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Multi-Robot Path Planning for Budgeted
Active Perception with Self-Organising Maps

Graeme Best1, Jan Faigl2 and Robert Fitch1

Abstract— We propose a self-organising map (SOM) algo-
rithm as a solution to a new multi-goal path planning problem
for active perception and data collection tasks. We optimise
paths for a multi-robot team that aims to maximally observe a
set of nodes in the environment. The selected nodes are observed
by visiting associated viewpoint regions defined by a sensor
model. The key problem characteristics are that the viewpoint
regions are overlapping polygonal continuous regions, each
node has an observation reward, and the robots are constrained
by travel budgets. The SOM algorithm jointly selects and
allocates nodes to the robots and finds favourable sequences
of sensing locations. The algorithm has polynomial-bounded
runtime independent of the number of robots. We demonstrate
feasibility for the active perception task of observing a set of 3D
objects. The viewpoint regions consider sensing ranges and self-
occlusions, and the rewards are measured as discriminability in
the ensemble of shape functions feature space. Simulations were
performed using a 3D point cloud dataset from a real robot in
a large outdoor environment. Our results show the proposed
methods enable multi-robot planning for budgeted active per-
ception tasks with continuous sets of candidate viewpoints and
long planning horizons.

I. INTRODUCTION

Mobile robots use their sensors and perception algorithms
to understand their surrounding environment. Of fundamental
interest are object recognition, classification and model gen-
eration tasks, which require understanding properties such
as the pose, segmentation, class and identity of a set of
objects in an environment [1], [2], [3]. The informativeness
of observations, and therefore the performance of percep-
tion algorithms, can be improved by judiciously selecting
observation locations [4]. Performance can be significantly
improved by using longer planning horizons [5], [6], [7],
jointly planning for multiple robots [8], [9], [10], [11]
and considering larger sets of candidate sensing locations.
However, current planning algorithms with these properties
are often too computationally expensive for practical use in
large scale and more complex active perception tasks; we
propose a self-organising map algorithm as a solution to
bridge this gap.
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Fig. 1. Illustration of the motivating active perception problem. Each object
segment (point clouds) is observed by visiting the viewpoint regions (circle
segments). Grey cylinders represent positions of two robots. The currently
visited viewpoint regions are drawn in bold. Black lines represent the path
plans. The goal is to collectively maximise the weighted sum of viewpoint
regions visited by the robots. This scene is part of the environment in Fig. 2.

Current approaches for active perception typically predict
the value of expected observations as a result of moving
the robot to candidate viewpoints [1], [2], [3]. For complex
sensor models, these calculations can be computationally
expensive, which therefore restricts the capabilities of plan-
ning algorithms. Instead, we focus on planning paths for
perception tasks where informative parts of the objects in the
environment have been extracted. The inverse sensor model
defines a discrete set of overlapping continuous viewpoint
regions, with associated rewards, where each part can be
observed. Figures 1 and 2 illustrate an example outdoor
environment with a collection of objects observed by a 3D
laser scanner. The path planning problem is to optimise the
rewards gained by visiting these desirable viewpoint regions.
This new formulation enables the planner to consider a
continuous space of candidate viewpoints, longer horizon
planning, and multi-robot scenarios.

This active perception formulation describes a multi-goal
path planning problem as a generalisation of the travelling
salesman problem (TSP). The prize-collecting TSP with
neighbourhoods (PC-TSPN) is a closely related TSP variant
that has recently been solved and applied to data collection
in sensor network applications [12]. In the PC-TSPN, the
objective is to plan the path of a robot that maximally selects
and visits a set of disks, where the objective function is
defined as the sum of the path length and the rewards for



Fig. 2. An example environment, object parts, viewpoint regions and solution paths for two robots (same as Fig. 1). The 3D point cloud was generated
by a real robot moving around an environment consisting of trees, tables, chairs, bins and a motorbike. Almost all object parts are observed along the
planned paths, with some skipped due to the travel budget constraints. The underlying grid has 5 m spacing.

visiting each disk. This objective function has convenient
algorithmic properties, however, it is unclear how to balance
the trade-off between path lengths and rewards when applied
to real problems. Instead, we develop a new formulation
which directly optimises the observation rewards, while the
path length is constrained by a maximum travel time budget
defined by constraints of the application.

