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ABSTRACT 

The Janus-faced atracotoxins are a unique family of excitatory peptide toxins that contain a rare 

vicinal disulfide bridge. Although lethal to a wide range of invertebrates, their molecular target 

has remained enigmatic for almost a decade. We demonstrate here that these toxins are selective, 

high-affinity blockers of invertebrate calcium-activated K+ (KCa) channels. J-ACTX-Hv1c, the 

prototypic member of this toxin family, selectively blocked KCa channels in cockroach unpaired 

dorsal median neurons with an IC50 of 2 nM, but it did not significantly affect a wide range of 

other voltage-activated potassium (KV), calcium (CaV), or sodium (NaV) channel subtypes. 

J-ACTX-Hv1c blocked heterologously expressed cockroach BKCa (pSlo) channels without a 

significant shift in the voltage-dependence of activation. However, the block was voltage-

dependent, indicating that the toxin likely acts as a pore blocker rather than a gating modifier. 

The molecular basis of the insect selectivity of J-ACTX-Hv1c was established by its failure to 

significantly inhibit mouse mSlo currents (IC50 ~10 µM) and its lack of activity on rat dorsal root 

ganglion neuron IK(Ca). This study establishes the Janus-faced atracotoxins as valuable tools for 

the study of invertebrate KCa channels and suggests that KCa channels might be a potential 

insecticide target. 
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INTRODUCTION 

The Janus-faced atracotoxins (J-ACTXs) are a novel family of excitatory neurotoxins isolated 

from the venom of the deadly Australian funnel-web spider [1]. In addition to their unusual 

pharmacology, these peptide toxins are structurally unique: in addition to having an inhibitory 

cystine knot motif that is common to peptide toxins [2, 3], they contain a rare and functionally 

critical vicinal disulfide bridge between adjacent amino acid residues [1]. 

Although lethal to a wide range of invertebrates, including flies, crickets, mealworms, and 

budworms but inactive in mice, chickens and rats [1, 4-6], the molecular target of the J-ACTXs 

has remained elusive ever since their discovery. The insect-specificity and excitatory phenotype 

of J-ACTX-Hv1c are reminiscent of a subclass of scorpion β-toxins that target insect NaV 

channels [7]. In addition, the 3D structure of J-ACTX-Hv1c resembles that of the excitatory NaV 

channel modulator δ-ACTX-Hv1a from the funnel-web spider Hadronyche versuta [8]. 

However, NaV channels cannot be the primary target of the J-ACTXs since they are active 

against the nematode Caenorhabditis elegans (G.F.K., unpublished data), which does not possess 

NaV channels [9]. 

In this study, we used patch clamp analysis of cockroach dorsal unpaired median (DUM) neurons 

to determine the molecular target of the Janus-faced atracotoxins. We demonstrate that 

J-ACTX-Hv1c is a high-affinity blocker of insect large-conductance Ca2+-activated K+ (BKCa) 

channel currents, whereas it has minimal effect on mouse or rat BKCa channels. This work 

establishes the Janus-faced atracotoxins as valuable tools for the study of invertebrate BKCa 

channels, and it indicates that insect BKCa channels might be useful targets for development of 

novel insecticides.  
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RESULTS 

Specificity of J-ACTX-Hv1c action 

Because of its structural homology to δ-ACTX-Hv1a, the lethal toxin from Australian 

funnel-web spiders that delays inactivation of both vertebrate and invertebrate NaV channels [8, 

10], we examined whether J-ACTX-Hv1c modulates NaV currents in cockroach DUM neuron. 

Test pulses to –10 mV elicited a fast activating and inactivating inward INa in DUM neurons that 

could be abolished by addition of 150 nM TTX. Subsequent exposure of isolated INa to 1 µM J-

ACTX-Hv1c failed to alter peak current amplitude, inactivation kinetics (Figure 2A), or the 

voltage dependence of activation (data not shown, n = 5). Subsequently, the actions of the toxin 

were assessed on global inward ICa in cockroach DUM neurons [11]. The elicited current was 

abolished by addition of 1 mM CdCl2, confirming that currents were carried via Cav channels. 

Application of J-ACTX-Hv1c (1 µM) failed to inhibit ICa elicited by a range of depolarizing test 

pulses from –80 to +20 mV (Figure 2B, n = 5), or alter the voltage dependence of CaV channel 

activation (data not shown, n = 5). This indicates that J-ACTX-Hv1c does not affect invertebrate 

CaV channels. 

 

Effects of J-ACTX-Hv1c on KV channel currents 

Macroscopic IK in DUM neurons were recorded in isolation from INa and ICa by using 200 nM 

TTX and 1 mM Cd2+, respectively. Macroscopic IK were elicited by 100-ms depolarizing pulses 

to +40 mV (Figure 2F inset) before, and 10 min after, perfusion with toxin. In contrast to the lack 

of overt modulation of CaV and NaV channels, 1 µM J-ACTX-Hv1c inhibited macroscopic 

outward IK by 56 ± 7% (n = 5, Figure 2C). This block was not accompanied by a shift in the 

voltage-dependence of activation (data not shown). Block of macroscopic outward IK indicates 



S.J. Gunning et al. Janus-faced atracotoxins block KCa channels 

5 

that J-ACTX-Hv1c targets at least one of the four distinct K+ channel subtypes identified in 

DUM neuron somata [12]. These include delayed-rectifier (KDR), transient ‘A-type’ (KA), Na+-

activated (KNa), as well as ‘late-sustained’ and ‘fast-transient' Ca2+-activated (KCa) K+ channels. 

The fast-transient KCa channel differs from the late-sustained KCa channel in that it inactivates 

rapidly after activation and displays a voltage-dependent resting inactivation [13]. As a 

consequence of the inhibition of total IK, all subtypes except KNa channels were investigated as 

potential targets of the Janus-faced atracotoxins. 

