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Abstract

Path planning for parallel manipulators in the configuration space can be a challenging task due to the existence of
multiple direct kinematic solutions. Hence the aim of this paper is to define a generalised hierarchical path planning
scheme for trajectory generation between two configurations in the configuration space for manipulators that exhibit
more than one solution in their direct kinematics. This process is applied to the 3-RPR mechanism, constrained to a
2-DOF system by setting active joint parameter p; to a constant. The overall reachable workspace is discretised and
deconstructed into smaller patches, which are then stitched together creating a global workspace roadmap. Using the
roadmap, path feasibility is obtained and local path planning is used to generate a complete trajectory. This method can
determine a singularity-free path between any two connectible points in the configuration space, including assembly
mode changes.

1. Introduction

Path planning for parallel manipulators is difficult due to their complicated and restrictive workspace. Parallel
singularities in particular pose a significant challenge in path planning because of the high internal forces and torques
upon encountering those regions, surmounting to the loss of control of the end effector. Naturally, singularities of any
type should be avoided in path planning which often results in a reduction of the reachable workspace. As such, the
parallel and serial singularity regions form the boundaries of each smaller disjoint workspace, which forms the basis
of assembly and working modes [1, 2]. These small disjoint workspaces, if forcibly bound by their assembly and
working modes, can significantly reduce the overall reachable workspace [3].

One solution is to plan around known singularity regions. One can determine all singularity-free regions [4] or
constrain manipulator design [5] such that it never encounters singularity configurations. In [6], a variational approach
for singularity-free path planning of parallel mechanisms was discussed where the authors opted for a dynamic-based
path-finding. Utilising the Lagrangian and potential energies, the results are claimed to be almost optimal in distance
and smoothness. Road map, cell decomposition and potential field methods were identified as feasible options for
path planning. The same authors attempted to create singularity-free paths for the Stewart platform in [7]. They
were successful in generating feasible paths, but the major drawback in their approach is that they assume disjoint
workspaces are permanently disconnected. In light of [8], this assumption may be conservative. They have also stated
that their results were very sensitive to intersecting singularity hyper-surfaces.

Workspace enlargement through passing of a controllable serial singularity was explored for the SR planar manip-
ulator [3, 9], but due to the nature of the mechanism, all parallel singularities were entirely uncontrollable and could
not be used for workspace expansion or path planning. Much research has been conducted into the possibilities of
expanding the overall workspace without having to pass singularities [8]. This application has been applied to the
3-RPR mechanism, where assembly modes can be changed by encircling a cusp point [10], points of which there are
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three direct kinematic solutions coinciding [11, 12]. However, the path existence depends on which cusp point and
starting assembly mode is chosen. Not knowing this, the path feasibility (the success of the assembly mode-change)
is unclear until the end effector has traversed partially around the proposed path around a chosen cusp point.

It was also shown that in certain manipulators, assembly mode changes can be made without encircling a cusp
point [13]. A case was found where a double point, a point where two singularity loci intersect also allows for
assembly mode changes when encircled in the configuration space. This phenomenon further complicates trajectory
planning whose methods are cusp point-dependent.

Another challenge is path planning for higher DOF parallel manipulators, as time complexity of graph-based
searches become insurmountable. Much research has been done in finding ways to accelerate the speed of path plan-
ning algorithms in higher dimensions. In [14], a combination of cost map planning and sample-based search is utilised
in configuration space. With the use of multiple rapidly-exploring random tree algorithms coupled with heuristic-
based guides, it was claimed that the algorithms used are general enough to be applicable to 6-dimensional cases.
Sampling based motion planning used in [15] favours boundary-tracking and less-visited areas over a grid-discretised
space for algorithm optimisation. Rapidly-exploring random tree (RRT) and probabilistic road map algorithms have
been the focus robotics path planning over the last decade and were shown to perform well [16, 17]. Its merits and
drawbacks are discussed in detail in [18].