The considered problem is NP-hard, which can be shown
by a reduction from the orienteering problem [13], and
therefore we turn to heuristic solutions. In particular, we
consider an extension of the self-organising map (SOM) for
TSP. SOM is a two-layered neural network accompanied by
an unsupervised learning procedure that has been applied to
the traditional TSP by several authors, e.g., [14]. Although
SOM for the TSP does not compete with the best known
combinatorial heuristics for the conventional TSP [15], it
provides a significant advantage in problems where it is re-
quired to determine observation locations. This is particularly
important in the TSPN [16] and the orienteering problem
with neighbourhoods [17] where it implicitly selects the
sensing locations within the continuous neighbourhoods.

Jointly optimising the selection and sequence of nodes
to observe, along with finding favourable viewpoints within
sensing regions, can greatly reduce the path distance by
avoiding unnecessary travel. Therefore, we consider the
original idea of the SOM-based data collection planning
introduced in [12] for our constrained problem with limited
travel budgets. Moreover, we also generalise the approach to
path planning for multi-robot teams. The algorithm jointly
plans for multiple robots simultaneously by optimising the al-
location of nodes to robots. Therefore, our approach does not
require predefined or explicit partitioning of the environment.
The algorithm is robust to the compounded complexity of
optimising multiple robots since the runtime is independent
of the number of robots.

In addition to theoretical analysis, we also perform simula-
tions of several random environments and active perception

tasks using a 3D point cloud dataset [18] and a realistic
observation model using ensemble of shape functions [19]
descriptors. The results highlight advantages of the algo-
rithm for addressing the multi-robot, non-uniform reward,
constrained budget and polygonal region characteristics of
the problem. The active perception experiments show the
feasibility in practice for planning long-horizon multi-robot
active perception tasks.

II. RELATED WORK

Our problem formulation and approach is motivated by the
work of Faigl and Hollinger [12] for the PC-TSPN problem
using an SOM algorithm. They applied the PC-TSPN to a
data collection problem that requires communicating with a
subset of an underwater sensor network. We generalise this
problem formulation and algorithmic approach to be more
suitable for our active perception formulation. In particular,
we include multiple robots, polygonal goal regions [16],
budget constraints and non-uniform observation rewards.

The generalised-TSP (GTSP) is a closely related TSP
variant that requires visiting at least one node in every
discrete set of nodes. The GTSP has been applied to robotic
path planning problems for mapping [10] and mobile refu-
elling [20] tasks, which are solved using a transformation
to the standard TSP. Related graph-based robot path plan-
ning algorithms include branch and bound [21] and sweep
planes [22]. These formulations restrict the search to discrete
points and the computation time increases with the number of
points. In contrast, a set of continuous regions are efficiently
searched by our proposed algorithm, and the runtime does
not increase with the area of each region.

The m-TSP generalises the TSP to multiple agents, which
requires assigning nodes to agents and finding a path for each
agent. There are several variations of the m-TSP with many
different approaches [23]. SOM-based approaches have been
used for solving the minmax m-TSP, where the objective
is to minimise the path of the longest agent. The approach



creates an individual network for each agent, and the adap-
tation prefers neurons from the currently shortest tours when
allocating tasks to the individual agents [24]. A similar idea
has been considered for multi-agent coverage of a polygonal
world with obstacles [16]. However, these problems do not
consider budget constraints or selecting subsets of nodes.

