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Abstract: How to evaluate the value of a patent in technological innovation quantitatively 

and systematically challenges bibliometrics. Traditional indicator systems and weighting 

approaches mostly lead to ―moderation‖ results; that is, patents ranked to a top list can have 

only good-looking values on all indicators rather than distinctive performances in certain 

individual indicators. Orienting patents authorized by the United States Patent and Trademark 

Office (USPTO), this paper constructs an entropy-based indicator system to measure their 

potential in technological innovation. Shannon’s entropy is introduced to quantitatively 

weight indicators and a collaborative filtering technique is used to iteratively remove negative 

patents. What remains is a small set of positive patents with potential in technological 

innovation as the output. A case study with 28,509 USPTO-authorized patents with Chinese 

assignees, covering the period from 1976 to 2014, demonstrates the feasibility and reliability 

of this method. 

Keywords Patent analysis; Indicator system; Bibliometrics; Technological innovation; 

Entropy. 

Introduction 

Following Schumpeter’s observations on Business Cycles (Schumpeter 1939), an invention is 

considered as a process of recombination (Fleming 2001), and theoretical and systematic 

explanations of technological innovation have become a crucial scholarly topic for innovation 

management. The suitability of patents for indicating technological innovation has been 

discussed considerably since the 1990s and even before (Basberg 1987). A number of 

patentometric indicators have been applied to measure technological innovation from diverse 

econometric perspectives. Based on statistics and empirical studies, determinants of patent 

value regarding economic potential were observed, in which both quantitative indicators [e.g., 

backward patent citations, non-patent citations, the number of inventors, and the number of 

co-assignees (Sapsalis et al. 2006)] and qualitative ones [e.g., technical importance, inventing 

difficulty, and learning value for competitors (Reitzig 2003)] are involved. 

How to evaluate the value of a patent quantitatively and systematically also challenges 

bibliometrics. As a pioneering study, Pavitt (1985) pursued the argument of de Solla Price 

(1983) on the practical needs to explain new empirical data provided by measurement 

systems, and foresaw positively on using patent statistics in analyzing technological activities 

for policy making. Patent indicators were then widely introduced to measure patent value, 

which could constitute technological value, or direct and indirect economic value (Lee 2009). 

Such indicators involve not only patent statistics but also legal status information sometimes. 

For a wide range of science, technology, innovation, and policy (STIP) studies, these 

indicators are selected to evaluate a corpus of patents that represents a given technological 

area or entities such as country, organization, and individual (Narin and Hamilton 1996; 

Meyer and Tang 2007; Zhang et al. 2014b).  
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Indicator systems are not unfamiliar for econometrics, which usually apply regression-

based statistical models to measure the relationships between economic outcomes and 

bibliometric indicators, but a bibliometric indicator system to automatically identify 

meaningful patents and patent portfolios remains elusive. On one hand, blending patent 

citation/co-citation analysis and social network analysis to seek patents at traffic hubs is one 

mainstream approach to identify ―key‖ patents (Choi and Park 2009; Funk and Owen-Smith 

2016), despite the fact that certain limitations of citation analysis have already been argued 

by Rip (1988). On the other hand, the engagement of multiple indicators also introduces 

issues (e.g., how to weight those indicators). Delphi-based or Analytic Hierarchy Process 

(AHP)-based qualitative approaches can be helpful in some sense (Bozbura et al. 2007). 

However, even if we ignore the bias possibly resulting from subjective opinions of experts, 

these traditional weighting approaches could mostly lead to ―moderation‖ results; that is, 

patents ranked to a top list can well be neither those with the highest forward citations nor 

those with the most active cross-national collaborations, but they will have good-looking 

values on all indicators. In Chinese philosophy, such a phenomenon is summarized as the 

Doctrine of the Mean, but it is definitely not good for indicating innovation potential. 

Aiming to address the above concerns, orienting patents authorized by the United States 

Patent and Trademark Office (USPTO), this paper constructs an entropy-based indicator 

system to measure the potential of patents in technological innovation. One basic target is to 

identify significant patents with high technological innovation rather than those multi-

dimensional moderate ones. Our endeavours include (1) proposing an indicator model for 

USPTO patents, which contains three macro-level perspectives: technological perspective, 

legal perspective, and economic perspective. Each perspective is constituted by a number of 

patent indicators. Descriptive statistics and correlations are used to identify dynamic 

indicators and high-coupled indicators, which help configure the priorities of indicators in a 

ranking system. (2) Shannon’s entropy (Shannon 1948), well-known as a coefficient for 

measuring complexity and uncertainty, is introduced to quantitatively weight indicators. Its 

basic weighting criterion is that the more common an indicator is the less weight it would 

have. In other words, patents with irregular indicator values would be ranked higher. (3) 

Based on the ranking performed by entropy-based weights, a group of patents with negative 

innovation potential is first identified. We apply a collaborative filtering technique to 

measure similarities between all remaining patents and the set of negative patents, and patents 

sharing a high similarity value with negative patents are identified as noise and will be set as 

negative patents for next iteration. The output of our method is a small set of ranked patents, 

which can indicate the potential of a patent’s technological innovation from diverse 

dimensions. 

This method can be used to seek patents with technological values and innovative 

potential. We applied our method to 28,509 USPTO patents with Chinese assignees, covering 

the period from 1976 to 2014. A number of patents with distinctive potential in technological 

innovation were identified, and the results demonstrate the feasibility and reliability of our 

method, which holds abilities to explore insights to support Research & Development (R&D) 

plans and strategic management in a wide range of government and industry sectors.  

