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Partial Recovery of Quantum Entanglement
Runyao Duan, Yuan Feng, and Mingsheng Ying

Abstract— Suppose Alice and Bob try to transform an en-
tangled state shared between them into another one by local
operations and classical communications. Then in general a
certain amount of entanglement contained in the initial state will
decrease in the process of transformation. However, an interesting
phenomenon called partial entanglement recovery shows that it
is possible to recover some amount of entanglement by adding
another entangled state and transforming the two entangled
states collectively.

In this paper we are mainly concerned with the feasibility
of partial entanglement recovery. The basic problem we address
is whether a given state is useful in recovering entanglement
lost in a specified transformation. In the case where the source
and target states of the original transformation satisfy the strict
majorization relation, a necessary and sufficient condition for
partial entanglement recovery is obtained. For the generalcase
we give two sufficient conditions. We also give an efficient
algorithm for the feasibility of partial entanglement recovery in
polynomial time.

As applications, we establish some interesting connections
between partial entanglement recovery and the generation of
maximally entangled states, quantum catalysis, mutual catalysis,
and multiple-copy entanglement transformation.

Index Terms— Quantum entanglement, Entanglement trans-
formation, Partial entanglement recovery, Entanglement cataly-
sis, Majorization.

I. I NTRODUCTION

QUANTUM entanglement is a valuable resource in quan-
tum information processing. It can implement some

information processing tasks that cannot be accomplished
classically. As a consequence, entanglement has been widely
used in quantum cryptography [1], quantum superdense coding
[2], and quantum teleportation [3]; see [4], Chapter 12 for an
excellent exposition. Due to the great importance of quantum
entanglement, a fruitful branch of quantum information the-
ory named quantum entanglement theory is currently being
developed.

Since quantum entanglement exists between different sub-
systems of a composite system shared by spatially separated
parties, a natural constraint on the manipulation of entangle-
ment is that the separated parties are only allowed to perform
local quantum operations on their own subsystems and to
communicate to each other classically (LOCC). Using this
restricted set of transformations, the parties are often required
to optimally manipulate the entangled state. One of the central
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problems of quantum entanglement theory is thus to find the
conditions for when an entangled state can be transformed into
another one using LOCC. This problem can be approached in
two different, but complementary, contexts: the finite regime
and the asymptotic regime. In the asymptotic regime Bennett
and his collaborators [5] proposed a reversible protocol which
shows that any two bipartite entangled pure states with infinite
copies can be converted into each other without any loss of
entropy of entanglement. Since in practice one can only have
finitely many copies of an entangled state, it is of great interest
to consider the problem of entanglement transformation in a
finite (non-asymptotic) setting. Arguably, the most important
step in the finite regime was made by Nielsen in [6], where
he reported a necessary and sufficient condition for a bipartite
entangled pure state to be transformed into another pure one
deterministically using LOCC. Suppose two distantly located
parties, Alice and Bob, share an entangled state|ψ〉 in Cn⊗Cn
with Schmidt decomposition|ψ〉 =

∑n
i=1

√
αi|iA〉|iB〉, where

α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 are Schmidt coefficients and
∑n
i=1 αi = 1. |iA〉 and |iB〉 are orthonormal bases of Alice’s

and Bob’s systems, respectively. Suppose the two parties
want to transform|ψ〉 into another state|ϕ〉 with Schmidt
decomposition|ϕ〉 =

∑n
i=1

√
βi|i′A〉|i′B〉, whereβ1 ≥ β2 ≥

· · · ≥ βn ≥ 0 and
∑n
i=1 βi = 1. The orthonormal bases

|iA〉 and|i′A〉 (similarly, |iB〉 and|i′B〉) are not necessarily the
same. For the sake of convenience, we writeψ = (α1, · · · , αn)
and ϕ = (β1, · · · , βn) for the respective ordered Schmidt
coefficient vectors of|ψ〉 and |ϕ〉. Nielsen proved that Alice
and Bob can achieve this transformation of|ψ〉 to |ϕ〉 with
certainty using LOCC, written|ψ〉 → |ϕ〉, if and only if
ψ ≺ ϕ. Here the symbol ‘≺’ stands for ‘majorization relation’,
andψ ≺ ϕ holds if and only if

l
∑

i=1

αi ≤
l

∑

i=1

βi for all 1 ≤ l < n

and
∑n
i=1 αi =

∑n
i=1 βi. If all inequalities in the above

equation hold strictly and
∑n

i=1 αi =
∑n

i=1 βi, then we say
thatψ is strictly majorized byϕ. Majorization is an interesting
and well-developed topic in linear algebra. For more details,
we refer the reader to [7] and [8].

Nielsen’s theorem establishes a connection between the
theory of majorization and entanglement transformation. It is
of fundamental importance in studying entanglement transfor-
mation and has many interesting corollaries. For example, by
taking limits the asymptotic result of Bennettet al can be
recovered from Nielsen’s theorem. Unlike the transformations
in the asymptotic regime, a direct implication of Nielsen’sthe-
orem is that the amount of entanglement decreases during the
deterministic transformation. LetE(|ψ〉) = −∑n

i=1 αi log2 αi
be the entropy of entanglement of|ψ〉. Then by the properties
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of majorization, it follows that|ψ〉 → |ϕ〉 impliesE(|ϕ〉) ≤
E(|ψ〉) [6]. Indeed, these properties of majorization imply
that any well-behaved entanglement measures, such as Renyi’s
entropy, or any other suitable concave functions, also decrease
under LOCC. Intuitively, this means that a certain amount
of entanglement will be lost in a LOCC transformation. It
would be desirable to save some entanglement lost and reduce
the net loss of entanglement in the transformation, since the
saved entanglement can be used, for example, to increase the
classical capacity of a quantum channel [9].

The possibility of recovering lost entanglement was first ob-
served by Morikoshi [10]. We outline Morikoshi’s recovering
scheme as follows. Suppose Alice and Bob share an entangled
state|ψ〉 and they can transform it into|ϕ〉 by LOCC. As we
mentioned above, this process is generally a dissipative one in
the sense that the quantity of entanglement in the target state
is less than that in the source state. Suppose now an auxiliary
state|χ〉 is supplied to Alice and Bob. Instead of transforming
|ψ〉 into |ϕ〉 directly, they perform collective operations on
the joint state|ψ〉 ⊗ |χ〉, and transform it into another joint
state|ϕ〉 ⊗ |ω〉. Of course, as required by Nielsen’s theorem,
entropy of entanglement of the whole system decreases too.
But by choosing a suitable auxiliary state|χ〉, sometimes a
state|ω〉 with more entropy of entanglement can be obtained.
Intuitively, this process enables part of entanglement lost in the
original transformation to be transferred to the auxiliarystate,
and it was termedpartial entanglement recovery. Morikoshi
demonstrated that partial entanglement recovery for a trans-
formation between2 × 2 states is always possible by using a
2 × 2 auxiliary state.