In multi-robot planning more generally, there are a variety
of related problems. Coverage tasks are most similar to
our problem, which require a team of robots to collec-
tively observe every location in an environment [25]. Target
tracking and search problems require using the sensing
capabilities of multiple robots to locate and maintain contact
with targets [8], [10], [11]. Mapping tasks require adaptively
exploring unobserved regions [10]. Persistent monitoring
tasks require sensing an environment to maintain a belief
of a spatio-temporal process [9]. Although our problem is
similar to these, in that we require dividing the workload and
finding paths for multiple robots, our objectives are different;
therefore, we require a new algorithmic approach.

Traditional active perception for object recognition type
problems use vision sensing [4], although there has been
a recent push towards modalities with depth information,
such as laser 3D range sensing [18], RGB-D sensing [1], [3],
and thermal depth sensing [26]. In most work, the planning
is single-step [1], [2], [26], which is reasonable in small
environments where it is assumed that previous actions do
not affect the cost of future actions. Scaling the problem up
to larger environments results in location-dependent action
costs, and therefore performance is significantly improved
by planning sequences of viewpoints over longer planning
horizons. Some approaches have been proposed for planning
sequences of locations [5], [6], [7], but the formulations have
been limited to restricted cases, such as a single object or
a constrained action space. Little attention has been given
to continuous candidate viewpoint regions or multi-robot
planning for active perception in object recognition tasks.

III. PROBLEM FORMULATION

This section formally defines the budgeted multi-robot
active perception problem. The objective is to plan the paths
for a team of robots such that they maximally observe a
set of nodes in the environment with varying rewards. Each
robot has an associated travel speed and maximum travel
budget. Each node may be observed by visiting any point in
its associated viewpoint region represented as a polygon.

A. Multi-Robot Team

The problem involves a team of R robots R =
{r1, r2, ..., rR}. The trajectory of each robot ri is defined
as a sequence of waypoints Xi = (xi1, x

i
2, x

i
3, ...), where

each waypoint is a position within a free space environment
xij ∈ R2. Each robot ri moves along a straight line between
waypoints at a constant speed si, which may be different
for each robot. The cost of each robot’s path ci ≥ 0 is the
time taken to travel through the sequence of waypoints Xi.
Each robot has a cost budget bi > 0, and a set of robot
paths {Xi} is deemed to be feasible if every robot meets

its budget constraint, i.e., ci ≤ bi,∀ri ∈ R. Although we
consider the problem where each robot’s path is a tour with
an unconstrained start location, the algorithm can readily be
extended for open loop or constrained paths.

B. Viewpoint Regions and Rewards

The robots aim to observe a set of N nodes N =
{n1, n2, ..., nN} at different locations within the environ-
ment. Every node has a weight wk > 0 that defines
the reward for observing the node. Each node nk has a
continuous set of viewpoints Zk defined as all points on and
within a simple polygon. The robot observes a node if any
waypoint of the robot’s path is within the viewpoint region,
i.e., ∃xij ∈ Xi : xij ∈ Zk. The binary indicator variable
ok ∈ {0, 1} for each node nk is 1 if the node is observed
by any robot and 0 otherwise. All robots sense continuously
along their paths, which can be taken into account in the
above definition by adding additional waypoints along a path
at no extra cost. Although we assume the regions are the
same for each robot, the algorithm can easily be extended to
robot-dependent observations.

C. Problem Statement

The optimisation problem is to plan the locations of
waypoints for each robot and the sequence the waypoints are
visited Xi, such that all budget constraints are met and the
sum of the observation rewards for the nodes is maximised.
More formally, we aim to:

maximise
∑
nk∈N

okwk,

s.t. ci ≤ bi, ∀ri ∈ R.

D. NP-hardness

The problem is NP-hard and a reduction from the orien-
teering problem [13] with Euclidean costs can readily be
shown by setting the number of robots R to 1 and the
viewpoint sets {Zk} as singleton. This result motivates the
development of a heuristic algorithm to approximately solve
the problem in polynomial time.

