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Abstract: In cancer biology, genomics represents a big data problem that needs accurate visual
data processing and analytics. The human genome is very complex with thousands of genes
that contain the information about the individual patients and the biological mechanisms of their
disease. Therefore, when building a framework for personalised treatment, the complexity of
the genome must be captured in meaningful and actionable ways. This paper presents a novel
visual analytics framework that enables effective analysis of large and complex genomics data.
By providing interactive visualisations from the overview of the entire patient cohort to the detail
view of individual genes, our work potentially guides effective treatment decisions for childhood
cancer patients. The framework consists of multiple components enabling the complete analytics
supporting personalised medicines, including similarity space construction, automated analysis,
visualisation, gene-to-gene comparison and user-centric interaction and exploration based on feature
selection. In addition to the traditional way to visualise data, we utilise the Unity3D platform for
developing a smooth and interactive visual presentation of the information. This aims to provide
better rendering, image quality, ergonomics and user experience to non-specialists or young users
who are familiar with 3D gaming environments and interfaces. We illustrate the effectiveness of our
approach through case studies with datasets from childhood cancers, B-cell Acute Lymphoblastic
Leukaemia (ALL) and Rhabdomyosarcoma (RMS) patients, on how to guide the effective treatment
decision in the cohort.

Keywords: genomic visualisation; interactive visualisation; personalised medicines; similarity space;
visual analytics

1. Introduction

The goal of genomic analysis should fully exploit the potential of state-of-the-art technologies that
use multidimensional datasets and embrace the complexity of the data for personalised medicine [1].
Patients with similar clinical presentation do not always respond to the same treatment strategies.
By enabling clinicians’ access to complex genomics data in meaningful, but dynamic ways, it will
lead them to better understanding of how an individual patient differs from others with similar
diseases. This platform will allow the clinicians to tailor the treatment to the most efficacious for
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each individual. This requires integration of different genomics data from diverse sources to build up
a complete and data-driven picture of each patient, allowing explorations of the information from the
interactive visualisation.

The interrogation of the cancer genomes has yielded meaningful insights and identified exciting
biological features amenable to targeted therapy. A thorough analysis of many genetic features is
difficult, and this process is usually required for finding new insights in the personalised cancer
treatment [2]. Although biomarkers are potentially useful for targeted therapies, it is still unclear why
biomarkers are considered good targets for treatment yet often fail to be clinically effective. Examining
a single biomarker normally does not inform about the deeper biological mechanisms driving an
individual’s disease [2,3]. It is essential to gain a more complex picture of tumour biology across the
patient cohort so that a better treatment strategy can be made.

Among cancer genome studies, the analysis of gene expression profiling and patterns has been
applied in various biological and biomedical studies, such as metabolic pathways [4] and identifying
genes of interest [5,6]. Most of the available studies aimed to bring the insight of the information of
gene expression and microarrays, which are a series of probes located orderly on a fixed surface [7].
Microarrays create complex data structures with over ten thousand probes and cross-referencing
interconnections in each record. The use of statistics and basic visualisation [8] may not be effective
to handle such a large amount of information. Without effective interaction and the capabilities of
data manipulation and the quality assurance of the results, the data mining process alone is often
insufficient for large-scale data analysis.

This article proposes a novel visual analytics framework that looks for overarching patterns that
emerge from a suitable selection of features in the datasets. It provides an interactive environment
to analyse and explain these patterns. In order to apply this methodology to daily clinical use in
assisting decision making by physicians, our work aims to produce meaningful visualisations for the
clinicians at the bedside. This is enabled by the integration of domain knowledge into the development.
The innovation lies in its capability to provide seamless analysis of complex genomics data using
multiple processes and technologies, from similarity space construction, feature selection, automated
analysis to a comprehensively interactive visualisation.

2. Related Work

Scientists and researchers have been generating a large amount of genomic, transcriptomic and
epigenetic data when studying features of cancer disease in diagnostics, prognostics or even therapeutic
applications. To make sense of the vast data, the functionality, quality and appropriateness of the visual
analytical tools are critical in supporting the analysis, knowledge discovery, prediction or phrasing
meaningful hypotheses for testing [5]. The dialogue and interaction between experts from different
domains, such as computational scientists, cancer biologists, biostatisticians and clinicians, and the
fusion of their knowledge and skills are essential to achieving effective knowledge discovery process.