This paper is organized as follows. We review previous studies in the Related Works 

section, which include patent analysis and indicators in economics, patent indicators in 

bibliometrics, and patent ranking systems. The Methodology section follows and presents our 

method using an entropy-based indicator system for measuring the potential of USPTO 

patents in technological innovation. The Empirical Study section applies the method to 

identify distinctive patents with the potential of technological innovation from a corpus of 

USPTO patents. Finally, we provide an in-depth discussion on the technical implication of 

the method, limitations, and future directions in the Discussion and Conclusions section.  



Related Works 

We review related works from the following three aspects: patent analysis and indicators in 

economics, patent indicators in bibliometrics, and patent ranking system. 

Patent analysis and indicators in econometrics 

Patent statistics, serving as a crucial indicator of innovation, have been used to measure 

technological change since the 1980s (Basberg 1987; Archibugi and Planta 1996; Fleming 

2001), and regarding to the life cycle of a technology patents focus on the development stage 

that links academic research with actual applications (Martino 2003). Credit to Hall (2002), 

the development of the U.S. Patent Citations Data File further pushed these efforts forward. 

Recently, indicator systems with patent statistics are widely constructed to characterize 

technological innovation from the perspective of economics, e.g., Grimaldi et al. (2015) 

focused on the strategic information of patents in analyzing the value of patent portfolios, and 

Verhoeven et al. (2016) integrated patent citations and classifications to evaluate patents from 

the perspectives of recombination and knowledge origins. In addition, as a hotspot in 

economic studies, researchers have deeply conducted the interactions among patents, market 

value, and R&D via both theoretical and empirical studies (Hall et al. 2005).  

Patent indicators in bibliometrics  

Using patent indicators for bibliometrics can also date back to the 1980s (de Solla Price 1983; 

Pavitt 1985). Patent statistics, acting as one of the most significant elements in patent analysis, 

demonstrate incredible power in a wide range of STIP studies, e.g., analyzing technological 

landscapes (Chen et al. 2005), identifying the technological relationships between scientific 

and technological communities (Guan and He 2007), and measuring technological or 

innovative capabilities (Narin and Hamilton 1996; Meyer and Tang 2007). These studies 

usually addressed concerns on given entities, such as organization, region, and country. 

Furthermore, the use of patent indicators in bibliometrics, gaining benefits from text mining 

and network analysis, exceeds that of econometrics, e.g., text elements (including single 

words, terms, and subject-action-object structures) are involved in patent analysis (Choi et al. 

2011; Yoon et al. 2013; Zhang et al. 2014b), and the development of patent maps, based on 

citations and International Patent Classification (IPC) codes, provides a novel way to measure 

technological similarity for multidisciplinary studies (Kay et al. 2014; Leydesdorff et al. 

2014). In particular, citation statistics (e.g., the number of citations, co-citations, and citation 

rate) are highlighted, which have become the most important and the widest-used indicator of 

evaluating scientists (Hirsch 2005; Cronin and Meho 2006; Egghe 2006) and journals (Braun 

et al. 2006; Vinkler 2013). 

Patent ranking systems  

Bibliometrics usually closely relate to actual requirements in STIP studies, and indicator 

systems have been extended to a broad range, e.g., evaluating scientific and technological 

activities (Lee 2009), and profiling leading individuals or organizations (Waltman et al. 2012). 

Ranking has become an increasing application of indicator systems, in which the targets of 

the systems include not only patents but also a number of scientific publications, journals, 

websites, and topics, and both quantitative and qualitative methodologies are introduced, e.g., 

network analysis, time series analysis, fuzzy decision-making approaches, Analytical 

Hierarchy Process (AHP), and questionnaire survey (Glänzel and Thijs 2012; Iwami et al. 

2014; Xu et al. 2014; Wang and Hsieh 2015). Concentrating on ranking needs, previous 

studies might either heavily depend on individual indicators (that might exaggerate their 

influence) or easily get into trouble in engaging multiple indicators, but both led to 

―moderation‖ results, with good-looking values on all indicators. 



Methodology 

Orienting USPTO patents, this paper constructs an entropy-based indicator system, including 

three main models: (1) a patent indicator model, involving a number of patent indicators and 

containing three macro-level perspectives: technological perspective, economic perspective, 

and legal perspective; (2) an entropy-based weighting model, to quantitatively define weights 

for the indicators and initialize a set of negative patents, that is, those ranked at the end of the 

queue; and (3) a collaborative filtering model, to remove patents sharing a high similarity 

with the negative patents, in which an iterative collaborative filtering approach is engaged. 

The framework of the entropy-based indicator system is given in Figure 1. 

 

Fig. 1. Framework of the entropy-based indicator system 

 

Patent indicator model 

With reference to the given features of USPTO and patent indicators used in econometrics 

and bibliometrics, we in particular selected eleven indicators for evaluating the potential of a 

patent’s technological innovation (e.g., the number of inventors, the number of patent 

families, the number of legal transactions, the number of claims, the number of patent 

references, the number of non-patent references, the number of citations, the number of IPCs, 

the number of terms, and the time gap between the application year and the issue year, and 

the number of assignees). Despite the fact that technological perspective is the one we 

emphasize, the interactions among technological, economic, and legal issues cannot be 

ignored. At this stage, three macro-level perspectives are highlighted (e.g., technological 
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perspective, economic perspective, and legal perspective). The classification of the eleven 

indicators to the three perspectives is given in Table 1. 

 

Table 1. Classification of the eleven patent indicators to technological, economic, and legal 

perspectives 

 Indicator Tech.  Eco. Legal 

1 # inventors  √  

2 # patent families  √ √ 

3 # legal transactions  √ √ 

4 # claims √   

5 # patent references √ √  

6 # non-patent references √   

7 # citations √   

8 # IPCs √   

9 # terms √   

10 Time gap* √   

11 # assignees  √  

Note. #: the number of; Tech.: technological perspective; Eco.: economic perspective; Legal: legal 

perspective; Time gap: the time gap between the application year and issue year. 

