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In this paper, Multilevel Genetic Algorithm (MLGA) is presented to solve the optimization of surface mounted permanent magnet 
synchronous machine (SPMSM), which has features of mixed continuous and discrete design variables, multi-modal and non-
continuous objective functions, etc. Firstly, the multilevel optimization problem is described by using the problem matrix. The values in 
the problem matrix are deduced by correlation analysis. Secondly, the architecture and implementation of MLGA are carried out. 
Thirdly, the new algorithm is applied to a bi-level optimization of SPMSM to verify this multilevel optimization. The results compared 
with those of traditional genetic algorithm (GA) and discussions of the multilevel optimization are presented.  
 

Index Terms—Optimization, multilevel genetic algorithm, permanent magnet (PM) machine, finite element method (FEM).  
 

I. INTRODUCTION 
CCORDING to the features and decision-making sequences, 
many real-world optimization problems in the engineering 

systems could be solved in multilevel procedures. The non-
continuous design space, multi-modal objective functions, and 
mixed continuous and discrete variables are coexistent in one 
complex system. 

Multilevel optimization is an effective method to solve this 
kind of complex optimization problem. It has been studied by 
some researchers. Bartheley [1] used the problem matrix 
method to describe the relationship between the objective 
functions and variables. Haftka [2] investigated two important 
problems in multilevel optimization: decomposition and co-
ordination. In [3], the multilevel genetic algorithm (MLGA) 
was proposed and an actively controlled tower building 
subjected to earthquake excitations was considered to 
investigate the effectiveness of MLGA. Multilevel 
optimizations are difficult to solve due to the characteristics of 
nonlinearity, multi-modal functions and mixed continuous and 
discrete variables. Genetic algorithm (GA) can be used to 
solve multilevel optimization problem. However, the simple 
traditional GA can not handle the coupled relationship existing 
among the design variables, constraints and sub-problems.  

Different optimization techniques have been developed for 
electric machine design to check iteratively the changes of the 
design variables, which move in the direction of improving the 
objective function. There are two main groups of optimization 
techniques: (1) Classical methods such as the direct search [4], 
the simplex method, and the Rosenbrock algorithm; (2) 
Stochastic methods such as the genetic algorithm and the 
simulated annealing technique. Some modern optimization 
techniques based on the fuzzy logic theory and artificial neural 
networks (ANN) [5] are also studied. 

Numerical analysis, especially the finite element method 
(FEM), is a very powerful tool for performance analysis of 
electric machines, such as transient current, torque and 

velocity. The static FEM can also be used to determine the key 
parameters, such as magnetic flux linkage, electromotive force 
(EMF) and inductances, taking into account the details of 
complicated motor structures and the non-linear properties of 
magnetic materials. However, FEM is only an analysis tool 
and the design procedure is based on trial and error which is 
time-consuming and uncertain. The optimization of 
electromagnetic devices analyzed by FEM requires a high 
computing time. In additional, the parameterized structural 
modeling should be realized in the optimization procedure [6].  

Permanent magnetic (PM) synchronous machines (PMSMs) 
are attractive choice for many applications because of their 
high efficiency and power density. In this paper, MLGA is 
presented for design optimization of SPMSM which has the 
features of mixed continuous and discrete variables, non-
continuous space and nonlinear multi objective functions.  

II. FORMULATION OF MULTILEVEL OPTIMIZATION PROBLEMS 
In multilevel optimization problems, the relationship 

between the design variables, constraints and objective 
functions can be described by the problem matrix, as shown in 
Fig. 1. The design variables may be assigned into different 
sub-vectors according to the relationships between design 
variable. The variables which have closed relationship should 
be allocated to the same sub-vector.  

Fig. 1 represents the problem matrix which describes the 
relationship among the design variables, constraints and 
objective function. The symbols Pij (i=0,1,…m, j=0,1,…n), are 
the coefficients indicating the relative importance between the 
design variables and objective functions, as well as constraints 
in the correlation analysis [7]. The P value tests whether there 
is sufficient evidence that the correlation coefficient is not zero. 
The greater the P value is, the less relative importance of the 
design variable for the objective function is. In this paper, the 
samples of variables are determined by the design of 
experiment (DOE). Some commercial statistic software 
packages, such as SPSS and Minitab, can provide the module 
for relative importance analysis. 
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Design variables

Objective function

Constraint 1

Constraint 2

Constraint n

x1     x2      x3     x4     …   xm

P01   P02   P03   P04   …   P0m

P11  P12   P13   P14   …   P1m

P21  P22   P23   P24   …   P2m

Pn1  Pn2   Pn3   Pn4   …   Pnm  
Fig. 1.  Problem matrix 

 According to the P values in the problem matrix, the design 
variables may be arranged on diverse levels. For one objective 
function, the variables possessing similar P values will be 
managed on the same level.  

