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ABSTRACT 

The Qi chaotic system is transformed into a Kolmogorov-type system, thereby facilitating the 

analysis of energy exchange in its different forms. Regarding four forms of energy, the vector field 

of this chaotic system is decomposed into four forms of torque: inertial, internal, dissipative, and 

external. The rate of change of the Casimir function is equal to the exchange power between the 

dissipative energy and the supplied energy. The exchange power governs the orbital behavior and 

the cycling of energy. With the rate of change of Casimir function, a general bound and least upper 

bound of the Qi chaotic attractor are proposed. A detailed analysis with illustrations is conducted to 

uncover insights, in particular, cycling among the different types of energy for this chaotic attractor 

and key factors producing the different types of dynamic modes.  

1. Introduction

In the past 20 years, some numerical chaotic models such as the Chen system [1], Lü system [2], 

Qi chaotic system [3], and some hyperchaotic systems [4, 5] were generated. These systems were 

constructed via mathematics and simulations whereas the Lorenz system [6] was modeled on a 

physical process. A few studies have investigated the application of the Lorenz system in 

meteorology [7] and mechanics [8]. The main research focus of these numerical systems as well as 

the Lorenz system has been on their dynamic analysis. Topics usually include bound analysis [9], 

aperiodic solutions, sensitivity to initial conditions, bifurcation theory [10], circuit implementations, 
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calculation of Lyapunov exponents [11, 12], fractional order [13], chaos-based communication, 

proof of chaos existence, chaos control [14], and synchronization. However, these aspects of the 

research cannot explain the mechanism or reason for the production of dynamic modes, and also 

cannot interpret the physical analogues of state variables. To explore them, the mechanics of these 

numerical systems must be investigated. The lines of study include force analysis, physical 

analogue interpretation, energy transformation between internal energy, and supplied energy. Arnold 

[15] presented a Kolmogorov system describing a dissipative-forced dynamic system or 

hydro-dynamic instability with a Hamiltonian function. Pasini and Pelino [16] gave a unified view 

of the Kolmogorov and Lorenz systems, thereby providing a force analysis of the Lorenz system. 

The recurrence of dynamics [17] and energy cycling [8] for the Lorenz system were also 

investigated with the understanding obtained from the Kolmogorov system. 

Although the derivation of the Lorenz system is different from these numerical chaotic systems, 

they all have similar vector fields and chaotic dynamics. Therefore, from the mechanic’s point of 

view, both types of systems must be governed by similar forces. The transformation of a numerical 

chaotic system into a Kolmogorov system can build a bridge between physical chaotic systems and 

numerical chaotic systems. Qi and Liang [18] transformed the Qi four-wing chaotic system to a 

Kolmogorov system, performed a force analysis and interpreted the state of chaos as angular 

momentum. 

Therefore, the Hamiltonian function and the Kolmogorov system provide a starting point in 

studying the mechanism for these numerical chaotic systems. Furthermore, the Casimir function, 

like enstrophy or potential vorticity in a fluid dynamic context, is very useful in analyzing stability 

conditions and global description of a dynamical system. It represents a constant of the motion of 

the Hamiltonian system; moreover it defines a foliation of the phase space [8, 19]. The energetics of 

the Lorenz system using the Casimir function has already been studied [20]. 

The study of energy cycles is important in mechanics, for there is instantaneous exchange among 

kinetic energy, potential energy, dissipative and supplied energy in physical processes. Each type of 

energy is represented by a type of force. When multiple energy exchanges operate frequently and 

substantially, the mechanism becomes complicated, and chaos may arise. Because each type of 

torque has a corresponding energy, an analysis of energy can reflect the torque characteristics. So 

far, there has been no study regarding the energy cycle of numerical chaotic systems.  
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In this paper, the vector field of the Qi chaotic system is decomposed into inertial torque, internal 

torque, dissipative torque, and external torque. Correspondingly, kinetic energy, potential energy, 

dissipative energy, and external energy are identified in the system. The rate of change of the 

Casimir energy for a Qi chaotic attractor governs the dynamics of the system. The mechanism for 

different dynamic modes is revealed from the combination of different torques, which explains the 

physical phenomena and the energy cycles. The bound of the chaotic attractor is given through the 

extremal points of the Casimir function. Normally, it is difficult to find the bound of a chaotic 

attractor; even if there is an available method [9], the positive definite matrix is exceedingly 

difficult to solve in the equation for Lyapunov stability. 

The rest of the paper is organized as follows: Section 2 describes the transformation between the 

Qi chaotic system and the Kolmogorov-type system. Section 3 presents the decomposition of the 

system’s energy into its four forms and analyzes the cycling of energy using the Hamiltonian and 

Casimir functions; the bound of the chaotic attractor is also proposed. Section 4 analyzes the energy 

cycling among the different dynamic modes and uncovers the reason for chaos generation. Finally, 

a conclusion is made. 

2. Transformation of the Qi chaotic system into Kolmogorov system 

The Qi chaotic system is presented in the form [3] 

1 2 1 2 3

2 1 2 1 3

3 1 2 3

( ) ,

,

.

x a x x x x

x cx x x x

x x x bx

  

  

 

                                                            (1) 

Here, 


 Rcba ,,  are constant parameters of the system. 

