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ABSTRACT 13 

Leaf area index (LAI) is one of the most important variables required for modelling 14 

growth and water use of forests. Functional structural plant models use these models 15 

to represent physiological processes in 3D tree representations. Accuracy of these 16 

models depends on accurate estimation of LAI at tree and stand scales for validation 17 

purposes. A recent method to estimate LAI from digital images (LAID) uses digital 18 

image capture and gap fraction analysis (Macfarlane et al. 2007b) of upward-looking 19 

digital photographs to capture canopy LAID (cover photography). After implementing 20 

this technique in Australian evergreen Eucalyptus woodland, we have improved the 21 

method of image analysis and replaced the time consuming manual technique with an 22 

automated procedure using a script written in MATLAB® 7.4 (LAIM).  Furthermore, 23 

We used this method to compare MODIS LAI values with LAID values for a range of 24 

woodlands in Australia to obtain LAI at the forest scale. Results showed that the 25 

MATLAB® script developed was able to successfully automate gap analysis to obtain 26 
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LAIM. Good relationships were achieved when comparing averaged LAID and LAIM 1 

(LAIM = 1.009 – 0.0066 LAID; R
2
 = 0.90) and at the forest scale, MODIS LAI 2 

compared well with LAID (MODIS LAI = 0.9591 LAID – 0.2371; R
2
 = 0.89). This 3 

comparison improved when correcting LAID with the clumping index to obtain 4 

effective LAI (MODIS LAI = 1.0296 LAIe + 0.3468; R
2
 = 0.91). Furthermore, the 5 

script developed incorporates a function to connect directly a digital camera, or high 6 

resolution webcam, from a laptop to obtain cover photographs and LAI analysis in 7 

real time. The later is a novel feature which is not available on commercial LAI 8 

analysis softwares for cover photography. This script is available for interested 9 

researchers. 10 

 11 

Key words: Leaf area index, Eucalyptus, digital imagery, MODIS LAI, MATLAB, 12 

remote sensing. 13 
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INTRODUCTION 1 

Leaf area index (LAI) can be defined as the total one-sided area of leaf tissue per unit 2 

ground surface area (Watson 1947). LAI is an important parameter used to validate 3 

plant architectural models (De Reffye et al. 1995). Accurate estimates of LAI are also 4 

important for functional structural plant models, whilst leaf area strongly influences 5 

rates of evapotranspiration and photosynthesis of trees (Nemani et al. 1993; 6 

Villalobos et al. 1995). Consequently, estimation of this parameter is also important 7 

for modelling forest growth and water use (Macfarlane et al. 2007b), since it 8 

determines the productivity and physical and biophysical interactions between land 9 

surfaces and the atmosphere (Chen and Cihlar 1995). Finally, accurate estimations of 10 

LAI are critical to scale-up leaf-based physiological measurements to the whole tree 11 

(Ewert 2004), tree-based measurements (e.g. sap flow) to the stand scale (Whitley et 12 

al. 2007; Zeppel et al. 2007; Zeppel et al. 2004) and to scale from regional to 13 

continental processes of land surface-atmosphere exchange (Lu and Shuttleworth 14 

2002; Ewert 2004).   15 

 16 

Direct versus indirect LAI measurement 17 

Direct measurements of LAI (allometry or litterfall) are difficult and time consuming 18 

to perform on trees (Cutini et al. 1998). Furthermore, these methods do not easily 19 

allow a representative spatial and temporal resolution of LAI at the forest stand scale 20 

(Chason et al. 1991). Consequently, ground-based indirect methods have been 21 

developed and are more commonly used to estimate LAI. Typically these are based on 22 

measurements of radiation transmission through the canopy (Bréda 2003), for 23 

example the Licor-2000 (Plant canopy analyser; Li-COR, Lincoln, NE) (Arias et al. 24 

2007; Bréda 2003; Cutini et al. 1998; Villalobos et al. 1995). However, the cost of the 25 



