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Abstract— We tackle the challenging problem of myoelectric 

prosthesis control with an improved feature extraction 

algorithm. The proposed algorithm correlates a set of spectral 

moments and their nonlinearly mapped version across the 

temporal and spatial domains to form accurate descriptors of 

muscular activity. The main processing step involves the 

extraction of the Electromyogram (EMG) signal power 

spectrum characteristics directly from the time-domain for 

each analysis window, a step to preserves the computational 

power required for the construction of spectral features. The 

subsequent analyses involve computing 1) the correlation 

between the time-domain descriptors extracted from each 

analysis window and a nonlinearly mapped version of it across 

the same EMG channel; representing the temporal evolution of 

the EMG signals, and 2) the correlation between the 

descriptors extracted from differences of all possible 

combinations of channels’ and a nonlinearly mapped version of 

them, focusing on how the EMG signals from different 

channels correlates with each other. The proposed Temporal-

Spatial Descriptors (TSDs) are validated on EMG data 

collected from six transradial amputees performing 11 classes 

of finger movements. Classification results showed significant 

reductions (at least 8%) in classification error rates compared 

to other methods. 

I. INTRODUCTION 

Myoelectric control employs Electromyogram (EMG) 
signals that are collected from the muscles in the residual 
limb to control the degrees of freedom of powered prosthetic 
devices worn by amputees [1]. In such a control scheme, 
pattern classification algorithms are usually employed to 
extract a representative and repeatable set of features of 
muscular activation, from each analysis window of the EMG 
data, upon which the various tasks are discriminated [1, 2]. 
Previous research has shown that the success of the EMG 
pattern recognition system mainly depends on the quality of 
the extracted features, as they are of direct impact on clinical 
acceptance [3].  

A number of feature extraction methods were utilized in 
the literature, these include the mean absolute value (MAV), 
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waveform length (WL), sloop sign changes (SSC), and 
number of zero crossings (ZC) [4]; fast Fourier transform 
(FFT) [5], wavelets and wavelet packet transform (WPT) [6, 
7]; cepstral coefficients (CC), Willison amplitude (WAMP) 
[3]; sample entropy (ENT) [8]; and the autoregressive (AR) 
model parameters [9]. Phinyomark et al. compared 50 feature 
extraction methods for EMG pattern recognition [10]. It was 
found that a combination of AR coefficients and time domain 
features with sample entropy presented the most stable 
feature set. Nonetheless, despite these advancements, there 
are still considerable challenges in applying research 
outcomes to a clinically viable implementation [11]. This is 
partially due to a big gap between academia and industry, 
which limits the clinical implementation for amputees’ use. 
Such a gap is attributed to several factors including: lack of 
intuitive control, poor system reliability and the lack of 
robustness against practical problems like limb position 
change, electrodes shift, varying force levels, and signal non-
stationarity. Recently, the extraction of features from the first 
and second derivative of EMG signal was shown to produce 
powerful features in EMG classification [12], with results 
suggesting that these feature can significantly outperform 
several well-known features in problems with changing limb 
position [13], varying contraction force levels and varying 
forearm orientations [14].  

In this paper, we extend upon our recent work in this 
direction [12] by adopting an approach in which we, not only 
extract the features from the current analysis windows of 
each of the individual channels, but also utilize the 
differences between all channel pair combinations and their 
nonlinear mappings. In such a case, the extracted features not 
only look at the temporal evolution of the EMG patterns from 
each EMG channel but also at the spatial relation between the 
power spectrum activity of the different EMG channels.  

II. METHODOLOGY

A. Signal Time-Domain Descriptors (TDD) 

The block diagram of the TDD features is shown in 

Fig.1, with a full description provided in [12]. Assume a 

sampled version of the EMG signal denoted as x[j], with 

j=1,2,…N, of length N and a sampling frequency fs. The 

EMG trace within a certain epoch can be expressed as a 

function of frequency X[k] by means of Discrete Fourier 

transform (DFT). The derivations of the proposed method 

are based on Parseval's theorem, which states that the sum of 

the square of the function is equal to the sum of the square of 

its transform. 
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Figure 1. Block diagram for the derivation of the time-domain descriptors (TDD) feature extraction process. 
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(1) 

where P[k] is the phase-excluded power spectrum, i.e., the 
result of a multiplication of X[k] by its conjugate X*[k] 
divided by N, while k is the frequency index. Thus, the first 
feature is simply a representative of the signal energy.  