III. MULTILEVEL GENETIC ALGORITHM 
The traditional GA creates a vector (chromosome) encoded 

by all the design variables and then applies evolution operation 
to all the individuals described as chromosomes in one 
population. In MLGA the design optimization variables are 
classified and allocated to different levels according to the 
relative importance between the variables and objective 
functions, constraints, as well as the practical engineering 
weight and optimization sequence.   

GA1{（初始化种群P1）
适应度计算

While
选择

交叉Pc1
变异Pm1
………

适应度计算}

GA21 GA22
GA2:{ population(pop2j)

Fitness evaluation
   While 

   Selection
   Crossover(pc2j)
   Mutation(pm2j)

   ……
   Fitness evaluation

      End}

GA2n…………

GA1:{initial population(pop1)
      Fitness evaluation

      While
        Selection

        Crossover(pc1)
        Mutation(pm1)

        ……
        Fitness evaluation

        End}

First level

Second 
level

GA31 GA32
GA3:{ population(pop3j)

Fitness evaluation
   While 

   Selection
   Crossover(pc3j)
   Mutation(pm3j)

   ……
   Fitness evaluation

      End}

………… GA3mThird 
level

Control information, e.g. Values of some variables

Feedback information, e.g. optimal results, genetic infotmation

Connection information between neighbor modules  
Fig. 2.  Block diagram of MLGA. 

The variables on different levels are encoded independently. 
Each level may have multiple populations and each of them 
can adopt different genetic operators and parameters. 
Furthermore, the relationship between sub-problems in 
multilevel problems can be handled by MLGA. 

The architecture of MLGA is shown in Fig. 2.  The upper 
level (GA1) is the master GA module. The second (GA2i) and 
third (GA3i) consist of a number of modules. Each module 
corresponds to a sub-system. Owning to the interactions 

between the sub-systems on upper and lower levels, and as 
well as on the same level, a sub-system in the multilevel 
structures is not independent. The GA in one sub-system will 
be affected by other modules.  The module in the upper level 
of the MLGA acts not only as a solver of the corresponding 
sub-problem, but also as a coordinator and controller of the 
modules on the lower level. This means that the lower level 
module GAij will be affected by the upper level module GAi−1,j,  
and even by the adjacent modules GAi,j−1 and GAi, j+1 on the 
same level. 

An independent GA can be described as follows. 
 

GA=(PO, PS, IS, FIT, SO, CO, MO)                (1) 
 
where PO, PS, IS, and FIT represent the population, the 
population size, the encoding length and the fitness value, 
respectively; SO, CO, and MO are the genetic operations, i.e. 
selection, crossover and mutation.  

The MLGA can be described as follows. 
 

       GAij=(POij, PSij, ISij, FITij, SOij, COij, MOij)         (2) 
 

where GAij stands for applying the independent GA to the ith 
level and the jth module. In the view of the reaction between 
different levels and adjoint sub-modules on the same level, 
GAij can be described as follows. 
 

                  GAij=(POij(GAi,j-1, GAi-1,j, GAi,j+1), 
PSij(GAi,j-1, GAi-1,j, GAi,j+1), 
ISij(GAi,j-1, GAi-1,j, GAi,j+1), 
FITij(GAi,j-1, GAi-1,j, GAi,j+1),                 (3) 
SOij(GAi,j-1, GAi-1,j, GAi,j+1), 
COij(GAi,j-1, GAi-1,j, GAi,j+1), 

MOij(GAi,j-1, GAi-1,j, GAi,j+1) ) 
 

The GAij can be affected by the upper level GAi-1,j or the 
same level modules, GAi,j-1 and GAi,j-1. 

The implementation process of MLGA is as follows. 
Step 1: Determine the objective functions, constraints and 

design variables. 
Step 2: Analyze the relationship of design variables, 

objective functions and constraints by using correlation 
analysis, and construct the problem matrix. 

Step 3:  Determine the architecture of MLGA, including the 
number of levels and the number of modules in each level.  

Step 4: Allocate the design variables, objective functions 
and constraints on different levels according to the problem 
matrix, and build up the relationships among different levels 
and different modules on each level. Each module corresponds 
to a genetic algorithm module. 