To discover the physical analogue of the state variables and mechanics of the system, we 

introduce the Kolmogorov system and the Euler equation. Arnold [15] presented a Kolmogorov 

system describing dissipative-forced dynamical systems or hydro-dynamic instability, written in 3D 

form 

  fxxx  H, ,                                                              (2) 

where  T321 xxxx ,  ,  represents the algebraic structure of the kinetic energy part of the 

Hamiltonian function of a system, denoted by H , and the Lie–Poisson structure is defined as [21] 
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  )(, GFGF  x ,                                                          (3) 

where 
*

, ( )F G C


 g , g  is Lie algebra. The positive definite diagonal matrix   represents the 

dissipative force and the last term f  represents the external force. 

The Euler equation without external force for an incompressible fluid or a free rigid body gives a 

Hamiltonian description, which can be written as [21] 

1 3 2 2 3

2 1 3 1 3

3 2 1 1 2

( ) ,

( ) ,

( ) ,

x x x

x x x

x x x

  

  

  

                                                              (4) 

where 
1

i i
I


  , i
I  is the principle moment of inertia for the group SO(3), and i

x  is the angular 

momentum satisfying 

iii Ix  ,                                                                      (5) 

with i  the angular velocity. Eq. (4) can be written in the succinct form 

   x x Πx x Ω ,                                                              (6) 

where  T321 xxxx ,  T
321 Ω ,  1 2 3

diag   Π . Decomposing the 

Hamiltonian 

H K U  ,                                                                   (7) 

with 0U   and 

 2 2 2

1 1 2 2 3 3

1

2
K x x x    ,                                                      (8) 

and replacing F  by x  and G  by H  in Eq. (3), Eq. (4) is equivalent to [21] 

 HFF , ,                                                                   (9) 

i.e., 

 , H  x x x Πx .                                                            (10) 

We find that under a pure inertial force, the Kolmogorov system (2) is the same as the Euler 

equation (10). 

Remark 1 

(1) The force (or torque)  , Hx  in the Euler equation for a free rigid body is in the form of a 
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fictitious force, either the inertial force or the centrifugal force, which consists of quadratic terms. 

(2) The Kolmogorov system is a generalized Euler equation with dissipative and external forces. 

(3) The quadratic terms are skew-symmetric, i.e., the sum of the coefficients of all quadratic 

terms (inertial force) in the Lie–Poisson bracket, [Eq. (3) or (10)], is zero. 

(4) The Hamiltonian function H  in the bracket of the Kolmogorov system only contains the 

kinetic energy term K , i.e., the potential energy vanishes ( 0U  ). 

We now establish an analogy between the Qi chaotic system and the Kolmogorov system. Note 

that the sum of coefficients of all quadratic terms is nonzero in the Qi chaotic system. To satisfy the 

condition, we introduce the following transformation 

1 1 2 2 3 3
, , ,y x y x y x                                                          (11) 

with inverse 

1 1 2 2 3 3

1 1
, , ,x y x y x y

 
                                                         (12) 

where   and   are nonzero constants. Hence, Eq. (1) is transformed into 

1 2 3 1 2

2 1 3 1 2

3 1 2 3

,

1
,

.

y y y ay ay

c
y y y y y

y y y by






 





  

   

 

                                                      (13) 

We choose parameters  and   such that 

2 21 1
( 1) 0

 
 

   
      .                                                   (14) 

to satisfy the skew-symmetric requirement of the Lie–Poisson bracket. To determine the potential 

energy from the Hamiltonian function, we make a further transformation 

1 1 2 2 3 3
, , ,z y z y z y                                                           (15) 

with inverse 

1 1 2 2 3 3
, ,y z y z y z     .                                                      (16) 

Eq. (13) is transformed into 
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1 2 3 1 2

2 1 3 1 2

3 1 2 3

,

1
,

.

z z z az a z

c
z z z z z

z z z bz b

 


 



  






 
    

 

 
     

 

  

                                                 (17) 

To meet the skew-symmetric requirement for the potential energy part in the Lie–Poisson bracket, 

let 
c

a
 


  

 
    

 
. Then, from Eq. (14), we derive 

2
c a





 .                                                                  (18) 

Setting 

1 2 3 1

1
, , , ,e e e c a

  


   
                                                        (19) 

Eq. (17) can be written as 

1 1 2 3 1 1 2

2 2 1 3 1 1 2

3 3 1 2 3

,

,

,

x e x x ax c x

x e x x c x x

x e x x bx b

  

  

  

                                                          (20) 

with 

1 2 3
0e e e   ,                                                                (21) 

where the relabeling 1 1 2 2 3 3
, ,x z x z x z    is made for notational convenience. 

Denoting the inverse of the principle moments of inertia for Eq. (20) as 

   1 2 3 3 1 3
1 (1 ) (1 ) ,diag diag e e e       Π                                (22) 

the kinetic part is expressed as 

 2 2 2

1 3 2 1 3 3

1
(1 ) (1 )

2
K x e x e e x      .                                              (23) 

Setting the potential part as 

1 3
U c x .                                                                     (24) 

the Hamiltonian function is 

H K U  .                                                                   (25) 
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Note that the Hamiltonian function contains the potential energy for the transformed Qi chaotic 

system (20). We then evaluate the Lie–Poisson bracket as  

   
1 2 3 1 2

2 1 3 1 1

3 1 2

, .