IV. SELF-ORGANISING MAP ALGORITHM

Self-organising map algorithms aim to give a lower-
dimensional representation of an input space, while pre-
serving a given topological graph-based structure of the
representation. For our problem the input space is the set
of viewpoint regions in the environment, and the algorithm
aims to find a set of rings representing robot paths that best
fits this input space. The learning procedure is competitive
in that each viewpoint region is presented one at a time, and
each waypoint competes to be the winner for representing
that region. A winner waypoint moves towards that region,
and neighbours of the winner in the graph topology will
also move towards the region by a decreasing distance. This
process is repeated for a fixed number of learning epochs,
when convergence of the paths to a stable state is guaranteed.

This section details the proposed SOM learning proce-
dure for our problem formulation, that includes addressing



Algorithm 1 Self-organising map algorithm.
Input: robot speeds {si} and budgets {bi},

a set of nodes {nk} with associated
viewpoint regions {Zk} and rewards {wk}

Output: planned path for each robot {Xi}∗
1: Xi ← circle around arbitrary node ni, ∀ri ∈ R
2: N ′ ← duplicate nk ∈ N by factor wk/GCD({wk})
3: σ ← 1; i← 1 . Adaptation parameters
4: while not converged do
5: perm← random permutation of {nk}
6: for each nk ∈ N ′, in order perm do
7: for each ri ∈ R do
8: Xi′ ← ADAPTATION(Xi,Zk, σ)
9: ci′ ← travel time of path Xi′ at speed si

10: ri ← argmin
ri∈R,ci′≤bi

(
ci′

bi

)
. Robot selection

11: Xi ← Xi′ . Update selected robot
12: {xi} ← regeneration of {xi}
13: F ←

∑
nk∈N

okwk . Evaluate objective

14: if F > F ∗ then {Xi}∗ ← {Xi} . Save best plan
15: σ ← (1− 0.001i)σ; i← i+ 1

non-uniform observation rewards, node selection satisfying
budget constraints and multi-robot task allocation to nodes.
Pseudocode for the algorithm is shown in Alg. 1.

A. Graph Topology

The graph topology for the SOM is a set of R rings that
directly represent the robot paths. Each of these rings will
transform over time according to the following learning pro-
cedure. Each ring is initialised as a small circle (consisting
of N/R waypoints) around the centre of a unique arbitrary
node. This initialisation is reasonable since the paths quickly
spread over the input space during the first learning epochs.

B. Viewpoint Rewards

Each node has an associated reward for being visited. To
ensure that the learning procedure favours visiting the higher
reward viewpoint regions, each node is duplicated according
to its reward. The node nk is duplicated by a factor of wk

divided by the greatest common divisor of the set of rewards
GCD({wk}). Computation time is dependent on these factors,
and therefore it may be beneficial to round the rewards to
the nearest multiple of a number greater than GCD({wk}).

The motivation for this approach is that high-reward
regions will be trialled more often in each learning epoch.
This increases the likelihood of a robot transforming towards
the higher weighted nodes and decreases the likelihood of the
node not being selected due to budget constraints.

C. Learning Epochs

In each learning epoch (iteration of line 4 loop), each node
is considered one at a time, and one robot is selected to
transform its path towards each viewpoint region, if it meets
its budget constraint. At the end of each learning epoch, any

Algorithm 2 Adaptation step of the SOM algorithm
function ADAPTATION
Input: path Xi of robot ri,

viewpoint region Zk of node nk,
adaptation parameter σ

Output: an adapted path Xi′ for robot ri

1: xw ← closest waypoint in Xi to Zk
2: zw ← closest point in Zk to xw
3: dw ← ‖zw − xw‖
4: xe ← closest point on edges of Xi to Zk
5: ze ← closest point in Zk to xe
6: de ← ‖ze − xe‖
7: if xw ∈ Zk ∨ dw ≤ de then . Winner selection
8: x? ← xw; z? ← zw . Select waypoint
9: else

10: Xi ← insert xe into Xi along edge
11: x? ← xe; z? ← ze . Select edge
12: for each xij ∈ Xi do
13: . Adapt waypoints in neighbourhood of x?