 

In order to isolate IK(DR) in DUM neurons, IK(A) were blocked with 5 mM 4-AP [13]. Additional 

experiments were required to determine the concentration of ChTx necessary to block IK(Ca) in 

DUM neurons. Initial tests using 1 mM CdCl2 produced only 35 ± 7 % (n = 7) inhibition of total 

outward IK in the presence of 5 mM 4-AP. Increasing concentrations of ChTx in the presence of 

1 mM CdCl2 further inhibited total outward IK in a concentration-dependent manner. Addition of 

ChTx revealed a steep dose-response relationship with inhibition of IK to 46 ± 5 % at 30 nM and 

46 ± 3 % at 100 nM (n = 5) indicating maximal inhibition of IK(Ca) at doses ≥ 30 nM (Figure 2D, 

E). This indicated that inhibition of Ca2+ entry using CdCl2 alone was insufficient to block total 

IK(Ca). Experiments requiring complete inhibition of IK(Ca), such as those involving IK(DR) and IK(A), 

were therefore performed with both 1 mM CdCl2 and 30 nM ChTx. Thus, outward IK(DR) could 

be recorded in isolation from other IK channel subtypes by the addition of 1 mM CdCl2, 5 mM 4-

AP and 30 nM ChTx. J-ACTX-Hv1c (1 µM) did not inhibit IK(DR) (Figure 2F, n = 5), nor did it 

alter the voltage-dependence of activation (n = 5, data not shown). 

 

Neither IK(A) nor IK(Ca) can be recorded in isolation from IK(DR) as they are no selective blockers of 
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insect KDR channels [13]. Thus, IK(A) were isolated using a prepulse current subtraction routine in 

the presence of 1 mM CdCl2 and 30 nM ChTx to block IK(Ca). IK(DR) were elicited in isolation 

from IK(A) by inactivating IK(A) using a one-second depolarizing prepulse to –40 mV followed by 

a 100-ms test pulse to +40 mV (Figure 2G inset). Currents recorded under these conditions were 

digitally subtracted off-line from IK(DR) and IK(A) recorded with a prepulse potential to –120 mV. 

This permitted isolation of IK(DR) from IK(A). J-ACTX-Hv1c (1 µM) produced a minor inhibition 

of IK(A) by 14 ± 4% (p<0.05, n = 5) elicited by depolarizing pulses to +40 mV (Figure 2F). Again, 

J-ACTX-Hv1c failed to alter the voltage dependence of activation (data not shown, n = 5). 

To record IK(Ca) in isolation from other KV channel currents, a current-subtraction routine 

following perfusion with the KCa channel blockers CdCl2 and ChTx was utilised. Control 

macroscopic IK(DR) and IK(Ca) were elicited in the presence of 5 mM 4-AP to block IK(A). 

J-ACTX-Hv1c was then perfused for a period of 10 min or until equilibrium was reached. CdCl2 

(1 mM) and ChTx (30 nM) were then added to block KCa channels. Residual KDR channel 

currents recorded in the presence of the IK(Ca) blockers were then digitally subtracted from both 

controls and currents recorded in the presence of J-ACTX-Hv1c (see Fig. 2G) to isolate IK(Ca). 

This subtraction routine is valid given the distinct lack of activity of J-ACTX-Hv1c on IK(DR). 

Isolated IK(Ca) exhibited fast activation, but inactivated in two phases. Initial inactivation resulted 

in a fast-transient component, with a subsequent late-maintained phase that displayed much 

slower inactivation kinetics. The IK(Ca) also activated at membrane potentials greater than –50 

mV. These characteristics are classical of BKCa currents recorded in DUM neurons [12, 13].  

 

In contrast to the lack of overt actions on KDR and KA channels, J-ACTX-Hv1c produced a potent 

block of IK(Ca) that was only partially reversible following prolonged washout in toxin-free 
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solution (Fig. 3A). Inhibition of cockroach IK(Ca) was dose-dependent with IC50 values of 2.3 nM 

and 2.9 nM, at +40 mV, for the fast-transient and late-sustained IK(Ca), respectively (Fig. 3D). In 

order to further examine the hypothesis that the target of J-ACTX-Hv1c is an insect KCa channel 

we investigated if the toxin could produce an additional block in the presence of maximal 

concentrations of ChTx. Following inhibition of IK with 30 nM ChTx, subsequent application of 

1 µM J-ACTX-Hv1c failed to produce any additional block (Fig. 3E). In the complementary 

experiment, 30 nM ChTx failed to produce any additional block of IK following inhibition of the 

current with 1 µM J-ACTX-Hv1c (Fig. 3F). These findings provide further evidence that these 

peptides act on the same molecular target in insect DUM neurons, namely KCa channels. 

 

The effect of J-ACTX-Hv1c on IK(Ca) was invertebrate-selective as the toxin failed to block either 

macroscopic outward KV currents in rat DRG neurons (Fig. 3B, n = 4) or IK(Ca) in these neurons 

(Fig. 3C, n = 4) isolated using the same current subtraction routine as described earlier. Block of 

IK(Ca) occurred without significant alteration of the voltage-dependence of KCa channel activation, 

including both the IK(Ca) threshold and V1/2 (Figs 4A–D). . 

 

Effects on Slo channels.  

The above findings suggest that J-ACTX-Hv1c selectively blocks cockroach BKCa channels 

rather than small- (SKCa, KCa2.x) and intermediate-conductance (IKCa, KCa3.x) KCa channels. 

First, the IK(Ca) in cockroach DUM neurons was voltage-activated, like all known BKCa currents, 

whereas SKCa and IKCa channel currents are voltage-insensitive. Second, no apamin-sensitive 

SKCa channels have been found in isolated cockroach DUM neurons [13]. Nevertheless, we 

confirmed that J-ACTX-Hv1c specifically blocks insect BKCa channels by examining its effect 
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on cockroach BKCa (pSlo) channels heterologously expressed in HEK293 cells. For these 

experiments we used the AAAA∆ splice variant that is strongly expressed in octopaminergic 

DUM neurons [14]. 