0

e x x c x

H H K U e x x c x

e x x

 
 

       
 
  

x x x                                   (26) 

Eq. (20) can be written as a Kolmogorov system, 

 

1 2 3 1 2 1

2 1 3 1 1 2

3 1 2 3

,

0

 0 ,

0

H

e x x c x ax

e x x c x x

e x x bx b

   

     
     

   
     
          

x x x f

                                               (27) 

where 

























b

a

3

2

1

00

010

00

, 

0

0

b

 
 


 
  

f . 

Remark 2: 

(1) The transformed Qi chaotic system (27) is a dynamic system of Kolmogorov type. 

(2) The variable x  is analogous to angular momentum, therefore the time derivative x  

represents the torque of a rigid body or fluid flow. 

(3) The Lie–Poisson bracket,  H,x , characterizes the conservative part of the chaotic system. 

It consists of the inertial torque (quadratic terms) generated by the kinetic energy and internal 

torque released by the potential.  

(4) Terms 
1 2

c x  and 1 1
c x  are generated from the potential energy 1 3

U c x . They interact in 

a conservative system. If term 1 2
c x  is called torque, then term 1 1

c x  is the reaction torque, which 

resembles the gravitational force and the reaction force produced by the potential energy between 

Earth and an object revolving around it. Therefore, the vector  
T

1 2 1 1
0c x c x  is called the 

internal torque produced by the potential energy, which makes the system more complicated than 

the Kolmogorov system for which the potential energy is missing [16]. 

(5) The term x  represents the dissipative torque (force), which could be friction or heat 

exchange or viscous force. 
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(6) The third term is the external torque. 

We now consider the system’s equilibria. After the two-fold transformation, the number and 

properties of the equilibria of system (27) remain the same as system (1), but the locations of these 

equilibria are transformed through the variable x , i.e., 

1 1 2 2 3 3
, ,x x x x x x      .                                                  (28) 

Using the notation defined in [3], set 

.)(,)(

,,)24(,2
222222

aedhaedg

bcabcfcacaacbebcabcabd




                    (29) 

If d e , system (27) has three equilibria, and if d e , system (1) has five equilibria: 

T T T T T

1 2 1 1 1 3 1 1 1 4 2 2 2 5 2 2 2
[0, 0, ] , [ , , ] , [ , , ] , [ , , ] , [ , , ] ,S S x y z S x y z S x y z S x y z             (30) 

where 

1 2 1 2

1 2

2 2 , 2 2 , 2 , 2 ,

( ) ( )
, .

a a
x g x h y bcg y bch

f e f e

d e c d e c
z z

f e f e

 

 
 

   
 

 
   

 

                      (31) 

3. Energy cycling 

Note that the first term of the Qi chaotic system (27) is the torque transferred from the 

Hamiltonian energy; however, the dissipative and external torques are not related to forms of energy. 

Can we find corresponding energy terms related to the two types of torque? Morrison [22] extended 

the Lie–Poisson bracket of the Hamiltonian dynamics to include dissipation by a introducing a 

Lyapunov function L , i.e., 

 , ,H L  x x x ,                                                           (32) 

with ,
ij

i j

F L
F L g

x x

 
 

 
 (here the Einstein summation convention is used), L  is the Lyapunov 

function consisting of the dissipative power, and ij
g  is the Cartan–Killing metric: 

1

2

n m

ij im kn
g   . 

Pelino, et al. [8] made use of the idea of an energy exchange between the Hamiltonian energy and 

dissipative energy, and further replaced L  with L G  , where G  is the supplied power 
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transferred by the external force. 

Following ideas extending the algebraic formalism of Hamiltonian dynamics to include 

dissipation and external force, we rewrite Eq. (27) as 

 , , ,H L G   x x x x                                                      (33) 

where 
21
,

2
i i

L x   ,
i i

G f x  1, 2, 3,i   

, ,
P

P





x
x

                                                                  (34) 

with P  representing either L  or G . Note that  ,
H

H


 


x x
x

, but , .
P

P





x
x

 Therefore, 

P  must not represent the energy as H , but instead represents the power or rate of change in 

energy; that is why we define 2L  as the dissipative power and G  as the supplied power. 

Eq. (33) can be interpreted as the total energy of the chaotic system containing the four different 

forms of energy: kinetic, potential, dissipative, and supplied, which correspond to the four different 

forms of torque: inertial, internal, dissipative, and external. For instance, in atmospheric circulation 

processes, an air particle contains kinetic energy, potential energy deriving from Earth’s 

gravitational field, heat loss and radiant absorption. All the torque acting on the fluid particle 

contribute to x , the angular acceleration per unit of principle of inertia. 

From Eqs. (3) and (34), we have 

   , , , , , .
K K

H K H L K L
 

   
 

x x
x x

                                        (35) 

Then we have 

  

 

 

   , , ,

   , , ,

   , , , .

