Helminth pathogen cathepsin proteases: it’s a family affair

Mark W. Robinson, John P. Dalton and Sheila Donnelly

Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Level 6, Building 4, Corner of Thomas and Harris Street, Ultimo, Sydney, NSW 2007, Australia

Corresponding author: Robinson, M.W. (mark.robinson@uts.edu.au).

Helminth pathogens express papain-like cysteine peptidases, termed cathepsins, which have important roles in virulence, including host entry, tissue migration and the suppression of host immune responses. The liver fluke Fasciola hepatica, an emerging human pathogen, expresses the largest cathepsin L cysteine protease family yet described. Recent phylogenetic, biochemical and structural studies indicate that this family contains five separate clades, which exhibit overlapping but distinct substrate specificities created by a process of gene duplication followed by subtle residue divergence within the protease active site. The developmentally regulated expression of these proteases correlates with the passage of the parasite through host tissues and its encounters with different host macromolecules.

Papain-like cysteine proteases

Papain-like lysosomal cysteine proteases of the clan CA are expressed by all organisms from bacteria to mammals [1]. Humans express 11 different functional papain-like cysteine proteases (cathepsins L, S, K, F, W, V, O, B, C, H and X) that share a high degree of homology and substrate specificity because they arose from a common ancestor [2]. Some, including cathepsins B, L and S, are ubiquitously expressed in tissues and perform general household functions in protein turnover, although in immune cells they participate in antigen or major histocompatibility complex (MHC) II invariant chain processing [3]. Others display more restricted expression patterns and perform more specialized functions; for example, in osteoblasts, cathepsin K participates in bone re-modelling [4]. The papain-like cysteine proteases are of particular importance in medicine because their uncontrolled activities have been associated with diverse pathological disease states in humans including cancer metastasis, Alzheimer’s disease, muscular dystrophy, osteoporosis, rheumatoid arthritis and osteoarthritis [5]. Therefore, several research programs aim to develop selective inhibitors of these proteases; some, such as cathepsin K inhibitors for osteoporosis treatment, have reached clinical testing [6].

Papain-like cysteine proteases are also used by helminth, or worm, parasites in many aspects of their relationship with their animal and/or human hosts; for example, cathepsins facilitate skin and intestine infection, tissue migration, feeding and suppression of host immune effector cell functions [7]. Helminths are complex multicellular organisms that include parasitic roundworms (nematodes) and flatworms (trematodes and cestodes). Human diseases caused by helminth parasites are among the most prevalent on earth, with >1 billion people infected worldwide, predominantly in poverty-stricken regions in developing countries. Despite the enormous amount of disease they cause and the burden they place on the global economy, the armoury of chemotherapeutic drugs available to combat these parasites is limited, consisting predominantly of praziquantel, ivermectin, albendazole and oxamniquine (for a review, see Ref. [8]). As with many other forms of pathogens, drug-resistant helminths have emerged and, therefore, there is an urgent need to identify additional strategies and target molecules for the development of new anti-parasitic drugs.

Owing to the roles of papain-like cysteine proteases in fundamental aspects of the parasitic way of life, cathepsins are lead targets for the development of new chemotherapeutic interventions. Recent studies justify this approach; cysteine protease inhibitors impair the growth and fecundity of the liver fluke Fasciola hepatica in infected sheep [9] and the vinyl sulfone cysteine protease inhibitor K11777 causes considerable reductions of worm burden and parasite egg output in mice infected with the blood fluke Schistosoma mansoni [10]. K11777 also exhibits potent activity against...
describe how subtle changes that occurred in
phylogeny, biochemistry, and function. We
might be possible to develop broad-spectrum
anti-parasitics that could be employed in the
treatment of individuals co-infected with
pathogenic helminths and protozoans.
However, whereas the development of anti-
parasitic drugs that target cysteine proteases
might seem tangible, the fact that a large
number of homologous proteases with
overlapping specificity, as mentioned earlier,
also have crucial functions in human tissues
and are associated with various disease
conditions presents a major challenge in
identifying and developing parasite-specific
inhibitors. Accordingly, it is imperative that
we learn more about the biochemistry,
structure, and function of the parasitic
proteases to enable comparisons to the
human enzymes; these comparisons should
facilitate the discovery of compounds that
selectively inhibit the parasite enzymes.