14: l← cardinal distance from x? to xij
15: xi′j ← move xij towards z? by factor e−l

2/σ2

unnecessary waypoints are removed before starting the next
learning epoch.

Permute the nodes: At the start of each epoch, the nodes
are permuted in a random order which will determine the
order that they are considered (lines 5-6). This ensures the
algorithm is less sensitive to the ordering and the initial
conditions, and more likely to escape from local optima.

Winner selection and adaptation: The key steps in the
SOM algorithm are the winner waypoint selection and the
adaptation of the rings (Alg. 2). For every node, this is
performed for each robot, but then in the following step a
robot allocation policy ensures only one of the robots gets
updated for each node. The winner waypoint selection is
performed by considering all waypoints and edges in the
current robot path Xi. The existing waypoint or a point along
one of the existing edges that is closest to any point within
the viewpoint region Zk is considered as the winner (line
8 or 11). If the winner is a point along an edge, then a new
waypoint is inserted into the path at this point (line 10).

The winner waypoint x? is then moved to the closest point
z? in Zk. If z? is on the edge of the polygon it is moved
slightly towards the centre. The cardinal distance (number of
hops) in the ring from x? to every other existing waypoint
is denoted l. Each waypoint in Xi is moved some fraction
towards z? (line 15). This fraction is determined by the
neighbourhood function e−l

2/σ2

and set to zero if below a
threshold. Waypoints with low cardinal distance to x? will
move further towards z? than other waypoints.

Robot-node allocation: After adapting each path towards
the viewpoint region Zk, the algorithm then only allocates
one (or none) of the robots to the node and only this robot
keeps their adapted path. The selection is performed by
greedily selecting the robot that has used the least fraction of



its budget after performing the adaptation (Alg. 1, line 10).
Note that this allocation of robots to nodes are often re-
modified in later learning epochs. If no robot meets their
travel budget then no paths are adapted. This allocation
approach is motivated by the observation that in most cases
an optimal solution should have each robot using approxi-
mately all of its travel budget. We wish to divide the work
evenly between the robots as the learning progresses towards
the final solution, such that a natural partitioning is found
between the robots.

Ring regeneration: At the end of each learning epoch,
waypoints of the paths that are no longer useful are removed.
A waypoint is useful if it is still within one of the viewpoint
regions. If multiple waypoints are within a viewpoint region
then only one random waypoint is selected to remain.

Adaptation parameter: The σ parameter of the neigh-
bourhood function decreases after each epoch, meaning the
neighbours get less attracted to each other as the learning
progresses. This ensures convergence in a constant time.

V. ANALYSIS OF ALGORITHM

This section gives a theoretical analysis of the algorithm’s
runtime complexity and convergence, and then empirical
analysis of the behaviour of the algorithm for various random
environments. Further experiments are shown later in Sec. VI
that focus on active perception of 3D point clouds.

A. Theoretical Analysis

The time complexity for each learning epoch is bounded
by O(NN ′) = O(N2 MAX({wk})

GCD({wk}) ), where N is the number of
viewpoint regions and N ′ is the number of viewpoint regions
after duplication to take into account the rewards {wk}. This
is because the runtime for each iteration of the line 6 loop is
linear in the current total number of waypoints for all robots,
which is bounded by O(N). The number of duplications per
node N ′/N is bounded by the ratio of the maximum reward
MAX({wk}) to the greatest common divisor GCD({wk}).

The algorithm continues until convergence is reached,
which is guaranteed to occur in a constant number of
learning epochs. This is since the decreasing neighbourhood
function will eventually cause there to be no adaptations
occurring. Therefore, the time complexity of the algorithm is
polynomial, bounded by O(N2 MAX({wk})

GCD({wk}) ). Interestingly, this
bound does not depend on the number of robots R, since each
viewpoint region is allocated to a maximum of one robot
during each learning epoch, and therefore the maximum total
number of waypoints is independent of R. We also note the
computation time can be reduced by rounding the rewards
to multiples of a divisor greater than GCD({wk}).