Genomics data usually contain a large number of attributes, which are required to be reduced
to a manageable size. Data visualisation methods are only effectively applied on a small number
of attributes. Popular dimensionality reduction methods include principal component analysis [9],
non-negative matrix factorization [10], multidimensional scaling [11] and local linear embedding [12].
Dimensionality reduction methods in image classification [13], image clustering [14] and human
poses [15] can also be potentially applied to the high-dimensional genomics data. The choice of
methods to apply depends to some extent on the nature of the information expected to be encoded
in the dataset. Further discussion on dimensionality reduction in the automated analysis process is
presented in Section 4.2.

Early visualisation techniques for gene expression, such as those discussed in [16] provided basic
ways for analysing data, which overall did not contribute a comprehensive and effective purpose-built
analysis mechanism. Recent visualisation tools, for example, those presented by [17–20], have made
some purpose-built additions to the earlier basic sets. Caleydo et al. provide the interdependencies of
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genes by bringing gene expression in context with pathways by using multiple views in conjunction
with a large 2.5D main view [18]. Cvek et al. use dimension reduction methods and multi-dimensional
data visualisations for analysing gene expression data [17]. Although this is a good framework, it
does not support the deep analysis of gene expression data and associated genomic and clinical data.
Nguyen et al. present a novel interactive visualisation that combines domain knowledge for analysing
Acute Lymphoblastic Leukaemia (ALL) [19,20].

This paper presents a framework that utilises in an integral way various technologies and
techniques to support the visual analytics of the complex genomics data. We focus on the similarity
space of the patient cohort based on one or more features. We provide a comprehensive extension of the
methods used in the framework’s components, including data collection, feature selection and model
building, as well as interactive visualisation. Two case studies are also presented in this latest work.

The framework integrates 2D and 3D visualisation methods for the purposes of the different
analyses. 3D graphic engines can offer to the end users the interactive mode, dynamic features,
flexibility and usability when creating various graph models for data analysis. Among those, game
engines offer multi-user interactive scalable rendering. There is a variety of multi-platform game
engines suitable for the purposes of this work. These include Unity3D, Unreal Engine, Cry Engine and
Blender Game Engine. Unfortunately, there has been little research work conducted on utilising 3D
graphic game engines to support smooth interactive visualisation for scientific purposes. The benefits of
developing tools for scientific purposes used in the bioinformatics field could facilitate new discoveries
and valuable insights by combining experimental data and modelling [21]. Among the above
mentioned game engines, Unity3D is well positioned for this work, taking in account its integration
with personal virtual reality devices, including HTC Vive, Oculus Rift, and most recently, the mixed
reality integration with Miscrosoft Hololens. The preliminary work on interactive visualisation 3D
similarity space using Unity 3D [22] shows an encouraging result for comparisons among patients’
medical profiles. This paper presents a methodology for visualising medical and genomics datasets in
three-dimensional space to allow users to navigate and interact easily. The tool provides a visualisation
and smooth interaction of large datasets with an overview and in a drill-down and reverse manner.

3. Personalised Medicines and Similarity Space

Personalised medicine is a vision for medical practice where treatment is individually tailored
to be most effective for each patient. Logically, if a clinical decision is going to assist the individual
patient, understanding of the biological features that are common to the disease type, as well as of
unique to the individual need to coincide.

The genomes complexity marks a patient’s individuality whilst also underpinning the biological
mechanisms of their disease. The genomic landscape of tumours bears out the complex nature of
cancers and their individual development in patients, but often does not reflect a common process for
the disease as a whole. It is an unfortunate truth that the underlying complexities of the disease are not
reflected by the clinical presentation. Patients displaying similar clinical presentation for a particular
cancer type do not always respond to the same treatment strategies.

For complex diseases, a large number of markers will show relevant variation, the activity of gene
functioning within co-regulating ensembles where biological relevance is found in the small changes in
the expression of a large number of genes rather than large changes of only a few. We have developed
strategies for comparing multidimensional genomics data (Single Nucleotide Polymorphism (SNP)
profiles, gene expression, methylation, miRNA) from childhood cancer patients within a ‘similarity
space’; a graphical representation of data where the relative proximity of the items (i.e., patients) within
that multi-dimensional space is a measure of the similarity of the features used to build the model.

To explore a patient cohort represented within a similarity space, visual analytic methodologies
will allow us to see new relationships between individual patients within the integrated clinical and
gene/genomic data from our cohort (see Figure 2A). Rich graphical attributes are employed to provide
the background (e.g., age, gender, social and medical background) and treatment properties (e.g.,
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treatment history). The visual attributes can be interactively adjusted, filtered and re-mapped to
suit the preferences and analysis. This provides a complete picture of the individual patient in the
similarity space.