 4 

Licor-2000 can be prohibitive (Macfarlane et al. 2007b) and can underestimate LAI 1 

between 10-40% (Macfarlane et al. 2000) in forests.  2 

 3 

Fisheye versus cover digital photography 4 

Fisheye photography or hemispherical methods have been proposed as a less costly 5 

alternative to direct measurements. These techniques measure the gap fraction at more 6 

than one zenith angle. However, the downside of these techniques is that in reality, 7 

estimates of the light extinction coefficient (k) are usually flawed owing to foliage 8 

clumping, inaccurate gap fraction retrieval and the inclusion of woody structures in 9 

the estimation of leaf area. An improved fisheye technique can be achieved using 10 

“fullframe fisheye photography”, which increases the resolution and accuracy of gap 11 

fraction retrieval (Macfarlane et al. 2007a). Most recently, estimation of LAI 12 

indirectly using digital or cover photography and gap fraction analysis have been 13 

developed and this provides an accurate and rapid estimation of LAI (Macfarlane et 14 

al. 2007b). Furthermore, studies comparing hemispherical, fullframe fisheye and 15 

cover photography (digital) have concluded that the later is the best option for routine, 16 

indirect measurements and monitoring of LAI in broadleaf forests (Macfarlane et al. 17 

2007b). Furthermore, the cover photography method outperforms fisheye 18 

photography, since the former can be applied during daylight hours, are of much 19 

higher resolution (less sensitive to photographic exposure), sky luminance is more 20 

even and the narrow viewing angle is better suited to small rectangular plots. 21 

However, the cover photography method could not be automated using commercially 22 

available analysis software (Macfarlane et al. 2007a; Macfarlane et al. 2007b; 23 

Macfarlane et al. 2007c)   24 

 25 
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Commercially available software for LAI analysis 1 

The hemispherical or fullframe fisheye photography techniques require complicated 2 

analysis and specialised software (Bréda 2003; Frazer et al. 2001; Macfarlane et al. 3 

2007a; Macfarlane et al. 2007b). The majority of this software is commercially 4 

available (some are freeware: F) to researchers, such as: Hemiview, Hemiphot, GLA, 5 

DHP-TRACWin, CANEYE (F) and WinSCANOPY (Regent Instruments, Ste-Foy, 6 

Quebec). This software was mainly developed to analyse hemispherical photography 7 

and fullframe fish eye photography (Macfarlane et al. 2007b). In contrast,  the cover 8 

photography method uses normal digital cameras and upward-looking digital 9 

photographs to capture canopy LAI (LAID) and analyses these images at a single 10 

zenith angle (0
o
 – 15

o
), using commercial image processing software (Photoshop 7.0 11 

®). This process is time consuming (5 min per image) and hence costly when 12 

analysing 50 or more images for a single site. This technique also introduces user 13 

subjectivity when selecting adequate large gap fractions and blue light thresholds 14 

between canopy and sky for each image. With the improved availability of cost 15 

effective high resolution digital cameras there is an incentive to further automate this 16 

technique. Recently, WinSCANOPY have incorporated analysis of cover 17 

photography, which is not fully automated. A comparison between WinSCANOPY 18 

and the method using Adobe Photoshop 7.0 (LAID, which is used as a baseline in this 19 

study) was tested by Macfarlane et al. (2007c). This study found that results between 20 

WinSCANOPY and Photoshop have little difference in LAI estimation; however, they 21 

varied from individual images, as evidenced by the small correlation coefficients 22 

between the two methods for crown porosity and the clumping index (Macfarlane et 23 

al. 2007b).  24 

 25 
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MODIS-LAI estimates 1 

 At the forest and catchment scale, LAI estimates can be derived from satellite 2 

spectral reflectance measurements (Nemani et al. 1993, Palmer et al. 2008). This 3 

method is based on either the strong relationship between LAI and NIR/RED ratio 4 

(Carlson and Ripley 1997; Peterson et al. 1987) or the normalised difference 5 

vegetation index (NDVI). High correlations between NDVI and LAI have been found 6 

for non-continuous herbaceous crops, such as grapevines (Johnson 2003) and forests 7 

(Lu and Shuttleworth 2002; Peterson et al. 1987). An alternative is to  implement 8 

radiative transfer (RT) simulations, which simulates average (average what??) over 9 

satellite pixel RT field, such as the Moderate resolution Imaging Spectroradiometer 10 

(MODIS) LAI algorithm (Huang et al. 2008). The MODIS 8-day 1 km LAI/FPAR 11 

product (MOD15A2 Collection 4) (Knyazikhin et al. 1998) is an improvement on the 12 

simple band ratio products and was available for the present study period from 13 