Accelerating the task of characterising the workspace and storing it efficiently in memory by utilising non-
uniform discretisation methods exist, such as algebraic cylindrical decomposition [16, 19]. However this requires
the workspace boundary to be defined semi-algebraically, in which this condition can not be guaranteed for complex
and higher DOF systems. Recursive discretisation such as octree [20] helps alleviate memory constraints of numerical
analysis in high-dimension space by adaptively refining the discretisation grid around detailed areas. Interval analysis
is a flexible algorithm for solving numerical problems [21]. It can be applied to a variety of problems, but demands
high level expertise to formulate an efficient algorithm.

This paper will expand on the concept of path planning in the configuration space of the 3-RPR using the hierarchi-
cal planning scheme. Path planning was specifically chosen in the configuration space to avoid parallel singularities,
which are uncontrollable. Parallel singularities are naturally the boundaries in the map of the number of solutions in
the configuration space. This feature makes the path planning easier in the configuration space rather than the task
space.

Our proposed hierarchical path planning for the 3-RPR will utilise a topological graph representing the overall
reachable workspace which will be used for singularity-free trajectory generation, departing from the well-known
concept of encircling cusp points. This graph of nodes and links is generated by means of deconstruction of the
overall reachable workspace in the joint variables into smaller workspace patches, bounded by the parallel singularity
locus in the reduced configuration space. However, the location of the singularity may not exist at all solutions of
the same configuration, hence the boundaries of each patch are checked for singularities and continuity to an adjacent
workspace patch. A boundary that allows passage to an adjacent workspace patch is called a gate. The collection of
workspace patches and their links via their gates that represent the overall reachable workspace is called the global
workspace roadmap. After finding this roadmap, we can determine path feasibility between two points or assembly
modes in the joint space, and depending on the algorithm used, can explicitly guarantee a result [16] whether a
path exists or not. Finally, local path planning will find a path within each workspace patch in the list of individual
connected workspaces, generated by the global planning which is then stitched together to form the overall feasible
path. The entire path planning process is summarised in Figure 1.

2. Workspace Discretisation and Separation

The entire path-planning scheme relies on the discretisation of the n-dimensional configuration space. We have
chosen a simple uniformly-discretised space where each cell centre is equally spaced apart and represents a unique
joint configuration. This will allow easy implementation of searching algorithms. We will use the minimal-connectivity
scheme possible for any dimension of discretisation, hence in our 2-dimensional case, we use 4-connectivity for con-
nection to each adjacent cell. This means only faces are connected and any diagonal movement through a vertex is
not allowed. Because diagonal movement through a vertex is allowed in 8-connectivity, it allows the possibility of
passage through an infinitesimally small point in the grid space, possibly represented by an obstacle as seen in Figure
3. Hence singularity-free movement in 8-connectivity cannot be guaranteed.
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Figure 1: Workflow of the hierarchical path planning scheme.

2.1. Workspace Separation

Working in the configuration space, the parallel singularity locus was used to define the boundaries of our
workspace patches for workspace deconstruction. This means that for a configuration space where multiple solu-
tions exist, all solution surfaces and manifolds will have their workspace boundaries defined this way (see Figure 2).
The main advantage of this method is that it guarantees each workspace patch can be projected in the dimensions
equivalent to the DOF of the system. Hence this method does not introduce any further dimensions that the manipu-
lator analysis was originally constrained to. The side effect is that it may introduce more fragmented workspaces than
is needed for an efficient solution.

Once the boundaries are defined, each workspace patch can be treated as a workspace and link them together via
the global workspace roadmap where a feasible path between patches exist.

2.2. Parallel Singularity Locus and the n-Solution Field

The parallel singularity locus in the joint space can be found in a number of ways. Given the analytical complexity
of the determinant of the parallel Jacobian for high DOF manipulators [22], a simpler solution is generally sought after.
Geometrical analysis of the manipulator can be used to derive a simpler solution [1], such as that used in [10] for the
3RPR, but this method may not feasible for very complex, high DOF systems.