Partial entanglement recovery for transformations between
higher dimensional states was considered by Bandyopadhyay
et al. in [12]. To avoid trivial cases (a perfect recovery can
always be achieved by letting|χ〉 = |ϕ〉 and |ω〉 = |ψ〉), a
notion of genuinepartial recovery was introduced. A partial
recovery scheme is genuine if the dimension of the auxiliary
state is smaller than that of the original source state. Thenit
was proven that for any states|ψ〉 and|ϕ〉 such thatψ is strictly
majorized byϕ andn > 2, a genuine partial recovery is always
possible by using only2×2-dimensional auxiliary states. This
extensively generalized the result in [10]. The possibility of
genuine partial recovery for the transformation of|ψ〉 to |ϕ〉
such thatψ is not strictly majorized byϕ was also examined
carefully in [12]. However, several fundamental problems
concerning partial entanglement recovery are still open. For
example, the existence of genuine partial recovery in the case
of αn = βn is unknown. Furthermore, the proof confirming the
existence of auxiliary states for partial entanglement recovery
presented in [12] is nonconstructive. In general, this proof
method does not provide a way to find these auxiliary states
efficiently.

In this paper, we study the feasibility of partial entanglement
recovery. We consider the problem of whether a given entan-
gled state can be used to recover some entanglement lost in
a specified transformation. Our motivations are twofold. The
first one is more theoretical. In some sense, the process of
partial entanglement recovery reveals a new kind of application
of quantum entanglement: it can be used to store some entan-

glement lost in information processing tasks. So it is of great
theoretical interest to characterize the entanglement recovering
ability of a given entangled state, as it may lead to a better
understanding of some fundamental properties of quantum
entanglement. In addition, as will see later, the solution of the
above problem leads us to a rich mathematical structure and
provides new insight into the process of partial entanglement
recovery. The second motivation is more practical. Suppose
we are required to perform a couple of different entanglement
transformations. In most applications the available entangled
states shared between two parties are pre-specified and very
limited. A solution to the above problem will help us to
determine whether partial entanglement recovery for these
transformations is possible with other pre-specified entangled
states. It is also worth noting that this problem is more general
than the ones discussed in [10] and [12], and its solution
automatically resolves many trivial cases.

To state the above problem more formally, let us assume
that |ψ〉 and |ϕ〉 are the source state and the target state of
the specified transformation, respectively, and let|χ〉 be the
given auxiliary state. Furthermore, suppose that|ψ〉 can be
transformed into|ϕ〉 with certainty using LOCC. Our goal is to
determine whether there exists another state|ω〉 satisfying (i)
the transformation of|ψ〉⊗|χ〉 to |ϕ〉⊗|ω〉 can be implemented
with certainty using LOCC, and (ii)|ω〉 is more entangled
than |χ〉. Next, we clarify a subtle point: what is meant by
the statement that a state is more entangled than another one?
An exact mathematical definition is needed. One way to do
this is to use some measures of entanglement such as entropy
of entanglement mentioned above, as in [10] and [12]. Note
that for deterministic transformations, a single measure of
entanglement is usually not enough to quantify entanglement
amount since there exist incomparable states|ψ〉 and|ϕ〉, i.e.,
neither |ψ〉 → |ϕ〉 nor |ϕ〉 → |ψ〉 is possible [6]. So in the
present paper, we adopt an alternative view-point: we say that
|ω〉 is more entangled than|χ〉 if |ω〉 → |χ〉 and|χ〉 9 |ω〉. By
Nielsen’s theorem, this is equivalent toω ≺ χ andχ 6= ω (here
bothχ andω are in non-increasing order). We believe that this
view-point is more reasonable than only considering a single
measure. Now the mathematical problem of the feasibility of
partial entanglement recovery can be clearly formulated as
follows:

Problem 1. Given a triple of states(|ψ〉, |ϕ〉, |χ〉) such that
ψ ≺ ϕ, determine whether there exists a state|ω〉 such that
ψ ⊗ χ ≺ ϕ⊗ ω, ω ≺ χ, andχ 6= ω.

If such a state|ω〉 does exist, then we call it a solution of
Problem 1. In the above formulation we made no additional
assumptions on the dimension ofχ except that it is finite.
So even in the case that the dimension ofχ is larger than or
equal to that ofψ (andϕ), the above problem still makes sense.
This enables us to consider the process of partial entanglement
recovery in a general mathematical framework. It is also worth
pointing out that Problem 1 cannot be directly solved by linear
programming methods because the majorization relationψ ⊗
χ ≺ ϕ ⊗ ω cannot be expressed by linear constraints, unless
we know how to order a tensor product of two probability
vectors,ϕ ⊗ ω. The main difficulty here is that the order of
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ϕ⊗ω is not related in any simple way to the orders ofϕ and
ω.

The principal aim of the present paper is to solve Problem 1
stated above. We first introduce three indices of uniformityfor
bipartite entangled pure states. With the aid of these indices,
we prove that whether|χ〉 can save some entanglement lost
for the transformation of|ψ〉 to |ϕ〉 only depends on the target
state|ϕ〉 and the presence of the equalities in the majorization
relation ψ ≺ ϕ. To be concise, let|ψ〉 be a state withm
distinct Schmidt coefficients, say,α′

1 > · · · > α′
m ≥ 0. If

m > 1, then the maximal local uniformity of|ψ〉, denoted by
Lu(|ψ〉), is given by the maximal ratio ofα′

i+1 and α′
i for

all 1 ≤ i ≤ m − 1. In contrast, the global uniformity of|ψ〉,
denoted bygu(|ψ〉), is given by the ratio ofα′

m andα′
1. In

the special case ofm = 1, both indices are defined to be1.
These indices have many useful properties. Indeed, they are
key tools in studying partial entanglement recovery. With these
notions, Problem 1 is completely solved in the case whereψ is
strictly majorized byϕ (Theorem 3.2). We achieve this goal by
considering two cases. First, Problem 1 is examined carefully
for a special case where all nonzero Schmidt coefficients of
|χ〉 are identical, i.e.,Lu(|χ〉) = 0 or Lu(|χ〉) = 1. Second
we consider the general case that0 < Lu(|χ〉) < 1 and prove:

(1) if Lu(|χ〉) > gu(|ϕ〉), then |χ〉 can recover some
entanglement lost for the transformation of|ψ〉 to |ϕ〉;

(2) if Lu(|χ〉) = gu(|ϕ〉), then there is only a special form
of |ϕ〉 for which |χ〉 can save some entanglement lost in the
transformation of|ψ〉 to |ϕ〉; and

(3) if Lu(|χ〉) < gu(|ϕ〉), then|χ〉 cannot recover entangle-
ment lost in any transformation with the target|ϕ〉.