NASA’s Distributed Active Archive Centre. Very recently collection 5 has been 14 

released and this increases the amount of high quality retrievals over broadleaf forests 15 

A suitable ground based LAI measurement is necessary to validate and assess 16 

uncertainties associated with satellite-derived products such as MODIS LAI (Tian et 17 

al. 2002). 18 

 19 

In this paper we describe an image analysis tool written in MATLAB® 7.4 and 20 

compare results using this tool (LAIM) with LAID. The tool developed is able to 21 

batch-process digital images using gap fraction analysis, making the procedure 22 

automatic (on clear or fully overcast day images) or semi-automatic (on patchy cloudy 23 

day images). We also compared LAID with MODIS LAI values for a range of 24 

woodlands in New South Wales (NSW) and Western Australia (WA) to validate 25 
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MODIS LAI data at the forest scale. Since digital images and analysis includes trunks 1 

and brunches, it is argued that estimates correspond to Plant Area Indices (PAI) rather 2 

than LAI (Bréda 2003). However, to maintain a consistent nomenclature we will use 3 

LAI for LAID, LAIM and MODIS LAI in results.   4 

 5 

MATERIALS AND METHODS 6 

2.1. Site locations  7 

Data included in this study were obtained from sites described in Table 1.  8 

 9 

Table 1: Sites of 1 ha approximately in NSW and WA were used to validate the script 10 

developed (marked with *) and MODIS LAI results (marked with * and **). 11 

Site Name Location State 

Castlereagh
*
 33°39'41.54"S; 150°46'58.27"E NSW 

Bago
*
 35°39'20.6"S; 148°09'07.5"E NSW 

Paringa
*
 31°25'16.7”S; 150°36'28”E NSW 

Sunnycorner
*
 33°23'36.63"S; 149°52'44.47"E NSW 

Hornsby
*
 33°40'3"S; 151°10'32"E NSW 

Condobolin
**

 33° 3'12.40"S; 146° 6'53.79"E NSW 

Quairadin
**

 32°46'18.82"S; 117° 6'26.48"E WA 

Wandoo NP
**

 32°45'0.02"S; 116°55'42.00"E WA 

 12 

2.2. Digital image acquisition 13 

A Nikon® Coolpix 995 (3,145,728 pixels in total) mounted on a tripod with a bubble 14 

level to obtain images at the zenith angle was used to aquire digital images from all 15 

sites. Images were collected at 1.5 m from the ground as FINE JPEG. The camera was 16 
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set to automatic exposure using a F2 lens, which gives a zoom angle of approximately 1 

35
o
 across the diagonal, or about 0-15

o
 zenith angle range. In all sites, five images 2 

every 10 m were taken over five linear transect located 10 m apart. This procedure 3 

was repeated twice per site, giving a total of 50 images per site. Images were collected 4 

in August 2006 at all sites. 5 

 6 

2.3. MATLAB® script development 7 

We used MATLAB® 7.4 (The Mathworks, Inc) and the Image Processing Toolbox
 TM

 8 

to generate a script to batch process numerous upward-looking digital images (at least 9 

50 per site). The objective was to automate the estimation of LAI from five different 10 

woodland sites within NSW (Table 1) and to compare results of LAIM with LAID and 11 

MODIS LAI. The user inputs answers to seven questions (Table 2) made by the script 12 

at the start of each batch process. 13 

 14 

Table 2: Questions from the script developed to be answered by the user at the 15 

beginning of the analysis.  16 

Question Script outputs User input 

a Name of files Alphanumeric 

b Initial image Numeric (1 – n) 

c Last image Numeric (1 – n) 

d Number of sub-divisions Numeric (1 – n) 

e Gap fraction threshold Numeric (0 – 1) 

f Light extinction coefficient Numeric (0 – 1) 

g Number of approximations Numeric (1 – n) 

2.3.1. Filtering clouds from images  17 



 9 

A binary (black and white) image was required to simplify gap fraction analysis. 1 

However, when trying to convert an RGB (red – green – blue) patchy cloud sky image 2 