It was shown that a parallel singularity locus exists where there is a solution loss in transitioning between two
adjacent configurations in the joint space [23]. In other words, the boundaries of areas of differing number of solutions
in the joint space represents a singularity locus. Hence, given the direct kinematics solutions for a mechanism, we
can use the n-solution field to find the parallel singularity locus without finding or solving any equations related to the
Jacobian. The n-solution field is a map showing the number of direct kinematic solutions that exist at each discretised
location in the joint space. Normally this can be generated by converting the kinematic equations of the manipulator
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Figure 2: Singularity locus over multiple layers of workspace for a 2-dimensional case.

into a single univariate polynomial, and using numerical methods for finding number of real roots. Because the n-
solution field is a map of the number of direct kinematic solutions in configuration space, the singularity locus can be
easily identified and traced on it.

The location of the parallel singularity locus in the joint space does not necessarily indicate that there is a parallel
singularity on all solutions for a particular configuration. A 2-dimensional example of this is shown in Figure 2 where
the workspace surface represents the real roots of the univariate polynomial. The condition for the existence of a
singularity for a certain layer of workspace is observed in polynomial’s root multiplicity where it is greater than 1.
This is observed as the workspace surface folding back over itself, where two real roots converge to the same value to
cross into the complex plane. This feature gives the 3RPR the ability to change assembly modes without encountering
parallel singularities, which would not be possible if we have assumed the singularity locus projects its location of
singularities to all solution surfaces. That means we must define for each workspace patch, what edge is a singularity
and what edge is a gate. The concept of gates is discussed in Section 3.2.

2.3. Finding Connected Workspace

As each patch of workspace is analysed and separated, it is checked for connectivity in task and joint space
variables x and q respectively where singularities and gates along the workspace patch boundary are identified and
marked. The method employed for finding the connected workspace for each layer is the rotary disk search algorithm
(RDS).

The rotary disk search is a graph-type algorithm that works like a depth-first search, but modified to suit the data
structures we employed for the discretised configuration space and algorithm termination criteria. Each cell traversed
must be adjacent and connected to the previous one, which reduces the chance of numerical connectivity errors
compared to a striped search along each dimension. The end result of the search is a tree of connected workspace
cells which defines a workspace patch. The cells that lie on the boundary of the workspace patch are assigned as gates
or impassable boundaries according to the location of parallel singularities. This process is applied to each workspace
patch in the configuration space and consequently, the entire network of workspace patches is created and represented
by the global workspace roadmap.
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(a) 4-connectivity. (b) 8-connectivity.

Figure 3: Obstacle definitions with 4 and 8-connectivity in 2D. Dark regions indicate singular or obstacle and arrows indicate legal moves from the
highlighted cell. 8-connectivity allows unwanted passage through a thinly-defined obstacle into a supposedly disconnected workspace.

2.4. Rotary Disk Search Algorithm

The rotary disk search is based on the depth-first search, or Trémaux’s algorithm [27]. Given a finite, connected
graph of vertices and edges, starting from an arbitrary vertex, the DFS will traverse along a connected edge from
vertex to vertex, visiting all vertices and terminate. The goal of the algorithm is to scan an entire connected graph and
guarantee that at termination of the algorithm that all vertices are visited once. The rotary disk search algorithm works
in an identical way. The workspace represented by rotary disks (Figure 4(a)) and edges connecting each adjacent
disk is analogous an undirected graph of vertices and edges, where each rotary disk represents a unique location in
discretised configuration space. Thus the RDS algorithm is analogous to the DFS, with the exception that the order of
the edges connected to each vertex is defined by the rotary disk.

It was proven for Trémaux’s algorithm that upon termination, every edge of a graph has been traversed once in
each direction [27]. Because Trémaux’s algorithm is corollary to the depth first search to which the RDS is based on,
the same proof is therefore applicable to the RDS.

The formal definition of the RDS below applies to the rotary disk layout as defined for the discretised workspace.

Let Q ¢ R be a set defined by d intervals, that is, Q 2 {g € RY|l; < g¢; < u;, i = 1,...,d}, where g; denotes i—th
element of ¢, and /;’s and u;’s are real numbers. We discretise Q with N intervals in each dimension, which gives us
N cells. We now define a rotary disk, which represents a cell. Let us define the index vector p € R such as

T
p= [k, k k3 ... kd] ,

with positive integers 1 < ki, kp, k3,--- ,k; < N. A rotary disk »” is defined as a set of 2d vertices, r” £

{st,....s0 ;5" ,....s" ). Each vertex represents a face of a cell in the corresponding direction as shown in Fig-

ure 4(a). It is obvious that all vertices in a rotary disk are perfectly connected. For compact notations, we let 1; € R¢
be a vector whose i—th component is 1 and otherwise zero. Since we only allow face-to-face connections, there exists

. +1;
an undirected edge between s”, and s”

i

. Similarly, there exists an edge between s”, and s’j;l .