It should be pointed out that the proof we present provides
an explicit construction of the resulting state|ω〉. In view of
this, the above results are very useful in pursuing practical
applications of partial entanglement recovery. Some interesting
special cases of these results are also discussed.

For the case whereψ is not strictly majorized byϕ, a com-
plete solution of Problem 1 appears to be very difficult. Nev-
ertheless, two sufficient conditions for partial entanglement
recovery are presented (Theorems 4.1 and 4.2). Employing
these conditions as tools we show that the genuine partial
recovery is not always possible when the dimension of the
target state is larger than2 × 2. For example, ifn = 3 and
α1 = β1, |χ〉 should be at least a3× 3 entangled state, which
means any recovery scheme cannot be genuine. (This result in
fact has been obtained implicitly in [12]). Whenα1 = β1 and
αn = βn, we show that4× 4-dimensional auxiliary states are
necessary and sufficient. In the case wheren = 4, a genuine
partial recovery is not possible. On the other hand, even in
these special cases, it still makes sense to consider whether |χ〉
is useful in recovering entanglement lost in the transformation
of |ψ〉 to |ϕ〉.

Besides the mathematical characterization of partial entan-
glement recovery outlined above, we also present an algorith-
mic approach to Problem 1. Letn andk be the dimensions of
ψ (as well asϕ) andχ (as well asω), respectively. Our goal
now is to design polynomial time algorithms inn or/andk
to solve Problem 1. As mentioned above, the main difficulty
in solving Problem 1 lies in the fact that the order of the

tensor productϕ ⊗ ω cannot be determined by a simple
method even after we know the orders ofϕ and ω. Thus
one cannot apply standard linear programming techniques
directly. A naive enumeration of the possible orders ofϕ⊗ω
yields about(nk)! results, which is intractable. A simple but
powerful lemma is introduced to reduce the number of orders
of the tensor product. The basic idea behind this lemma comes
from the observation that for a fixedϕ, ϕ ⊗ ω has at most
O((kn)2(k−1)) different orders whenω varies. This number of
the possible orders is only a polynomial inn whenk is treated
as a constant. For each possible order, we can employ linear
programming methods to solve the majorization inequality
ψ⊗χ ≺ ϕ⊗ω. Consequently, an algorithm of time complexity
O(n2k−1 log2 n) is obtained (Theorem 5.1). This algorithm is
not efficient in the case wherek can vary freely. Fortunately,
by examining the mathematical structure of partial entangle-
ment recovery carefully, we can further refine this algorithm
into a new one with time complexityO(n2k4) (Theorem 5.2).
Therefore we can efficiently determine the feasibility of partial
entanglement recovery by using algorithmic methods.

To illustrate the utility of the above results, we show
that partial entanglement recovery also happens in situations
such as quantum catalysis, mutual catalysis, and multiple-
copy transformation. As an interesting application, we con-
sider the generation of maximally entangled states using the
scheme of partial entanglement recovery. We prove that any
transformation with the Schmidt coefficient vector of the
source state being strictly majorized by that of the target state
can always concentrate some partially entangled state intoa
maximally entangled one. We also find a close connection
between partial entanglement recovery and quantum catalysis
(see [18], [19], [21]). That is, if a transformation can be
implemented with certainty by using some quantum catalyst,
then entanglement lost in the transformation can be partially
recovered by a suitable auxiliary state. Moreover, we show that
partial entanglement recovery is directly connected to mutual
catalysis [23]. As a consequence, a systematic construction of
the instances with mutual catalysis effect is sketched. When
we consider the possibility of partial entanglement recovery
in multiple-copy transformations (see [15], [19], and [21]), we
notice a very interesting phenomenon: although an auxiliary
state cannot be used to do partial entanglement recovery fora
single-copy transformation, it can recover some entanglement
lost in certain multiple-copy transformations.

The rest of the paper is organized as follows. Section II
presents some notations and concepts, including the definitions
of uniformity indices. In Section III, we present a complete
solution to Problem 1 in the case thatψ is strictly majorized by
ϕ. We consider general transformations in Section IV and give
two sufficient conditions for partial entanglement recovery.
Some special but interesting cases of these conditions are
investigated in detail. In Section V we discuss the feasibility of
partial entanglement recovery from an algorithmic viewpoint
and present two algorithms to solve Problem 1. To understand
whether partial entanglement recovery is possible in situations
such as quantum catalysis, mutual catalysis, and multiple-
copy transformation, we give more examples and discussions
in Section VI. In Section VII, we draw a brief conclusion.
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The proofs of some lemmas and theorems are completed in
Appendices.

II. PRELIMINARIES

First, it is helpful to introduce some notations associated
with finite dimensional vectors. Letx be ann-dimensional
vector. The dimension ofx is denoted bydim(x), i.e.,
dim(x) = n. The notationx↓ is used to stand for the vector
that is obtained by rearranging the components ofx into
non-increasing order. Similarly,x↑ denotes the vector that
is obtained by rearranging the components ofx into non-
decreasing order. The notationx⊕k denotes the direct sum of
x with itself k many times. In particular, for constantc, c⊕k

is the k-dimensional vector(c, c, . . . , c). If every component
of x is nonnegative, then we can write

x↓ = (x′1
⊕k1 , . . . , x′m

⊕km),

wherex′1 > · · · > x′m ≥ 0, ki ≥ 1 for eachi = 1, . . . ,m,
and

∑m
i=1 ki = n. The above form ofx↓ is usually called the

compact form ofx. It is obvious that the compact form of a
nonnegative vector is unique when the dimension of the vector
space under consideration is fixed.

The sum of them largest components of the vectorx is
denoted byem(x). That is, em(x) =

∑m
i=1 x

↓
i . It is easily

to verify that em(x) is a continuous function ofx for each
m = 1, . . . , n.