Step 5: Implementation of MLGA starts from the top 
module of the MLGA, and then the modules in the lower level. 
The upper level module sends control messages and values of 
parameters to the lower level module. Feedback messages 
from the lower level are used as the evaluation function by the 
upper level.  

Step 6: The total solving process ends when the termination 
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criterion of the top level has been reached. Otherwise, Step 5 
will be repeated. 

The advantages of MLGA can be concluded as follows; The 
encoding of design variables on the lower level chromosome 
are modified with encoding of upper level chromosome. The 
parallel genetic operations performed in different modules 
within one level independently can enhance the diversity of the 
population. Every module is relatively independent to each 
other, which makes the genetic operators of selection, 
crossover, mutation, population size and number of evolution 
generations dynamiclly change in the implementation. 

IV. OPTIMIZATION INCORPORATING WITH FEM 
In this paper, an SPMSM is optimized by using MLGA. In 

the optimization procedure, the static FEM is used to calculate 
the parameters with high precision.  

Sometimes, MLGA may reduce the times of FEM 
calculation. For example, the thickness and width of 
permanent magnets are selected as the design variables on 
level 1 and the conductor number per slot and diameter of the 
conductors are assigned as the design variables on level 2. 
Other structural and material parameters are fixed. On level 1, 
the no-load EMF, d-axis and q-axis components of per turn 
inductances can be calculated when design variables are 
modified. On other levels, the thickness and width of 
permanent magnets are not taken as design variables, which 
are determined on level 1, the EMF, d-axis and q-axis 
components of inductances are proportional to the conductors 
per slot. In other words, FEM will not be conducted on level 2. 
If the total of populations and evolution generations of 
traditional GA are equal to those of MLGA, the computing 
cost of FEM in MLGA is less than that in traditional GA.  

V. OPTIMIZATION OF SPMSM USING MLGA INCORPORATING 
WITH FEM 

An SPMSM under field oriented control (FOC), which is 
rated with output power of 950W, speed of 2000r/min and 
line-to-line voltage of 128V, is used to verify the MLGA to 
multilevel optimization. FOC controls the current space vector 
directly in the d-q reference frame of the rotor. One P-I 
controller drives the direct current component to zero and 
therefore the quadrature current produces useful torque, and 
maximizes the torque efficiency of the system. Another P-I 
controller operates on quadrature current and takes the 
requested torque as input. 

The stator and rotor cores are not permitted to be modified 
due to manufacture limitation. The coil pitch, parallel branches 
and wires per conductor of the 3-phase windings are fixed. The 
magnet thickness and width, the diameter of conductor and the 
conductors per slot are chosen as the design variables. The 
optimization objective is to achieve the maximum efficiency 
with reasonable cost of conductors and magnets. The 
constraints are the fill factor and rated output power. The 
optimization model can be described as 

1 2 3
100 (Cu) (PM)max ( ) /( )

100 (Cu) (PM)
Cost Costf K W W W
Max Max

η−
= + +  X      (4) 

s.t.  P2 > 945W 
       sf < 78% 

where the design variable X=[hm bm Ns WindD]; hm and bm 
are the magnet thickness and width, Ns and windD are the 
conductors per slot and the conductor diameter, which are all 
discrete variables. Max(Cu) and Max(PM) are possible 
maximum of the cost of stator windings and permanent 
magnets, respectively; Cost(Cu) and Cost(PM) represent the 
cost of stator windings and magnets, respectively; η is the 
efficiency of the SPMSM, K, W1, W2 and W3 are weight factors 
defined by designer, P2 is the output power, and sf is the fill 
factor. 
    The design variable X is a set of mixed continuous and 
discrete variables and f(X) is a multi-modal objective function. 

A. Determination of Multilevel Optimization Model  
In this paper, the bi-level optimization model is chosen. The 

objective function and constraints (4) is shared in both levels. 
The fitness functions of both levels are the same, and the 
penalty function method is applied to deal with the constraints. 

According to the theory of correlation analysis and DOE, 
the P values which represent the relative importance between 
design variables and object functions as well as constraints are 
analyzed by Minitab, a commercial statistic package. 

The problem matrix is shown in Fig. 3.   
 
Variables hm bm Ns WindD 
max f(X) 0.270 0.666 0.001 0.000 
P2 > 945W 0.005 0.25 0.32 0.005 
Sf < 78% 1.000 1.000 0.000 0.000 

Fig. 3.  Problem matrix of MLGA for SPMSM 

In Fig. 3, the P values of Ns and WindD are less than those 
of hm and bm with respect to objective function. Ns and 
WindD have important influences on efficiency and costs. 
Therefore, hm and bm are regarded as the variables of level 1 
and Ns and WindD are assigned on level 2. 