Algorithm 1 shows the code that makes up the rotary disk search. It is implemented as follows:

G = (R, E), an undirected graph G represents a connected workspace where
R = {r',r?, ..., r"} are the n-number of rotary disks, or vertices in the graph that represents the workspace. Each
disk represents a discrete location in d-dimensional space.
E is the set of all edges. They are links between vertices v/ and v” ;l‘, forming the links between adjacent
rotary disks.

The following sets are utilised
VP, a stack! of disk subregions s visited on disk p.
V,, a stack of visited rotary disks r that satisfies the criterion V¥ # @ and V¥ # rP.
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Vi, a stack of branch point IDs associated to each element in stack V.

Functions
Aspect() returns sign(det(J,)). Evaluated at r, located at the centre of a cell.
nS oln() returns an integer of the number of solutions where 77 is located in the configuration space. Evaluated
at r, located at the centre of a cell.
PosIndex() returns the position vector of r”.

Termination condition
empty(V,) = TRUE.

2.4.1. RDS Work Flow

The general work flow for the RDS algorithm in a connected 2-dimensional workspace can be observed in Figure
4(b). The search begins arbitrarily at a rotary disk r; from vertex +1. The algorithm then tracks around the ordered
vertices in the rotary disk until it encounters one of two scenarios: 1) a vertex that has a valid connection to a vertex
in another rotary disk, and 2) a vertex already visited in the rotary disk. In Case 1, the algorithm will leave the
current rotary disk 7| and enter the next connected rotary disk r, via its vertex. At entering r,, the branch point from
the previous disk is recorded, shown as b;. From r, the algorithm continues, branching at b, to bg until Case 2 is
encountered in r;. Upon reaching a visited vertex in rotary disk ry, the algorithm will return to the last branch-off
point in the previously rotary disk g, which is bg. At bg in disk rg, the algorithm continues to visit vertices in a anti-
clockwise direction until Case 1 or 2 is encountered again. Because the next vertex from bg is already visited, Case 2
is encountered and the algorithm will return to bs in r5 and continue to visit vertices. This process is repeated until all
connected rotary disks are visited, where the algorithm will return to its beginning rotary disk r; and terminate.

r

(a) d-dimensional rotary disk. (b) Search procedure of a set of 2-dimensional disks in a 2D workspace.

Figure 4: Rotary disk representation where each disk represents a cell and its subregions indicate each edge.

3. Hierarchical Path Planning

The path planning is split into two distinct processes: global and local. The global level path planning utilises
the global workspace roadmap and is used to determine when configurations lie on a workspace patch and if they
can be linked together by mechanism reconfiguration or other means. Local level path planning is implemented
intra-workspace only, where a range of path-planning techniques can be used to find the best for our needs.

! As well-defined in computer science, a stack is a linear list whose addition and deletion happens only at the top of the list. For a given stack
A, pop(A) and push(A, a) returns the resulting a stack, where pop() removes the top element of A and push() adds item a to the top of A. peek(A)
returns the top element in A. exists(A, a) returns a boolean value whether item a exists in A, and empty(A) returns a boolean value whether the
stack is empty.



Algorithm 1: Rotary Disk Search

Data: Discretised configuration space represented by a set of rotary disks R.
p = arbitrary starting index in d-space where det(J,) # O at this location.

a=0
W= ()
S ={-d,..,—1,1,..,d}, a set of integers representing all the indices for the vertices in each rotary disk. S;

denotes the i-th component in S. It is assumed that the order of indices is fixed in S.