We say thatx is majorized byy, denoted byx ≺ y, if

em(x) ≤ em(y), for all 1 ≤ m ≤ n− 1 (1)

anden(x) = en(y). If all inequalities in Eq. (1) are strict and
en(x) = en(y), then we follow the terminology in [12] and
say thatx is strictly majorized byy, denoted byx⊳ y.

A vector x is a segment of a vectory if there existi ≥ 1
andk ≥ 0 such thatx = (yi, yi+1, . . . , yi+k).

Now we apply the above terminology to bipartite entangled
pure states. Let|ψ〉 be ann × n entangled pure state with
ordered Schmidt coefficientsα1 ≥ α2 ≥ · · · ≥ αn ≥ 0.
As we have mentioned in the introduction, the symbolψ is
used to denote the Schmidt coefficient vector of|ψ〉, i.e.,
ψ = (α1, . . . , αn), which is just ann-dimensional probability
vector. We often identify the compact form ofψ with the
compact form of state|ψ〉. We call |ψ〉 an n × n maximally
entangled state if the compact form of|ψ〉 reduces to( 1

n
)⊕n;

otherwise we say that|ψ〉 is a partially entangled state. Ifϕ′↓

is a segment ofϕ↓, then we call|ϕ′〉 an unnormalized state.
To apply Nielsen’s theorem to unnormalized states, it can

be restated as:|ψ〉 → |ϕ〉 if and only if ψ ≺ ϕ.
We defineS(|ϕ〉) to be the set of alln × n entangled

pure states|ψ〉 which can be directly transformed into|ϕ〉
by LOCC. By Nielsen’s theorem,S(|ϕ〉) = {|ψ〉 : ψ ≺ ϕ}.
We also defineSo(|ϕ〉) to be the set of alln × n states
|ψ〉 such thatψ is strictly majorized byϕ, i.e., So(|ϕ〉) =
{|ψ〉 : ψ ⊳ ϕ}. It should be noted that states|ψ〉 in S(|ϕ〉)
are required to have the same dimension as|ϕ〉. Such a
requirement forces us to distinguishS(|ϕ〉) fromS(|ϕ′〉) when
|ϕ〉 and|ϕ′〉 are essentially the same state but their dimensions
are different. For example, letϕ = (0.5, 0.25, 0.25) and

ϕ′ = (0.5, 0.25, 0.25, 0). It is obvious that the states|ϕ〉 and
|ϕ′〉 are essentially the same. However, according to the above
definitions,S(|ϕ〉) is completely different fromS(|ϕ′〉). This
design decision in definingS(|ϕ〉) enables us to considerably
simplify the presentation of our main results. The same remark
also applies to the definition ofSo(|ϕ〉).

In this paper, the phrase ‘bipartite entangled pure state’ is
used frequently. So, for convenience, sometimes we abbreviate
it to ‘state’ or ‘quantum state’. This should not cause any
confusion from the context.

Now we introduce three notions which are key mathematical
tools in describing partial entanglement recovery.

Definition 2.1: Let |ψ〉 be ann×n partially entangled state
with compact form(α′⊕k1

1 , . . . , α′⊕km
m ), wheren =

∑m
i=1 ki

andm > 1. Then
(i) the minimal local uniformity of|ψ〉 is defined by

lu(|ψ〉) = min{α
′
i+1

α′
i

: 1 ≤ i < m};

(ii) the maximal local uniformity of|ψ〉 is defined by

Lu(|ψ〉) = max{α
′
i+1

α′
i

: 1 ≤ i < m};

(iii) the global uniformity of |ψ〉 is defined by

gu(|ψ〉) =
α′
m

α′
1

.

It is easy to see that the minimal local uniformity, the
maximal local uniformity, and the global uniformity of a
quantum state|ψ〉 with ψ↓ = (α1, . . . , αn) may be rewritten
in a slightly different way:

lu(|ψ〉) = min{αi+1

αi
: 1 ≤ i < n};

Lu(|ψ〉) = max{αi+1

αi
: 1 ≤ i < n and αi > αi+1};

gu(|ψ〉) =
αn
α1
.

The above rewriting will help us to simplify some proofs.
From the above rewriting of Definition 2.1, it is easy to see

that bothlu(|ψ〉) andgu(|ψ〉) are continuous with respect to
|ψ〉. Thus it is reasonable to define the minimal local unifor-
mity and the global uniformity of a maximally entangled state
to be 1. However, such a continuous property does not hold
for the maximal local uniformity. To keep many properties
of these indices valid even in the case that the quantum state
under consideration is maximally entangled, it is convenient to
define the maximal local uniformity of a maximally entangled
state to be1. Also, for the sake of convenience, when the
dimension of the state under consideration is one-dimensional,
we define the uniform indices as1.

In applying the above definitions of uniformity indices,
it should be noted that the dimension of|ψ〉 is somewhat
arbitrary, as one can append zeroes to the vectorψ and thereby
increase its dimension without changing the underlying quan-
tum state. Suppose that the number of nonzero components of
ψ is n. If |ψ〉 is treated as ann× n state, all the above three
uniformity indices are positive. However, if we append zeroes
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to ψ and yield a state|ψ′〉, then the uniformity indices of|ψ′〉
are changed rapidly. For example, letψ = (0.5, 0.25, 0.25)
and ψ′ = (0.5, 0.25, 0.25, 0). It is obvious that both the
minimal local uniformity and the global uniformity of|ψ〉 are
0.5. However, the minimal local uniformity and the global
uniformity of |ψ′〉 are changed into0. To avoid any confusion
that may be caused by the phenomenon that we just mentioned
in the above definition, the dimension of the states are treated
as fixed. In other words, if|ψ′〉 is obtained from|ψ〉 by
appending zeros in its Schmidt coefficient vector, they may
be thought of being two different states. Therefore, it is
reasonable to allow that sometimeslu(|ψ〉) 6= lu(|ψ′〉) (as
well asLu(|ψ〉) 6= Lu(|ψ′〉) andgu(|ψ〉) 6= gu(|ψ′〉)).

Some simple but useful properties of the three indices
defined above are presented in the following:

Lemma 2.1:Let |ψ〉 and |ϕ〉 be two quantum states
with compact formsψ↓ = (α′⊕k1

1 , . . . , α′⊕kr
r ) and ϕ↓ =

(β′⊕l1
1 , . . . , β′⊕ls

s ), respectively. Then
(1) 0 ≤ lu(|ψ〉), Lu(|ψ〉), gu(|ψ〉) ≤ 1.
(2) lr−1

u (|ψ〉) ≤ gu(|ψ〉) ≤ lu(|ψ〉).
(3) gu(|ψ〉) ≤ Lr−1

u (|ψ〉).
(4) gu(|ψ〉) ≤ lu(|ψ〉) ≤ Lu(|ψ〉).
(5) if r = s and α′

i = β′
i for i = 1, . . . , r, then

lu(|ψ〉) = lu(|ϕ〉). Similarly, Lu(|ψ〉) = Lu(|ϕ〉) and
gu(|ψ〉) = gu(|ϕ〉).