B. FEM for no-load EMF and Lad and Laq  
On level 1, considering the nonlinear characteristics of the 

core, the static FEM is applied to calculate the no-load EMF 
per turn and the d- and q-axis components of inductances, i.e. 
Lad and Laq, per turn to acquire highly accurate parameters 
when the magnet thickness and width are changed. Before 
solving Lad and Laq, the nonlinear FEM should be conducted 
excited by permanent magnets only and the permeability of 
each finite element needs to be saved. When a linear FEM is 
applied to calculate Lad and Laq, the saved permeability will be 
assigned to corresponding elements. Fig. 4 illustrates the 
magnetic field distribution when Laq is calculated. Fig. 5 shows 
the bi-level architecture of optimization for SPMSM. 
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Fig. 4.  Magnetic field distribution when Laq is calculated. 

max f(X1), X1=[hm bm]
s.t. P2 > 945W

sf < 78% 

max f(X2), X2=[Ns WindD]
s.t. P2 > 945W

sf < 78% 

X1

 Optimized X2 and the 
value of  f(X2)

Level 1

Level 2

FE computation for 
no-load EMF, Lad, Laq 

per turn

 
Fig. 5.  Bi-level architecture of optimization for SPMSM. 

C. Comparison between MLGA and traditional GA  
Both the MLGA and traditional GA (single-level) are 

conducted for solving the optimization problem of SPMSM. 
The number of populations on levels 1 and 2 are 15 and 25, 
respectively. The number of evolution generations is 20 in 
each level. 40 populations and 40 evolution generations are 
defined in the single level GA. Table I lists the original design, 
the optimal results after MLGA and traditional GA. 

TABLE I 

COMPARISON BETWEEN MLGA AND TRADITIONAL GA 

Variables and performances Original 
design 

Multilevel 
GA 

Traditional 
GA 

 Thickness of PM, hm / cm 0.18 0.23 0.21 
Width of PM, bm / cm 3.14 3.03 3.03 
Conductors per slot, Ns 72 67 66 

Diameter of conductor, d / mm 0.5 0.56 0.56 
Back-EMF, E0 / V 66.0 61.9 60.9 

q-axis component of current, Iq / A 4.78 5.27 5.37 
d-axis component of current, Id / A 1.60 0.05 0.15 

Efficiency, η (%) 83.7 86.4 86.1 
Cost of winding / RMB 72.6 84.7 83.5 

Cost of PM / RMB 41.3 50.9 45.5 
Output power , P2 / W 946 949.5 951 

Fill factor, sf (%) 67 77.7 76.5 

It can be seen that the optimized d-axis component of 
current is approached to zero in both MLGA and traditional 
GA and the optimal parameters of both GAs may be fit for 
using FOC. The efficiency optimized by the MLGA is higher 
than that optimized by the traditional GA. The higher the 
efficiency is, the higher cost of conductors and permanent 
magnets will be paid.   

Fig. 6 illustrates the traces of fitness functions of MLGA 
and traditional GA. It can be seen that both MLGA and 
traditional single-level GA may achieve better results than the 
original design. The MLGA possesses better optimal fitness 
values than the single-level GA. It is suggested that MLGA 

can provide the better design solution because the number of 
populations in each level may be adjusted easily. In this case 
study, the GA operators have the same configures in both 
MLGA and single level GA. However, the designer may 
define appropriate GA parameters in different levels to search 
the satisfied optimum.  
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Fig. 6.  Traces of fitness functions of MLGA and traditional GA. 

VI. CONCLUSION 
MLGA is presented and applied for solving mixed 

continuous and discrete and multilevel optimization problems 
of SPMSM design. It has a module-based architecture with 
each module corresponding to a sub-problem which makes it 
possible to handle the relationship between sub-problems in 
multilevel problems. The number of populations in each level 
may be adjusted to achieve satisfied optimums. The complex 
numerical calculation, such as FEM, may be conducted in 
partial levels, which may save the computing cost. Thus, the 
MLGA can be used to solve mixed continuous and discrete 
multilevel optimization problems effectively. Furthermore, the 
module-based architecture of the MLGA allows other 
conventional optimization techniques, e.g. PSO, to be included 
in some of the modules of the MLGA.  
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