Conventional medicine operates in simple spaces, where patients are placed in a few well-defined
clusters or along a single continuum built on a few features, such as severity. By contrast, we aim to
compare our cohorts using larger, more diffuse similarity among patients, with clinical decisions being
made using the characteristics of a subset of the patients who resemble the patient being considered.
In other words, in the similarity space, neighbourhoods that represent the similarities of patient data
are more important than clinical groupings.

The predictive potential of the complex genome is its ability to capture not just the similarities
between individuals, but also the differences between them. Currently, the genome is inaccessible
to clinicians making personalised patient management decisions. Yet, this information allows us
to identify patients as individuals. When building a framework for the personalised treatment of
disease, how do we capture all of the complexity in a meaningful way, such that it can be actioned
upon within clinical decisions? No practical application for comparing the genomics data of patients
within a cohort to identify patients in need of specific treatment has been developed. Therefore, to
explore data within the similarity space, visual analytic methodologies are required to allow analysts
to see new relationships within the integrated clinical and genomics data from the patient cohort not
previously observed. The research framework presented here develops ways to compare individuals
across a cohort, whilst benefitting from the higher dimensionality of the genomics data.

4. Visual Analytics Framework

A visual analytics framework consists of multiple components that reflect a complete analytic
cycle (see Figure 1). From the goal or question, the knowledge is gained through pre-observation,
automated analysis and visual analysis processes. In addition, it is essential to validate a method by the
outcomes in the discipline that the method is used. To do this, visual analytics techniques must adapt
their visualisation and interface to the respective discipline and conform to the language and norms
expected of that discipline. For example, the expression of identified significant genes is required to be
validated by the domain experts when the analysis is undertaken in independent laboratories.
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Figure 1. The visual analytics framework for complex genomics data.

The presented work was developed with strong involvement from cancer researchers.
The philosophy behind the work is that with this new way of looking at genetic and clinical details
from the perspectives of domain knowledge and technologies, visual analytics can provide a medium
for the discovery of genetic and clinical problems, potentially leading to improved treatment strategies.
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4.1. Pre-Observation

Pre-observation is the first step to pre-analyse, as well as clean the data prior to other processes.
Datasets are usually heterogeneous from different sources and formats. It is vital to develop effective
data collection techniques that can retrieve suitable data and transform them into a uniform and
readable format. Preliminary data processing methods, such as data integration and normalisation, are
also applied to collections to produce the centralised datasets with minimal variations and errors.

4.1.1. Data Collection

Data collection involves collating the gene expression, genetic variation and clinical datasets involved
in the study and linking with patient identifiers. Data are collected from different sources based on the
analysis questions. For example, in the human genome, there are three billion nucleotides per sample
with thousands of genes and thousands of protein variants/isoforms. This leads to analytics issues on
the big genomics data due to the high dimensionality, imbalanced datasets and sparse cohorts.

4.1.2. Data Integration

Data integration involves combining the datasets into one large dataset ready for further
processing. One of the main challenges at this step is dealing with data from different high-throughput
technologies that measure slightly different quantities. For example, there is not a clear one-to-one
mapping between transcript clusters and probe sets, although they both measure gene expression.

4.1.3. Normalisation

Normalisation of data is important because microarray experiments may have variation between
genes within experiments and between experiments (i.e., patients). We use z-score normalisation as,
well as loess normalisation [23].

4.2. Automated Analysis

Genomics data for a clinical decision support system can come in various formats. Our approach
takes data from microarrays, which are high throughput technologies able to measure the level of gene
activity and/or genetic variation for tens of thousands of genes simultaneously [24]. Gene activity
measures the level of expression of genes using real values in tumour samples taken at patient
diagnosis. We assume that gene activity measurement will include patterns indicative of some target
of interest, for example tumour aggressiveness or potential for relapse. Genetic variation data measure
differences in DNA between samples, in our case patients. In the case of our data, we measure SNP
values for patients. These are variations in nucleotide sequence at specific positions of the genome
that occur in >1% of the population. They are measured as either real values or an integer in [0, 2]
representing the number of minor alleles present at the position for the individual.

Biomedical data analysed in our framework are characterised by high dimensionality
(>20,000 attributes), low numbers of samples (in the order of hundreds), noise and an imbalance
between the classes of interest (e.g., relatively few examples of patients who relapse or die compared
to all patients in the dataset). For these reasons, it is vital to apply feature selection methods [25] so as
to avoid the curse of dimensionality and to be able to build classifiers able to generalise. Our current
implementation uses the R statistical programming language.