Output:
W, a set of connected rotary disks found to be in the same workspace patch.
B, a set of rotary disks defined as a boundary of the workspace patch.

begin
while (/) do

a=(a mod 2d) +1

i=8,

V. = push(V,, r?)

Vi = push(Vy,s?

b =(a mod 2d) + 1

J=5bp

if exists(V?, sf ) then

Vi = pop(Vy)

if empty(V,) then

| return W and B

else
p = PosIndex(peek(V,))
Vi = pop(Vy)
i = peek(V;)

else

i=j

g = p +sign(dly

if 77 € R then
j=—i

if lexists(VI, s‘j].) then

if nSoln(r’) = nSoln(r?) and Aspect(r’) = Aspect(r?) then
Vi = push(Vi, 1)
if ¥» ¢ W then

| W=wurP

pP=9q
i=j
else
| B=BU/P




3.1. Global Path Planning with the Global Workspace Roadmap

The global workspace roadmap (GWR) represents the entire overall reachable workspace in graphical form. Each
node represents a single connected workspace patch and its links represent a gate to its adjacent workspace patch. The
global path planning process uses this roadmap to generate a path between workspace patches that contain the starting
and finishing configurations. Any path found on the global workspace roadmap is called the global path.

3.2. Gates

Because the existence of a singularity locus in the configuration space does not mean a singularity exists in all
solutions for that configuration, we must define which boundaries of each workspace patch are actually singularities
and which are not. The non-singular boundaries of each workspace patch are defined as gates, as observed in Figure 2.
These boundaries segregate the overall reachable workspace and provide no hindrance in traversing between adjacent
workspace patches. Gates play an important role in the global path planning as they will ensure the correct traversal
between each workspace patch as dictated by the global path.

3.3. Local Path Planning and Costing

Local path planning covers path planning between gates or starting and ending configurations in a workspace
patch. All local path planning performed in this paper utilises the A* search, which is a graph-based search algorithm
with heuristics for robot motion planning for discrete data sets [24, 16]. As the global path planning returns an ordered
list of workspaces to traverse (global path), the local path planning handles all planning to and from workspace
boundaries and links them together to form an overall path from start to end configurations. The A* search can utilise
costing to help find a reasonable path between these boundaries and as with all discrete graph-based searches, is
guaranteed to return a pass or fail result [16].

Each data point in the workspace patch is given a cost according to their distance to a closest edge. There is no
discrimination whether it is close to a singularity edge or gate, as this ensures that the trajectory generated by the A*
search does not track close to any boundaries until passage through a gate is required. It also avoids the more serious
problem of creating a trajectory that tracks closely to a singularity.

4. 3-R£R Mechanism

Figure 5: 3-RPR manipulator.



Figure 5 shows the 3-RPR mechanism under study. It is a 3-DOF planar manipulator with active joint variables
p1.23 and passive joint variables 6, 3. The planar end effector frame is located at B;(x,y) with orientation @ with
respect to the x-axis. The base location for each leg is located on a plane at Cartesian locations A7 3(x,y). Constant
lengths d, >3 fully constrain the manipulator’s geometry. The parameters are assumed to be A(x,y) = (0,0), Ay =
(15.91,0), A3 = (0,10), d; = 17.04, d3 = 20.84 arbitrary unit lengths and 8 = 37°.

4.1. Kinematics

The relationship between the joint variable q and the task space variable x can be written as a set of non-linear

algebraic equations
F(q.x) =0, (1)

where manipulation of the inverse kinematic equations, the constraint equations in the form (1) are

X4y —p?=0 )
(x+dicosa—xp) +(y+dising —yp)? —p> =0 3)
(x +ds cos(a + ) — x43)° + (y + d3 sin(a + B) — ya3)” — p3° = 0. 4)
4.1.1. Direct Kinematics
The direct kinematic equations are
_ EG-BH 5
*TAE-BD
AH - DG
Y= AE—BD ©
(EG — BH)* + (AH — DG)* — (AE — BD)*p\* = 0, (7

where

A =-2A,, +2d, cosa
B = -2A;, +2d, sina
C =d; + Ax* + Ay? = 2d1Agc cos @ — 2d1 Ay sin @
D = -2A;, + 2d; cos(a + 8)
E = -2A3, + 2d; sin(a + )
F = A3% + Asy® + d3” — 2d3As, cos(a + B) — d3Asy2 sin(a + )
G=p’-p’>-C
H=ps*-p’°-F.
For a given configuration q there exist up to six solutions for @ as expressed in Equation (7) [22]. Therefore this

equation was converted to a 6th order univariate polynomial which allows efficient root-finding algorithms to find all
solutions of a.