Much of our biochemical knowledge of the
papain-like cathepsin cysteine proteases of
helminth parasites comes from studies of
trematodes, or flukes, of medical and
veterinary significance. These include the
blown of the genus Schistosoma that
cause biharzia, or schistosomiasis, a disease
affecting >200 million people in >70 tropical
countries and resulting in >280 000 deaths
annually in sub-Saharan Africa alone [13].
Also included are several fish-borne
infections caused by liver flukes of the
genuses Clonorchis, Paragonimus and
Opisthorchis, which put >600 million people
at risk of infection across Asia [14,15], and
the liver flukes of the genus Fasciola that cause
fasciolosis in animals such as sheep, cattle
and water buffaloes. Although fasciolosis was
traditionally regarded as a world-wide
disease of livestock, the disease has recently
emerged as an important human zoonosis in
South America, Egypt, Iran and Vietnam.
Estimates indicate that 2.4–17.0 million
people are infected worldwide, with a further
91.1 million people currently living at risk of
infection [14,16,17].

Here, we discuss how the biochemical and
structural properties of papain-like cathepsin
cysteine proteases of helminth parasites have
evolved and adapted to perform their
particular function in host–parasite
interaction. We focus primarily on the
cathepsin L proteases of F. hepatica because
we have a better understanding of their
phylogeny, biochemistry and function. We
describe how subtle changes that occurred in
the residues constituting the active site of the
enzymes resulted in dramatic functional
adaptations that enable the proteases to deal
with the host macromolecules they encounter
during migration and development of the
parasite.

Trematode (fluke) cysteine proteases
Phylogenetic studies indicate that, at the
time of helminth worm emergence, 480–540
millions ago (MYA) [18] several
cathepsin classes had evolved: (i) two with
endopeptidase activity (cathepsin L and F);
(ii) one with both exo- and endopeptidase
activity (cathepsin B); and (iii) one with
(19–21) (Figure 1). This comparatively small
array of papain-like cysteine proteases had a
major role in the evolution and success of
parasitism. Indeed, further expansion of
these protease classes into families took place
within individual parasitic lineages, thus,
reflecting an adaptation to a new way of life
in which nutrients were readily available but,
at the same time, in which more energy was
required to protect against host responses
and to produce large numbers of offspring
[20]. Interestingly, however, a clear
divergence in the type of cathepsins
expressed by different trematode species is
observed: Fasciola spp. and Schistosoma spp.
predominantly express cathepsin L-like
proteases [22,23], whereas cathepsin F-like
proteases are the major proteases expressed
by Clonorchis spp., Paragonimus spp. and
Opisthorchis spp. [24,25]. The reason(s) for
this difference is unclear at present but,
unlike Fasciola spp. and Schistosoma spp.,
the species of the other three parasitic
genuses use fish as a second intermediate
host, which could expose these pathogens to
unique selective pressures that resulted in
evolution of cathepsin F-like protease
families rather than cathepsin L-like
enzymes.

Cysteine proteases make up a large
proportion of the total transcriptome of each
of these trematode parasites, further
emphasizing their importance in parasitism.
For example, nearly 15% of the transcripts
derived from adult F. hepatica [7]
(http://www.sanger.ac.uk/Projects/Helminths/
), 10% from adult C. sinensis [26,27] and 18%
and 27% from adult diploid and triploid
Paragonimus westermani, respectively [28],
code cysteine proteases.
Immunocytochemical studies show that
helminth cysteine proteases are
predominantly associated with the cells
lining the gut lumen (gastrodermis), the
reproductive structures (vitellaria) and the
surface layers (tegument) of parasites, sites