Self-organising map algorithms, including ours, are
stochastic learning procedures that can guarantee conver-
gence in polynomial time, but unfortunately cannot guarantee
optimality in finite time. These algorithms therefore are
heuristic algorithms for giving approximate solutions to NP-
hard problems in polynomial time. We also note that the
algorithm is anytime, such that the algorithm can be halted
early, since all intermediate solutions are feasible solutions.

Fig. 3. Example path plans for three robots (blue) through a set of random
viewpoint regions weighted from 1 (black) to 4 (orange). The robots visit a
weighted sum of 155 viewpoint regions out of a maximum 170. Each robot
has a budget of 1000 and speed 1.

B. Empirical Analysis

Simulated experiments were performed to analyse the
behaviour of the algorithm under various conditions. Since
the problem is new, we do not have algorithms for direct
comparison1. Therefore, we compare to restricted versions
of our algorithm with some aspects removed. We compare i)
planning using the joint multi-robot optimisation compared
to sequential optimisation, ii) planning with and without the
viewpoint rewards, and iii) planning with the viewpoint poly-
gons compared to single points. The algorithm plans paths
through 100 random environments consisting of random sets
of polygons. An example environment is illustrated in Fig. 3.

The parameters are as follows, except where varied for
specific experiments. The environments are a continuous
1000×1000 space. There are 80 polygons with random
centre points and from 3 to 6 vertices spaced at equal angles
around the centre. The distance from the centre to each vertex
is random between 40 and 120. Rewards are exponentially
distributed between 1 and 4 and rounded to the nearest
integer, such that few regions have high rewards. There
are 3 robots with budgets 800 and speeds 1. In all cases,
convergence was reached in 70 epochs. The same sample
environments are used for each pair of methods and a single-
tailed paired t-test was performed for each comparison.

1) Multiple robots: Fig. 4a shows the rewards collected by
planning using the proposed method, which jointly optimises
multiple robots, compared to planning for the robots sequen-
tially. The sequential method performs the SOM algorithm
for each robot one at a time, with each robot ignoring the
nodes selected by the previous robots. The two methods were
compared for 2 to 6 robots, where the budgets were uniform
and summed to 2400. The simulations show the proposed
approach has the best performance in all cases, and these
results were statistically significant (p < 0.01) in all cases
except R = 4. The largest improvements were for planning

1In [17] we empirically compare a related SOM algorithm to state-of-
the-art solvers for the single-agent orienteering problem.
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(a) Jointly planning for all robots in the team following the proposed
method compared to sequentially planning each robot.
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(b) Planning taking into account the rewards following the proposed
method compared to planning assuming uniform rewards.
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(c) Planning taking into account the viewpoint regions compared to
planning for only the centroid of the polygons.
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(d) Planning taking into account the viewpoint regions compared to
planning for only the centroid of the polygons.

Fig. 4. Simulation results for random environments under various scenarios and comparison methods. Vertical axes shows performance as the ratio of
the achieved weighted sum of nodes visited to the weighted sum of all nodes in the environment. Box plots show lower bound, lower quartile, median,
upper quartile and upper bound for 100 sample environments.

with a smaller number of robots, because in these cases the
performance is greatly influenced by effective partitioning
of the workspace between the robots, which can be more
effectively optimised when planning for all robots jointly.

2) Observation rewards: Fig. 4b shows the simulation
results for planning using the proposed duplication approach
compared to assuming all rewards are uniform. The rewards
are exponentially distributed between 1 and w̄ with lower
rewards more likely, and w̄ varied from 2 to 32. In all
cases, planning using the proposed approach improved the
performance, and these results were statistically significant
(p < 0.01). Greater improvements were achieved when the
maximum reward was large since the proposed approach is
more likely to select the nodes with a large reward.