K
K

K
H L G

K H K L K G

K U K L K G






   


   

   

x
x

x x x
x                                                 (36) 

Therefore, the rate of change in kinetic energy relates to its instantaneous exchange with the 

potential, dissipative, and supplied energy. Likewise, we have 
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 

 

, , ,

   , , , ,

U U H U L U G

U K U L U G

   

   
                                                  (37) 

which implies that the rate of change in potential energy is equivalent to its instantaneous exchange 

with the kinetic, dissipative, and supplied energy. Also, 

, ,H H L H G   ;                                                         (38) 

that is, the rate of change Hamiltonian is equivalent to its instant exchange with dissipative and 

supplied energy. 

The Casimir function, like enstrophy or the potential vorticity in a fluid dynamical context, is 

very useful in analyzing stability conditions and the global description of a dynamical system [21]. 

The Casimir function C  is defined by the kernel of the bracket (3), i.e.,   )(,0,
*

g


 CGGC . 

Therefore it represents a constant of the motion of the Hamiltonian system,   0,  HCC ; that is, 

the Casimir function commutes under the Lie–Poisson bracket with every function [21]. It defines a 

foliation of the phase space [8, 19]. The Casimir function for the Qi chaotic system is 

1

2
ij i j

C x x                                                                   (39) 

From Eq.  (3), C  satisfies the Casimir condition   )(,0,
*

g


 CGGC . In addition, 0C   

for 0x  . From Eq. (33), we have 

 

  22 2 2

1 2 3

, , ,

   , ,

   2

   2 4.

C C H C L C G

C L C G

L G

ax x b x b 

   

  

  

     

                                            (40) 

Remark 3: The Casimir function represents the existing internal energy of the system. The rate of 

change of the Casimir function is the exchange power between the supplied energy and the 

dissipative energy of the system. 2) The Casimir energy is invariant if the system neither loses 

energy nor absorbs energy from outside of the system.  

To study the extremes of the Casimir function for the Qi chaotic system (27) or (33), let 

  22 2 2

1 2 3
2 4 0ax x b bC x                                                  (41) 

Set 0
  as a triaxle ellipsoid  
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  22 2 2

0 1 2 3
| 2 4ax x b x b      x .                                          (42) 

Regarding how the exchange power influences the dynamics of the Qi chaotic system, we have the 

following theorem:  

Theorem 1: 

(1) The extremes of the Casimir function is a triaxle ellipsoid o
 ; the extremes of system (27) 

and the origin belong to o
 ; the transpose of variable x  is orthogonal to the vector field u x  

on the surface of the ellipsoid o
 . 

(2) If 0C  , i.e., the supplied power is greater than the dissipative power, the orbits of the 

system stay inside the extremal ellipsoid, and the system stores internal energy. On the contrary, if 

0C  , i.e., the supplied power is less than the dissipative power, the orbits of the system run 

outside the extremal ellipsoid, and the system releases internal energy. If 0C  , i.e., the supplied 

power counteracts the dissipative power, the system orbits intersect the extremal ellipsoid in the set 

 o
min( ), max( )C C  .  

(3) The chaotic attractor is bounded, and the boundary sphere is 

 2 2 2 2 2

1 2
| ( 2) 8( 1)x x x b b       x                                                 (43) 

See proof in Appendix. 

Finding the bound of a chaotic attractor is difficult [9] as the positive definite matrix in the 

Lyapunov stability equation is hard to obtain. In addition, the bound in [9] was found numerically 

instead of analytically as optimization software, such as LMI control toolbox, is needed in the 

solution process. 

Remark 4: In proofing Theorem 1, the Casimir function property, i.e.,  , 0C H  , has been used. 

This assumes an important role in finding the boundary sphere and rate of change of the internal 

energy. 

Remark 5: The method used in analyzing the mechanics and energy cycling of the Qi chaotic 

attractor can be generalized to other numerical chaotic systems and physical chaotic systems with 

low dimension. However, the quadratic terms and linear terms of the selected system must be 
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skew-symmetric; that is, the Lie–Poisson bracket must be satisfied. 

4. Analysis and illustration of energy cycle 

Because each type of torque is a coupled linear or nonlinear vector with three components acting 

on a particle or rigid body, the analysis of torque is quite difficult. However, energy is a scalar 

quantity that is easier to grasp. Conversely, because each type of torque has a corresponding energy, 

a study of energy can reflect torque characteristics. From here on, we study and illustrate the 

influence of the Casimir function in determining the system’s chaotic behavior and the system’s 

entire energy cycling. 

Setting 
8

35, , 80,
3

a b c   0.6,   we then obtain 2

1
1 0.8, 115.75, 0.75e       , 

2 3 1
2.083, 1.333, 107.8125.e e c     We set  0

10 10 4 x , and sampling time 0.001T  . 

To understand the mechanism that produces chaos and energy cycling of system (33), we 

investigate the system’s dynamics from simplicity to complexity. 

4.1 System under pure kinetic energy 

The system is described by 

 , Kx x ,                                                                   (44) 

which only contains kinetic energy K satisfying 

 , 0K K K  .        