at which rapid protein degradation and
synthesis takes place [29]. Cathepsin L, F
and B proteases are also commonly found
among the profile of molecules secreted by
helminths, termed their secretome, which
enables them to perform their functions in
parasite–host interactions, for example,
facilitating tissue penetration and disarming
the soluble and cellular arms of the host
immune system [23,30]. Cathepsin C, by
contrast, functions in the hydrolysis of
peptide products of host tissues and
macromolecules that are degraded in the gut
lumen and absorbed into the gastrodermis
[7,31]. Further hydrolysis by
17 aminopeptidases within the same cells leads
to the release of free amino acids that are
then distributed throughout the tissues of the
parasite and used for growth and
development [7].

Fasciola hepatica papain-like cysteine proteases

F. hepatica expresses and secretes cathepsin
L and B proteases, but not cathepsin F.
Cysteine protease production is highly
regulated during the development of the
parasite in its hosts and correlates with its
migration and maturation. Dormant larvae
emerge from cysts in the duodenum and
infest their mammalian hosts by penetrating
the intestinal wall (Figure 2). Recently,
McGonigle et al. [32] showed that RNA
interference-mediated knock-down of either
cathepsin B or cathepsin L transcripts in
these infective juveniles blocked their ability
to penetrate the host intestinal wall, thus,
demonstrating that both enzyme types are
required for host entry. Studies on the
infective larvae of other trematodes,
including those of *Schistosoma* spp.,
Trichobilharzia spp., *Paragonimus* spp. and
Clonorchis spp., point to a universal use of
cysteine proteases in host infection
[19,33,34].

As the *F. hepatica* parasites enter the liver
parenchyma and begin feeding on the tissue,
cathepsin B expression diminishes and
expression of cathepsin L proteases is
upregulated. Biochemical and immunological
studies indicate that, by the time the
parasites have moved into the
immunologically safe environment of the bile
ducts, they become reliant solely on cathepsin
L proteases [23]. Within the bile ducts, the
parasite is an obligate blood-feeder and,
hence its nutrients are acquired
predominantly from host haemoglobin and
serum proteins.

F. hepatica cathepsins are synthesized
within the gastrodermal epithelial cells of the
parasite and are stored in specialized
secretory vesicles as inactivezymogens [35].
Recently, a 1.4 Å atomic structure of the
major *F. hepatica* cathepsin L1 (FhCL1)
zymogen was determined [36]; it is almost
identical in tertiary structure to human
cathepsin L1, although their primary
structures exhibit only 35% identity [37]. The
mature domains of the enzymes are arranged
in two lobes: the left-hand lobe is
predominantly composed of α-helices,
whereas the right-hand lobe contains several
elements of β-sheet. The substrate-binding
cleft, containing the catalytic machinery of
the enzyme, runs between the two lobes
(Figure 3). Similarly to their mammalian
counterparts, the *Fasciola* spp. zymogens
contain an N-terminal extension, or
prosegment, that binds the substrate cleft
and prevents uncontrolled proteolysis during
trafficking and storage [35–37] (Figures 3,4).
Removal of the prosegment occurs by specific
autocatalytic processing events and is
facilitated by a low pH environment. In
mammalian cells, this environment is
provided by the acidic lysosome but, in
helminth parasites, activation occurs within
the slightly acidic milieu of the parasite gut
lumen [20,35]. In the case of *F. hepatica*
cathepsin L, we have shown that auto-
activation from a pro-enzyme to a mature
active enzyme occurs over a broad pH range
(4.0–7.3), but is ~40-fold faster at pH 4.5
than at pH 7.0 [38]. Thus, the acidic gut of
the parasite provides a perfect environment
to facilitate denaturing of ingested host
macromolecules and activation of the
digestive enzymes (not dissimilar to the
mammalian gut). A remarkable feature of
FhCL1 is its broad pH range for activity (pH
3.0–9.0) coupled with high stability at
normal pH (up to 10 days at 37°C); by
contrast, the human cathepsin L homologue
is most active at pH 4.5 and inactivates
within minutes at pH 7.0 [39]. These
properties enable the parasite enzyme to
function for long periods within the parasite
gut (pH 5.5), in which 1.5 × 10⁸ red blood cells
are degraded hour⁻¹ worm⁻¹, and in the host
tissue (pH 7.3), which is degraded to
facilitate their migration.