 

Consistent with previous reports [14], application of 10 mM TEA or 1 µM ChTx produced an 

84.1 ± 1.5% (n = 31) and 80.1 ± 2.1% (n = 19) block, respectively, of pSlo currents activated by 

depolarizing pulses to +40 mV. J-ACTX-Hv1c caused a concentration-dependent block of pSlo 

currents with an IC50 of 240 nM (Fig. 5A, C). This IC50 is 83-fold higher than that observed on 

DUM neuron IK(Ca) but similar to the IC50 of 150 nM previously reported for ChTx on pSlo [14]. 

The time constant (ton) for block of pSlo currents by 300 nM J-ACTX-Hv1c was 102 s but the 

block was only partially reversible upon washout (Fig. 5D).  

 

In contrast to its action on pSlo channels, J-ACTX-Hv1c only inhibited mSlo channels at much 

higher concentrations, with an estimated IC50 of >9.7 µM (Fig. 5B, C). J-ACTX-Hv1c did not 

significantly shift the voltage-dependence of Slo channel activation (Figs 5E–G) nor did it alter 

the kinetics of channel activation (Fig. 5A, F). Similar to ChTx [15], the block of pSlo currents 

was voltage-dependent (Fig. 5G) suggesting that the blocker enters the electric field within the 

pore or interacts with permeant ions within the field. In this scenario, opening of the channel in 

response to large depolarizations would occur because the toxin dissociates from the pore. In 

support, alanine mutants of the pseudo-dyad (Arg8 and Tyr31) are inactive [4], consistent with 

Arg8 being important in binding to the pore region (see below) as is the case for Lys27 in ChTx 

(see Fig. 1G and [16]). 
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Mapping the toxin pharmacophore 

The functionally critical residues of J-ACTX-Hv1c were previously mapped using 

alanine-scanning mutagenesis [4, 5]. This revealed a bipartite epitope comprising residues Arg8, 

Pro9, and Tyr31 and the two residues that form the vicinal disulfide (Cys13 and Cys14). It was 

proposed that two additional residues, IIe2 and Val29, act as ‘gasket’ residues that exclude bulk 

solvent from the putative target binding site [4]. However, since toxin activity was examined 

using a fly lethality assay it is possible that some of these residues are not important for 

interaction with BKCa channels per se but rather are important for conferring resistance to 

proteases and/or the ability of the toxin to penetrate anatomical barriers. Thus, we decided to 

directly examine whether the functionally critical non-cysteine residues are critical for interaction 

with insect BKCa channels. Ile2 was not investigated as it is not conserved in all J-ACTX-1 

family members (Fig. 1A). CD spectra revealed that none of the mutations used in this study 

induced perturbations of the toxin structure [4]. 

 

The activity of the mutant toxins was examined using DUM neurons, rather than pSlo-expressing 

HEK293 cells, for two reasons. First, it is possible that an as yet unknown subunit modulates the 

pharmacology of BKCa blockers on insect Slo channels [17], evident from the higher potency of 

ChTx on native neurons [14]. Second, the lower potency of the wild-type toxin on pSlo channels 

would necessitate testing of relatively high concentrations of the mutants to determine their IC50 

values. Dose-response curves revealed that the IC50 values for the block of DUM neuron IK(Ca) by 

the R8A, P9A and Y31A mutants was 1620-, 100-, and >10,000-fold higher, respectively, than 

the IC50 value recorded for wild-type toxin (Fig. 6D–G), consistent with the critical roles 

identified for those residues in previous insect lethality assays [4]. The V29A mutation caused a 

7.5-fold decrease in block of IK(Ca) (Fig. 6D, G, H), consistent with its less critical role in 
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insecticidal activity [4]. 

 

Chemical features of the toxin pharmacophore 

To further probe the functional relevance of these residues and to investigate the role of 

individual chemical moieties in the toxin's interaction with insect BKCa channels, we designed a 

panel of additional mutants and determined their IC50 for inhibition of DUM neuron IK(Ca) as well 

as their LD50 when injected into house flies (Musca domestica). We first addressed the functional 

role of Arg8, the only charged residue in the pharmacophore, by construction of R8E, R8K, R8H 

and R8Q mutants. We previously showed that introducing a negative charge (R8E) results in a 

dramatic decrease in insecticidal activity, implying that the positively charged δ-guanido group 

contributes significantly to target binding [4]. If Arg8 makes an ionic interaction with a 

negatively charged group on the target, then an R8E mutation would be expected to reduce 

potency even more than an R8A mutation because it will introduce repulsive electrostatic 

interactions. While the R8E mutant exhibited a marked 2237-fold reduction in block of IK(Ca) 

relative to wild-type toxin (Fig. 6E, H), its IC50 and LD50 values were nevertheless only 1.4-fold 

and 2.8-fold higher, respectively, than the R8A mutant (Fig. 6H). Moreover, replacement of the 

Arg8 sidechain with the slightly shorter Lys sidechain caused a dramatic 226-fold reduction in 

IC50 (Fig. 6B, E, H) and 31-fold reduction in LD50 even though the positive charge on the 

sidechain is maintained.  

 

In striking contrast, an R8H mutant was 28-fold more potent at blocking IK(Ca) than the R8K 

mutant. Indeed, this mutant is only 8.2-fold less potent than the native toxin (Fig. 6A, E, H). The 

His sidechain is much shorter than both Arg and Lys and is only slightly charged at physiological 

pH. These results therefore suggest that the capacity of the residue at position 8 to act as a 
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hydrogen bond donor/acceptor is as important as its ability to present a positive charge to the 

channel. Hydrogen-bonding capacity alone is not sufficient for a high-affinity interaction with 

insect BKCa channels since an R8Q mutant is much less potent than R8K and R8H mutants and 

only slightly more potent than an R8A mutant (Fig. 6E, H). 

 

We next probed the critical features of Tyr31 by measuring the ability of mutants in which Tyr31 

was replaced with Phe, Trp, Ile, Leu, Val or Ala to block IK(Ca) in cockroach DUM neurons 

(Fig. 6F). The Y31F and, to a lesser extent, Y31W mutants displayed almost wild-type activity 

(Fig. 6C, F, H), indicating that the hydroxyl group is relatively unimportant and that the aromatic 

ring is the more critical functional moiety of Tyr31 for interaction with insect KCa channels. 