Therefore the kinetic energy remains constant; i.e., the system is conservative and its value depends 

on the initial conditions of the orbit. From Eq. (44), the rate of change of the Casimir function 

vanishes 

 , 0C C K  ,                                                                (45) 

Because the energy described by the Casimir function is not exchanged with dissipative energy or 

supplied energy, the orbit remains periodic. 

4.2 System under inertial and internal torque 

The system is now described by 
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   , ,K U x x x .                                                             (46) 

There is conversion between kinetic energy and potential energy. From (36), the net rate of 

conversion of potential energy into kinetic energy is of the form  

  1 1 2 1 2 1 3 1 2
, ( )K K U c x x c e x x      .                                                 (47) 

Because  ,U K U  , the system is also conservative, i.e., kinetic energy lost is instantly gained 

in potential energy. From (46), the rate of change of the Casimir function vanishes 

 , 0C C H  .                                                               (48) 

If the orbit is periodic, the system is also conservative. The question is how does this energy 

conversion work?. 

Remark 6: 1) From Eq. (47), if in its orbit the system is located in quadrants I and III, 1 2
0x x  , 

and there is a net conversion of kinetic energy into potential energy, i.e., K U for 0K  ; the 

opposite happens in quadrants II and IV where 1 2
0x x   corresponding to U K  for 0K  . 

Therefore, the plane 1
0x   or 2

0x   is the bound for this net conversion, in which the kinetic 

energy reaches its maximum or minimum for 0K  . 

2) The net conversion rate of energy is proportional to the coefficient of potential energy, i.e., 1
c , 

and 1 2 3
e   , and the product of angular momenta 1

x  and 2
x . It does not depend on 3

x . 

Fig. 1(a) clearly indicates how conversion works; here variables 1
x  (blue one) and 2

x  (red one) 

are in the top row, when either 1
x  or 2

x  crosses the zero line, i.e., the sign of 1 2
x x  changes as 

indicated in the second row. When 1 2
sign( ) 1x x   , corresponding to 0K  , i.e., kinetic energy 

increases as indicated in the third row (blue/red curve represents kinetic/potential energy), and vice 

versa. Fig. 1(b) shows that the periodic orbit running clockwise. When the system enters Quadrants 

I or III, the orbit changes color from red to blue, corresponding to an energy decrease, and vice 

versa in Quadrants II or IV. In the process, the conversion is fulfilled between kinetic energy and 

potential energy. On the vertical axis, 1
0x  , the kinetic energy reaches a maximum, and on the 
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horizontal axis, 2
0x  , the kinetic energy drops to a minimum. 

  

(a) Regulating the conversion between kinetic (b) Kinetic energy around a periodic orbit. 

energy and potential energy. 

Fig. 1. System is subject to inertial and internal torque. 

In bifurcation analysis, a periodic orbit is often observed and plotted as the parameter is adjusted 

to a suitable value in the literature [2, 4, 10]. However, an analysis of the change and conversion in 

physical energy is missing because of the analytical methods applied. The energy-based method 

offers a tool to uncover energy running mechanisms that govern orbital behavior.  

4.3 System under inertial, internal, and dissipative torques 

Suppose a system is described by 

 , ,H L  x x x .                                                           (49) 

Because only systems containing dissipation have fractal dimensions, dissipation is a necessary 

condition in producing a chaotic attractor. However, this is not sufficient condition to produce chaos. 

The dissipativity of the volume of system (49) is found to be 

31 2

1 2 3

Div(V) 1 ,
xx x

a b
x x x

 
      
  

                                              (50)
 

where V  is the volume in the phase space of the system, with solution 0
exp( ( 1 ) )V V a b t    . 

Therefore, system (49) is dissipative, i.e., the phase space volume shrinks exponentially to zero, 

provided ( 1 ) 0a b    . With the given parameter values, ( 1 ) 38.667 0a b      , the system 

is dissipative. However, by calculation, the Lyapunov dimension 0
d

L  , and therefore the system 
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has no fractal dimension and so does not produce chaos. Actually, the system produces a sink at the 

origin with Lyapunov exponents 1 2
2.72, 17.95,L L     and 3

17.99L   . Using the Casimir 

function, we prove that the system produces a sink. The rate of change of the Casimir function is 

 2 2 2

1 2 3
, 0.C L ax x bx      x                                                (53) 

Hence system (49) is globally asymptotically stable (Fig. 2) with a spiraling orbit converging onto 

the origin; the color of the curve represents the Hamiltonian energy (see color bar). The energy level 

of the system attractor diminishes from an initial high value to its final value (zero equilibrium). 

This reflects on the angular momentum (or moving speed) in the initial transient period where it is 

much larger than that during the steady state period close to the origin, and in particular very close 

to the origin in distance with slower speed. 

Furthermore, we analyze the conversion between Hamiltonian energy and dissipative energy. 

From Eq. (25), we have 

 2 2 2

1 3 2 2 3 1 3

1
(1 ) (1 )

2
H K U x e x e x c x        .                                     (52) 

As x  converges to zero, the Hamiltonian energy decays to zero. From Eq. (51), the original 

Casimir energy is dissipated because the system contains dissipative terms, either friction or viscous 

forces, making the system finally losing its energy and stopping at the origin. We discuss in the next 

subsection what rate of change in the Casimir function could lead to chaos. 