Phylogenetic studies reveal a large family of *F. hepatica* cathepsin L proteases

The cathepsin L proteases have undergone a
great expansion within the *Fasciola* spp. A
phylogenetic analysis of *F. hepatica* genes
deposited in public databases revealed that
this parasite expresses the largest
monophyletic cysteine protease family
described to date [23,40]. The family can be
grouped into five distinct phylogenetic clades; complementary DNAs (cDNAs) for two of these are found only in the early infective larvae (clades FhCL3 and FhCL4), whereas the remaining three clades (clades FhCL1, FhCL2 and FhCL5) were derived from adult parasites taken from bile ducts [23,40] (Figure 5). This cathepsin L family is estimated to have expanded within the genus Fasciola by a series of gene duplications followed by divergence beginning 135 MYA. Irving et al. [40] estimated that most of the expansion took place ~25 MYA, which was coincident with climatic conditions that favoured the development of grasslands and the expansion of common F. hepatica mammalian hosts (e.g. cattle and sheep). Accordingly, the divergence of the cathepsin L protease family seems to have been important in the evolution and adaptation of the parasite to a wider host range [23,40].

Proteomics studies of the cysteine proteases secreted by mature liver flukes in culture and in situ within the bile duct support the earlier phylogenetic analysis and highlight several important observations [23,41] (Figure 5). First, FhCL3 and FhCL4 cathepsin L proteases were not detected in the adult stage secretory proteins, supporting a specific role for these proteases in the early-stage juvenile flukes that initiate infection through the intestinal wall [32]. Second, adult parasites secreted protease members of all remaining clades (i.e. FhCL1, FhCL2 and FhCL5); however, the clade FhCL1 and FhCL2 proteases were, by far, the most predominantly expressed proteins (accounting for 67.39% and 27.63% of total secreted cathepsin Ls, respectively). This finding indicates that clades FhCL1 and FhCL2 are most crucial for parasite survival and adaptation. Third, proteases of a FhCL1 sub-clade, FgCL1C, were not present in the F. hepatica secretome, consistent with our findings [23] that genes in this sub-clade are present in the related tropical liver fluke, Fasciola gigantica, but not in the F. hepatica nucleotide databases. It seems that the FgCL1C sub-clade expanded most recently and was important in F. hepatica and F. gigantica speciation ~17 MYA and their subsequent adaptation to their specific hosts [40].

Mature F. hepatica did not secrete any proteases other than cathepsin L cysteine proteases, confirming that adult parasites living in the bile duct rely only on these enzymes for feeding on host blood [23,41,42]. The parasite draws blood through punctures it makes in the duct wall and the nutrients obtained from this process are used to produce an enormous number of progeny (30–50 000 eggs day−1 worm−1) [7]. Accordingly, FhCL1, FhCL2 and FhCL5 cathepsin L proteases must collectively possess hydrolytic machinery capable of digesting the macromolecules in the bloodmeal to peptides that are sufficiently small to be absorbed into the parasite gastrodermis. Recently, we showed that one of these enzymes, FhCL1, can degrade haemoglobin to peptides of between 3–14 amino acids; these presumably are absorbed into the gastrodermis for further catabolism to amino acids by intracellular cathepsin C and aminopeptidases [7,21,38].