 

 (2) 

The second and third features are based on the calculation of 
spectral moments. These were derived from the time-domain 
signal based on the time-differentiation property of the 
Fourier transform. This property simply states that the nth 
derivative of a function in the time-domain, denoted as ∆n for 
discrete time signals, is equivalent to multiplying the 
spectrum by k raised to the nth power 

𝐹 ∆𝑛𝑥 𝑗  =  𝑘𝑛𝑋 𝑘         (3) 

Therefore, the second and fourth moments are defined as  
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In this case, taking the 1st and 2nd derivatives of the signal 
reduce the total energy of the signal; hence, we square the 
signals before applying the derivatives and apply a power 
transformation to normalize the range of m0, m2, and m4 and 
to reduce the effect of noise on all moment based features as 
follows 
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With λ empirically set to 0.1. Once m0, m2, and m4 are 
calculated, the remaining features f2 to f6 can be easily 
calculated as shown in Fig.1. Simply speaking, f1, f2, and f3 
are normalized versions of the power spectrum moments, f4 is 
a measure of sparsity, f5 is a measure of irregularity of the 
signal and f6 is a measure of the waveform length ratios. 
Further details about these features are in our original article 
[12]. In the remaining analyses, we denote the process of 
extracting the six features in Fig. 1 as TDD, as we use this as 
a basic building block upon which the rest of the analyses 
depend on. 

B. Temporal-Spatial Correlation Features 

 According to the schematic of the proposed temporal-

spatial descriptors (TSD) in Fig. 2, we first extract the TDD 

features to represent window i of channel Cx and form a 

vector denoted as axi = [a1, a2, a3, a4, a5, a6]. An additional 

feature vector, denoted as bxi = [b1, b2, b3, b4, b5, b6] is then 

extracted from a logarithmically scaled version of the same 

window log(Cxi
2) to end up with two feature vectors: axi 

(from the EMG record) and bxi (from a nonlinearly scaled 

version of the EMG record), each made up of 6 elements. 



  

 
Figure 2. Block diagram of the proposed TSD feature set, which is made of a temporal component correlating TDD features extracted from 

each channel with those extracted from a nonlinear/smoothed version of it, and a spatial component correlating the TDD parameters from 

each possible channels’ difference with those extracted from a nonlinear version of it. 
 

The first part of the final feature set is obtained by calculating 
the element wise similarity between axi and bxi, i.e., made of 6 
features per each EMG channel. This is achieved by 
calculating the cosine similarity of the two vectors given by  
 

                        
(7) 

In a similar way, we also extracted the similarity features 
between the 6 TDD features from each possible difference of 
channels Cxi - Cyi and those extracted from a nonlinear 
version of them, forming the second part of the final feature 
set. Therefore, we focus on the temporal evolution of the 
EMG characteristics from each channel by using a sliding 
window approach as well as on how the TDD from different 
channels relate to each other.  

 

C. Data Collection 

The EMG signals were originally used in [15], with 11 
surface EMG sensors sampled at 2000 Hz with a custom-
built data acquisition system (NI USB 6210, National 
Instruments, USA) with 16-bit resolution. A Virtual 
Instrument (VI) was developed in LABVIEW (National 
Instruments, USA) to display and store the EMG signals. The 
data from six transradial amputees (TR1 to TR6) persons 
were collected at the artificial limbs and rehabilitation center 
in Baghdad and Babylon. Eleven classes of finger 
movements were carried out by each amputee, including: 
little flexion (f1), ring flexion (f2), middle flexion (f3), index 
flexion (f4), rest position, little extension (e1), ring extension 
(e2), middle extension (e3), index extension (e4), thumb 
flexion (f5), and thumb extension (e5). During the recording 
of the EMG signals, each participant sat on a chair in front of 
a computer with the Labview interface screen to view all the 
EMG sensors in real-time, while imagining the movements. 
Six trails of each movement were conducted. Ethical 
approval was obtained from the Human Ethics Committee of 
the Faculty of Science and Technology at Plymouth 

University. All Subjects gave their written informed consent 
to participate in the study. 