    

Fig. 2. Sink with Hamiltonian energy loss. Fig. 3. 3D view of the Qi chaotic system. 

 

4.4 System under full torque 
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Consider the following system 

 , , ,H L G   x x x x .                                                     (53) 

which differs from Eq. (49) by the addition of external torque 3
G b x  . We investigate how this 

term influences the rate of change of the Casimir function. 

  22 2 2

1 2 3
2 2 4.C L G ax x b x b                                              (53) 

From Eq. (53), there is an exchange of power between supplied energy and dissipative energy. 

As a system without quadratic terms (inertial torque) is not nonlinear, no chaos is generated, and 

without dissipation a system cannot produce a fractal chaotic attractor. These two features are 

necessary to produce chaos; however, the two features cannot guarantee that a system generates 

chaos, as discussed in Section 4.3. To form a chaotic system is very complicated; for some systems, 

the internal torque and external torque are also important.  

Remark 7: The rate of change of the Casimir function indicates the orbital mode of the system. If 

0C   holds for the system at all times, then the Casimir function of the system decays, and the 

orbit converges to a sink; a constant Casimir function, i.e., 0C  , signifies a conservative system; 

if 0C   holds for the system at all times, the internal energy grows, and the orbit diverges; and if 

exchange power oscillates with bound, the system may produce chaos.  

The chaotic attractor of the Qi system is illustrative (Fig. 3). The Lyapunov exponents are 

1 1 1
4.1219, 0, 42L L L    , and the Lyapunov dimension is 2.0963 3

d
L   . Hence the system is 

chaotic and fractal. The Hamiltonian energy of the system attractor increases from the interior to the 

periphery, indicating that the particle angular momentum (or moving speed) along the periphery is 

much larger than that close to the center of the attractor. In addition, note that the energy in the 

lower left is high (red) whereas that in the upper right is low (blue). A reason for this is disclosed 

later. 

Both kinetic energy and potential energy oscillate with bounds and are exchanged (Fig. 4) When 

the kinetic energy peaks, the potential energy is a minimum. The rate of change of the Casimir 

function oscillates around the zero line (Fig. 5) indicating the value of Casimir increases or 

decreases. 
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Fig. 4. Kinetic, Hamiltonian, and potential energy  Fig. 5. Casimir function and its derivative. 

of the Qi chaotic system. 

We now illustrate Theorem 1 in three parts corresponding to the three parts of the theorem. 

1) From Eq. (29), 46.56 ed , and hence the system has three equilibria 1 2
,S S , and 3

S  

as given in Eq. (30). The Qi chaotic attractor intersects the ellipsoid generated from the extremal 

points of the Casimir function (Fig. 6) where the three equilibria are seen on the ellipsoid: 1
S  (blue 

star) is located on the bottom end of the 3
x -axis of 0

 , and 2
S  and 3

S  (black ‘+’) are at the  

centers of the wings of the chaotic attractor intersecting the waist of the ellipsoid. The origin is at 

the top end of the 3
x -axis of 0

 . Note that to display the equilibria and the symmetric property, 

Fig. 6 has been rotated. Because system (27) has the symmetry, , 1, 2
i i

x x i  , the chaotic 

attractor intersects ellipsoid 0
  symmetrically. Refs. [8] and [17] investigated the invariant 

ellipsoid and the energy cycle of the Lorenz chaotic attractor using the Casimir function. 
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Fig. 6. Invariant ellipsoid and chaotic Fig. 7. Casimir energy in chaotic orbit running. 

attractor with three equilibria. 

2) Although the system is governed by Eq. (27) or (53), the core energy of the Casimir 

function, like enstrophy or potential vorticity, has an impact on the system to some extent. The 

ellipsoid represents the contour surface 0C   where the exchange power is zero. When the 

trajectories of the system exit from inside the ellipsoid (red star in Fig. 6), they intersect points at 

which the derivative of the Casimir function decreases in traversing the zero line (first curve of 

Fig. 5); hence the Casimir function peaks (second curve in Fig. 5). Thereafter, the dissipative power 

is smaller than the supplied power, i.e., 0C  . When the energy drops to its minimum, the 

trajectories reenter the ellipsoid (yellow star in Fig. 6). The frequency of the derivative of the 

Casimir function across the zero line equals the number of intersections the chaotic orbit has with 

the ellipsoid. To clearly display the oscillation of Casimir functions, we remove the ellipsoid but 

retain the sign for each traversal (red and yellow stars in Fig. 7) in an 1 3
-x x  projection; the color 

bar gives Casimir energy in the range [792.5, 3181] . Generally, there are two regions colored red 

and blue. The energy of the orbit around red stars (maximum sign) are higher than those around 

yellow stars (minimum sign). In each cycle, we find that the orbit runs from right wing starting 

from maximum Casimir energy (red star), and losses energy until reaching a minimum (yellow star). 

The orbit then gradually moves to the left wing with increasing Casimir energy reaching its 

maximum (red star), then decreasing to its minimum (yellow star). Finally, the orbit returns to the 

right wing. The orbit cycles repeatedly as the Casimir energy oscillates. The Casimir ellipsoid is the 

ideal Poincaré map. 