All cathepsin L proteases detected in the secretions of adult F. hepatica were fully processed to mature enzymes, indicating that the events that lead to prosegment removal is completed within the parasite gastrodermis [23]. A comparison of the primary structures of the proteases of the various phylogenetic clades shows that they are highly conserved, except within a 21 amino acid stretch before the junction between the prosegment and mature enzyme [23,37,43] (Figure 4). The FhCL1 atomic structure shows that the final 12 residues in this prosegment C-terminal region do not make contacts with the main body of the enzyme but, rather, move freely in space, creating a 'protease-accessible' region that facilitates prosegment removal [43]. We have proposed that the cleavage events leading to prosegment removal take place in two steps [23]. Initially, in a bimolecular process, a small number of inactive cathepsin L zymogens are trans-activated by another enzyme located in the gastrodermal cells, an asparaginyl endopeptidase [44], that cleaves peptide bonds involving Asn residues close to the junction of the prosegment and mature domain. Cathepsin Ls activated by this process are then free to remove prosegments from other cathepsin Ls through specific cleavage at the Leu-Ser+His motif and, thus, the process increases exponentially [36]. Mutations that alter this motif to a Pro-Ser+His motif prevent cathepsin L activation [43]. This proposal for enzyme activation is supported by sequence alignments of the five F. hepatica cathepsin L clades (Figure 5); despite the lack of conservation at the prosegment C terminus, the cleavage site for asparaginyl endopeptidase and the autocatalytic cleavage Leu-Ser+His motif are preserved in all phylogenetic clades.

Fasciola cathepsins have varying but overlapping substrate specificities
The active site of papain-like cysteine proteases is short; although it comprises four subsites (S2–S1–S1′–S2′) that interact with the corresponding P2–P1–P1′–P2′ residues of the protein substrate, the scissile bond being between P1–P1′ [1,46]. Substrate binding specificity is predominantly governed by the residues that form a deep S2 subsite pocket capable of holding the substrate P2 amino acid and positioning the scissile bond P1–P1′ into the S1 subsite for cleavage [1,46]. Within the 3D structures of FhCL1, human cathepsin L and cathepsin K, the S2 subsite is composed of residues occupying positions 67, 68, 133, 157, 160 and 205, which exhibit variation among members of the papain superfamily. An analysis of these residues in the various Fasciola spp. cathepsin L clades reveals divergence within the S2 subsite, in particular at the three positions that have the greatest influence on P2 binding (i.e. at residues 67, 157 and 205) [36] (Figure 3). Our biochemical data using recombinant versions of FhCL1 and FhCL2 proteases show how important changes in these positions can be; for example, FhCL1 (Leu67, Val157 and Leu205) cleaves substrates with hydrophobic residues (Phe and Leu) in the P2 position readily accommodates substrates with a P2 proline residue [48]. Thus, separation of the FhCL1 and FhCL5 clades from the FhCL2 clade was accompanied by the loss of this FhCL2 activity is crucial for degrading collagen-rich interstitial matrices.

Interestingly, adult clade FhCL5 that diverged from FhCL2 before its divergence from FhCL1 (Figure 5) exhibits an intermediate S2 subsite (Leu67, Leu157 and Leu205). Like clade FhCL1, it does not readily accommodate substrates with a P2 proline residue [48]. Thus, separation of the FhCL1 and FhCL5 clades from the FhCL2 clade was accompanied by the loss of the ability to cleave substrates, like collagen, with a P2 proline. At the same time, this alteration enabled the S2 pocket of FhCL1 to open up so that it could accommodate hydrophobic residues that were most common in host haemoglobin. No biochemical data are available for the infective larval proteases of clades FhCL3 and FhCL4 but, because these are considered the most ancient of the clades from which the FhCL2 and FhCL5–FhCL1 lineages diverged, it is likely that they possess hybrid-like specificities [40].

Concluding remarks

Helminth parasites have exploited papain-like cysteine proteases to perform a wide...
References