3) Viewpoint regions: We analyse the value of the pro-
posed planning with continuous polygonal viewpoint regions
compared to planning with single points at the region centres.
Fig. 4c compares these two methods with a varying number
of nodes and Fig. 4d has a varying average polygon size.
The proposed planner outperformed the single point planner
for all number of nodes and when the polygon size ≥ 20,
and these results were statistically significant (p < 0.01).
When the polygon size was very small (10) it was sufficient
to plan by approximating the polygons as single points.
The proposed approach achieved greater improvements when
the number of nodes and the size of the polygons were
large. In these cases, the algorithm can more effectively take
advantage of being able to optimise the waypoint locations

Computation time: The algorithm was implemented in
MATLAB and the simulations were performed on a standard
desktop computer with an Intel i7 processor on a single
core. The runtime varied from 0.5 s to 30 s depending on
the scenario. The trends agreed with the theoretical analysis
such that runtime increased with the number of nodes and

maximum weight. Runtime increased with the number of
robots, possibly due to the multi-robot planning achieving
greater performance and therefore a larger number of nodes,
however this increase was sublinear. Runtime was dominated
(≈ 70%) by the winner selection and the waypoint usefulness
evaluation, since these geometric computations are relatively
expensive. Our implementation has not been thoroughly
optimised, since our primary focus was on validating the
feasibility of the approach. Therefore, the runtime can be
significantly improved by the implementation, as well as
by using approximations, such as decreasing the number of
polygon vertices or approximating as discs.

VI. ACTIVE PERCEPTION OF 3D POINT CLOUDS

Our primary motivation for the proposed problem formu-
lation and SOM algorithm is active perception tasks that aim
to observe a set of object parts in a large environment. These
problems rely on prior observations or a predefined belief of
the environment, that may have come from a coarse scan with
noisy sensors. The aim is now to perform a more informative
or complete scan of the environment, and this process may be
repeated. In this section, we demonstrate how the algorithm
can be applied to this class of active perception tasks.

We consider example scenarios using three variations of an
outdoor scene from a 3D point cloud dataset. The data was
recorded with a Velodyne laser scanner mounted on a robot.
Observations were made from several locations and fused
together. The dataset was initially recorded for testing object
classification algorithms [18]. The three scenes consist of 12,
15 and 18 objects spread around a 40 m×40 m environment,
including trees, tables, chairs, bins and a motorbike.

The environment is represented by a set of parts in a
3D point cloud with associated viewpoints and rewards.
Examples of the segmentation and viewpoint regions are



shown earlier in Figs. 1 and 2. The point cloud processing is
summarised as follows, with further details below: i) overseg-
ment the environment into parts, ii) estimate self-occlusion
free viewpoint regions for each part, and iii) defining the
rewards as the discriminability between parts. We emphasise
that the proposed SOM algorithm is not limited to this point
cloud processing method, but rather the processing can be
adapted to suit the requirements of a perception task.

A. 3D Point Cloud Processing

The point cloud of the environment is segmented into
parts by first removing the ground plane and then segmented
into objects using region growing. Each object is then
oversegmented into 5 parts using k-means clustering.

The viewpoint region for each part considers the sensing
range and object self-occlusions. This is achieved by com-
paring the set of vectors from all points within a part to all
points in other parts of the object. A vector is considered
an occlusion if the vertical angle is within −π/8 and π/8.
The viewing angle range is defined as the middle third of the
largest window of horizontal angles that contains less than
10% of the occlusion vectors. The useful sensing range is
defined as 1 to 4 m. The viewpoint region is defined as the
intersection of the horizontal viewing angle range and the
sensing range, measured relative to the part’s centroid. This
region is approximated by a polygon with 6 to 8 vertices.