3) The chaotic attractor (red orbit in Fig. 8) is bounded and from Eq. (43) is contained in the 

sphere   of radius  2 2( 1 84.531) 8r b b   . 

Chaotic systems come with various established properties: sensitivity to initial conditions, fractal 

dimension, instability, and boundary solution. For a non-chaotic system, positive Lyapunov 

exponents imply the system is unstable and the solution grows without bound. However, a chaotic 

attractor is bounded, so the trajectory repeatedly grows in fractal dimension with folding and 

stretching. Therefore the boundary solution property is important in chaotic dynamics. Clearly, 
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Fig. 8 presents not the least bounds. Can we find the least upper bound, i.e., the supremum? 

  

Fig. 8. Boundary sphere of chaotic attractor. Fig. 9. Supremum sphere of the Qi chaotic attractor. 

Remark 8: The supremum of the chaotic system (27) is the sphere, 

 2 2 2 2

1 2 3
| ( 2) 4

s
x x x       x .                                              (55) 

Currently, we have no rigorous proof. Therefore, we leave this as an open problem. Here we shall 

content ourselves just to explain it. From Theorem 1, the ellipsoid is 3
x -axial symmetric with the 

origin on the top end of the 3
x -axis of o

 ; its equilibrium 
T

1
[0, 0, ]S    is on the bottom end of 

the 3
x -axis of o

 , which is the set of extremals including all minimum and maximum of C . For 

any maximum m
C , the Casimir function is given by the sphere 

2 2 2

1 2 3

1
( )

2
m

x x x C    with center 

at the origin and radius 2
m

C . When the largest maximum s
C  is found, 

2 2 2

1 2 3
2

s
x x x C    is 

the least bound sphere. Clearly, s
C  is on the ellipsoid 0

 . Therefore we need to find the point on 

0
  furthest from the origin. For the given parameters of the system, the point is the equilibrium 1

S  

at the bottom end of the 3
x -axis of 0

 , and 
1

s  , that is 
2

2
s

C  . Therefore the bound is a 

sphere with center at origin and radius  , i.e., 
2 2 2 2

1 2 3
x x x    . Because both the chaotic attractor 

and ellipsoid 0
  are centered at 

T
[0, 0, 2] , to get the supremum of chaotic attractor, we shift 

the spherical center from origin to 
T

[0, 0, 2] . As a consequence, the sphere radius can be 

reduced to 2 . Therefore, the final supremum of chaotic attractor is s
 , i.e., as Eq. (55). If the 
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initial conditions of the system are 0 s
x , ( )t x  for all 0t  ; if 0 s

x , lim ( )
s

t
t


x . The 

supremum sphere just encloses the attractor (Fig. 9) whereas the sphere bounding the attractor in 

Fig. 8 is larger. 

From Fig. 4, we know that the Hamiltonian energy is not conserved when the system produces 

chaos. We discuss next the influence of the Hamiltonian energy on the chaotic system. From 

Eq. (38), we find 

2 2 2

1 3 2 2 3

2 1 3 1

2
2

2 2 2 1 2 1
1 3 2 2 3 1

2 2

, ,

   (1 ) (1 )

      ( (1 ) )

(1 ) ( (1 ) )
   (1 ) (1 ) .

2 (1 ) 4 (1 )

H H L H G

ax e x b e x

b e bc x bc

b e bc b e bc
ax e x b e x bc

b e b e

 

 


  

     

   

    
         

  

            (56) 

For nonzero values, energy conservation is lost and begins to oscillate with the exchange between 

dissipative energy and supplied energy. Setting 0H   determines the Hamiltonian conservative 

ellipsoid H
  (Fig. 10). The orbit of the Qi chaotic attractor enters the ellipsoid (twice for the right 

and left wings) when the Hamiltonian function descends to its minimum, and thereafter the orbit 

moves inside the ellipsoid; symmetrically, it exits (twice for the left and right wings) when the 

Hamiltonian function ascends to its maximum, and thereafter the orbit moves outside the ellipsoid; 

the cycle then repeats. The chaotic attractor is bounded, and the boundary sphere is 

  2 2

3

2

2

2

21 3
(| 1 ) (1 )

H H
x xa e x rb e       x                                            (57) 

where 2 1

2

(1 )

2 (1 )

b e bc

b e




 



, and 

2

2 2 1

1

2

( (1 ) )

4 (1 )
H

b e bc
r bc

b e




 
 


. 

Similar to the Casimir function, the Hamiltonian energy begins to oscillate; over one cycle, its 

energy peaks when the orbit exits from the ellipsoid on the right wing (red star) and then it 

gradually decreases, then reenters the conservative ellipsoid on the right wing (yellow star) when 

the Hamiltonian energy tends to its minimum. The change in energy governs the swing in orbit from 

right to left wing. From Fig. 3, we noted earlier the color difference associated with the Hamiltonian 

energy; this is caused by its oscillations being red for maximum energy and blue for minimum 

energy. Although the Hamiltonian energy oscillates, the change in energy is not periodic ( Fig. 11); 

higher energies govern the circular orbits farther out in the two wings, whereas lower energies 
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dictate smaller circular orbits. This difference makes the chaotic system aperiodic and sensitive to 

initial conditions. 