4.2.1. Feature Selection

Feature selection is required to select genes most useful for the classification of patients, according
to the biologist’s target of interest. Without the selection of the most important features, it is difficult
to overcome the curse of dimensionality. We have found that the variable importance score derived
as a part of the random forest classifier [26] to be useful for this task. Recently, we developed other
approaches based on random forest [27].
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4.2.2. Dimensionality Reduction

Dimensionality reduction is needed to generate new features for patients and to project them into
a lower dimensional similarity space for visualisation. We carried out a comprehensive comparison of
approaches for dimensionality reduction [28], including the popular Principal Component Analysis
(PCA), Laplacian Eigenmap (LE), Locally Linear Embedding (LLE), as well as the extended version
of the Stochastic Neighbour Embedding (SNE) and Curvilinear Component Analysis, called the
neighbour retrieval visualiser [29]. The study showed that the neighbour retrieval visualiser has the
best performance on the childhood acute lymphoblastic leukaemia dataset.

We have used various approaches for dimensionality reduction in combination with the above
feature selection to handle high-dimensional genomics data. This provides biomedical analysts with
flexibility when choosing the most suitable method for a particular dataset. The approaches range from
the linear methods, including principal component analysis and singular value decomposition [30],
to nonlinear methods, including the neighbour retrieval visualiser [29]. Other advanced dimensionality
reduction methods will be adopted in our future development. The semi-structured text representation
of the documented results of the evaluations and specifics in the application to these types of data will
be utilised in the automated expert guidelines for biomedical data analysts.

4.2.3. Classification

Once relevant features are extracted, patients are classified. Established data mining strategies,
such as random forest, are excellent approaches for classification. We have investigated various
approaches for identifying the classes of interest, especially for cohorts that are imbalanced or
particularly sparse, which characterises the situation for investigating rare disease, such as childhood
cancer. We have adopted a swarm optimisation approach called artificial bee colony sampling [31].
Braytee et al. 2015 [31] showed that this method performed better on various data samples for
classification than random undersampling [32] and particle swarm optimization [33]. The classification
accuracy on a variety of datasets was reported in [31].

4.3. Visual Analysis

It is vital to develop new visual analysis techniques that can present results from the above-automated
analysis process in a clear and interpretable way, where they can be analysed further and easily amenable
to clinicians at the bed side. From the visualisation, analysts should be able to interact and explore
through different views to make further discovery of, and insights into, the data. They can obtain
a better understanding of the data and their structures and contribute their domain expertise to the
knowledge discovery process. From the discovery of new knowledge, the analysts can evaluate, refine,
go beyond and ultimately confirm hypotheses built from previous iterations and automated analysis.
A detailed description of those components is presented in the case studies.

4.3.1. Visualisation

The challenge presented to the construction of meaningful visualisation is to cover the range
of visualisation of all of the data, but making only the relevant data available to the analyst when
it is relevant to do so. We present various visualisation methods in this framework [20], including:
(1) a three-dimensional visualisation of the patient cohort in the similarity space; (2) filter, explore and
manipulate the information; (3) interactively provide the details of both the original and processed
data of each patient on demand; (4) an interactive gene comparison; and (5) remap the similarity space
based on one or more features.

4.3.2. Interaction and Exploration

An appropriate visualisation helps the analyst to gain understanding of the data and construct
knowledge through our powerful human visual perception and reasoning capabilities in an ordinary
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environment [20] and gaming platform [22]. Capturing these iterations ideally drives the system
towards more focused and more adequate analytical techniques. Domain analysts should be able to
interact and explore through different views to make further discovery of, and insight into, the data.
They can obtain a better understanding of the data and its structures and contribute their domain
expertise in the knowledge discovery process. From the discovery of new knowledge, the analyst can
evaluate, refine, go beyond and ultimately confirm hypotheses built from previous iterations.

4.3.3. Validation

The final stage of the framework is validation, where the biological importance of identified genes
is explored, as well as whether derived classifiers are able to generalise to unseen data. Due to the
paucity of data and the imbalance between classes, classifier validation is challenging. This stage should
involve domain experts and various groups of analysts to explore the acceptability and perceived
utility of the knowledge and hypotheses.

5. Case Study 1: Acute Lymphoblastic Leukaemia

The goal of this study is to construct a similarity space that reflects the genetic similarity and
differences between patients. Integrating the genetic activity captured in the tumour specimen with
the genetic background of each patient will be used to build models of the complex interactions
that potentially underlay treatment responses in cancer patients. Particularly, we aim to develop
a predictive model of treatment outcome by identifying genes capable of differentiating patients that
survived and those that did not. The knowledge gained from this study includes:

• The ability to represent complex genomic and biological data in a manner that reflects the
similarity in patient genetics and

• Applications for understanding the biological differences within individual patients, which may
influence clinical management decisions for those patients.