(6) if |ψ〉 → |ϕ〉, thengu(|ψ〉) ≥ gu(|ϕ〉).
Proof. (1)–(5) follow immediately from Definition 2.1.

(6) follows directly from Definition 2.1 and the fact that if
|ψ〉 → |ϕ〉 thenα′

1 ≤ β′
1 andα′

r ≥ β′
s. �

We give some remarks on the above properties. (1) shows
that the three indices of minimal local uniformity, maximal
local uniformity and global uniformity are all between 0 and1.
Moreover, they take value1 if the state is maximally entangled.
The minimal local uniformity and the global uniformity take
the value0 if the state in question has zero as one Schmidt
coefficient, while the maximal local uniformity takes value0
if it is a maximally entangled state in a state space with lower
dimension, i.e., with a compact form(( 1

m
)⊕m, 0⊕n−m) for

somem < n. If lu(|ψ〉) = 0 or lu(|ψ〉) = 1, i.e., |ψ〉 has
zero as a Schmidt coefficient or it is maximally entangled,
then both the inequalities in (2) hold with equalities. In the
case that0 < lu(|ψ〉) < 1, the first equality in (2) holds
if the distinct Schmidt coefficients of|ψ〉 form a geometric
sequence; while the second equality holds if|ψ〉 has at most
two distinct Schmidt coefficients. The equality in (3) holds
if and only if the distinct Schmidt coefficients of|ψ〉 form a
geometric sequence. (4) can be analyzed similarly. (5) means
that these indices only depend on distinct Schmidt coefficients
of the state. (6) indicates that global uniformity is decreasing
under LOCC.

In addition to these trivial properties displayed in Lemma
2.1, the following lemma presents three more interesting
properties of global uniformity and minimal local uniformity:

Lemma 2.2:Let |ψ〉 and |ϕ〉 be two quantum states. Then
(1) gu(|ψ〉 ⊗ |ϕ〉) = gu(|ψ〉)gu(|ϕ〉). In particular,

gu(|ψ〉⊗m) = gmu (|ψ〉) for anym ≥ 1.
(2) lu(|ψ〉 ⊗ |ϕ〉) ≥ min{lu(|ψ〉), lu(|ϕ〉)}.

(3) lu(|ψ〉) ≤ lu(|ψ〉⊗k) ≤ min{α
′

2

α′

1

,
α′

r

α′

r−1

}, whereψ↓ =

(α′⊕k1
1 , . . . , α′⊕kr

r ).
Proof. (1) follows immediately by Definition 2.1. (3) is a

simple application of (2) and Definition 2.1. So it is enough
to prove (2).

Let ψ↓ = (α1, · · · , αm) and ϕ↓ = (β1, · · · , βn). Since
the minimal uniformitylu is a continuous functional, we can
assume without loss of generality that all components ofψ
andϕ are positive. Let

a = αpβq and b = αrβs, a ≤ b,

be any two successive elements of the ordered probability
vector(ψ ⊗ ϕ)↓. It is obvious thatr < m or s < n. Suppose
r < m is the case, let us try to prove

lu(|ψ〉) ≤
a

b
. (2)

Indeed, from the definition oflu we have

lu(|ψ〉) ≤ αr+1

αr

= αr+1βs
αrβs

≤ 1.
(3)

Thusαr+1βs ≤ b. But, sincea andb are successive elements,
αr+1βs cannot belong to the interval(a, b), that is,

αr+1βs ≤ a. (4)

From Eqs. (3) and (4) we get immediately Eq. (2).
If r = m then we can be sures < n. Thus we can apply

analogous arguments to prove that

lu(|ϕ〉) ≤
a

b
.

In both cases one has

min{lu(|ψ〉), lu(|ϕ〉)} ≤ a

b
.

Since this is true for any successivea ≤ b, we have proved
statement (2). �

The above lemma deserves some more remarks. Intuitively,
(1) shows that the global uniformity is multiplicative under
tensor product. (2) means that the tensor product of two states
is at least as uniform as one of them. (3) provides an upper
bound and a lower bound respectively for the minimal local
uniformity of any state consisting of multiple copies of a
given state. More interestingly, it shows that the minimal local
uniformity of a 2 × 2 or 3 × 3 state remains invariant under
tensor products involving multiple copies.

One of the most interesting applications of the uniformity
indices introduced above is that they provide a characterization
of when a strict majorization relation holds.

Lemma 2.3:Let |ϕ〉 and|χ〉 be two quantum states, and let
So(|ϕ〉)⊗|χ〉 denote the set of all states of the form|ψ〉⊗|χ〉
with |ψ〉 in So(|ϕ〉), i.e.,So(|ϕ〉) ⊗ |χ〉 = {|ψ〉 ⊗ |χ〉 : |ψ〉 ∈
So(|ϕ〉)}. Then

So(|ϕ〉) ⊗ |χ〉 ⊆ So(|ϕ〉 ⊗ |χ〉) ⇔ lu(|χ〉) > gu(|ϕ〉).
Proof. See Appendix A. �

Roughly speaking, the above lemma shows that if the aux-
iliary state|χ〉 is uniform enough, then the strict majorization
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relationψ⊗χ⊳ϕ⊗χ can be kept providingψ⊳ϕ, and vice
versa. What we would like to emphasize here is that the only
constraint on the source state|ψ〉 is ψ ⊳ ϕ.

In the introduction we have frequently used the notion of
partial entanglement recovery. We present a rigorous definition
as follows.

Definition 2.2: Let |ψ〉 and|ϕ〉 be twon×n states, and let
|χ〉 be ak×k state. We say that|χ〉 can do partial entanglement
recovery for the transformation of|ψ〉 to |ϕ〉 if there exists a
k × k state|ω〉 such that

(i) both the transformations of|ψ〉 ⊗ |χ〉 to |ϕ〉 ⊗ |ω〉 and
|ω〉 to |χ〉 can be realized with certainty under LOCC. That
is, |ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉 and |ω〉 → |χ〉;

(ii) the transformation of|χ〉 to |ω〉 cannot be achieved
with certainty under LOCC. That is,|χ〉 9 |ω〉.