(Fig. 1a) to a binary image (Fig. 1b) without filtering it tends to include clouds as leaf 3 

cover, leading to overestimations of LAIM. To overcome this, the image colour and 4 

brightness components where analysed separately: Figures 2a (blue), 2b (green), 2c 5 

(red), 2d (hue), 2e (saturation) and 2f (intensity). The best cloud filters where the blue 6 

(Fig. 2a) and intensity (Fig. 2f) components, since they gave the best contrast between 7 

foliage cover and sky plus clouds. 8 

 9 

2.3.2. Selecting luminance threshold 10 

 11 

The blue band (450 – 495 nm) of each image was extracted as a histogram and 12 

explored to identify a suitable threshold between foliage and sky (Fig. 3). In this 13 

procedure, the selection of a suitable luminance value threshold (T) from the blue 14 

band histograms can be fully automated for numerous images (for clear or completely 15 

overcast days) or manually generated for each image (for patchy cloud days). After 16 

assigning a suitable T (cursor selection), the image is transformed into a binary image 17 

for gap analysis. In the program, there is an option (Question g) to give the user a 18 

number of attempts (1 – n) to select an accurate luminance threshold from the blue 19 

image component. This is done by viewing the original RGB image and the binary 20 

image side by side (Fig. 1) to see whether small gaps were missed or considered in 21 

filtered binary image. This feature, which helps to avoid over- or under-estimates of 22 

LAIM, is not readily available in Photoshop® 7.0 or commercial softwares, such as 23 

WinSCANOPY.  24 

2.3.3. Images gap analysis  25 
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The script developed performs gap analysis by automatically dividing each binary 1 

image into a number of sub-images defined by the user (Question d). From each sub-2 

image, the program counts the total of pixels corresponding to sky (S) and leaves (L). 3 

A big gap is considered when the ratio S/L in each sub-image is larger that a user-4 

specified value (Question e). When this occurs, the pixel count for S is added to the 5 

big gap count for that particular full image. If the ratio observed is smaller than the 6 

user-specified value for a specific sub-image, the pixel count contribution to the total 7 

big gap count of that particular image is equal to zero. A sensitivity test was 8 

performed using 10 random images per site and subdividing each image by 3x3 (n=9); 9 

4x4 (n=16); 5x5 (n=25) and 6x6 (n=36). No significant differences were seen in the 10 

LAIM obtained at different subdivisions (data not shown). Therefore, it was decided to 11 

divide all images at 3x3 (n=9) subdivisions to optimise data analysis time.  12 

 13 

To analyse 50 images automatically, the script took approximately ten minutes using 14 

an Apple Macbook® Core Duo with 2.0 Gb. RAM at 2.3Ghz. Individual image 15 

analysis timing depended of the number of approximations selected by the user. 16 

Considering this number as three, it takes 1 minute approximately to analyse a single 17 

image. Also, a big gap threshold of 0.75 was the most appropriate for all images, since 18 

it gave the best comparison with LAID (LAID between 0.7 – 1.7). 19 

 20 

The fractions of foliage projective cover (ff), crown cover (fc) and crown porosity (Φ) 21 

are calculated from Mcfarlane et al. (2007b) as: 22 
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Where lg = large gap pixels and tp = total gap pixels 3 

 4 

LAIM is calculated from Beer’s Law, assuming an extinction co-efficient (k) of 0.5, 5 

which is suitable for eucalypt trees (Macfarlane et al. 2007b), (this value can be 6 

altered in the script Question f):    7 

 8 
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 10 

and the clumping index at the zenith, Ω(0), was calculated as follows:  11 

 12 
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 14 

The clumping index is a correction factor to obtain effective LAI (LAIe), which is the 15 

product of: 16 

 17 

)0( Me LAILAI             [6] 18 

 19 

Equation 5 describes the non-random distribution of canopy elements. If    Ω(0) = 1, 20 

means that the canopy displays random dispersion; for Ω(0) > or < 1, the canopy is 21 

defined as clumped. LAIe was not considered for the script development and results 22 
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presented in this paper; however it is available to be calculated in the last version of 1 

the program and was used to validate MODIS LAI data. 2 

 3 

After image analysis, the script stores all the calculated parameters (LAIM,  ff, fc, Φ, 4 