5.1. Data Collection

The dataset in this experiment was the expression and genomic SNP profiles of 100 paediatric
B-cell ALL patients treated at The Children’s Hospital at Westmead, NSW, Australia that were
generated using Affymetrix expression microarrays (U133A, U133A 2.0 and U133 Plus 2.0) and Illumina
NS12 SNP microarrays, respectively. Affymetrix expression microarrays generate 22,277 attributes,
while each Illumina SNP microarray 13,917 attributes for each patient sample. Each attribute was
mapped to a probe of DNA (or a gene), and the value for each attribute corresponded to the expression
levels or genotype for the gene. Expression microarrays were hybridised with diagnostic bone marrow
samples, and genomic microarrays were hybridised with remission peripheral blood samples. The patients
were treated following the Berlin-Frankfurt-Munich 95 (BFM95) protocol or the complimentary Australian
and New Zealand Children’s Hematology and Oncology Group Study VIII (Study 8).

Data integration involved combining the datasets into one large dataset ready for further
processing. One of the main challenges at this step is to deal with data from different high-throughput
technologies that measure slightly different quantities. We finally normalised the values, as well as
cleaned out the missing data items.

5.2. Feature Selection and Model Building

The gene expression and SNP microarray datasets were concatenated, and the patients were
class labelled according to treatment outcome, particularly those that survived and those that did not.
Because there was a very large number of genetic attributes, we applied an attribute deletion approach
by identifying and removing genes that were not involved in a biological phenomenon and patient
comparison based on their uniform presence across the cohort or because they were only extreme
outliers in a few cases.
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Multiple bootstraps were used to account for the effects of erroneously-labelled samples. For each
of the nine bootstrap samples used, a random forest model [26] was constructed. The feature
importance ranking from each random forest was combined into a global list of feature importance.
The 250 most important gene expressions and SNP markers were then used to build a 3D similarity
space using a singular value decomposition matrix decomposition technique [34]. The distances
between patients in this space were indicative of genetic similarity.

The resulting similarity space identified that patients are genetically similar (see Figure 2A).
This figure shows clearly a distinction between patients with different treatment outcomes. The patient
separation found did not agree with clinical markers (e.g., white blood cell count cytogenetics) that
were used for prognostication and risk stratification. In contrast, similarity spaces constructed with
either the expression data or SNP data alone did not recover such a clear distinction. The result
indicates that the more relevant data measuring different levels of biology available, the better our
models performed.J. Imaging 2016, 2, 29 8 of 17 
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5.3. Visual Analysis

From the 3D similarity space of feature selection and model building processes, we build an
interactive visualisation that allows users to view and explore complex information. The visualisation
platform was developed in the Java 3D environment. Figure 2 illustrates a complete and seamless
visual analysis process of the sample acute lymphoblastic leukaemia patients, supporting the analysis
and manipulation of both treated and raw data. The visual analysis includes several components,
including: (a) a flexible and changeable display of the patient population; (b) filtering, interaction
and exploration of the information; and (c) patient-to-patient comparison view and comparison of the
genes of interest.

The design goal of the visual analytics is to provide interactive visualisations of multiple attributes,
which are the quality and appropriateness of the analytical platform and domain experts. We used
diagrammatic visualisation [35] for the presentation of multi-dimensional biomedical data, in relation
to each individual patient. Rich graphical attributes, such as labels, axes, colours, size, shapes and
visual bars, were also used to present clinical and background properties. The presentation can be
adjusted by the users. Our work was developed with strong involvement from cancer researchers
at the Children’s Hospital at Westmead, Sydney, Australia, through its development processes.
The philosophy behind the work is that with this new way of looking at biomedical and genomic data
in meaningful ways, it can provide a better and deep understand of the information to provide more
certain and personalized treatment decisions.

5.3.1. Overview of the Patient Cohort in the Similarity Space

The visualisation of the entire patient population in the similarity space provides an overview
of the genetic similarity of the patient cohort where the closer patients are hypothetically genetically
similar (see Figure 2A). By displaying the entire visual structure at once, it allows analysts to move
rapidly to any location in the space, as well as indicates the position of new patients in the genetic
similarity space. The innovation lies in the ability to provide an easy-to-use, yet effective way to view
multidimensional data at different angles of overlaid clinical markers by mapping various attributes
to different visual properties. The visualisation consists of multiple features enabling the analysis
process, including automatic marks, customisable visualisation via interaction, controllable attributes
and filtering. The visualisation and mapping property can be interactively adjusted or remapped to
suit the preferences and new requirements. By interactively filtering out the unfocused information,
it allows the analysts to extract and picture specific features and patients within the similarity space.