4.1.2. Singularities and the n-Solution Field
Again starting from Equation (1), performing the time derivative leads to the velocity equation

J,q - Jx = 0. 8)

By calculating the determinants J, and J, and equating them to 0, we obtain the parallel and serial singularity equa-
tions. This manipulator exhibits a special case for each singularity equation where they depend only on a single set of
task or configuration space variables, J, = J.(x) and J; = J,(q). In particular, the determinant of the serial Jacobian
matrix is equates to

det(J,) = p1p2ps = 0. )
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If we assume that all elements of q are greater than 0, we can discount serial singularities in the workspace
calculations as this condition will never satisfy Equation (9). The parallel singularity equation depends on task space
variables x only and forms hard boundaries in and around the entire workspace.

Figure 6 shows the variables p, and p3 (p; = 17) with the number of solutions for each configuration shown. The
dark lines indicated represent the parallel singularity locus.

50

s ; ; N
0soln

40

0soln

0 5 10 15 20 25 30 35 40 45 50

Figure 6: The n-solution field in the configuration space with number of solutions shown. Each field separated by the parallel singularity locus
(indicated by the dark lines) is given a unique ID from 1 to 7. This figure is similar to the work seen in [11].

Note that in this example, the reduced configuration space is used, hence this map is valid only at p; = 17.
Changing the value of this parameter will cause the workspace patches to grow or shrink, and hence a new map will
need to be generated.

4.2. Reduced Configuration Workspace in (02, p3, @)-Space

To better understand the (p;, p3) reduced configuration workspace and the paths we generate, we will visualise this
in the (p,, p3, @)-space, showing multiple solutions per configuration of p. We want to generate a path in the (02, 03)
space, but the existence of up to 6 solutions of « for (p,, p3) means that we must take into account « as a variable in
the third dimension in the (o3, p3, @)-space for generating a workspace roadmap, hence the a-axis is not discretised.
Then the difficulty of this task is in the separation of the workspaces in an efficient and well-defined manner. The
detection of singularity-free assembly mode changes is not well defined [11], therefore we must study the nature of
the multiple-solution workspace in the joint variables in order to determine whether there are any other criteria for
workspace separation.

Figure 7 shows the workspace in joint variables p,, p3 with the end effector rotation @, which represents the
multiple solutions of @ per (p;,03). It is important to note that 3D visualisation of the multi-solution workspace is
not needed for path planning purposes, but to demonstrate the theory behind the singularity locus and workspace
separation principles.

4.2.1. Workspace Separation

Figure 7(a) shows the workspace with the proposed deconstruction boundaries marked as solid lines, determined
by projecting the singularity locus from Figure 6 down the a-axis. Because the n-solution field is actually a 2D
projection of the overall reachable workspace surfaces in 3D, splicing the workspace in this way ensures all resulting
workspace surfaces remain flat and projectable in 2D. Each region in the n-solution field with a unique ID (shown in

10



Py

(a) The multilayered and spiralling aspects, sliced according to the sin- (b) The same workspace, but without non-singular lines (gates).
gularity locus shown in Figure 6.

Figure 7: (o2, p3, @)-space representation of the 3-RPR workspace.

Figure 6 as encircled numbers) will spawn the number of workspace patches equal to the number of solutions present
in that region. For example, Workspace ID 5 will spawn 6 unique 3D workspace patches of the same 2D profile.
Because these workspace patches share the same 2D projection, path planning can be performed in 2D on this profile,
then simply projected onto the 3D workspace patches.

