix x round x l h h+ = + ∆ ∆ ∆ ,             (2) 

where ( ) ( )[ , ]k k
li uix x  is boundary of the ith variable, function 

round(x) rounds x to the nearest integer. ( ) /k
il l nl∆ =  and 

( ) /k
ih h nh∆ = , where nl and nh are reduction factors.  

For a practical problem, there are three parameters (nl, nh 
and N) to determine for the construction of Kriging model. nl 
can be 4, 6 or 8, the corresponding intervals of reduced space 
are 1/2, 1/3 and 1/4 that of the former space. nh can be 2, 4, or 
8, which let function round(x) to round x with 1/2, 1/4 and 1/8 
of the current step size. N may be 2, 3, 4 or 5 for a 
standardization space of [0, 1]. Now, we use Monte Carlo 
method to give a selection strategy for these parameters. 
   Supposing design space is [0, 1] and nl is 4, we use Monte 
Carlo method to generate 106 random numbers as the optimal 
results of Kriging model. Then we use these numbers to reduce 
the design space under N = {2, 3, 4, 5} and nh = {2, 4, 8}. The 
target of this analysis is to compare the mean of the error 
between the current optimal results and the mean of the 
reduced space. Table II shows the results. 

From Table II, we can see that the mean error decreases 
with the increase of N and nh. The same results can be derived 
with nl=6 and nl=8. So in our latter implementation, the 
default value of nh is 8 and N is 5. For the factor nl, it must be 
selected with respect to the practical problems. If we have 
some experience about the problem or the given space is very 
large and we want to reduce the design space more quickly, 
nl=6 or 8 can be selected in the former COP. And if we have 
no prior experience, nl=4 may be a better choice. 

From the table, we can see that this strategy is very 
important for the case of N=2. For example, supposing the 
initialization space is [0, 1], nh is 2, and the current optimal 

 
TABLE II 

MEAN ERROR OF SPACE REDUCTION EQUATION 
 

N 2 (nh) 4 (nh) 8 (nh) 

2 0.1249 0.0624 0.0469 

3 0.0625 0.0469 0.0390 

4 0.0555 0.0416 0.0364 

5 0.0469 0.0391 0.0352 
 
value is 0.5, from (1) and (2) we can get the next sample space 
is [0.5, 1.0]. And if nh is 8, the next sample space is [0.25, 
0.75]. So we can minimize the distance between the optimal 
results and the mean of the next design space with this 
improvement. And this is very important for dimension 
reduction process of high dimensional problems. 

The second improvement is the disposal of the boundary 
conditions. There are many discrete design spaces in practical 
problems, such as the poles of motor. When this case happens, 
the next design space in (1) and (2) should be rounded to the 
nearest feasible design points. 

The third improvement is the local multipoint samples 
updating method in the FOP. To avoid the matrix to be 
singular in the modeling process, a least interval about the 
updated sample points is set. When the relative norm of two 
points is less than 0.01, the latter point is deleted. 

The forth improvement is the selection of optimal results. 
As Kriging model is only an approximation of the response 
surface, so we must compare the results given by optimization 
algorithm and those sampled in modeling, and the better one is 
selected as the optimal results for this optimization process. 

Furthermore, for some objectives which can be expressed 
with analytical equations, such as mass, they should not be 
included in the approximate model to reduce the design error. 

III. DROM WITH IMPROVED SOM 
One difficulty with the former SOM is that the number of 

sample points in modeling increases exponentially with the 
number of variables you want to manipulate. For a 5-level full 
factorial design with 3 variables, 53=125 finite element runs 
may be acceptable. For the 4 variables case, a full factorial 
design needs 625 finite element runs, this may be too much for 
many problems. And for a higher dimensional problem (more 
than 4 variables), it is unpractical to design a 5-level full 
factorial experiment. Therefore, it is necessary to develop new 
method for high dimensional design problems. 

The optimization process of high dimensional problems 
consists of dimension reduction optimization process and 
sequential optimization process. The implementation of the 
former process is briefly described as follows. 

1) Sample some points from direct optimization algorithm 
(about 40 iterations). It should be noted that a least interval 
about the two sample points is also set in the sampling process 
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to avoid the matrix to be singular in the in the reconstruction 
of approximate model.  

2) Construct the approximate model with the points sampled 
above, optimize it and get optimal results. Meanwhile, the 
sampled points should also be considered. So the optimal 
results in this step are the better one of that given by 
optimization algorithm and those sampled in modeling. 

3) Reduce the design space with the current optimal results 
and new space reduction equation. 

4) Select the significant factors with two methods, one is 
expert experience, the other is the analysis of variance 
(ANOVA) technique. Expert experience includes experience 
of designers or experts, model mechanism analysis and so on. 
ANOVA is one of the most widely used statistical techniques 
to determine significant factors and their significant order in a 
multivariate problem [6]. ANOVA can be easily implemented 
with MATLAB software which is also used in this work.  

With the above 4 processes, a high dimensional design 
problem can be reduced as a low dimensional design problem, 
and then improved SOM can be addressed to solve this 
problem. We call this method as the dimension reduction 
optimization method (DROM).  

IV. EXPERIMENTS 
A. IEEE TEAM Workshop Problem 25 

It is a benchmark problem for the optimization of die press 
model [7], [8]. Fig. 2 is central geometry configuration of die 
press model which includes four design parameters (R1, L2, L3, 
L4) to maintain the radial magnetic induction equal to 0.35 T. 
The objective function is the square error of the calculated and 
specified values (10 equidistant points on line e~f). As the 
objective function value is very small (about the order of 10-4), 
and this may reduce the sensitivity and distinguishability of the 
model reconstruction, so the objective function is given by 

( )1/ 410 2 2
xip xio yip yio1

( )= [(B B ) (B B ) ]
i

W x
=

− + −∑ ,           (3) 

where subscripts p and o mean the calculated and specified 
values respectively. 