 

(1) Inventors and assignees 

The information of patent inventors and assignees plays a crucial role in exploring 

knowledge/technology transfer, and their engagement belongs to a company’s R&D strategy 

(Agrawal 2006). Comparably, the information of inventors emphasizes the R&D capability 

and inner collaboration of a company, while multiple assignees of a patent can indicate 

related technological collaboration patterns home and abroad (Guellec and de la Potterie 2001; 

Lei et al. 2013). At this stage, we used the number of inventors and the number of assignees 

as two economic indicators, following the hypothesis: the more inventors/assignees a patent 

has the higher economic value it might have.  

(2) Patent family 

Inventors will seek legal protection for their invention, and such protection can be 

authorized from diverse patenting authorities. The hypothesis that the more economic and 

legal value an invention has to the inventor, the more broadly the invention will be fielded 

has been approved, i.e., patents with a large number of patent families can be particularly 

valuable (Harhoff et al. 2003; Wang 2007). It is common to use patent family data to analyze 

the internationalization of a technology, forecast its application, and estimate patent value 

(Martínez 2011). Despite the fact that USPTO does not provide the information of patent 

families, one feasible solution is to collect such information from the Derwent World Patents 

Index (DWPI). Thus, we still added the number of patent families as one indicator covering 

both economic and legal perspectives in our indicator system. 

(3) Legal transactions 

Previous studies attempting to identify the determinants of patent value emphasized the 

information of renewal, i.e., the applicant of a patent will pay the maintenance fee to renew 

the protection when the term expires (Guellec and de la Potterie 2000). As an example, 

patents applied from USPTO after December 11, 1980, will require a maintenance fee after 

3.5, 7.5, and 11.5 years to remain in force beyond 4, 8, and 12 years, respectively (Bessen 



2008). In addition, it is also fruitful to delve into the transfer of patent rights, since patents 

have become one of the most crucial resources in technology mergers and acquisitions 

(Makri et al. 2010). This paper counted all changes of the legal status of a patent and defined 

it as the most important indicator from the legal perspective. The hypothesis here is the more 

legal transactions a patent has the higher economic and legal value it might have. Note that 

legal transaction data is not available for all patent data sources, so it is necessary to consider 

possible influence while applying this system to other patent data sources rather than USPTO. 

(4) Patent claims 

A patent claim describes the legal protection area of a patent, which usually contains a 

number of novel technological features (Schmoch 1993), and analyzing patent claims is 

considered as a good way to explore technological performance (Lee et al. 2007). However, 

from the professional view of patent examiners, one critical concern here is a patent with too 

long claims can be unclear and will have to be rewritten, so patent claims might have limited 

relationships with technological innovation but can indicate legal meaning. At this stage, we 

introduced the number of claims to be an indicator of legal perspective. Thus, the hypothesis 

is the more claims a patent has the higher legal value it might have. 

(5) Patent citations 

Patent citations are one of the most significant indicators for measuring the value of a 

patent, which indicate innovation from two aspects: 1) the interactions among inventions, 

inventors, and assignees; and 2) the importance of individual patents (Hall et al. 2005). It is 

common to use backward citation and forward citation to distinguish two types of patent 

citations. The former one relates to references that a patent cites, while the latter one is used 

to describe how many times a patent was cited by others (Von Wartburg et al. 2005). This 

paper used ―the number of patent references‖ and ―the number of non-patent references‖ to 

represent backward citations, and ―the number of citations‖ to reveal forward citations. 

We further distinguish backward citations due to the following reason: citing previous 

patents can be a way to align with certain technological flows and obtain more opportunities 

to earn economic value, while citing non-patent references (e.g., scientific publications) is to 

illustrate its close relation with the frontiers of knowledge and the potential in technological 

innovation (Funk and Owen-Smith 2016). In addition, non-patent references can also be 

considered as a breakthrough point for investigating the science-technology linkages (Tijssen 

2001). However, it is necessary to consider the role of patent examiners in evaluating 

backward citations, e.g., Alcacer and Gittelman (2006) and Azagra-Caro et al. (2009) argued 

that diverse influences exist between applicant-inset and examiner-inset backward citations 

when tracing knowledge flows and science-technology links. At this stage, despite the fact 

that the use of the number of backward citations can be counterevidence, we list the two 

indicators in our indicator system, in which we assume the number of patent references as an 

indicator emphasizing the economic value of a patent and the number of non-patent 

references as an indicator to highlight a patent’s technological value. They both follow the 

hypothesis that the more patent/non-patent references a patent has the higher economic or 

technological value it might have respectively. However, we are fully aware of and highlight 

the arguments on these two indicators, and it is required to discuss the practicability before 

applying them to any actual cases. 

The importance of patent citations (forward citations) has been discussed from multiple 

dimensions, and the evidence from previous studies strongly supports the conclusion that 

patent citations can be a crucial indicator to measure a patent’s technological importance 

(Gittelman and Kogut 2003; Harhoff et al. 2003; Hall et al. 2005). We in particular selected 

the number of citations as one of the most important indicators for technological value, and 



the hypothesis is that the more citations a patent receives the higher technological value it 

might have. 

(6) IPCs and terms 

IPC provides a hierarchical taxonomy system reflecting existing technological categories 

and sub-categories (Zhang et al. 2016), and it has been widely used as an indicator to measure 

the technological scope of a patent (Reitzig 2004). In addition, IPCs also play an active role 

in measuring technological distance between patents or patent portfolios (Zhang et al. 2016). 

We used the number of IPCs as a technological indicator, with the hypothesis that the more 

IPCs a patent has the higher technological value it might have. 