Substitution of the aromatic ring with smaller hydrophobes produced mixed results. Y31I, tested 

only in the fly assay because of limited quantities, was almost fully active (Fig. 6H), while Y31L 

was significantly less active in both DUM neurons and flies (Fig. 6F, H). This suggests that the 

key requirement at this position in the toxin pharmacophore is a medium-sized hydrophobe since 

an aromatic residue is clearly not essential given the high toxicity of the Y31I mutant.    

 

DISCUSSION 

The Janus-faced atracotoxins specifically target insect BKCa channels 

The Janus-faced atracotoxins are a unique family of excitatory peptide toxins that contain a rare 

vicinal disulfide bond. Despite significant interest in this class of peptides as bioinsecticides [18, 

19], their molecular target has until now proven elusive. In the present study we have shown that 

J-ACTX-Hv1c, the prototypic member of this class of toxins, is a high-affinity blocker of insect 

BKCa channels. Notably, this block occurred in the absence of any significant changes in the 
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voltage-dependence of KCa channel activation. Thus, in contrast with other spider toxins that 

target KV channels [20], J-ACTX-Hv1c appears to be a channel blocker, like charybdotoxin, 

rather than a gating modifier. Moreover, J-ACTX-Hv1c appears to have high molecular 

specificity, since other insect NaV, CaV and KV channel currents were unaffected by toxin 

concentrations that substantially reduced IK(Ca).  

 

The specific action of J-ACTX-Hv1c on insect BKCa channels was confirmed by block of BKCa 

currents mediated by the α-subunit of the cockroach pSlo channel. While the IC50 for block by 

J-ACTX-Hv1c (240 nM) was higher than for the native BKCa channel in DUM neurons, the loss 

of potency parallels that seen with ChTx, with an increase in IC50 from 1.9 to 158 nM [14]. This 

may be due to the absence of a modulatory subunit since the β-subunit of human hSlo channels 

causes a 50-fold increase in the affinity of ChTx for these channels [21]. Consistent with this 

hypothesis, the activation kinetics of native IK(Ca) in DUM neurons were much more rapid than 

pSlo channel currents, as previously noted [14], similar to the more rapid onset and inactivation 

of currents when mammalian Slo channels are expressed in association with β2 and β3 subunits 

[22-24]. Homologs of mammalian β subunits have not been detected in the genomes of 

Drosophila or C. elegans [25], and dSlo currents are not functionally affected by coexpression 

with a mammalian β1 subunit [26]. However, gating of dSlo channels is modulated by 

co-expression with Slowpoke binding protein (Slob) [27], indicating that insects may possess 

novel subunits not present in vertebrates for regulating the activity of BKCa channels. However, 

until the putative regulatory subunits associated with the pSlo channel have been identified, the 

native phenotype cannot be reconstituted and the influence of these subunits on the affinity of J-

ACTX-Hv1c for pSlo channels cannot be determined.  
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Since we have demonstrated that J-ACTX-Hv1c is a specific, high-affinity blocker of insect 

BKCa channels, we propose that it be renamed κ-ACTX-Hv1c to be consistent with the rational 

nomenclature proposed earlier for naming spider toxins whose molecular target has been 

established [28]. 

 

Mode of interaction of J-ACTX-Hv1c with insect BKCa channels 

Scorpion toxins from α-KTx subfamilies 1–3 block BKCa channels in the vicinity of the 

selectivity filter, mainly via residues in their C-terminal β-hairpin [16]. Despite its ability to 

block BKCa channels, J-ACTX-Hv1c has virtually no sequence homology with scorpion BKCa 

blockers, particularly in the functionally critical β-hairpin region (Fig. 1B). Moreover, 

superposition of the 3D structure of J-ACTX-Hv1c [1] with that of ChTx [29] demonstrates that 

the backbone folds of the two toxins are significantly different (Fig. 1F). This raises the question 

of whether the two toxins interact in fundamentally different ways with insect BKCa channels. 

 

We previously speculated that the functional Lys-Tyr/Phe dyad that is largely conserved in toxins 

that target vertebrate Kv channels [30] might also be present in J-ACTX-Hv1c if Arg is 

considered a suitable substitute for Lys [4]. The "pseudo-dyad" of J-ACTX-Hv1c is topologically 

similar to that of ChTx (Fig. 1G) although the overlay is not as good as with the dyad of the KV 

channel blockers BgK and agitoxin 2 [4]. However, since we demonstrated in the present study 

that Lys is a poor substitute for the functionally critical Arg8 residue in J-ACTX, then this 

apparent similarity to the dyad of vertebrate KV channel toxins is likely to be coincidental and not 

predictive of the mode of binding of J-ACTX-Hv1c to insect BKCa channels. 
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Several lines of evidence suggest that J-ACTX-Hv1c and ChTx engage BKCa channels via quite 

different molecular mechanisms. First, the pharmacophore of J-ACTX-Hv1c is much smaller and 

involves far fewer residues than that of ChTx (see Fig. 1D, E). Second, in contrast to ChTx and 

other toxins that target K+ channels [31, 32], the block of BKCa channels by J-ACTX-Hv1c is 

significantly less voltage-dependent (Fig. 5G). This suggests that J-ACTX-Hv1c does not bind as 

deeply into the extracellular mouth of the ion channel pore as these other toxins. This is likely 

due to the bifurcated δ-guanidinium group at the tip of the critical Arg8 residue, which is much 

bulkier than the single amine moiety at the tip of the linear sidechain of the key Lys27 residue in 

ChTx. Consistent with this hypothesis, a K27R mutant of ChTx is 4-fold less potent on 

mammalian BKCa channels [33] and the voltage-dependency of block is significantly reduced 

compared with native toxin. Third, the ability of His, as opposed to Lys, to effectively substitute 

for Arg8 in J-ACTX-Hv1c suggests that factors other than electrostatic charge are also important 

at this position in the toxin pharmacophore. Hydrogen-bonding capacity might be critical, since 

the Arg guanido and His imidazole moieties contain two identically spaced nitrogens that can 

serve as hydrogen-bond donors/acceptors. It is possible that Arg8 forms hydrogen bonds with 

surface-exposed carbonyls in the pore region of the BKCa channel. The combined evidence 

therefore suggests that these two toxins, although both derived from arachnid venoms, have 

evolved to interact in quite different ways with invertebrate BKCa channels. 