Ω(0) and LAIe) in a .txt file, which can be readily read by Excel®. The same 5 

equations [1 – 6] were used to calculate LAID using Adobe PhotoShop® 7.0 and the 6 

methodology described in Macfarlane et al. (2007b).  7 

 8 

2.4. MODIS LAI analysis 9 

Following the capture of digital images and determination of LAID for eight examples 10 

of Eucalyptus woodlands in NSW and WA (Table 1), we assessed the relationship 11 

between LAID and MODIS LAI products for each of the ground measurements. We 12 

extracted the 8-day 1 km MODIS LAI data for NSW and WA from the MODIS 13 

distributed archive and imported these into a GIS software package (IDRISI®; Clark 14 

Labs) (Figs. 6a and 6b). The ground sampling sites were established along a 15 

precipitation gradient (450 – 1400 mm) in NSW and WA. 8-day MODIS LAI values 16 

for ground sampling stations (of approximately 1 ha) were extracted using a data-drill. 17 

At each ground sampling station, LAID was calculated from at least 50 randomly 18 

collected images from the 1 ha stations within the 1 km MODIS pixel. Individual 19 

modelled MODIS LAI values for each sampling occasion were selected from the 8-20 

day image closest to the date of the LAID sampling event. Although seasonal 21 

variations in MODIS LAI was apparent at each sampling site (i.e. range from LAI 1 to 22 

4 in wet sites), the ground sampling events coincided with periods when MODIS LAI 23 

closely approximated LAID.  The ground sampling excluded the contribution of 24 

understorey LAI, and was conducted during the dry season when the contribution of 25 
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the understorey would have been at its minimum.  1 

 2 

2.5 Statistical analysis 3 

To compare the performance of the script developed (LAIM) and MODIS LAI with 4 

the baseline data (LAID), linear regression analyses among LAID, LAIe and LAIM; 5 

MODIS LAI  were undertaken. A sensitivity analysis of LAIM to T was conducted 6 

considering a variation of T of maximum δT = +20 and minimum δT = -30 (Fig. 7). 7 

Images taken on clear days conditions (n = 50) and on patchy cloudy day conditions 8 

(n = 30) were selected for the sensitivity analysis. Patchy cloudy days were avoided 9 

for data collection due to high variability in luminosity. Therefore, this explains the 10 

lower number of images on patchy cloudy days. The statistical analysis was done 11 

using MATLAB® 7.14 and the Curve Fitting Toolbox ™. 12 

 13 

RESULTS AND DISCUSSION 14 

LAI estimations using the script developed  15 

The automated procedure to analyse digital images using the script resulted in a good 16 

averaged LAIM compared to the averaged LAID for five sites (Figure 4, open circles) 17 

(LAIM = 1.009 – 0.0066 LAID; R
2
 = 0.90). Standard errors were also similar between 18 

LAID and LAIM.  When patchy clouds were present in the images, the manually 19 

generated threshold was more appropriate to obtain accurate individual LAIM from 20 

single images when compared to LAID (i.e. LAIM = 0.95 LAID; R
2
 = 0.95, from 50 21 

images; Hornsby site, data not shown). All sites showed mostly clumped canopies (at 22 

different levels) as can be seen in Fig. 5 (Ω(0) < 1), with averaged minimum values of 23 

0.6 for Castlereagh and maximum of 0.84 for Bago. The averaged Ω(0) considering 24 
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all sites was 0.78. This makes clear that corrections using the clumping index (using 1 

eq. 6) need to be introduced in the calculation of LAIM and LAID to obtain LAIe.  2 

According to Bréda (2003), PAI rather than LAI terminology should be used for 3 

techniques using digital photography, since woody area (trunks and branches) is 4 

included in the analysis contributing to overestimations of LAI. However, the largest 5 

woody contributions in LAID (overestimations) are associated to images close to the 6 

main stem of tall trees. In contrast, using this technique in woodlands where  species 7 

with lightly coloured trunks (e.g. Ghost gums (Eucalyptus papuana)) are mostly 8 

present, could contribute to under-estimations of LAID, since these stems can be 9 

mistaken for sky in the script filtering method if the fully automated routine proposed 10 

in this paper is used. Using the manual technique can remove this source of error. 11 