It is not common to use terms in patent indicator systems because of semantic complexity 

and insufficient term cleaning techniques. In this paper, we introduced a term clumping 

process (Zhang et al. 2014a) to remove noise and consolidate technological synonyms, and 

identified core technological terms to reflect meaningful technological information contained 

in patent documents. At this stage, the number of terms is involved in the system to indicate 

the technological value of a patent, and the hypothesis is that the more core technological 

terms a patent has the higher technological value it might have.   

(7) Time gap 

One observation from the empirical work of Mowery et al. (2002) is that patent citations 

peak during the first four years after the issue date of a patent. Therefore, one consideration 

here is whether a patent application that is issued rapidly can be better than the one issued 

slowly. At this stage, we used the time gap between the issue year and the application year of 

a patent to indicate its technological value. Our hypothesis is that the lower the time gap a 

patent has the higher technological value it might have. 

Based on the entire dataset, descriptive statistics and correlations are applied, in which we 

will emphasize the following parts of the analytic results: (1) standard deviation—certain 

indicators with a high value of standard deviation will be set as ―dynamic indicators,‖ which 

means the value of this indicator in the dataset is extremely unstable and this indicator might 

be used to seek special patents; (2) the value of correlation—certain pairs of indicators with a 

high value of correlation will be set as a ―high-coupled pair of indicators,‖ which means the 

indicators in the pair are highly correlated and only one indicator of the pair might have a 

relatively high weight.  

Entropy-based weighting model 

Expert knowledge is indispensable for weighting indicators in most indicator systems, in 

which qualitative approaches (e.g., Delphi and AHP) are broadly used to engage experts. 

Despite the fact that a number of efforts (e.g., fuzzy set and multiple criteria decision making) 

are involved to reduce subjective bias and improve the performance of related indicator 

systems (Bozbura et al. 2007; Wang and Hsieh 2015), traditional weighting approaches still 

face one critical issue: highly ranked patents can only be those have good-looking values on 

all indicators rather than those with distinctive values in certain individual indicators. 

Entropy, well-known as a coefficient for measuring complexity and uncertainty, was first 

introduced from thermodynamics to information theory by Shannon (1948). Concentrating on 

studies in bibliometrics, certain interesting applications exist, e.g., Leydesdorff (2002) built 

up an entropy-based indicator to measure the ―heat‖ in the dynamics of science, and Chen 

and Chang (2012) applied entropy to investigate the influence of technological diversification 

on technological competition. The basic weighting criterion of entropy is that the more 

common an indicator is the less weight it would have. Therefore, an entropy-based weighting 



model varies with actual datasets and highlights the dynamics of related indicators, which can 

be a way to explore special patents with potential in technological innovation. 

We followed the definition given by Grupp (1990) and denoted a set of patents as   and a 

set of indicators as  , and thus a matrix       exists, where      is used to represent the 

value of the  -th indicator of the  -th patent (          and          ). The stepwise 

process of the entropy-based weighting model is described as follows: 

Step 1: to normalize      as     , in which a max-min normalization approach is used 

(in particular since the time gap prefers a fewer value rather than a larger value as 

other indicators, for the value of the time gap,     
         ): 

      
               

                   
 

where           and           is the maximum and minimum value of the  -th indicator. 

Step 2: to calculate an entropy   : 

     
 

   
∑            

 

   

 

Step 3: to transfer the entropy    to the weight     of related indicator: 

    
     

  ∑    
 
   

         ∑   

 

   

    

Step 4: to rank patents based on the weights calculated automatically, and set the 

patents ranked at the end of the queue as negative patent (i.e., those with low potential 

in technological innovation). A threshold   with certain strategies based on actual data 

will be used to decide the selection of negative patents.  

Compared to traditional weighting approaches, the entropy-based weighting model fully 

takes the situation of actual data into consideration and automatically calculates the weights 

of all indicators. More importantly, the main purpose of this model is not to identify 

significant patents, as what traditional approaches do, but to identify negative patents. Our 

concern here is that patents with good-looking values in all indicators could not be those with 

high potential in technological innovation, but patents with low values in all indicators must 

be those with limited contribution to technological innovation. Therefore, similar to certain 

search strategies, our design here is to apply the entropy-based weighting model to help 

narrow down our targets, and provide related resources (e.g., a set of negative patents) for an 

iterative process of further filtering in the collaborative filtering model.  

Collaborative filtering model 

Collaborative filtering is a common technique for recommender systems, which recommends 

items based on shared interests between users or shared features between items (Lu et al. 

2015). Collaborative filtering techniques have been widely used for social network analysis 

(Mao et al. 2016), e-business applications (Shambour and Lu 2012), and big data analysis 

(Jiang et al. 2011). We followed the basic rules of item-based collaborative filtering 

techniques and constructed the collaborative filtering model to filter patents sharing a high 

similarity with negative patents. 

Following the definition given in the entropy-based weighting model, after normalization 

a patent can be represented as   , where      is the value of the  -th indicator of    , and the 



set of entropy-based weights is   , where      is the weight of the  -th indicator. The 

collaborative filtering model is described as follows: 

Step 1: to reconstruct   as   , with the engagement of  : 

       

where     
  is the value of the j-th indicator of   

  and     
           . 

Step 2: to divide   into two sets—the set of negative patents    and the set of 

remaining patents   : 

         

        

Step 3: to measure the similarity  (       ) between each patent     of    and 

each negative patent     in   , in which the traditional cosine measure (Salton and 

Buckley 1988) is used: 

 (       )     (       )  
       

          
 

|   |  √∑      
   

 

   

 

 |   |  √∑      
   

 

   

 

 

where       and |   | is the norm of the vector     and     respectively,  
    
  and  

    
  is 

the value of the j-th indicator of     and    , respectively, and   is the total number of 

applied indicators. 