 

J-ACTX-Hv1c as a molecular tool 

Large-conductance KCa channels, also termed BKCa (KCa1.1), Maxi-K or Slo1 channels, are 

activated by an increase in intracellular Ca2+ and by depolarization [34]. These channels play an 

important role in controlling calcium homeostasis, excitability and action potential waveform, 
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and BKCa currents prevent excessive Ca2+ entry by contributing to action potential repolarization 

and membrane hyperpolarization [12]. It has been suggested that activators and blockers of BKCa 

channels may have application as neuroprotectants or as therapeutics in certain disease states 

including vascular dysfunction, urinary disease, and certain seizure conditions [35]  

 

Study of invertebrate BKCa channels would be enhanced by the availability of a readily-available, 

high-affinity blocker that is devoid of activity on other ion channels. While ChTx and 

J-ACTX-Hv1c block cockroach BKCa channels with similar affinity, J-ACTX-Hv1c offers 

several potential advantages as a research tool for invertebrate studies. First, in addition to its 

block of BKCa channels, ChTx also blocks KV channels with moderate affinity [36]. In contrast, 

even at very high concentrations, J-ACTX-Hv1c has very limited activity against KV channels. 

Second, a bacterial expression system has been developed that allows recombinant  

J-ACTX-Hv1c to be produced cheaply and easily [4]. Third, since the binding epitope for J-

ACTX-Hv1c has been mapped, point mutants that could be used for negative controls can be 

readily produced using this bacterial expression system. 

 

BKCa channels: a potential insecticide target? 

A major bottleneck in the development of new insecticides has been the difficulty in identifying 

new molecular targets. Indeed, the vast majority of chemical insecticides are directed against one 

of five targets (four of which are ion channels) in the insect nervous system [18, 37]. Although 

BKCa channels play important roles in the excitability of insect neurons and muscles [38], they 

have not been considered potential insecticide targets since no insect-selective ligands of these 

channels have previously been identified. However, our demonstration that the insect-selective 

spider toxin J-ACTX-Hv1c is a high-affinity blocker of insect BKCa channels has, for the first 
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time, identified this channel as a potential insecticide target. 

 

Interestingly, paxilline, a well-known mammalian BKCa channel blocker [39], as well as several 

other structurally-related indole-diterpenes, are toxic to a wide range of insect genera [40-42]. In 

order to determine whether the insecticidal activity of these diterpenes might stem from their 

activity on BKCa channels, we examined their ability to block IK(Ca) in cockroach DUM neurons. 

Importantly, paxilline blocked both the fast-transient and late-sustained IK(Ca), with IC50 values of 

17.1 and 16.0 nM (n = 7-9) respectively (data not shown). This supports our contention that 

inhibition of BKCa channels may contribute to their lethality to in insects and that insect BKCa 

channels might therefore be potential insecticide targets. 

 

‘Short-chain’ scorpion α-KTx 1 family toxins, such as ChTx (α-KTx 1.1) and iberiotoxin (IbTx, 

α-KTx 1.3), are frequently used as molecular tools to study BKCa channels. However, these 

toxins are poor leads for development of insecticides that block invertebrate BKCa channels since 

they have limited phyletic selectivity, with a tendency to be more active against vertebrate 

channels (Table 1). For example, ChTx blocks mammalian Slo channels (IC50 values of 36 and 

7.4 nM for hSlo and mSlo, respectively) more potently than insect Slo channels (IC50 values of 

158 nM and >5 µM for pSlo and dSlo, respectively) [14, 43]. In contrast, J-ACTX-Hv1c is highly 

selective for insect BKCa channels: it blocks cockroach BKCa channels at low nanomolar 

concentrations and shows a 41-fold preference for pSlo over mSlo (Table 1). Since J-

ACTX-Hv1c is a pore blocker, and the pore regions of mSlo, rSlo, and hSlo are identical (see Fig. 

7), we predict that J-ACTX-Hv1c will also have little effect on rSlo and hSlo channels. 

Consistent with this hypothesis, J-ACTX-Hv1c failed to inhibit BKCa currents in rat DRG 
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neurons (which express rSlo) and it was previously shown that subcutaneous injection of J-

ACTX-Hv1c into newborn mice, at five times the LD50 dose in insects, fails to produce any overt 

signs of toxicity [1]. Moreover, J-ACTX-Hv1c failed to alter neurotransmission in an isolated 

chick biventer cervicis nerve-muscle preparation [1].  

 

BKCa channels have been highly conserved throughout evolution, and therefore it may seem 

surprising that toxins can discriminate between invertebrate BKCa channels and their vertebrate 

counterparts. However, insect and mammalian Slo channels display several important 

differences in the pore region between the S5 and S6 transmembrane helices (Fig. 7), which is 

believed to be the primary site of interaction with ChTx, IbTx, and most likely J-ACTX-Hv1c 

[36]. Remarkably, the phyletic selectivity of ChTx can be manipulated by a single point 

mutation in this region. For example, BKCa channels from fruit flies and cockroaches become 

significantly more sensitive to ChTx, a vertebrate-specific BKCa blocker, when individual pore 

residues are mutated to that found in the corresponding position in vertebrate Slo channels; these 

mutants include T290E in Drosophila dSlo [43] and Q285K in cockroach pSlo [14] (see Fig. 7). 

Thus, the amino acid variation in the pore region of the BKCa channel appears sufficient to 

explain the insect selectivity of J-ACTX-Hv1c. 

 

J-ACTX-Hv1c is active against a diverse range of insect phyla [1, 4, 6] and therefore insecticides 

that target this channel might find wide application in the control of arthropod pests. The 

molecular epitope on this peptide toxin that mediates its interaction with insect BKCa channels 

comprises only five spatially proximal residues (this study and [4]). Since J-ACTX-Hv1c has 

870-fold higher selectivity for insect BKCa channels than ChTx, this epitope should provide a 

convenient template for the rational design of small-molecule insecticides that selectively target 
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insect BKCa channels. 