However, alternatively, images can be taken a couple of metres away from such stems 12 

to minimise woody inclusion and avoiding times of the day when trunks or branches 13 

receive direct sunlight. Finally, corrections for woody area are considered smaller for 14 

the digital image technique, than hemispherical photography (wide angle: 0 – 57
o
), 15 

since the narrow angle of digital images (0-15
o
) reduces inclusion of stems and 16 

therefore their contribution to LAID (Kucharick et al. 1997). 17 

 18 

The choice of a suitable T value, within the blue component of an image, is also 19 

critical to avoid over- or under-estimations of LAID (Macfarlane et al. 2007b). 20 

Therefore, the image comparison tool available within the script (Fig. 1a and 1b) is 21 

very useful to avoid errors in the LAID calculation. Suitable T values are very similar 22 

within images taken on clear or completely overcast days (Fig. 7a). An individual 23 

analysis of 2-5 images will be enough to obtain a common threshold for batch-24 

analysis of images taken on these weather conditions. The other critical factors for 25 
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LAID calculations are crown cover (fc) and porosity (Φ), which are highly dependant 1 

of the visual selection of large, between-crowns gaps. Using the script developed, 2 

operator subjectivity can be avoided when selecting large gaps through calibration of 3 

sub-image size and gap fraction ratio for different types of woodlands. This 4 

calibration is readily available for the script from other studies using digital 5 

photography compared to allometric measurements. Therefore, one of the most 6 

important advantages of the methodology described here is that images can be 7 

analysed using different gap and image analysis techniques. This is in contrast to most 8 

commercial ground based LAI analysers (such as Licor2000) which only provide the 9 

processed output and not the unprocessed data. 10 

  11 

A useful feature of the script that was also developed was to acquire images using a 12 

high resolution web-cam attached to a laptop for in-field real-time digital image 13 

acquisition and application of the analysis as described in this paper. This feature is 14 

not available on commercial softwares to analyse cover photography (Adobe 15 

Photoshop 7.0 and WinSCANOPY). The script developed in this study is available to 16 

interested researchers with access to MATLAB©, the Image Analysis Toolbox® and 17 

Image Acquisition Toolbox®. An .exe version of the software will be available in the 18 

future as a Graphic User Interface (GUI) after compiling the script to run the program 19 

independently of MATLAB® in any personal computer.  20 

 21 

LAI estimations using MODIS LAI 22 

The regression MODIS LAI = 0.9591 LAID – 0.2371 (R
2
 = 0.89) describes the 23 

relationship between LAID and MODIS LAI for the eight sites examined (Fig. 4, filled 24 

circles). For most of the sites, MODIS LAI tended to slightly overestimate LAIM. We 25 
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attribute this result to the fact that MODIS LAI includes the LAI of the understorey 1 

whilst LAID does not. Although we used dry season MODIS LAI in the comparison, 2 

an averaged contribution of the order of 15% understorey to total site LAI for dry 3 

season images is to be expected (unpublished observations). When including the Ω(0) 4 

in the LAID calculation, the linear regression describing the LAIe versus MODIS LAI 5 

relationship improved (MODIS LAI = 1.0296 LAIe + 0.3468; R
2
 = 0.91). Despite this, 6 

MODIS LAI was consistently larger than LAIe (Fig. 4, open triangles). In this case, a 7 

total mean understorey contribution of 17% was observed, which did not significantly 8 

change from uncorrected LAID measurements. Another source of discrepancy 9 

between LAID and MODIS LAI is the accuracy of collection 4 used in this study. 10 

Collection 5 has been released recently, which can achieve better agreement of 11 

retrieved and measured ground LAI. Digital imagery analysis and availability of 12 

foliage clumping estimates can provide a useful LAID comparison with other 13 

methods, such as MODIS LAI (collection 5), to examine the understorey contribution 14 

to total forest LAI. Consequently, understorey LAI contribution can easily be 15 

incorporated in LAID measurements when capturing images at 30 cm from the ground 16 

rather than 1.5 m, or at both heights for comparative purposes. If the MODIS LAI 17 

product 5 is to become more universally applicable outside of evergreen woodland 18 

and forest, robust and efficient methods for estimating grass and understorey 19 

contribution need to be improved and automated. He et al (2007) report that two 20 

conventional LAI instruments (LAI 2000 Plant Canopy Analyser and AccupPAR 21 

Ceptometer) consistently underestimate grass LAI relative to destructive 22 

measurement. 23 

 24 
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Seasonal differences in LAI can be clearly seen using MODIS data and a GIS 1 

program (IDRISI®; Clark Labs.) for summer (Fig. 6a; 17
th

 of January 2006) and 2 

spring (Fig. 6b; 30
th

 of September 2006). A higher MODIS LAI is shown in January 3 

for woodland locations around NSW close to Sydney (MODIS LAI = up to 4.5) (Fig. 4 