Step 4: for each remaining patent    , to set the maximum value of  (       ) as 

the similarity  (      )  between     and the set of negative patents   : 

 (      )        (       )  

Step 5: to compare  (      ) with a threshold  , if  (      )    , the patent 

    is marked as ―negative;‖ 

Step 6: to remove all the patents in   , and set the patents with the label of negative 

as new negative patents and move to   . 

Step 7: to end the iteration if the total number of remaining patents is less than a 

threshold   or there is no new patent marked the label of negative. Or else, return to 

Step 3: 

                       

where         is the number of the patents in   . 

The output of the collaborative filtering model is a small set of patents, with potential in 

technological innovation. However, differing from traditional approaches, we did not rank 

these patents but provided certain dimensions to select distinctive patents (e.g., good citations 

& frequent legal transactions, large-scale engagement of inventors & assignees, and a large 

number of involved IPCs & terms). At this stage, certain benefits can be gained from such 

design: (1) to emphasize the distinctive outcomes of a patent in certain individual indicators; 

(2) to explore interactions between/among multiple indicators; and (3) to provide a way to 

evaluate patents at a macro-level and leave space to engage expert knowledge more 

effectively than a traditional large-scale manual patent indexing process. 

Empirical Study 



The design of the entropy-based indicator system orients USPTO patents, however, we 

downloaded the USPTO patents of our empirical dataset from the DWPI database
1
 by the 

search strategy ―Database = US Grant (the database of patents issued by USPTO) AND 

PAOD (the address of patent assignees) = CN AND PY (publication year) >=1976 AND PY 

<= 2014.‖ Our consideration includes: (1) we emphasize the empirical patents are from the 

same jurisdiction, i.e., the same priority patent authority, the same examination systems, and 

the same language, so USPTO is our basic focus; (2) we prefer a broad sample of patents 

with multiple technological domains to show the ability for our system to generate novel 

insights, so we collect all patents with Chinese assignees; (3) the global view of DWPI 

provides additional information on patent family and citation, which can be necessary 

indicators in our design, and the rewrite of DWPI would help reduce the number of 

technological synonyms and further benefit the identification of core terms; and (4) DWPI is 

integrated with Web of Science, and our previous work in data pre-processing (including the 

use of VantagePoint) matches perfectly here. Therefore, we finally decided to collect patents 

from DWPI rather than the website of USPTO. In addition, we invited one patent examiner 

from the Intellectual Property Office of China (SIPO) and one researcher from the Beijing 

Institute of Technology, who has focused on patent analysis for nearly ten years, as our 

experts to provide professional consultation for our study. 

Data and patent indicators 

A raw set with 33,585 patents was first retrieved, but considering some patents without a title 

or an abstract, we only collected 28,509 patents with the both fields to run a term clumping 

process (Zhang et al. 2014a) to remove noise (e.g., conjunctions, prepositions, and pronouns) 

and common terms in patents (e.g., ―description,‖ ―use,‖ and ―drawings‖), and consolidate 

technological synonyms based on the stem (e.g., singular and plural, and the part of speech). 

The stepwise results of the term clumping process are given in Table 2.  

 

Table 2. Stepwise results of the term clumping process 

Step Description # Terms % Reduce 

1 Raw terms after natural language processing 493,856 N/A 

2 Basic cleaning—to remove noise 458,234 7.2% 

3 Basic cleaning—to remove common terms in patents  445,745 2.7% 

4 Stem-based consolidation 405,822 9.0% 

5 Pruning—to remove terms appearing in only one patent 70,034 82.7% 

Note: #Terms: the number of terms; % Reduce: the proportion of reduction. 

 

As shown in Table 2, we reduced the scale of the term amount from 493,856 to 70,034 by 

using certain thesauri and association rules. Note that the target of the term clumping process 

is to handle terms rather than individual words, since the limitation of current natural 

language processing techniques is that some adjectives might be combined with existing 

terms and produce new synonyms. At this stage, Step 4 in some sense was designed for such 

an issue. Although there might be a number of low frequency terms containing valuable 

innovative information, it is also reasonable to imagine that a term will be meaningless if it 

only appeared once in several decades.  

Eleven patent indicators were selected: the time gap between the application year and the 

issue year of a patent, the number of inventors, patent families, legal transactions, claims, 

                                                 
1
 http://thomsonreuters.com/en/products-services/intellectual-property/patent-research-and-analysis/derwent-

world-patents-index.html 



patent references, non-patent references, citations, IPCs, terms, and assignees. We 

constructed a 28509×11 matrix linking individual patents and the eleven indicators. 

Descriptive statistics and entropy-based weights are given in Table 3, and Table 4 reports 

correlations. 

 

Table 3. Descriptive statistics and entropy-based weights 

 
Indicator Min. Max. Mean Std. Dev. Mean (*) Std. Dev. (*) Weight 

1 # inventors 1 31 3.0 2.1 .066 .069 0.03 

2 # patent families 1 132 49.5 56.5 .371 .431 0.06 

3 # legal transactions 0  8 1.6 1.1 .196 .133 0.23 

4 # claims 0  145 13.8 7.7 .095 .053 0.17 

5 # patent references 0  792 14.2 24.4 .018 .031 0 

6 # non-patent references 0  886 4.2 16.1 .005 .018 0 

7 # citations 0  695 5.7 12.1 .008 .017 0.13 

8 # IPCs 0  28 1.5 .9 .053 .032 0.12 

9 # terms 0  304 13.0 11.2 .043 .037 0.10 

10 Time gap 0  11 2.1 1.3 .810 .122 0.13 

11 # assignees 1 28 1.4 .9 .015 .033 0.03 

Note: Mean (*) and Std. Dev. (*) are based on the results after normalization.  