4 Melendez-Lopez, S.G. et al. (2007) Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colon epithelial cell line. Exs. 96, 1130–1136
26 Dickinson, D.P. (2002) Cysteine peptidases of helminth parasites and humans, their papain-like cysteine proteases share many biochemical and structural similarities. Given that substrate specificity in these proteases is largely governed by a few interactions between the substrate P2 amino acid and residues within the S2 subsite of the enzyme, it is not surprising that the differences observed between the parasite and human enzymes are minor. Turk and Guncar [1] suggest that it might be difficult to design inhibitors that can distinguish between the human enzymes because they do not differ only subtly in their substrate specificity. Finding inhibitors that potently inactivate parasite papain-like cysteine proteases without affecting one or more host enzymes will pose an even greater challenge. However, drug design efforts could exploit bioavailability and pharmo-kinetic and -dynamic properties to enhance the probability of inhibitors preferentially reaching their parasite target. Availability of recombinant functional parasite proteases will be invaluable in the search for selective lead-like compounds with these characteristics within synthetic or natural chemical libraries. Additionally, or alternatively, we could take advantage of the exquisite selectivity by which the host immune system can distinguish foreign molecules and epitopes to target the papain-like cathepsin cysteine proteases of helminth parasites as vaccine molecules. Such an approach has been successfully taken in the path towards the development of a first-generation recombinant FhCL1 vaccine that protects domestic animals against infection with the liver fluke F. hepatica [49].
35 Collins, P.R. et al. (2004) Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propeptide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. J. Biol. Chem. 279, 17038–17046
37 Coulombe, R. et al. (1996) Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 15, 5492–5503
43 Stack, C.M. et al. (2007) The major secreted cathepsin L1 protease of the liver fluke, Fasciola hepatica: a Leu-12 to Pro-12 replacement in the nonconserved C-terminal region of the prosegment prevents complete enzyme autoactivation and allows definition of the molecular events in prosegment removal. J. Biol. Chem. 282, 16532–16541
48 Smooker, P.M. et al. (2000) A single amino acid substitution affects substrate specificity in cysteine proteinases from Fasciola hepatica. Protein Sci. 9, 2567–2572
Figure 1. Papain-like cysteine proteases of trematode pathogens. Human diseases caused by trematode (flatworm) parasites are among the most prevalent on earth and predominantly occur in developing countries. Trematode pathogens express four major classes of cathepsin proteases (L, B, F and C) that have functions in parasite virulence including tissue invasion and feeding. (a) The major trematode pathogens of humans and animals. (b) Bootstrapped (1000 trials) neighbour-joining phylogenetic tree showing the evolutionary relationship of the trematode cathepsin superfamily. The tree was constructed using trematode cDNA sequences (including the prosegment region). The branches are coloured according to the four major enzyme classes. Abbreviations: CB, cathepsin B; CC, cathepsin C; CL, cathepsin L; CP, cysteine protease; Cs, Clonorchis sinensis; Fg, Fasciola gigantica; Fh, Fasciola hepatica; Ov, Opisthorchis viverrini; Pw, Paragonimus westermani; Sj, Schistosoma japonicum; Sm, Schistosoma mansoni. Part (b) adapted from Refs [7,19].