6a). A lower value for MODIS LAI (up to 2.5) was reached in spring for most of the 5 

woodland area seen in the figure (Fig. 6b). 6 

 7 

Sensitivity analysis of LAIM to T 8 

A sensitivity analysis on LAIM to T was performed to assess the error associated to 9 

mis-detection of a suitable Tmin for global LAIM analysis. Fig. 7 shows the blue layer 10 

histograms corresponding to 50 images obtained in clear day conditions (Fig. 7a) and 11 

30 images in cloudy day conditions (Fig. 7b). Frequency distribution of the blue layer 12 

luminance was more uniform for clear days rather than cloudy days. Therefore, it is 13 

easier to select a suitable common T (Tmin = 130; Fig. 7a) for clear days for complete 14 

automation of image analysis using the script developed.  On the contrary, selecting a 15 

common T for cloudy days could lead to an over or underestimation of LAIM for 16 

individual images (Tmin = 100) and the selection is more difficult from the histogram 17 

showed in Fig. 7b. The semi-automatic method is recommended for images taken 18 

under patchy cloudy day conditions (see 2.3.1 and 2.3.2). Fig. 8 and Table 2 show the 19 

results of the sensitivity test for clear and patchy cloudy day conditions. The 20 

sensitivity of LAIM to T increases with the magnitude of error of selection of T (δT) 21 

for both clear and patchy cloudy day images. Dispersion of data points is lower for 22 

clear days (Fig. 8a) compared to patchy cloudy days (Fig. 7b). In the later case the 23 

magnitude of error in selecting a suitable common T is considerable higher compared 24 

to clear days as can be seen by comparing the correlation coefficients (r
2
), root mean 25 
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square error (RMSE) and the standard error of estimates (SEE) (Table 2). Average 1 

RMSE = 0.02; SEE = 0.018 and r
2
 = 1.0 were found for clear days, and RMSE = 0.07; 2 

SEE = 0.21 and r
2
 = 0.96 for cloudy days. There was no considerable change in the 3 

slopes (b) obtained in the sensitivity test for cloudy days compared to clear days, since 4 

b is more dependant of the levels of misdetection errors selected for the sensitivity 5 

analysis (δT), which were the same for both luminance conditions studied. A 6 

maximum error of 4% from Tmin selected (δT = +10) (considering a maximum value 7 

of T = 250; Fig. 3) did not affect considerably LAIM = 0.53 compared to LAID = 0.49, 8 

for clear days (Table 2). The Tmin selected for clear days resulted in LAIM = 0.49 9 

compared to LAID = 0.49. Therefore, it is easier to select a suitable T for these 10 

conditions. These results show that images including patchy clouds (Fig. 1) require 11 

the semi automated procedure for more accurate LAIM estimations on individual 12 

images. On the contrary, for clear days or completely overcast days, a common 13 

selection of T from the blue layer histograms (Fig. 7a) may allow a maximum of 4% 14 

error in the selection of a suitable T value for fully automated analysis.  15 

 16 

For patchy cloudy day conditions, a common T value and considering δT = 4% error, 17 

results between LAIM and LAID where similar (LAIM = 0.68; SD = 0.55 compared to 18 

LAID = 0.68; SD = 033). This means that a suitable T corresponded to Tmin = 110 for 19 

these conditions. However, the correlation from individual pictures was lower (r
2
 = 20 

0.78; b = 0.84; RMSE = 0.34; SEE=0.37) than results using the semi automated 21 

method for individual images: LAIM = 0.68; SD = 0.40; LAID = 0.68; SD = 0.33 (r
2
 = 22 