 

Table 4. Correlations 

Indicator 1 2 3 4 5 6 7 8 9 10 

2 .088 1                 

3 -.040 -.215 1               

4 .062 .015 .020 1             

5 .072 .105 -.049 .127 1           

6 .110 .175 -.039 .098 .472 1         

7 .086 .102 .149 .135 .248 .179 1       

8 .079 .123 .058 .018 .046 .117 .117 1     

9 .205 .013 -.013 .117 .105 .229 .084 .127 1   

10 .057 .291 -.102 .043 .099 .115 .167 .126 -.008 1 

11 .101 -.143 .010 -.010 .010 .018 .027 .043 .114 -.106 

Note: The indicators follow the numbers given in Table 3.  

 

Certain findings observed from Tables 3 and 4 include: (1) based on the normalized results, 

the number of patent families peaks the largest standard deviation by a significant margin, 

and the number of legal transactions and the time gap follow. Thus, we set the three 

indicators as dynamic indicators, which indicate that their related values vary significantly 

with different patents; (2) the correlation between the number of patent references and the 

number of non-patent references is very high, and they both correlate with the number of 

citations in a relatively high level. At this stage, considering the important of forward 

citations and the argument on backward citations, we set the number of patent references and 

the number of non-patent references as high-coupled indicators, and remove them from the 

indicator system; and (3) a correlation also exists between the number of patent families and 

the time gap. We can imagine if an applicant is willing to apply patents from different patent 

authorities, with diverse rules and regulations, that it is common to get a delay resulting from 



some unexpected issues. However, after consulting with our experts, we decided to only pay 

attention to these two indicators rather than to set them as high-coupled indicators as well. 

Entropy-based weighting and collaborative filtering 

Following the process of the entropy-based weighting model, we calculated the weights of 

the nine indicators, given in Table 3. The number of legal transactions (legal and economic 

value), the number of claims (technological and legal value), the time gap (technological 

value), and the number of citations (technological value) were weighted as the top 4 

indicators, and the numbers of IPCs and terms followed—the two indicators both related to 

technological value. At this stage, the six indicators can be considered as the main indicators 

of this system. Especially, although we set the number of patent families as one dynamic 

indicator, considering a balance between the two indicators patent family and time gap, it is 

reasonable to only give time gap a high weight. 

The collaborative filtering model followed, and the parameters and related strategies are 

described as follows: (1) the initial size of negative patents: we set   as the 5% of the entire 

dataset and collected 142 patents with the lowest ranking in the queue. Then, aiming to 

minimize the initial size of the set of negative patents to avoid exaggerative identification of 

noise, we used the means of the six main indicators to be six additional thresholds (i.e., once 

a patent has a value in either of the six main indicators more than a related threshold, we 

would remove the patent from the set of negative patents); (2) the overflowing range of the 

similarity measure: we set   as 0.9—a relatively conservative upper line for similarity 

measure; and (3) the size of the outputs: we set   as the 10% of the entire dataset—it is 

acceptable if the number of the innovative patents is far less than this threshold. The 

collaborative filtering model ended after the 3-round iteration, with 751 remaining patents as 

the output. The stepwise results of the iterative process in the collaborative filtering model 

are given in Table 5. 

 

Table 5. Stepwise results of the term clumping process 

Iteration #Remaining patents # Negative patents % Reduce 

1 28,504 5 0.02% 

2 17,679 10,825 37.98% 

3 751 16,928 95.75% 

Note: #Terms: the number of terms; % Reduce: the proportion of reduction. 

 

It is interesting that we only obtained 5 patents in the first iteration; one explanation for 

this phenomenon could be that there were only a few patents with bad-looking values in all 

these six main indicators, even those ranked at the bottom of the queue. This observation 

might be able to endorse a finding that if an invention can be patented, it is definitely 

equipped certain features from technological, economic, or legal perspectives e.g., covering a 

number of IPCs (i.e., technological classes and sub-classes), containing a number of 

technological terms, or claiming a number of technological significances for legal protection. 

Such features might be further approved by the time (e.g., being cited by follow-up 

inventions, or being maintained or transferred). In addition, it is meaningful to bring down 

the initial size of negative patents, since the collaborative filtering model is mostly based on a 

patent’s composition with the values in the nine indicators rather than its semantic content 

and the iterative process would exponentially increase the size of negative patents. Therefore, 

an accurate initial set of negative patents can be a guarantee, and sometimes, engaging expert 

knowledge to help identify the initial set of negative patents can be an alternative option. 



Aiming to further filter patents from diverse requirements and in a visual way, we 

generated six three-dimensional maps as examples, given in Fig. 2. It is easy to identify 

valuable patents (marked as red nodes) with distinctive values in selected indicators from 

these maps. In addition, based on our case, certain insights on exploring interactions between 

selected indicators are summarized: (1) there is no significant evidence to support a direct 

relationship between citation and the other main indicators such as patent family, legal 

transaction, and time gap. However, relatively weak negative linkages seem to exist between 

citation and claim, assignee, and core terms, that is, those patents with a high number of 

citations usually have limited claims, assignees, and core terms; and (2) specifically 

considering the two indicators we removed from our indicator system (i.e., the numbers of 

patent references and non-patent references), Fig. 2 indicates that patents with a large number 

of patent references cannot increase the opportunity to be cited, despite the fact that several 

exceptions also exist.  