Figure 2. Developmental regulation of *F. hepatica* cathepsin proteases. Trematode pathogens such as *F. hepatica* undergo complex life-cycles involving transitions between host organ systems and tissues. Movement from one site to another, as the life-cycle progresses, is associated with the differential expression of cathepsin enzymes. (a) Penetration of the host intestinal wall by newly excysted juvenile (NEJ) *F. hepatica* is facilitated by the secretion of proteolytic enzymes. This process involves cathepsin B and clade 3 cathepsin Ls. (b) The migration of immature flukes through host liver tissue corresponds to a period of rapid growth and development of the parasite. At this stage, host protein degradation is achieved primarily by Fasciola clade 1 and 2 cathepsin Ls, although some cathepsin B and clade 3 and 4 cathepsin L activity could remain. (c) Adult *F. hepatica* resides within the bile ducts where it feeds on host red blood cells. Proteomics analyses have shown that clade 1, 2 and 5 cathepsin Ls are the only proteases secreted by adult flukes, thus, indicating crucial roles for these enzymes in penetrating the bile duct wall and digesting host haemoglobin.
Figure 3. A structural analysis of *F. hepatica* cathepsin L proteases. *Fasciola* spp. cathepsin Ls are stored in specialized secretory vesicles within the gut epithelial cells of the parasite as inactive zymogens, which consist of a prosegment and mature enzyme domain. The prosegment is removed by catalytic cleavage after secretion into the parasite intestine to reveal an active mature protease. (a) Surface representation of the major *F. hepatica* secreted cathepsin L protease (FhCL1) (Protein Data Bank [PDB] ID: 2O6X). The prosegment is shown as a green ribbon and the catalytic machinery is shown in yellow (P1 residues) and magenta (P2 residues). (b) At low pH (4.0–4.5), the prosegment is auto-catalytically removed to produce the mature active enzyme. (c) Detail from the active site of the enzyme. S2 residues that determine substrate-binding specificity are labelled. Figures were created using Pymol (http://www.pymol.org). (d) Comparison of the residues from the S2 active site that contribute to differential substrate-binding in *F. hepatica* cathepsin Ls (clades FhCL1–FhCL5) and human cathepsins L and K. The S2 residues that confer substrate specificity are in red. Residues were identified using primary sequence alignments and analyses of the FhCL1 atomic structure (PDB ID: 2O6X) [36].

```
(a)

(b) PhCL consensus -E----S--LSHG--Y------
PhCL 1a_ie1 T.MSRA.DI...H.VP.EANNRa
PhCL 1a_pe T.MSRA.DI...H.VP.EANNRa
PhCL 1a_au3 T.MSRA.DI...H.VP.EANNRa
PhCL 1a_pl T.MSRA.DI...H.VP.EANNRa
PhCL 1a_pt1 T.MSRA.DI...H.VP.EANNRa
PhCL 1a_tr T.MPRA.DI...H.IP.EANNRa
CL1A consensus T.MSRA.DI...H.VP.EANNRa
PhCL 1B_n11 T.MPRA.DI...H.IP.EANNRa
PhCL 1B_ar T.MPRA.DI...H.IP.EANNRa
CL1B consensus T.MPRA.DI...H.IP.EANNRa
PhCL 2jn3 I.MPRS.EL...H.IP.KAKRa
PhCL 2ie2 I.IPRS.EL...R.IP.KANKLa
PhCL 2chC I.IPRS.EL...R.IP.KANKLa
FgCL 2thD I.IPRS.EL...R.IP.KANKPa
CL2 consensus I.IPRS.EL...R.IP.KANKPa
PhCL 5au4 T.MPRA.EL...H.IP.KANKRa
FgCL 5thC T.MPHR.DI...H.IP.EANKRa
PhCL 5au5 T.MPRA.EL...H.IP.KANKRa
CL5 consensus T.MPRA.EL...H.IP.KANKRa
PhCL 3_n164 M.MSPV.ES...D.IS.EAEKd
FgCL 3_thG I.MSPE.ES...D.IS.EAEKd
PhCL 3_n122 M.MSPV.ES...D.VS.EAEKd
PhCL 3_uy3 M.MSPE.ES...D.IS.EAEKd
CL3 consensus M.MSP-.ES...D.IS.EAEKd
PhCL 4_uy4 R.IPRA.DM...H.IP.EANDRa
FgCL 4_thH R.IPRA.DHI...H.IP.EANDRa
CL4 consensus R.IPRA.D--...H.IP.EANDRa
```
are in capital letters, whereas the first amino acids of the mature enzymes are in lower case letters. The colouring of residues follows that of part (a).

Figure 5. A phylogenetic analysis of the Fasciola cathepsin L gene family. The Fasciola cathepsin L gene family expanded by a series of gene duplications, followed by divergence of residues in the active site, which gave rise to three clades associated with mature adult worms and two clades specific to infective juvenile stages. These changes resulted in a repertoire of cathepsin L proteases with overlapping and complementary substrate specificities. Bootstrapped (1000 trials) neighbour-joining tree constructed using F. hepatica and F. gigantica cathepsin L cDNA sequences. The tree is rooted to Carica papaya papain. The cathepsin L proteases expressed and secreted by adult flukes are coloured and the brackets and figures represent their expression levels. Figure adapted from Ref. [23].