 
B. IEEE TEAM Workshop Problem 22 

This is also a benchmark problem for the optimization of 
superconducting magnetic energy storage (SMES) [9]-[11]. 
Fig. 3 shows the design model. All parameters should be 
optimized to minimize the mean stray fields (Bstray) while 
keeping the stored energy close to 180 MJ. Bstray is root mean 
square of 21 equidistant points on lines a and b.               

There are many ways to define the objective function for 
this problem. In this work, it is given by 

stray norm( ) /f x B B=
  ,                                                    (4) 

where Bnorm = 3 mT. And three constraints are  
          ( ) | /180 1| 0h x E= − =

 ,                                                (5)  

max( ) | | min[(54 | |) / 6.4] 0,  1, 2ig x B J i= − − ≤ =
 ,           (6)  

1 1 2 2( ) / 2 / 2 0q x R d d R= + + − <
 ,                              (7) 

where E is the stored energy of SMES. The first constraint 
concerns the relative error of stored energy and the second is a 
quench condition that guarantees superconductivity. The third  

 
 

Fig. 2.  The central configuration of die press model 
 

 
 

Fig. 3.  The geometry configuration of SMES 
 

is a geometric constraint which ensures that the two coils are 
not superposition. In order to reduce the unnecessary finite 
element analysis, this constraint is only used in the population 
initiation of the optimization process to select appropriate 
sample points. In this work, the former two constraints were 
treated using a penalty function as 

2 2( ) ( ) 1000[ ( ) max( ( ),0) ]F x f x h x g x= + +
    .         (8) 

V. RESULTS  
The following results are given by our proposed methods. 

SOM parameters are δ=ε =5%. To illustrate the efficiency of 
the proposed methods, the results given by direct optimization 
method are also given for each problem. In order to make all 
these results to be comparable, all response values, such as B 
and E, are calculated from the ANSYS with the same 
preprocessing process (e.g. mesh method).   
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A. IEEE TEAM Workshop Problem 25 
In the implementation of this problem, 800 points were 

selected from DEA to construct the Kriging model. And from 
some former discussion, we can select (R1, L2, L4) as the three 
significant factors about this problem [7], [8]. That is to say, 
expert experience is used here for the determination of 
significant factors. In fact, we can get the same result with 
ANOVA technique [6], [8]. From the analysis, two main 
conclusions can be drawn as follows. 

1) For the direct optimization method, the optimal results 
given by DEA are [8.0831, 16.3503, 14.9946, 15.1451], and 
the square error is 2.8*10-4. To get these results, 4320 finite 
element sample points (FESP) are needed. 

2) For the optimization with the new methods, only two 
COPs are implemented to get the optimal results, which are 
[7.70, 15.525, 15.31, 15.0]. And to be more interesting, only 
970 FESP are needed to get these results. The number of FESP 
is about 22.45% (less than 1/4) compared with that of DEA. 
And the square error is 8.3*10-4, which is a little bigger than 
that of DEA, but also satisfies the design specifications. 

 
B. IEEE TEAM Workshop Problem 22 

In the implementation of this problem, 1200 points was 
selected from DEA to construct the Kriging model. And the 
above two strategies may also be used to select the significant 
factors. In this work, we use ANOVA technique to determine 
the significant factors with MATLAB software. ANOVA 
indicates that the dimension of the outer coil (R2, h2, d2) can be 
selected as the significant factors. And their significant order is 
R2, d2 and h2. Then we can convert an 8 parameters problem to 
a 3 parameters case with the significant factors. In fact, the 
selection results are also reasonable from the discrete case 
description of three-variable SMES [11].  

Table III shows the optimal results given by our proposed 
methods. Two main conclusions can be drawn from the table. 

1) For the direct optimization method, 4720 FESP are 
needed to get the optimal results. Bstray is 2.2725 mT and the 
error of energy is 1.25 MJ. Bmax is 4.12 T, which is less than 
the maximum permissible value (4.91 T). 

2) For the new methods, two COPs and one FOP are needed 
for the implementation of SOM. And only 1516 FESP, about 
32.12% (less than 1/3) compared with that of DEA, are needed 
to get the optimal results, which are presented in the ‘DROM’ 
column in the table. Bstray is 2.9226 mT, which is a little bigger 
than that of DEA. But the error of energy is 0.27 MJ (or 
0.15%), which is better than that given by DEA.  

VI. CONCLUSIONS 
  Two DROM strategies and improved SOM are addressed 

to solve high dimensional electromagnetic design problems. 
Compared with the former SOM, four main improvements are 
given for the improved SOM. 

 
 
 
 

TABLE III 
OPTIMIZATION RESULTS OF SMES 

 
Var.  Unit DEA DROM 
R1  m 2.3816 1.2407 
R2  m 3.3772 3.2520 

h1/2  m 1.1182 1.1312 
h2/2  m 0.3659 0.2134 
d1  m 0.1884 0.6416 
d2  m 0.6531 0.5250 
J1  MA/m2 22.5717 10.6325 
J2  MA/m2 -11.0582 -13.9904 

Bstray   mT 2.2725 2.9226 
E   MJ 178.75 179.73 

Bmax  T 4.12 (4.91) 5.81 (6.25) 
FESP ─ 4720 1516 

                          
 Obviously, the proposed methods are very successful in 

optimizing the die press model and SMES device. The finite 
element computational effort of the present methods is less 
than 1/3 compared with that of direct optimization method, 
while the results also satisfy design specification. Furthermore, 
many other design techniques of experiment, approximate 
models and algorithms can be included in these methods. 
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