Workspace patch ID numbers are assigned by parent-child numbering system, where the first number represents
the ID given in the n-solution field and the second number is given for each patch such that all workspace patches
have a unique ID. For example, workspace patches 41 and 42 shown in Figure 8(b) have the same 2D projection as
in Figure 8(a), hence local path planning can be performed in 2D, then the path can projected onto the 3D surface of
either workspace patch. In total, there are 24 individual workspaces for this configuration of 3-RPR.

4.2.2. Aspects

Figure 7(b) shows the identical workspace as in Figure 7(a), but with non-singular boundaries, or gates, removed.
This shows that the singularity locus on Figure 6 is valid, but not for all layers of the workspace. This clearly
demonstrates the feasibility of singularity-free assembly mode changes for this manipulator. It can also be seen that
the regions of parallel singularity show the separation of two aspects, the positive and negative determinant of the
parallel Jacobian matrix J, [11]. It was proven that there exists only two aspects for the 3-RPR manipulator in [25].

4.2.3. Degeneracy

The (o2, p3, @)-space alone cannot provide a full description of the end effector configuration. This is because
there exist points of degeneracy, where two distinct assembly modes coincide on the same a value but are not singular
points [10, 26]. We observe this as a self-intersection of the workspace in the same aspect in the (o3, p3, @)-space. At
the point of intersection, Equation (7) degenerates to the case where there are an odd number of unique, real solutions,
but there is more than one solution. This is only possible when there are repeated real roots, and these roots have
different values of (x,y) in the task space. This can be seen in the root locus plot in Figure 9, which represents a slice
of the (o7, p3, @)-space at p3 = 12. In the current 3-RPR configuration, the mechanism degenerates on two separate
« values, at approximately 0.03 and 0.885 radians (1.7° and 50.7°). The equations to find these points were derived
in [26]. As a result of this degeneracy, we must check the continuity of all task space variables in x, which means
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Figure 8: Workspace ID 4 profile of the 3-RPR. There are 2 solutions as stated by the n-solution field and hence 2 separate workspace patches are
present with workspace boundaries represented by the dark regions.

utilising (x, y) along with the existing continuity condition of @. In practice for this manipulator, (x, y) is amalgamated
into a single value of 8, = Atan (ﬁ) for checking continuity, which is the passive joint angle 6; of the first leg of
the 3-RPR. In fact, the (o2, 03, 61) space produces no degeneracy condition [26], hence it is possible in this case to
accurately determine continuity of a workspace using 6, only.

Due to the possibility of degeneracy in certain spaces, it is always recommended to check the continuity of all
variables (x and q) to ensure the effects of degeneracy do not produce erroneous results in workspace separation. In
fact, continuity-checking conditions can be performed in any co-ordinate system as long as it is accurate. Hence it
does not matter which co-ordinate system is used, because the resultant separated workspaces will be the same but
represented in a different co-ordinate system.

5. 3-RPR Path Planning

In this application, the reduced configuration space is used where p; = 17 and other joint variables are free,
limiting the example to a 2-DOF system. All plots in the configuration space have their x and y axes discretised by
Ap; = Aps = 0.125 between [0, 50], making a 401 x 401 grid. For 3D plots where angle a exists, the @-axis is cyclic
and bound between [—, 7].

The hierarchical path planning scheme is applied to two different examples: planning between two separate con-
figurations, and planning for an assembly mode-change for the same active joint configuration. Both local and global
path planning use the A* search. Cost-weighting has been implemented for the local path planning for each individ-
ual workspace to ensure the path generated does not hug any boundary of a workspace or a singularity boundary and
allows the correct gate to be reached. The global planning search is not weighted at this time, therefore the algorithm
will complete at the first shortest path encountered in the GWR. At this stage, where multiple solutions are known for
the global path, they will be manually acknowledged. Weightings based on the workspace links will be implemented
in future works.

All results were generated on MATLAB R2010a except for local path planning (A* search) where it was generated
using Visual Basic .Net 2010. The system ran on Windows 7 x64 with an Intel i7 2600K processor at 4.5 GHz with
16 GB of RAM.
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Figure 9: Root locus plot, varying p; at p; = 17 and p3 = 12. Degenerate locations indicated at approximately 0.03 and 0.885 radians.