 

 

Fig. 2. Three-dimensional maps for filtering patents  

Validation measures 

Aiming to better demonstrate the effectiveness of our method, we conducted two ways to 

validate the results of our method: (1) to compare the results derived from our method with 

the results ranked from a traditional weighting approach (e.g., AHP), and (2) to investigate a 

case study on certain patents that were identified by our method but were not ranked in the 

top list by traditional weighting approaches. The comparison can be used to demonstrate the 

fact that our method can do what traditional approaches do, and can do even better, when the 



case study indicates our method holds the ability to discover ―underlying‖ patents with the 

potential in technological innovation.  

(1) Comparison with an AHP-based weighting approach 

We followed the basic steps of the AHP fundamental scale proposed by Saaty (1990). The 

pairwise values and the matrix are given in Table 6. Then, we used the Priority Vector (P.V.) 

as the vector of weights for the nine indicators (we also removed the number of patent 

references and the number of non-patent references here), and ranked the raw 28,509 patents 

with these weights. 

Table 6. Pairwise comparison matrix 

Indicator 1 2 3 4 7 8 9 10 11 P.V. 

1 1     1/4 1/2 1/2 1/8 2/5 1/2 2     1/4 0.04 

2 4     1     3     6     1/4 2     1/2 4     2     0.17 

3 2     1/3 1     2     1     2     2     5     1/2 0.13 

4 2     1/6 1/2 1     2/5 1     1/2 4     2     0.08 

7 8     4     1     5/2 1     2     1/2 8     3     0.23 

8 5/2 1/2 1/2 1     1/2 1     1/2 4     2     0.10 

9 2     1/2 1/2 2     1/2 2     1     6     1/4 0.10 

10 1/2 1/4 1/5 1/4 1/8 1/4 1/6 1     1/4 0.03 

11 4     1/2 2     1/2 1/3 1/2 4     4     1     0.12 

     0.088 

 Note: The indicators follow the numbers given in Table 3. 

 

It is clear that these expert knowledge-based weights are different from the entropy-based 

weights. The number of citations was weighted as the most prior indicator, and the number of 

patent families, the number of legal transactions, the number of terms, and the number of 

assignees were emphasized. Despite the fact that both weighting approaches highlight the 

importance of citations and legal transactions in evaluating a patent’s value, the inconsistency 

exists on the weights to patent family, assignees, and the time gap between the application 

date and the issue date. Actually, it is interesting that legal transactions and citations are the 

only two indicators that cannot be directly generated by patent applicants, and at this stage, 

the two indicators can be more objective than the remaining nine indicators. Since both sets 

give a priority to the two indicators, we in particular focused on the two indicators and 

designed a way to measure the accuracy of the two methods. 

We first ranked raw patents with only the number of citations and the number of legal 

transactions respectively, and labeled a small set of patents in a top n list. On one hand, we 

searched these patents in the remaining patents of the 2-round and 3-round iterations
2
 of our 

method, and recorded the number of patents existing in the two sets, respectively. On the 

other hand, we simulated the iterative process of our method and, based on the ranking given 

by the AHP-based weighting approach, labeled the top 1 to 751 patents as the 3-round 

iteration and the top 752 to 17,679 patents as the 2-round iteration. We defined Accuracy as 

the indicator of validation measures, which can be calculated as follows: 

          
           

    
 

                                                 
2
 Note that patents in the 2-round iteration will exclude patents in the 3-round iteration, i.e., there are 751 patents 

in 3R and 16,928 patents in 2R. 



where #Raw is the total number of the patents in the top n list, and #3R and #2R is the 

number of patents that respectively exist in the 2-round and 3-round sets of remaining patents. 

Based on the two indicators for the number of citations and the number of legal 

transactions, the accuracy of the AHP-based weighting approach and the entropy-based 

weighting approach is given in Table 7.  

 

Table 7. Accuracy of the AHP-based and entropy-based weighting approaches (in indicators: the 

number of citations and the number of legal transactions) 

Method Indicator # Raw  # 3R # 2R  Accuracy 

AHP # citations 10 6 4 0.80 

  15 8 7 0.77 

 # legal transactions 18 9 9 0.75 

  38 10 28 0.63 

Entropy # citations 10 6 4 0.80 

  15 9 6 0.80 

 # legal transactions 18 18 0 1.00 

  38 38 0 1.00 

 

It can be argued that our method weighted the number of legal transactions as a crucial 

indicator with the highest weight, which can result in the perfect accuracy of our method in 

this indicator. However, although our expert panel thought that citations were the most 

important indicator, our method still performed better than the AHP-based weighting 

approach in citations. This comparison can act as a fair stage to compare the effectiveness of 

our method with other approaches, and the results indicate the strength of our method in 

identifying patents with distinct values in certain individual indicators. 

(2) Case study on windfall patents 

We define windfall patents as those searched by our method but neither having good-

looking values in all indicators nor being ranked in a top list by traditional weighting 

approaches. Comparing the 3-round set of remaining patents identified by our method to the 

top 751-patent list ranked by the AHP-based weighting approaches, only 169 patents were the 

same. Therefore, it is interesting and promising to delve into the 582 windfall patents and 

confirm whether they really were the ones with potential in technological innovation. 

We specifically selected five windfall patents and listed their information in Table 8. It is 

obvious that all of them cannot be traditionally considered to be outstanding candidates since 

they have shortages in certain indicators, and don’t have either sufficient citations or don’t 

cover a broad range of IPCs. However, insights dug out by case studies can be good evidence 

to endorse the potential of these patents in technological innovation.   

Table 8. Samples of windfall patents 

 
Indicator 

Patent Number 

1 2 3 4 7 8 9 10 11 

1 US20040188519A1 1 1 5 70 208 3 12 2 1 

2 CN1341604A 1 2 8 15 16 1 19 3 1 

3 EP1369820A2 3 40 1 39 129 3 12 7 1 

4 WO2002027542A1 2 92 1 15 4 1 6 11 1 

5 US20030152651A1 5 103 1 1 37 4 121 10 1 

Note: The indicators follow the numbers given in Table 3. 