 

MATERIALS AND METHODS 

Construction and Purification of J-ACTX-Hv1c 

Mutants–Single point mutations were introduced using complementary mutagenic PCR primers 

using pFM1 as a template. This plasmid encodes a synthetic J-ACTX-Hv1c gene with codons 

optimised for expression in Escherichia coli [4]. Mutant gene sequences were amplified, digested 

with Bam HI and Eco RI, and subcloned into the pGEX-2T vector using standard methods. The 

resultant plasmids encode a synthetic toxin gene fused to the 3' end of the gene for glutathione S-

transferase (GST), with an intervening thrombin cleavage site. Engineered plasmids were 

transformed into E. coli BL21 cells for protein expression. Cells were grown at 37°C in LB 

medium to an OD600 of 0.6–0.8 before induction with 300 µM IPTG. Cells were harvested by 

centrifugation at an OD600 of 1.9–2.1 and lysed by sonication. GST-toxin fusion proteins were 

purified by affinity chromatography on a GSH-Sepharose (Amersham Biosciences) column, then 

cleaved on-column with thrombin to release recombinant J-ACTX-Hv1c. Toxin was eluted from 

the column with buffer and further purified by reverse-phase HPLC using a Vydac C18 

analytical column (4.6 x 250 mm, 5-µm pore size). HPLC was performed using a linear gradient 

of 15–22% acetonitrile over 15 min at a flow rate of 1 ml/min. Correctly folded toxin eluted as 

the major peak with a retention time of 9–12 min depending on the mutant purified. Toxin 

masses were verified by electrospray mass spectrometry. 

 

Circular Dichroic Spectropolarimetry 

Far-UV circular dichroic (CD) spectra (185–260 nm) were recorded on a Jasco J-715 

spectropolarimeter at 4°C. Peptides were dissolved to 25 mM in sterile water and loaded into a 
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0.1-cm rectangular quartz cell for analysis. Final spectra were the average of eight scans using a 

scan rate of 20 nm/min and a response time of 4 s. A water blank run under identical conditions 

was subtracted from each toxin spectrum. 

 

Lethality Assays 

House flies (Musca domestica) weighing 9–20 mg were injected with 1–2 µl of toxin diluted in 

insect saline [44] at a concentration range of 10–106 pmol/g. Each test dose was administered to 

10 flies and performed in duplicate. Control flies received 2 µl of insect saline. All injections 

were dispensed with a 29-gauge needle using an Arnold microapplicator (Burkhard Scientific 

Supply). Flies were injected in the dorsal thorax while immobilized at 4°C, then transferred to 

room temperature. The dose corresponding to 50% lethality of the test population 24 h after 

injection (LD50) was calculated using the following equation. 

 

where Y is the percentage response at the dose (x), and nH is the slope (Hill) coefficient.  

 

Electrophysiology 

Whole-cell recordings of ionic currents were made using an Axopatch 200A amplifier. Patch 

pipettes were pulled from borosilicate glass and had resistances of 1–2 MΩ for INa recordings and 

2–4 MΩ for ICa, IK and Slo channel current recordings. The holding potential was –80 mV, unless 

stated otherwise. External solution was administered via a continuous gravity-fed perfusion 

system at ~1.0 ml/min and a temperature of 20–23°C. Toxins were applied via a pressurized fast 

perfusion system (Automate Scientific). The osmolarity of all internal and external solutions was 
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adjusted to within ± 5 mOsmol/l with sucrose to reduce osmotic stress. Experiments were 

rejected if there were large leak currents or currents showed signs of poor space clamping. 

Stimulation and recording were controlled by AxoData or pClamp data acquisition systems 

(Axon Instruments). Data was filtered at 5 kHz (low-pass Bessel filter) with digital sampling 

rates between 15 and 25 kHz depending on voltage protocol length. Leakage and capacitive 

currents were digitally subtracted with P-P/4 procedures and series resistance compensation was 

>80% for all cells. The liquid junction potential was determined using JPCalc [45], and all data 

were compensated for this value. Analysis parameters were as described [46].  

 

DUM neuron NaV, CaV and KV channel currents 

DUM neuron cell bodies were isolated from the terminal abdominal ganglion of the American 

cockroach Periplaneta americana as described [47]. The TAG was dissected and placed in sterile 

Ca2+-free normal insect saline (NIS) containing (in mM): NaCl 200, KCl 3.1, MgCl2 4, N-

hydroxyethylpiperazine-N-ethanesulphonic acid (HEPES) 10, sucrose 30, D-glucose 20, pH 7.4. 

The ganglia were then desheathed and incubated for 20 min in Ca2+-free NIS containing Type IA 

collagenase (2 mg/ml). Subsequently, the ganglia were rinsed three times in NIS, containing 5 

mM CaCl2, 5% v/v bovine calf serum, penicillin (50 IU/ml) and streptomycin (50 µg/ml) (Trace 

Biosciences). Single cells were mechanically isolated by trituration. The resulting suspension 

was then allowed to adhere overnight to glass coverslips which had been previously been coated 

with concanavalin-A (2 mg/ml) (Sigma Chemicals). Large tear-shaped DUM neurons with 

diameters of >45 µm were selected for experiments. 