We define the rewards as the discriminability of each
part in a feature space. To measure the discriminability,
we perform feature extraction for each part, calculate the
distance to all other parts in feature space, and normalise
for each object. We compare each part to all other parts in
the environment, although alternatively each part could be
compared to an object library. For the feature extraction, we
use the ensemble of shape functions [19], which is commonly
used for object classification tasks [3]. Discriminability is
measured as the exponential of the sum of Mahalanobis
distances in the feature space between each part and every
other part. Each object is equally important, and therefore
the sum of rewards for each object is normalised to 10. Each
reward is rounded to the nearest integer. The rewards for the
datasets ranged from 1 to 10 with 1 or 2 more likely.

B. Experiments

We analyse three example scenarios illustrated in Fig. 5,
for three environments with varying clutter. In the scenarios
we plan for: i) a single robot in the low clutter environment,
ii) two robots in medium clutter, where one robot has double
the budget, and iii) three robots in high clutter, where the
robots have speeds 2, 1.5 and 1. Planning was repeated 100
times each to measure the planning consistency.

In the first scenario, the robot observed a weighted sum
of 132 nodes, averaged over 100 trials, out of the maximum
possible 151 nodes. The performance was consistent over the
100 trials, with a standard deviation of 2.13 weighted nodes.
The worst plan had 124 and the best had 135. The average
runtime was 6 s with standard deviation 0.1 s. An example
solution is shown in Fig. 5a. All objects have at least one of

(a) Low clutter (12 object) environment with a single robot.

(b) Medium clutter (15 object) environment with two robots.
Robot on right has 2× budget.

(c) High clutter (18 object) environment with three robots. Robot
on left has 2× speed; bottom right has 1.5× speed.

Fig. 5. Three active perception tasks and solution paths. Object parts are
shown in the coloured point clouds. Viewpoint regions are coloured black
(low reward), orange (medium) and yellow (high).



its parts observed. The parts not selected were in the bottom
left and top left, which is expected since the time to travel
to these regions is relatively high. The waypoints within the
selected regions naturally found locations near the edges of
the regions and closer to the other regions, which implicitly
minimises the travel time. All of the parts in the top right
were selected, even though they are further from the other
objects, since there is a significant reward to be gained by
visiting two objects in close proximity.

The second scenario was planned for two robots with
different budgets. Fig. 5b shows that the algorithm finds a
natural partitioning between the robots in the same ratio of
the travel budgets. The implicit partitioning naturally shared
some of the objects between the two robots where the object
parts were closer to a different robot. The 100 trials had
a weighted sum of 174 nodes on average, with a standard
deviation of 3.4, out of the maximum 189. The worst plan
had 156 while the best had 177, showing the distribution of
plans was skewed towards the best performing plans. The
average runtime was 11.7 s with the standard deviation 0.2 s.

A similar partitioning was achieved in the third scenario,
shown in Fig. 5c, for three robots with varying speeds in
the most cluttered environment. The size of the implicit
partitions are proportional to the speeds of the robots. The
centre was well covered since several parts are observed at
once from these locations and therefore have high reward.
The average sum of weighted nodes was 199.2 out of the
maximum 221, with standard deviation 9.1, worst case 175
and best case 211. The average runtime was 17.6 s with a
standard deviation of 0.6 s. The performance was almost as
consistent in this more complex scenario, and the solution
paths have credible partitioning between multiple robots,
selected lower cost locations within regions and favoured
high-reward locations with overlapping viewpoint regions.

VII. DISCUSSION AND FUTURE WORK

Overall, our results show that the proposed method enables
multi-robot planning for budgeted active perception tasks
with continuous sets of candidate viewpoints and multi-step
planning horizons. The results motivate several avenues of
future work. In particular, we are interested in extending
the algorithm for non-euclidean distances such as for ob-
stacles [16] or non-holonomic constraints [27]. We are also
interested in having different sensors within a heterogeneous
team, which should be a straight-forward extension. The
observation model may also include rewards for exploring
unobserved space, and different robots in the team may be
better equipped to achieve this. Online replanning would also
be useful and achievable with our approach since the iterative
learning process should be able to adapt to changes in the
environment model. Other extensions include time-varying
and probabilistic sensing models, constrained start or end
locations [17], and decentralised planning.
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