Figure 2A shows the 3D visualisation of the entire patient cohort in the similarity space at the
navigational stage. The main colours (spheres) represent the year of birth (red→ lowest and green→
highest). Outer colours (signs) represent the risk stratifications (red→ very high risk, orange→ high
risk, yellow→ medium risk, green→ normal and grey→ unknown). The outer-bound ring indicates
whether the patients who have died, i.e., no outer-bound→ survived. This figure indicates clearly two
groups of patients, marked by the dashed-line ovals. The smaller group contains deceased patients,
while the larger group contains patients that responded well to the treatment and survived the disease.
The fact that the deceased and survived patients are located in two different groups may support the
hypothesis that genetic properties are essential to determine whether a patient is likely to respond well
in the context of the clinical treatment.

Figure 2B illustrated the visualisation when filtering was applied to show those very high risk
of relapse patients (with red outer signs). In the scenario, there are three Patients Of Interest (POI)
that need to be investigated further to the Genes Of Interest (GOI) visualisation. The patients are
highlighted in the figure, including ALL123 (top-left, a deceased patient) and ALL26 and ALL302
(bottom-right, survival patients). These patients were classified as high risk, but had different treatment
outcomes. The position of the patients in the similarity space indicates that the patient ALL123 should
have different genetic properties in comparison to the two other patients ALL26 and ALL302 with
similar genetic properties.
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5.3.2. Patient-To-Patient Comparison

We provide an analytical view of both the genomic and biological data of selected patients (see
Figure 2C). The visualisation displays concurrently the total gene expression and SNP data generated
for each patient. Each probe set in the gene is represented as a dot point on the horizontal axis while
the vertical position shows the order of the gene sorted by chromosomal order. The table includes all of
the biological data associated with the patient. From the overview of the entire genetic and biomedical
information, the analysts can identify patterns and abnormality before exploring further. We also
provide semantic zooming to enlarge the area of focus. The level of detail is updated automatically
upon the information and available space.

Figure 2C shows the total gene expression, SNP profiles and patient-specific information of the
three selected patients, ALL123, ALL26 and ALL302, placed from left to right respectively. As can be
seen from the figure, the overall pattern gene expression of ALL123 appears quite differently to ALL26
and ALL302. This property allows for hypothesis generation around specific patients that may explain
the differences in treatment outcome of the three patients despite the similar clinical presentation and
treatment. With the SNPs view, we also see a globally-uniform distribution for the most part. However,
areas of gross chromosomal rearrangements can be detected, such as a gap region in the SNP values
(light blue rectangle) of the patient ALL302 due to the loss of heterozygosity.

5.3.3. Genes of Interest’s Visualisation

Although the patient-to-patient comparison provides a good overview of the genomic attributes,
individual gene or SNP variation cannot be detected with this view. The visualisation of the Genes
Of Interest (GOI) reduces the overhead of analysing a large quantity of individual genes and SNPs
where the analysts can easily compare the GOI through a large number of patients. The analyst can
drill down further into the genetics and treatment data of the POI identified as significant by the
previous processes. By providing much greater detail of GOI through the interactive visualisation
using a heat map, the similarity and differences of the GOIs between patients and groups of patients
can be examined.

Figure 2D illustrates the interesting features of the three selected patients. This visualisation
provides the detailed views of the expression values and SNP values, where red, black and green
colours in the heat maps indicate low, middle and high values. This figure further confirms the
hypothesis at the previous processes that the genetic property of the patient ALL123 is different from
the other two patients. These genes were identified (highlighted by red-bound colour) for further
analysis and verification.

5.4. Utilising Gaming Platform for Interactive Visualisation

The use of game technology and 3D game engine techniques for interactive visualisation is
becoming increasingly popular in eHealth and health data analysis. Such works, for example, are an
interactive environment for supporting the assessment, rehabilitation and prediction of dementia [36]
and virtual reality for assessing cognition in the elderly [37].