 

To record voltage-activated Na+ (NaV) channel currents (INa), pipettes contained (in mM): NaCl 



S.J. Gunning et al. Janus-faced atracotoxins block KCa channels 

21 

20, CsF 135, MgCl2 1, ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid 

(EGTA) 5, D-glucose 10, and HEPES 10, pH 7.4. The external solution contained (in mM): NaCl 

130, CsCl 5, TEA-Cl 20, CaCl2 1.8, 4-aminopyridine (4-AP) 5, verapamil-HCl 0.01, NiCl2 0.1, 

CdCl2 1 and HEPES 10, pH 7.4. To record voltage-activated Ca2+ (CaV) channel currents (ICa), 

pipettes contained (in mM): CsCl 110, Na-acetate 10, ATP-Na2 2, CaCl2 0.5, 

tetraethylammonium (TEA)-Br 50, EGTA 10, HEPES 10, pH 7.4. The external solution 

contained (in mM): Na-acetate 160, TEA-Br 30, CaCl2 5, HEPES 10, 150 nM TTX, pH 7.4. To 

record delayed-rectifier (IK(DR)), transient ‘A-type’ (IK(A)) and KCa (IK(Ca)) channel currents, 

pipettes contained (in mM): KCl 135, KF 25, NaCl 9, ATP-Na2 3, CaCl2 0.1, MgCl2 1, EGTA 1, 

HEPES 10, pH 7.4. External solutions contained (in mM): NaCl 100, KCl 30, CaCl2 5, MgCl2 

1.5, D-glucose 10, HEPES 10, 150 nM TTX, pH 7.4. Since INa were blocked by TTX, any 

involvement of Na+-dependent IK were eliminated. To record IK(DR) in isolation, 5 mM 4-AP, 1 

mM CdCl2 and 30 nM charybdotoxin (ChTx) were also added to the external solution to 

eliminate IK(A) [13] and IK(Ca) (see Results). IK(A) were elicited in the presence of 1 mM CdCl2 and 

30 nM ChTx and isolated using current subtraction routines following a two-pulse protocol to 

inactivate IK(A) (see Results). IK(Ca) were elicited in the presence of 5 mM 4-AP and isolated from 

IK(DR) using current subtraction routines following addition of 1 mM CdCl2 and 30 nM ChTx (see 

Results).  

 

DRG neuron KV channel currents 

Acutely dissociated dorsal root ganglion (DRG) neurons were prepared from 5 to 14-day-old 

Wister rats and maintained in short-term primary culture as described [48]. Small- to medium-

sized DRG neurons with diameters of 18–45 µm were selected for experiments as they have 
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previously been shown to express BKCa channels [49]. To record IK(Ca) pipettes contained (in 

mM): KCl 140, tetramethylammonium (TMA)-Cl 50, CaCl2 0.5, D-glucose 5, EGTA 1 and 

HEPES 5, pH 7.0. The external solution contained (in mM): TMA-Cl 120 KCl 5, NaCl 30, 

MgCl2 1, CaCl2 1.8, D-glucose 25, 4-AP 5, 300 nM TTX, HEPES 5, pH 7.2. Following 

completion of the experiment, the presence of IK(Ca) was confirmed by perfusion with 1 mM 

CdCl2 and 100 nM ChTx. IK(Ca) was then isolated by subtraction from residual IK. 

 

Slo channel currents 

HEK293 cells were maintained in Dulbecco’s Modified Eagle’s Medium supplemented with 

10% v/v bovine calf serum and L-glutamine (1 mM). Expression of pSlo and mSlo was 

performed by transfection of HEK293 cells with a construct containing the coding region cloned 

into the expression vector pcDNA3.1, which also carries the G418 resistance gene. Stably 

transfected cells were then selected with 1 mg ml–1 G418. These cells were maintained in the 

normal growth media described above and cultured on sterile glass coverslips. To record Slo 

channel currents from HEK293 cells pipettes contained (in mM): NaCl 4, KCl 140, ATP-Mg 2, 

CaCl2 0.1, HEPES 10, pH 7.25. The external solution contained (in mM): NaCl 135, KCl 5, 

MgCl2 1, CaCl2 1, NaH2PO4 0.33, D-glucose 10, HEPES 10, pH 7.4. 
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FIGURE LEGENDS 

Figure 1: Structure of the J-ACTX-Hv1c and comparison with other BKCa blockers. (A) 

Primary structure of J-ACTX-1 family members. Identities are boxed in yellow. Green lines 

above the sequences represent the disulfide bonding pattern, while the arrowheads below 

highlight the pharmacophore (red) and proposed water-excluding gasket (pink) residues of J-

ACTX-Hv1c. (B) Comparison of the primary structure of J-ACTX-Hv1c with known BKCa 

(KCa1.x) and SKCa (KCa2.x) channel blockers. Only toxins with nanomolar affinity for KCa 

channels are included. Toxins listed above the BmBKTx1 sequence are BKCa channel blockers 

while those below are SKCa channel blockers. (C) Schematic of the structure of J-ACTX-Hv1c 

(PDB code 1DL0) highlighting the sidechains of the key pharmacophore residues (green) as well 

as those proposed to serve as a water-excluding "gasket" (see text for details). Disulfide bonds 

and β strands are shown in red and cyan, respectively. (D and E) Surface representation of J-

ACTX-Hv1c (D) and ChTx (E) highlighting the primary pharmacophore residues. In the case of 

ChTx (α-KTx 1.1), six of the eight residues crucial for activity on BKCa channels are located on 

the β strands. Pharmacophore and gasket residues are shown in green and yellow, respectively. 

(F) Overlay of the structure of J-ACTX-Hv1c (red) and ChTx (PDB code 2CRD, blue). (G) 

Stereoview of an overlay of the functional dyad of ChTx (green sidechains) with the "pseudo-

dyad" of J-ACTX-Hv1c (red sidechains). Only the backbone of J-ACTX-Hv1c is shown for the 

sake of clarity.  

 

Figure 2: Effect of J-ACTX-Hv1c on voltage-activated ion channels in cockroach neurons. 

(A and B) Superimposed current traces showing typical lack of effect of 1 µM J-ACTX-Hv1c on 

ICa (A) and INa (B). (C) Inhibition of macroscopic IK by 1 µM J-ACTX-Hv1c. (D) Typical block 
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of IK(Ca) by increasing concentrations of ChTx (in nM). Subsequent addition of TEA in the 

presence of 30 nM ChTx abolished remaining current, thus confirming that currents were carried 

by KV channels. Data were recorded from the same cell. (E) Dose-response curve for ChTx 

inhibition of IK(Ca) recorded at the end of the pulse, in the presence of 1 mM Cd2+ (n = 5). (F and 

G) Typical effects of 1 µM J-ACTX-Hv1c on IK(DR) (F) and IK(A) (G). Superimposed IK(A) were 

obtained by current subtraction routines following prepulse potentials of –120 and –40 mV 

shown in the inset (see Methods). (H) Current subtraction routine employed to isolate IK(Ca) (see 

Methods). Currents in panels C, D, F and H were elicited by the test pulse protocol shown in the 

inset of panel F. 