Some remarks follow:

1) In the above definition, both the dimensions of the
source state|ψ〉 and the target state|ϕ〉 are n × n.
Similarly, the dimensions of the auxiliary state|χ〉 and
the resulting state|ω〉 are bothk× k. These constraints
are reasonable since during the transformation process
the state space under consideration isn’t modified. In-
tuitively, |ψ〉 and |ϕ〉 are two different states of the
same two particles entangled between Alice and Bob.
The dimensions of these particles are assumed to be
finite and fixed. Similar arguments apply to the states
|χ〉 and |ω〉. This is in fact the reason that we have
to require that the dimension|ϕ〉 is fixed in defining
S(|ϕ〉), So(|ϕ〉), lu(|ϕ〉), Lu(|ϕ〉), andgu(|ϕ〉), since all
of them are introduced in this paper to describe partial
entanglement recovery.

2) According to Nielsen’s theorem, the above definition can
be rewritten as: ak×k auxiliary state|χ〉 can do partial
entanglement recovery for a transformation of|ψ〉 to |ϕ〉
if there exists anotherk× k state|ω〉 such that all three
relationsψ ⊗ χ ≺ ϕ ⊗ ω, ω ≺ χ, andχ↓ 6= ω↓ hold
simultaneously.

3) It is obvious that(x, 0) ≺ (y, 0) if and only if x ≺
y. Without loss of generality, we can assume that the
number of nonzero Schmidt coefficients of|ψ〉 is n. In
other words, all Schmidt coefficients of the source state
are positive.

For technical simplicity, we apply the above discussions not
only to normalized but also to unnormalized states. Sometimes
we shall use a clause such as ‘|χ〉 can save some entanglement
lost for the transformation of|ψ〉 to |ϕ〉’, and we shall say
that |ψ〉 can transfer some entanglement into the state|χ〉
whenever|χ〉 can do partial entanglement recovery for the
transformation from|ψ〉 to some unspecified target state|ϕ〉
to mean that ‘|χ〉 can do partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉’.

III. PARTIAL ENTANGLEMENT RECOVERY FOR A

TRANSFORMATION BETWEEN STATES WITH STRICT

MAJORIZATION

In this section, we focus on whether a given auxiliary state
|χ〉 can do partial entanglement recovery for a transformation

of |ψ〉 to |ϕ〉 such that|ψ〉 is in So(|ϕ〉). A necessary and
sufficient condition for such a recovery is presented. Thus,
a complete characterization of such auxiliary states|χ〉 is
obtained.

First, we define the distance between|ψ〉 and |ϕ〉 to be
the Euclidean distance between twon-dimensional ordered
probability vectorsψ↓ andϕ↓, i.e,

‖|ψ〉 − |ϕ〉‖ =

√

√

√

√

n
∑

i=1

(ψ↓
i − ϕ↓

i )
2.

Before presenting the main result of this section, we prove
a useful theorem. Assuming that|ψ〉 is in So(|ϕ〉), we shall
prove that if lu(|χ〉) > gu(|ϕ〉) then a suitable collective
operation can transform the joint state|ψ〉 ⊗ |χ〉 into another
joint state |ϕ〉 ⊗ |ω〉 such that |ω〉 is not ‘far from’ |χ〉.
Surprisingly, this result does not depend on which source state
|ψ〉 we have chosen at the beginning.

Theorem 3.1:Let |ψ〉 and |ϕ〉 be two states with|ψ〉 ∈
So(|ϕ〉). If |χ〉 is an auxiliary state such thatlu(|χ〉) >
gu(|ϕ〉), then there exists a positive numberδ such that for
any state|ω〉 satisfying‖|ω〉 − |χ〉‖ < δ, it holds that

|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉. (5)
Proof. Since lu(|χ〉) > gu(|ϕ〉) and |ψ〉 ∈ So(|ϕ〉), it

follows from Lemma 2.3 that

ψ ⊗ χ⊳ ϕ⊗ χ. (6)

Notice that a small enough perturbation on the right hand
side of Eq. (6) will not change the relation ‘⊳’ since every
inequality in Eq. (1) is strict. Thus it is possible to take a
sufficiently small positive numberδ such that for any state
|ω〉 satisfying‖|ω〉 − |χ〉‖ < δ, the relationψ ⊗ χ ≺ ϕ ⊗ ω
holds, which confirms the validity of Eq. (5). With that we
complete the proof of Theorem 3.1. �

The following simple corollary of Theorem 3.1 establishes
a connection between uniformity indices and partial entangle-
ment recovery.

Corollary 3.1: If gu(|ϕ〉) < lu(|χ〉) < 1, then |χ〉 can do
partial entanglement recovery for any transformation of|ψ〉 to
|ϕ〉 with |ψ〉 ∈ So(|ϕ〉).
Intuitively, if the minimal local uniformity of a partially
entangled pure state|χ〉 is larger than the global uniformity
of |ϕ〉, then the transformation of|ψ〉 to |ϕ〉 such thatψ ⊳ ϕ
can always increase the entanglement degree of|χ〉.

Example 3.1:Let |ψ〉 and |ϕ〉 be two 2 × 2 states with
ψ↓ = (a, 1−a) andϕ↓ = (b, 1−b), where1

2 < a < b < 1. The
goal here is to find a2×2 state that can do partial entanglement
recovery for the transformation of|ψ〉 to |ϕ〉.

Take an auxiliary state|χ(p)〉 with χ↓(p) = (p, 1 − p). It
is easy to check that|ψ〉 is in So(|ϕ〉). By Corollary 3.1, if
|χ(p)〉 satisfies

gu(|ϕ〉) < lu(|χ(p)〉) < 1, (7)

then |χ(p)〉 can be used to do partial entanglement recovery
for the transformation|ψ〉 → |ϕ〉. It is easy to see that Eq. (7)
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is equivalent to
1 − b

b
<

1 − p

p
< 1,

or 1
2 < p < b. The desired state|ω〉 such that both

|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉 and |ω〉 → |χ〉 hold can be taken as
|ω〉 = |χ(p − ǫ)〉 with a suitably small positive numberǫ. It
is obvious that|χ〉 9 |ω〉 wheneverǫ is positive but small
enough. �

In Example 3.1, the condition ofp < b means that|χ(p)〉
is more entangled than|ϕ〉. A simple analysis shows that
this condition is also necessary to guarantee that|χ(p)〉 does
partial entanglement recovery for the transformation of|ψ〉
to |ϕ〉. So we rediscover the main result in [10]: for2 × 2-
dimensional states, the auxiliary state|χ〉 can do nontrivial
partial entanglement recovery for a transformation with target
state|ϕ〉 if and only if |χ〉 is more entangled than|ϕ〉.