0.95; b = 0.91; RMSE = 0.12; SEE=0.62).  23 

 24 

CONCLUSIONS 25 



 19 

We conclude that digital image acquisition, coupled with MATLAB® image data 1 

analysis, provides a rapid, robust, cheap and simple method for determining the LAI 2 

of tree canopies. Furthermore, we conclude that for evergreen woodland, where 3 

seasonal understorey growth is limited due to seasonal or stochastic drought, the 4 

MODIS LAI product provides a useful surrogate for LAID. However, as the 5 

contribution of the understorey to total site LAI increases, this is increasingly untrue. 6 

Renewed efforts to improve estimates of understorey LAI, together with the results 7 

from the script developed, will improve the quality of input of LAI into functional 8 

structural plant models and validation for retrieved MODIS LAI (collection 5).   9 
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FIGURES 3 
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 10 

Figure 1. (a) Typical upward looking digital image in a patchy cloudy day. (b) 11 

Filtered binary image to avoid cloud inclusion in LAIM analysis. Gap analysis 12 

considering nine image sub-divisions at question d = 3 (3 x 3 or n = 9). 13 
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Figure 2. Image components separation using MATLAB® to obtain a cloud filtering 14 

rule for the script written in MATLAB®. (a) Blue and (f) intensity component were 15 

best suited for cloud filtering. 16 
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Figure 3. Luminance distribution for a single image showed as a blue component 14 

histogram generated by the script developed in MATLAB®. Sky and canopy 15 

luminance peaks can be seen at the left and right sides of the graph, respectively. A 16 

suitable threshold for clouds exclusion can be achieved in the middle, around lowest 17 

value. Cross cursor is a selector generated by the script for easy threshold selection.   18 
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Figure 4. Comparison between LAIM and LAID (open circles) for five sites in NSW; 14 

MODIS LAI and LAID (filed circles) and MODIS LAI and LAIe (open triangles) for 15 

eight woodland sites in NWS and WA. Standard error bars for LAID versus LAIM data 16 

and the 1:1 line are shown in the graph. 17 
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Figure 5. Calculated clumping index (Ω(0)) using formulas 2, 3 and 5 for individual 14 

images taken at five sites in NSW (n = 268). 15 
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Figure 6 MODIS LAI data combined with GIS (IDRISI®) for summer (a) and spring 3 

(b) in NSW, Australia 2006. 4 
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Figure 7 Histograms of blue layer luminance distributions for 50 images obtained on 3 

clear days (a) and 30 images on patchy cloudy days (b) to perform a sensitivity 4 

analysis of LAIM to T. A baseline luminance threshold (Tmin) is selected at minimum 5 

frequency between the peaks corresponding to sky (a) and foliage (b) 6 
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Figure 8 Sensitivity analysis of LAIM to T conducted for 50 images on clear days (a) 47 

and 30 images on patchy cloudy days (b). The magnitude of error used were δT = -30; 48 

+20; -20 and +10. The baseline used was Tmin. 49 
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Table 2 Results of sensitivity test on LAIM to T. The analysis is done comparing a 1 

common Tmin selected as baseline for all images obtained in clear days (T = 130; 2 

LAIM = 0.49) and for patchy cloudy day images (T = 100; LAIM = 0.59). Tmin 3 

corresponded to luminosity value with minimal frequency for the majority of images 4 

(Figure 7). 5 

 6 

 7 

Clear days (n = 50); LAID = 0.49 

Parameters r
2 

b RMSE SEE LAIM 

Tmin 

(baseline) 

vs 

T ±δ 

δT = -30 1.00 0.75 0.03 0.037 0.38 

δT = +20 1.00 1.14 0.02 0.019 0.56 

δT = -20 1.00 0.86 0.02 0.013 0.42 

δT = +10 1.00 1.07 0.01 0.004 0.53 

Cloudy days (n = 30); LAID = 0.68 

Parameters r
2 

b RMSE SEE LAIM 

Tmin 

(baseline) 

vs 

T ±δ 

δT = -30 0.92 0.76 0.11 0.313 0.46 

δT = +20 0.97 1.17 0.01 0.236 0.27 

δT = -20 0.95 0.89 0.10 0.244 0.52 

δT = +10 1.00 1.03 0.04 0.047 0.68 
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