5.1. Global Workspace Roadmap

The GWR for a reduced configurations space is also only valid for the specific parameter. An example of the
changing roadmap is observed in Figure 10 with different values of p; = 13,17,30. Note that the GWRs generated
clearly show workspace patches are always grouped into two aspects, supporting the theory of this manipulator having
only two aspects [25, 11].

5.2. Planning Between Two Separate Configurations

A path is to be planned between two completely unique configurations, starting from ¢; and ending at ¢,, where

q1(02, p3, @) = (12,18, 122.82°)
002,03, @) = (10,25, ~24.24°).

Configuration ¢; lies in workspace 61 and ¢, lies in workspace 12. The proposed global paths generated by the
A* search on the GWR (p; = 17, Figure 10(b)) are

Global Path 1: 61 - 41 = 21 — 12
Global Path 2: 61 —» 51 — 21 — 12.

Figure 11 shows the resulting trajectory generated by the local path planning via Path 1, and Figure 12 from Path 2.

13
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Figure 10: GWRs for the 3-RPR manipulator. Generated using Gephi. [28].

5.2.1. Remarks

Two possible global paths were suggested by the search in the global workspace roadmap with both having 4
workspace changes. Path 2 creates the more direct path. In both cases, the paths generated by the local path planning
are safe from singularities and unused gates, giving ample space to cross the correct gates planned in the GWR. The
jagged path is a result of coarse and simplistic discretisation of the configuration space and balancing between costing
and search heuristics in the A* search.

5.3. Planning For Assembly-Mode Change

A path is to be planned for an assembly mode change where the start and end active joint configurations remain
the same. In this case,

q1(p2, p3, @) = (20,25, 29.47°)
q2(02, p3, @) = (20, 25,96.13°).

Configuration g, lies in workspace 31 and ¢ lies in workspace 32. The proposed global path generated by the A*
search on the GWR is
Global Path: 31 — 11 — 32.
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Figure 11: Point to point trajectory via Global Path 1.
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Figure 12: Point to point trajectory via Global Path 2.
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Figure 13: Trajectory for an assembly mode change.

5.3.1. Remarks

A trajectory is successfully generated (Figure 13) that achieves an assembly mode change from its initial position
in configuration space. It is observed that a cusp point is encircled and that the path successfully navigates through a
degenerate region where the workspace intersects itself.

6. Conclusion and Future Work

The hierarchical path planning method was successfully demonstrated on the 3-RPR manipulator constrained to
2-DOF. The overall workspace decomposition was systematic and fast using the n-solution field, the global workspace
roadmap was generated and utilised to find the list of workspaces to traverse. The local path planning scheme was
able to generate paths within the workspaces and when combined together, would generate a feasible and reasonable
trajectory, given the path constraints.

The methods described for workspace decomposition and path-finding were designed to be as general as possible,
opening up the possibility of applying this scheme on similar parallel mechanisms. The n-solution field can be
generated for a mechanism whose multiple solutions to its kinematic equations can be determined. This can be
achieved by conversion to a univariate polynomial. Using this algebraical method, we can utilise fast root-finding
algorithms in our numerical analysis.

We have used a fixed cell size for our discretisation, which could generate more cells than are needed to fully define
a workspace. This may result in excessive memory usage particularly in high dimensions. We also risk introducing
unwanted features such as discontinuity in the configuration space if the grid is too coarse. Because this paper focuses
mainly on the feasible path planning method of the workspaces of parallel manipulators, the grid size was selected
such that we know it will not introduce unwanted features. In future work, an adaptive discretisation scheme can be
developed for use on higher DOF manipulators.

Improvements can be made upon this work such as the inclusion of cost-weighting the nodes the global workspace
roadmap and the refining of the local path planning such as path smoothing. Performance-wise, the A* search algo-
rithm’s speed in the local path planning is highly dependent on relationship between the cost and heuristic functions.
With the inclusion of higher dimensional data from high DOF mechanisms, code optimisations would have to be
implemented.
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Even without the local path planning, the information given by the GWR allows us to determine if a path is feasible

between any two configurations in any space. This information is valuable for very complex high DOF systems if a
quick solution is needed to determine path feasibility.
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