We also utilise the gaming platform, the Unity3D game and visualisation engine, to provide
a smooth and interactive visual presentation of the information, cross platforms and screen sizes and
resolutions. Our motivation lies in the synergising of the power of commercial video game engines
and 3D technology to provide better rendering, image quality, ergonomics and user experience where
they can easily interact with and navigate the views. For big data analytics, this will be vital when
the models move from 100 patients to 1000 or even 10,000. By utilising the capability of the game
engines in terms of processing efficiency, fast model rendering and smooth interaction with the objects,
we could potentially handle a very large number of patients. Last, but not least, with the advert of
gamification in science education, (elements of) the visualisation gear developed in this project can be
incorporated on-demand in the courseware in respective academic programs.
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Proposed approach helps us to explore the new idea to deliver more suitable visualisation
to non-specialists or inexperience clinicians, who are familiar with 3D gaming environments and
interfaces. This use of the gaming platform does not aim to replace entirely the traditional 3D
graphics platform.

Figure 3 illustrates a 3D visualisation of the entire patient cohort in the similarity space in the
Unity3D environment for the same 100 paediatric B-cell ALL patients. The main colours (spheres)
represent gender (purple → female and yellow → male), and outer colours (signs) represent risk
stratifications as similar to the previous design.J. Imaging 2016, 2, 29 11 of 17 
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Figure 5A shows a visualisation when genes and probe sets of the selected genes are selected for 
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207727_s_at and 216661_x_at of the gene MUTYH. 

Figure 3. An overview of the patient population in the similarity space in a Unity3D environment,
(A) at the navigational stage and (B) when highlighting the patients. This visualisation provides
a smooth, ergonomic and gaming-friendly environment to analysts.

Once the POI has been selected, evidenced by icon haloes (Figure 3B), their specific genomics
data can be extracted from the database and displayed for each individual patient. Figure 4 shows
the gene expression and SNP data of six selected patients from Figure 3B. Each patient is assigned
with a colour for better distinguishing their genetic property. We provide an overlap analysis using
a drag-and-drop option of any two or more patients (see Figure 4B). This function allows analysts
to identify the unmatched patterns of data points or probe sets for two or more patients from view
allowing for a selection of GOI following a patient-to-patient comparison.
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Figure 4. Gene comparison in Unity 3D environment where (A) displays the genetic property of six
selected patients (top→microarray values and bottom→ SNPs values) and (B) shows the visualisation
of the other six patients when the genetic panels of patient ALL302 are overlaid with patient ALL53.
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The visual analysis platform also provides the capability to rearrange the patient similarity space
based on individual and selected patients and genes. From the POIs, the analyst can select one or
more genes from the list of 250 genes of interest where each gene is ranked based on its significance or
importance. The significant values are defined by the feature selection and model-building processes.
These values can be updated interactively by the analyst at the visualisation interface.

Figure 5A shows a visualisation when genes and probe sets of the selected genes are selected for
re-arranging the similarity space based on an individual or a group of genes. Figure 5B presents the
new visualisation of the entire patient cohort based on the similarity of the two selected probe sets
207727_s_at and 216661_x_at of the gene MUTYH.J. Imaging 2016, 2, 29 12 of 17 
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6. Case Study 2: Rhabdomyosarcoma

The goal of this study is to get a better understanding of the biology that differentiates known
subtypes of Rhabdomyosarcoma (RMS), a cancer made up of cells that normally would develop
into skeletal muscle. The two major histological subtypes of RMS are Alveolar RMS (ARMS) and
Embryonal RMS (ERMS). ERMS patients usually have a more positive prognosis in comparison to
ARMS. The knowledge gained from this study includes:

• Feature selection and model building confirmed that chromosomal translocation negative ARMS
and ERMS patients are generally prognostically similar. This has clinical applications for the
treatment of childhood RMS [38].

• Interactive visual analysis in the similarity space allows us to perform patient-to-patient analysis
of genetic similarity, which can assist in clinical treatment management.

6.1. Data Collection

The dataset that was acquired was a gene expression microarray dataset (E-TABM-1202) and
the corresponding clinical data from the online public domain database ArrayExpress. This dataset
consists of 101 RMS patients and 54,613 attributes (or probe sets) and was generated on Affymetrix
U133 Plus 2.0 oligonucleotide chips.

6.2. Feature Selection and Model Building

We used a variation of the Random Forest (RF) algorithm, varSelRF [39,40], to perform feature
selection. The algorithm is a recursive RF approach [26] that eliminates the lowest ranked features
after each iteration. First, we class-labelled the patients according to their histological subtype and
performed feature selection with the varSelRF algorithm to find the optimal number of features to
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select after iterative eliminations. A large number of trees (100,000) were used to construct the initial
forest to obtain a stable feature ranking while each subsequent forest was constructed with 10,000 trees.