Example 3.2:This is a generalization of Example 3.1. Let
|ψ〉 and|ϕ〉 be two states such that|ψ〉 is in So(|ϕ〉). Our aim
here is to decide whether there exists some2 × 2 state that
can do partial entanglement recovery for the transformation of
|ψ〉 to |ϕ〉.

Take an auxiliary state|χ(p)〉 with χ↓(p) = (p, 1 − p). By
Corollary 3.1, if

gu(|ϕ〉) < lu(|χ(p)〉) < 1 (8)

then |χ(p)〉 can do partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉. Moreover, Eq. (8) is equivalent
to

1

2
< p <

1

1 + gu(|ϕ〉)
. (9)

Therefore, the entanglement lost in the transformation of
|ψ〉 to |ϕ〉 can always be partially recovered by a2 × 2 state
|χ(p)〉 satisfying Eq. (9). Again, the desired state|ω〉 such
that both|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉 and |ω〉 → |χ〉 can be taken
as |ω〉 = |χ(p− ǫ)〉 with a suitably small positive numberǫ.�

In Example 3.2, we show that the entanglement lost in a
transformation of|ψ〉 to |ϕ〉 such that|ψ〉 ∈ So(|ϕ〉) can
always be partially recovered by a2 × 2 state |χ〉, and the
explicit construction of such a state|χ〉 is also presented. This
is a considerable refinement of Theorem 1 in [12]. We also
point out that in the proof of Theorem 1 in [12], an important
constraint onp, i.e.,pβn < (1−p)β1 or lu(|χ(p)〉) > gu(|ϕ〉),
is missing, therefore the case (ii) in the proof of Theorem 1
in [12] is possible ifx = s = n andy = t = 0, which makes
the proof there invalid.

Corollary 3.1 only provides us with a sufficient condition for
which |χ〉 can be used to receive some entanglement lost in a
transformation of|ψ〉 to |ϕ〉 with |ψ〉 ∈ So(|ϕ〉). However,
this condition is too strong to be satisfied in many cases.
Nevertheless, the following theorem gives a weaker condition,
and indeed it provides a complete characterization of states
|χ〉 that can be used to do partial entanglement recovery for
a transformation with target state|ϕ〉 and source state|ψ〉 in
So(|ϕ〉).

Theorem 3.2:Let |ψ〉 and |ϕ〉 be two n × n states such
that |ψ〉 is in So(|ϕ〉), and let |χ〉 be a k × k auxiliary

state. Then|χ〉 can do partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉 if and only if one of the following
three cases holds:

(i) Lu(|χ〉) = 0 andna ≥ n′(a + 1). Herea andn′ are
the numbers of nonzero Schmidt coefficients of|χ〉 and |ϕ〉,
respectively;

(ii) gu(|ϕ〉) < Lu(|χ〉) < 1;
(iii) Lu(|χ〉) = gu(|ϕ〉) andϕ↓ = (χ′⊕m/C)↓. Hereχ′ is

a segment ofχ↓ with only two distinct components,C is a
normalization factor, andm ≥ 1.

Moreover, if none of the above cases holds, then|χ〉 cannot
do partial entanglement recovery for any transformation of|ψ〉
to |ϕ〉 such that|ψ〉 is in S(|ϕ〉).

Proof. See Appendix B. �

To better understand the above theorem, we give the fol-
lowing remarks:

1) The case thatLu(|χ〉) = 1 is not included in cases (i),
(ii), and (iii). Hence a simple corollary of Theorem 3.2
is that a maximally entangled state cannot be used to do
partial entanglement recovery. This is reasonable since
for such a state|χ〉, there does not exist ak × k state
|ω〉 which is more entangled than|χ〉.

2) The case thatLu(|χ〉) = 0 is slightly different from
the above case and is more interesting. Although|χ〉
is a maximally entangled state in a state space of lower
dimensiona×a with a < k, it is only partially entangled
when it is considered as ak × k state. Hence it is
still possible to transform|ψ〉 ⊗ |χ〉 into another state
|ϕ〉 ⊗ |ω〉, where|ω〉 is more entangled than|χ〉. Case
(i) shows that the necessary and sufficient condition is
that the Schmidt numbers of|χ〉 and|ϕ〉 satisfy a simple
inequalityna ≥ n′(a + 1). In some sense, the solution
in this case explains why the dimensions of the states
need to be fixed.

3) Case (ii) means that if|χ〉 is partially entangled and
the maximal local uniformity of|χ〉 is larger than the
global uniformity of |ϕ〉, then |χ〉 can be used to save
some entanglement lost in the transformation of|ψ〉 to
|ϕ〉. This case provides a feasible sufficient condition
for partial entanglement recovery.

4) Case (iii) is of special interest. It supplies the solution
at the critical pointLu(|χ〉) = gu(|ϕ〉). As we will see,
the proof of this case is very complicated. We include
this case for the following two reasons. First, from the
aspect of the completeness of the solution. Including
such a special case enables us to completely solve the
feasibility of partial entanglement recovery for allψ
andϕ with ψ ⊳ ϕ. Second, from the special form that
|ϕ〉 should satisfy. A careful observation shows that|ϕ〉
has only two different Schmidt coefficients and should
be constructed by repeating a segment ofχ↓ finitely
many times. In our opinion this provides new insight
into the process of partial entanglement recovery. In
addition, in the proof of this case we have extensively
employed the techniques introduced in the present paper
and the properties of majorization. Hopefully, these
proof techniques will be useful in solving other problems



8

in quantum entanglement theory.

In sum, Theorem 3.2 provides a necessary and sufficient
condition under which|χ〉 can do partial entanglement recov-
ery for some transformation with the target state|ϕ〉. Therefore
it can be treated as a basic result about partial entanglement
recovery. In view of Theorem 3.2, it seems reasonable to use
maximal local uniformity to describe the partial entanglement
recovery power of an auxiliary state.

It is worth noting that in the above theorem, the choice of
|ψ〉 has some free degree. That is, if|χ〉 can be used to do
partial entanglement recovery for a transformation of|ψ〉 to
|ϕ〉 such that|ψ〉 is in So(|ϕ〉), then for any|ψ′〉 ∈ So(|ϕ〉),
|χ〉 can also recover entanglement lost in the transformation
of |ψ′〉 to |ϕ〉.