D. EMG Pattern Recognition Analysis 

In the experiments, an overlapping windowing scheme 
was utilized to extract the proposed features, with an analysis 
window size of 150ms and an increment of 75ms. 
MATLAB® 2015b software (Mathworks, USA) was used to 
perform the analyses. To evaluate the performance of the 
proposed feature set, denoted as Temporal-Spatial 
Descriptors (TSD), we compare the achieved classification 
performance against the classification performance of some 
well-known EMG feature extraction methods from the 
literature. These include: a combination of Autoregressive 
model parameters (5th order) with signal root mean square 
denoted as AR-RMS [16]; the combination of MAV, ZC, 
SSC, WL denoted as TD feature set [4]; the same 
combination with the WAMP features denoted as TD1 
feature set; and the wavelet features extraction method, 
utilizing the mean of the squared wavelet coefficients at each 
level as features, with Symmlet family of wavelets and 5 
decomposition levels,  denoted as Wavelet; and our original 
TDPSD feature extraction method [12]. The dimensionality 
of all of the extracted feature sets was reduced using the 
Spectral Regression (SR) dimensionality reduction method 
proposed by Cai et al. [17]. SR maps the original feature set 
into a new domain with c−1 features only, with c being the 
number of classes, i.e., 10 features in this problem. Finally, in 
terms of classification accuracy, we have utilized a Linear 
Discriminant Analysis (LDA) classifier with quadratic 
function as well as the k-Nearest Neighbour (kNN) classifier, 
with k=1, which was chosen empirically. In all analyses, 
features extracted from the first trial of each hand movement 
were assigned to the training set, while features extracted 
from the remaining trials were assigned to the testing set. 
This would in turn make the classification task more 
challenging for any feature extraction method due to the 
small size of the training feature set.  



  

 

III. RESULTS AND DISCUSSION 

  The average classification error rates across all of the six 
amputees are shown in Fig. 3 for all of the utilized feature 
extraction methods across the two classifiers of LDA and 
kNN.  These results clearly depict few important points, the 
first is that the error rates achieved by the proposed TSD 
feature extraction method were much lower than that 
achieved by all other methods across both classifiers. An 
analysis of variance tests with a significance level of 0.05 
revealed significant differences between TSD and the 
remaining methods (p-value<0.01 for all tests). Secondly, 
there were no significant differences between the 
performances of the two different classifiers for the different 
feature extraction methods. This is an important property, 
which reflects the fact that the extracted features were robust 
against the change of the classifier.  
  Finally, it is important to mention here that TDPSD 
which we presented earlier in [12] is only focusing on the 
temporal part of the feature extraction and that it does not 
look at the relation between the EMG signals from the 
different channels. In comparison to TDPSD, and all other 
feature extraction methods, our new TSD method also looks 
at how the EMG power spectrum characteristics of the 
different channels change across the different movement and 
was therefore more capable of further reducing the 
classification error rates. This in turn proves our main point 
of extending the feature extraction process to look at the 
temporal and spatial evolution of the EMG signals from 
different channels when performing different hand 
movements. 

IV. CONCLUSION 

A new feature extraction method for EMG pattern 
recognition was presented based on time domain descriptors 
that utilized spatial and temporal correlations. The method 
proposed to extract a set of features that are equivalent to the 
power spectrum moments directly from the time-domain by 
utilizing Fourier relations and Parseval’s theorem. In the 
proposed method, the TSD descriptors were extracted from 
each analysis window and a nonlinearly mapped version of it 
along each channel to reflect the temporal component and 
then along differences of the various channel combinations to 
reflect the spatial component. The  resulting  algorithm   gave 

 

 Figure 3. Average classification error rates across all amputees, 
with bars representing standard deviation. 

significant reductions in classification error rates on various 

EMG datasets collected from six transradial amputee 

subjects. Our results revealed that there were no significant 

differences between the error rates achieved by using the 

classifiers of LDA and kNN.  
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