We found that it took 258 of the most important features identified to be able to clearly
differentiate ARMS from ERMS. Interestingly, of the top three ranking features, two encode for
fibrillin 2 (FBN2-203184_at and 215717_s_at), previously identified as having some prognostic value
for clinical RMS management [41,42]. The 258 features show chromosomal translocation-negative
ARMS were more genetically more similar to ERMS than to chromosomal translocation-positive ARMS,
despite. The result of the feature selection project was supported by the findings of a recent report [38].

6.3. Visual Analysis

From the 258 features of interest, we performed principal component analysis to reduce the
complex data to three dimensions representing the patient’s genetic similarity. We initially visualise
the entire patient population in the 3D similarity space using Java 3D programming language. Two
patients are close together if their genes are similar, and conversely, they are located far from each
other if their genomic properties are different.

Figure 6 shows the overall view of the entire patient population captured in the dataset in 3D
space at a navigational stage. This figure illustrates clearly two distinctive groups of patients, marked
by two colours, including ARMS (red colour) and ERMS (green colour). The fact that the two groups
of patients are closely located together supports the hypothesis that genetic properties are essential to
determine the molecular distinction between ARMS and ERMS patients.
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Figure 6. An example of a top-level 3D graph with a colour filter applied to two distinct types of
patients, including Rhabdomyosarcoma Alveolar (ARMS) (red colour) and Embryonal RMS (ERMS)
(green colour).

Our visualisation approach allows for the assessment of patient similarities based on individual
based on individual features. When an object is selected as the POI, it is moved to the centre position
while other objects rearrange their positions according to their genetic similarity with this seed POI. At
this point, this becomes the centre point of rotation of the image. We also outline the similar patients
and non-similar patients in golden colour and white colour respectively (see Figure 7).

To create a dynamic interaction with the data in this similarity space, we have developed a method
to cluster similar patients by moving similar patients closer to the focus one and moving dissimilar
patients further away (see Figure 8). This visual transformation is calculated based on the patients’
current positions and polar distances away from the focus patient, where it becomes a temporary origin.
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in the visualisation.

Further, an interactive heat map visualisation has been included in the visualisation as
a complementary tool for the detailed analysis of microarray values in relation to the groups of
patients, for the purpose of the validation of the above analytical results. Figure 9 shows a heat map
visualisation showing the 20 top ranked probe sets. This figure confirms that the feature selection
project has produced highly accurate significant probe sets. Among the 20 probe sets, there are
14 probe sets that are quite distinctive among ARMS and ERMS patients, namely 203184_at, 1554628_at,
218502_s_at, 223475_at, 232034_at, 232768_at, 227860_at, 230076_at, 204163_at, 213436_at, 226576_at,
219077_s_at, 241342_at and 222651_s_at.
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7. Conclusions and Future Work

We have presented a novel visual analytics framework and the development of supporting
methods and technologies for analysing large and complex genomic and biomedical data. To capture
the insight of the complexity of the genome in meaningful and actionable ways, we synergise multiple
iterative components in the framework, including question, pre-observation, automated analysis,
visual analytics and knowledge. Our interactive visualisation supports a seamless analysis from
the overview of patients of interest in a similarity space to the detailed views of genes of interest
and subsequent patient-to-patient comparison. We also utilised the Unity 3D game engine and
visualisation platform to provide an interactive visual presentation of the information with the familiar
game interface, cross platforms and devices. The case studies have demonstrated our visualisation
framework’s potential in finding knowledge using big data derived from a cancer genome that will
then raise the potential for this information to guide a physician’s decision making and guiding
effective clinical management for childhood cancer patients.

We are going to validate the visual analytics platform by collecting qualitative feedback from the
domain experts, including medical doctors, biologists and cancer researchers, as well as quantitative
feedback from the public domain via a formal usability. We will evaluate the effectiveness of the
system in terms of handling various biomedical and genomic datasets, efficient visualisation and
supporting the knowledge discovery process with the visual presentation. The study also evaluates
the effectiveness of the interactive visualisation using Unity 3D in comparison with the ordinary Java
3D platform.

We will also extend our current platform to a range of visualisation facilities, including
a state-of-the-art 360-degree 3D immersive interactive data visualisation facility, mobile devices and
interactive augmented reality. By investigating the supported technologies to enable the visualisation
of large patient cohorts, we believe that this approach could potentially impact the large-scale data
analytics where each environment will be suitable for each task, user and context.
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