  

Fig. 10. Hamiltonian conservative ellipsoid. Fig. 11. Time series of Hamiltonian energy. 

 

Fig. 12. Phase portrait with 1.4b b  . 

We continue with the effect external torque has on the chaotic attractor. From Eq. (55), the radius 

of the supremum sphere is related to the magnitude of the external torque. In addition, from Eq. (42), 

the extremal ellipsoid intersecting with the attractor is also impacted by the external torque. When 

the factor associated with external torque is increased 1.4 times, i.e., 1.4b b  , the attractor 

changes as well (Fig. 12). First, the range for the Casimir function expands to [722.6, 4100]  from 

[792.5, 3181] , and the frequency associated with the derivative of the Casimir function crosses the 

zero line, i.e., the frequency of intersection increases from 351 to 501 in a period of 40 time units, 

therefore the oscillation between the two wings has increased. Second, the orbits are much denser 
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than those in Fig. 7 because the orbits of the new chaotic attractor frequent the holes around 

equilibria, despite there being quite empty regions in the original attractor (Fig. 7); the magnitude of 

the torque has increased as well. Third, the Lyapunov property has changed from 1
4.1219L  , 

2.0963
d

L   to 1
6.784, 2.149

d
L L  . Therefore, the degree of randomness is enhanced and the 

geometric space the orbit occupies has increased. 

5. Conclusion 

The Qi chaotic system was transformed into the Kolmogorov type system to investigate the 

mechanics of the system. The physical interpretation of the state variable was identified. Four forms 

of energy for the Qi system were uncovered: kinetic, potential, dissipative, and supplied. The 

exchange between dissipative power and supplied power was found using the Casimir function to 

determine the dynamic modes of the system. The general bound and least bound of the Qi chaotic 

system were given in terms of the Casimir function. A detailed analysis and illustrations for 

combinations of the four forms of energy further revealed insights and contributing factors 

concerning the dynamics of periodic orbits, sinks and chaos. 
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Appendix 

Proof of Theorem 1 

(1) Setting 0C  , then 0
  is a triaxle ellipsoid formed by the fixed points of the Casimir 

function. The ellipsoid is obtained by solving 0
C

C


 


x
x

. Because the system’s equilibria are 

obtained by solving 0x , the three equilibria lie on 0
 . If 

T
0

C
 


x
x

, we have 0C  , so the 

origin is also on 0
 . The ellipsoid is 3

x -axial symmetric, and its origin is at the top end of the 3
x

-axis of o
  with equilibrium 

T

1
[0, 0, ]S    at the bottom end. Because 

T
0

C
C


  


x x x
x

, the 

transpose of x  is orthogonal to the vector field u x  on o
 . 

(2) If 0C  , from Eq. (40), we have 2 0L G   , so the supplied power is greater than the 

dissipative power; hence internal energy is stored. Further, we have 

http://www.sciencedirect.com/science/article/pii/S0960077916301898
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http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=journaluri%3A%28aacbc06e7f7fabae%29%20%E3%80%8APhysical%20Review%20E%20Statistical%20Nonlinear%20%26%20Soft%20Matter%20Physics%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
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 
22 2 2

1 2 3
2 4ax x b x b     , the orbit of the system stays inside 0

 ; Likewise, if 0C  , we 

have 2 0L G   , so the supplied power is less than the dissipative power; hence the internal 

energy is released, and  
22 2 2

1 2 3
2 4ax x b x b     , the orbit of the system moves outside 0

 . 

If 0C  , i.e., the supplied power counteracts the dissipative power, the system’s orbits transit the 

extremal ellipsoid in the set  o
min( ), max( )C C  , and the cycle repeats. 

(3) The following inequality can be obtained 

2 2 2

1 2 3 3

2 2 2 2 2 2

1 2 3 3

2 2 2 2 2

1 2 3

2 2

( 1) 4( 1)

( ) 4( 1).

2 4( 1).

C ax x bx b x

ax x bx b x b b

x x x b b

C b b









    

       

     

   

                                          (58) 

Here the following inequality is used. 

2 2
2

3 3 3
2( 1) ( 1)

4( 1)2( 1)

b b
b x b x b x

bb

 
      


. 

From (39), we have 

2 2

2 2

0
0

( )
4( 1)

t
t b

C e C e d
b

 


 
 .                                                   (59) 

When t  , 

2 2

2( 1)

b
C

b


 


,                                                               (60) 

where lim 0
t




 . Let  =  2 2 2 2 2

1 2 3
| ( 1)x x x b b   x . For both the chaotic attractor and 

ellipsoid 0
  centered at 

T
[0, 0, 2] , we shift the center of sphere   from the origin to 

T
[0, 0, 2]  to set the bound for the attractor. In consequence, the radius of the sphere is half the 

size, i.e.,  2 2( 1)b b  . Therefore, the final bounding sphere is  , i.e., Eq. (43). When the 

initial state of the system 0
x , then ( )t x  for all 0t  ; when 0

x , lim ( )
t

t


x . 

Therefore, the sphere   is the bound of the Qi chaotic attractor. The proof is complete. 

 

 