 

Patent 1 has a good citation count, but its ranking would be heavily influenced by the 

number of patent families and also the number of IPCs in traditional weighting approaches. 

One piece of intriguing evidence here is that the only assignee of this patent is Kepler Energy 

Ltd., which was founded by three senior academics from the University of Oxford
3

. 

Definitely, Oxford can theoretically support the technological value of this patent, and acting 

as the core of technology transfer activities (from leading universities to industry sectors), the 

value of these patents has been well-approved. 

  The only distinctive value of Patent 2 is the number of legal transactions, but it is 

surprising to retrieve this patent from our study. This patent was applied by a researcher from 

Sichuan University, China, and was mostly based on one of his publications in Nature 

Biotechnology (Qiu et al. 2003). Despite a dispute on academic fraud in 2004, a follow-up 

publication of this author in Nature Biotechnology (Qiu et al. 2007) helped exonerate the 

author from such accusations and supported the technological innovation of this research. At 

the same time, the continuous maintenance records until present also demonstrated its 

economic and legal value
4
.  

Patents 3, 4, and 5 have distinctive values in certain individual indicators, but limited legal 

transaction and a large time gap between the application date, and the issue date weakens 

their rankings. Generally, Patents 3 and 4 relate to techniques of data processing (i.e., video 

and image encoding, and information retrieval), and they were applied by the Microsoft 

Cooperation and Intel Cooperation, respectively. Patent 5, with a large number of core terms 

and patent families, was applied by the Talsy Group, a listed company in the biomedicine 

sector and specifically focusing on herbal medicine
5
. Obviously, the two world-leading IT 

companies and the China-leading herbal medicine company endorse the technological value 

of their patents. 

It is clear that the five windfall patents indicate significant value in technological 

innovation, and they could be the evidence to demonstrate the reliability of our method. 

However, we also noticed that in the set of outputs there were still a number of patents that 

have either expired for years or could not explore any significance in technological 

innovation. At this stage, we concluded that our method could be used as an effective tool for 

filtering noise and bringing down the size of target patents from more than ten thousand to 

several hundred, in which a scale engaging expert knowledge to manually identify innovative 

patents becomes valuable and efficient. 

Discussion and Conclusions 

This paper constructed an entropy-based indicator system for evaluating a patent’s potential 

in technological innovation. Based on elven patent indicators from technological, economic, 

and legal perspectives, Shannon’s entropy was used to quantitatively weight these indicators 

and rank patents to identify a set of negative patents, with bad-looking values in almost all 

indicators. A collaborative filtering technique was introduced to measure the similarity 

between all remaining patents and negative patents in an iterative process, in which the 

patents sharing a high similarity value with the set of negative patents were identified as new 

negative patents that would be used in the next iteration. A small set of filtered patents were 
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the outputs of our method, which were considered to be patents with good potential in 

technological innovation. 

Technical implication 

Compared to traditional expert knowledge-based weighting approaches, the significant 

strength of the entropy-based weighting method is the ability to quantitatively calculate the 

weights of indicators. Such ability, on one hand, is data-oriented and can adapt to changing 

data situations and actual requirements. On the other hand, the objectivity of quantitative 

computing effectively omits bias resulted from those expert knowledge-based qualitative 

approaches. However, it is notable that since the calculation of weights is totally automatic 

the design of related indicator systems will become crucial. 

The collaborative filtering technique is one of the most representative techniques in the 

field of recommender systems, and it is fruitful to be introduced to our method. First, it 

provides empirical support for our hypothesis that patents sharing a high similarity value with 

negative patents will also have limited potential in technological innovation. Second, 

similarity measures in collaborative filtering are the same as those in bibliometrics, which 

makes it easy to implement collaborative filtering techniques in patent documents. In addition, 

the iterative process in the collaborative filtering model uses a relatively appropriate way to 

narrow down the scale of target patents to a manual-readable level, which neither 

exaggeratively removes valuable patents nor remain as too noisy patents. 

Limitations and future study 

Despite the fact that we seriously addressed concerns while constructing the indicator system 

and discussed the viability of certain indicators (e.g., the numbers of patent references and 

non-patent references) in the case study, it is still critical to package them in one framework 

without empirically evaluating the hypotheses of all involved indicators, although most 

isolated ones have been tested by some econometric models. We also notice that the 

viewpoints to some indicators (e.g., patent claims and backward citations) seem inconsistent 

between academic researchers (e.g., economists) and patent experts, both theoretical and 

empirical argumentations might be required further. In addition, although we emphasize the 

adaptability of our method (e.g., the entropy-based weighting model and the collaborative 

filtering model), the selection of patent indicators needs to focus on single patent authority, in 

which the same jurisdiction (e.g., related laws, examination systems, and languages) is 

applied. At this stage, engaging new indicators or exploring different use of existing 

indicators would be interesting.  

The technical limitations of our method and related further improvement that we can 

anticipate include: (1) we need to configure three thresholds in our current method (i.e., the 

initial size of negative patents, the overflowing range of the similarity measure, and the size 

of the outputs), and the three thresholds can be considered as the crucial factors to influence 

the performance of our method. At the moment, we decided them based on experiments and 

our previous experience, so one future direction is to use training data to learn the thresholds 

automatically; (2) considering that the data of our case study covered a broad range of 

research domains, we only measured the similarity between patents by using the vector of 

indicators, but when the case comes to a specific scientific or technological domain, the 

significance of IPCs and core terms needs to be highlighted. Using IPCs and terms to 

measure technological similarity can greatly help increase the performance of our method; 

and (3) a thorough approach for validation measures could help further improve our method. 
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