 

Figure 3: J-ACTX-Hv1c blocks KCa channels in cockroach DUM neurons. (A) Typical 

effects of 3 nM J-ACTX-Hv1c on IK(Ca) showing partial reversibility. (B) Typical effect of 1 µM 

J-ACTX-Hv1c on rat DRG neuron macroscopic IK. (C) J-ACTX-Hv1c (1 µM) failed to inhibit 

rat DRG neuron IK(Ca) isolated by subtraction of the current remaining following addition of 

100 nM ChTx and 1 mM Cd2+ shown in panel B. (D) Dose-response curve showing inhibition of 

IK(Ca) by J-ACTX-Hv1c in the presence of 1 mM Cd2+ (n = 3 at 1 µM and n = 5 at all other 

concentrations). Currents in panels A–D were elicited by the test-pulse protocol shown in the 

inset of panel A. (E and F) J-ACTX-Hv1c and ChTx share the same target in cockroach DUM 

neurons. (E) Addition of 1 µM J-ACTX-Hv1c fails to further inhibit IK currents blocked by 

perfusion with 30 nM ChTx and 1 mM Cd2+ (n = 5). (F) In the complementary experiment, 

addition of 30 nM ChTx and 1 mM Ca2+ fails to further inhibit IK currents blocked by perfusion 

with 1 µM J-ACTX-Hv1c (n = 5). In both E and F currents were recorded in the presence of 4-

AP to block IK(A). 
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Figure 4: Effects of J-ACTX-Hv1c on voltage-dependence of KCa channel activation in 

cockroach DUM neurons. (A and B) Typical families of IK(Ca) were elicited by 10-mV steps to 

+40 mV before (A) and after (B) the addition of 3 nM J-ACTX-Hv1c. (C–D) I/V curves for fast-

transient (C) and late-sustained (D) IK(Ca) for controls (closed symbols), after 3 nM J-ACTX-

Hv1c (open symbols), and following prolonged washout with toxin-free solution (gray symbols) 

(n = 5). Families of currents were elicited by the test pulse protocol shown in the inset of panel B.  

 

Figure 5: Dose-dependent inhibition of Slo currents by J-ACTX-Hv1c (A and B) Typical 

effects of J-ACTX-Hv1c on pSlo at 300 nM (A), and mSlo at 3 µM (B). (C) Dose-response curve 

for J-ACTX-Hv1c inhibition of Slo currents (IC50 = 240 nM, n = 6). For mSlo currents, the IC50 

was >9.7 µM (n = 4). Currents in panels A–C were elicited by the upper test pulse protocol 

shown between panels A and B. (D) Timecourse of block of pSlo currents by 300 nM J-ACTX-

Hv1c and washout in toxin-free solution (n = 5). (E and F) Typical families of IK(Ca) were elicited 

by 10-mV steps from –90 to +80 mV before (E) and after (F) addition of 300 nM J-ACTX-Hv1c. 

Families of currents were elicited by the test-pulse protocol shown between panels E and F. (G) 

I/V curves for late pSlo currents. Data corresponds to controls (closed symbols), after addition of 

3 nM J-ACTX-Hv1c (open symbols), and following washout with toxin-free solution (gray 

symbols) (n = 6). (H) Voltage-dependence of the fractional block of pSlo currents by 300 nM 

J-ACTX-Hv1c (n = 6). 

 

Figure 6: Effect of J-ACTX-Hv1c mutants on cockroach DUM neuron IK(Ca). (A–D) Typical 
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effects of (A) 10 nM R8H, (B) 300 nM R8K, (C) 300 nM Y31F and (D) 30 nM V29A mutants 

on IK(Ca). Calibration bars represent 5 nA and 25 ms. (E–G) Dose-response curves for inhibition 

of peak IK(Ca) by Arg8 (E), Tyr31 (F), and Val29 and Pro9 (G) mutants (n = 3-4). (H) Comparison 

of fold-reduction in DUM neuron IK(Ca) IC50 (left y-axis, light bars) and house fly LD50 (right 

y-axis, dark bars). For comparison, data for the fold-reduction in house fly LD50 for R8A, R8E, 

P9A, Y31F and Y31A mutants are included [4]. *Mutant Y31A (gray symbols in panel F) has an 

estimated IC50 value ≥10 µM. 

 

Figure 7: Alignment of the pore region of vertebrate and invertebrate Slo channels. This 

alignment is restricted to the pore region located between transmembrane segments S5 and S6. 

Sequences are from insects (Periplaneta americana, p; Anopheles gambiae, a; Apis mellifera, 

Am; Tribolium castaneum, Tc; Manduca sexta, Ms; Drosophila melanogastor, d; and D. 

pseudoobscura, Dp), vertebrates (chicken, c; mouse, m; rat, r; human, h; rabbit, Rb; bovine, b; 

Canis familiaris, Cf; and Xenopus laevis, x), marine invertebrates (Cancer borealis, Cb; and 

Aplysia californica, Ac) and Caenorhabditis elegans (Ce). Identical residues are boxed in gray 

while conservative substitutions are in gray italic text. Arrowheads denote residues important for 

ChTx binding (see text for details). 
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TABLE 1: Phyletic selectivity of J-ACTX-Hv1c and ChTx 

 

BKCa channel 
IC50 (nM) 

J-ACTX-Hv1c ChTxa 

Invertebrate 
Native DUM neuron BKCa 2.3 1.9*, 1.4b 

pSlo 240 158b 

Vertebrate 
Native rat DRG neuron BKCa >1 000 <100a 

hSlo  N.D. 36c 

mSlo 9776 7.4c 

Phyletic selectivity (mSlo IC50 / pSlo IC50) 41 0.047 
 
ChTx data from aScholz et al. (1998), bDerst et al. (2003), cMyers et al. (2000), and *present 

study. 

N.D., not determined. 
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