Theorem 3.2 has many interesting corollaries. We only
consider the following one where the auxiliary state|χ〉 is
2 × 2-dimensional.

Corollary 3.2: If |χ〉 and |ϕ〉 are two partially entangled
states withχ↓ = (p, 1 − p) and ϕ↓ = (β1, . . . , βn), then
|χ〉 can be used to do partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉 such that|ψ〉 is in So(|ϕ〉) if and
only if one of the following three cases holds:

(i) p = 1 andn ≥ 2n′, wheren′ is the number of nonzero
components ofϕ;

(ii) 1
2 < p < β1

β1+βn
;

(iii) p = β1

β1+βn
and |ϕ〉 has a special form such thatϕ↓ =

((p, 1 − p)⊕k/k)↓ for somek ≥ 1.
Moreover, if none of (i)–(iii) is satisfied, then|χ〉 cannot do

partial entanglement recovery for any transformation of|ψ〉 to
|ϕ〉 such that|ψ〉 is in S(|ϕ〉).

The most interesting part of the Corollary 3.2 is case (iii).
The following example demonstrates this point.

Example 3.3:Let |χ〉, |ϕ′〉, |ϕ′′〉, and |ϕ′′′〉 be four states
with χ↓ = (p, 1 − p), ϕ′↓ = (p, p, 1 − p, 1 − p)/2, ϕ′′↓ =
(p, p, 1 − p)/(1 + p), andϕ′′′↓ = (p, 1 − p, 1 − p)/(2 − p),
where 1

2 < p < 1. Obviously,

Lu(|χ〉) = gu(|ϕ′〉) = gu(|ϕ′′〉) = gu(|ϕ′′′〉) =
1 − p

p
.

By Corollary 3.2, it is easy to see that|χ〉 can do partial
entanglement recovery for any transformation of|ψ〉 to |ϕ′〉
with |ψ〉 ∈ So(|ϕ′〉) sinceϕ′↓ = ((p, 1 − p)⊕2/2)↓.

However, again by the above corollary,|χ〉 cannot recover
anything for any transformations with the target states|ϕ′′〉
or |ϕ′′′〉. �

Until now we only deal with the transformations of|ψ〉 to
|ϕ〉 such thatψ is strictly majorized byϕ. What about the
other cases? In next section, we will prove two more general
theorems about partial entanglement recovery where|ψ〉 and
|ϕ〉 only need to satisfy the non-strict majorization relation
ψ ≺ ϕ.

IV. PARTIAL ENTANGLEMENT RECOVERY FOR A GENERAL

TRANSFORMATION

In this section we deal with partial entanglement recovery
for a class of more general transformations. Before proceeding

to the main results, it will be helpful to introduce some
notations. Letx and y be two finite dimensional vectors.
We write x ⊏ y or y ⊐ x if x↓1 < y↓1 and x↑1 > y↑1 .
Roughly speaking,x ⊏ y means that the values of the extreme
components ofx are strictly bounded by those ofy. We use
the formal expressionx

′

x′′
⊐

y′

y′′
as a convenient rewriting of

x′ ⊗ y′′ ⊐ x′′ ⊗ y′.
For simplicity, in this section we only deal with vectors

that are already in non-increasing order. That is, for a finite
dimensional vectorx, we assume thatx = x↓.

We now introduce the following concept.
Definition 4.1: A decomposition of a vectorx is a sequence

of vectorsx1, . . . , xm satisfying
(i) each of these vectors has dimension at least one, i.e.,

dim(xi) ≥ 1; and
(ii) x is the direct sum of these vectors, i.e.,x =

(x1, . . . , xm), or simply,x = ⊕mi=1x
m.

The following simple lemma provides a special decompo-
sition of two vectorsx andy such thatx ≺ y.

Lemma 4.1:If x andy are vectors satisfyingx ≺ y, thenx
andy can be uniquely decomposed asx = (x1, . . . , xm) and
y = (y1, . . . , ym) such that

(i) xi ⊳ yi or xi = yi for eachi = 1, . . . ,m; and
(ii) there does not exist an indexi such thatxi = yi and

xi+1 = yi+1 hold simultaneously.
Proof. The proof is simple, and the details are omitted.�

The decompositions ofx and y in Lemma 4.1 are called
the normal decompositionsof x andy.

Motivated by Lemma 4.1, we shall define two index sets
Ix,y and Dx,y for any vectorsx and y satisfying x ≺ y.
Suppose thatx and y have normal decompositions as in
Lemma 4.1. Then we define

Ix,y = {i : xi = yi and 1 ≤ i ≤ m}
and

Dx,y = {i : xi ⊳ yi and 1 ≤ i ≤ m}.
It is obvious that

Ix,y ∩Dx,y = ∅ and Ix,y ∪Dx,y = {1, . . . ,m}.
One can easily check thatx ⊳ y is equivalent toIx,y = ∅

andDx,y = {1}.
In what follows, we only consider the auxiliary state with

positive Schmidt coefficients, as our major purpose here is to
find the states that can do partial entanglement recovery fora
given transformation. For simplicity, the maximally entangled
state is also not considered.

With these preliminaries, we present one of the main results
in this section, which gives a sufficient condition under which
|χ〉 can do partial entanglement recovery for a transformation
of |ψ〉 to |ϕ〉.

Theorem 4.1:Let |ψ〉 and |ϕ〉 be two states with normal
decompositionsψ = (ψ1, . . . , ψm) and ϕ = (ϕ1, . . . , ϕm)
such thatψ is majorized byϕ , and let |χ〉 be an auxiliary
state with a similar decomposition to|ψ〉 and |ϕ〉, say,χ =
(χ1, . . . , χm). If

χi

χj
⊐
ϕi

ϕj
, for all i ∈ Iψ,ϕ and j ∈ Dψ,ϕ (10)
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and

min{lu(|χi〉) : 1 ≤ i ≤ m} > max{gu(|ϕi〉) : i ∈ Dψ,ϕ},
(11)

then |χ〉 can do partial entanglement recovery for the trans-
formation of |ψ〉 to |ϕ〉.

Moreover, if |χ〉 satisfies Eqs. (10) and (11), then there
exists a positive numberδ such that for any state|ω〉 with
a decompositionω = (ω1, . . . , ωm) satisfying

(i) ωi = χi for any i ∈ Iψ,ϕ; and
(ii) ‖ωi−χi‖ < δ and

∑

ωi =
∑

χi for any i ∈ Dψ,ϕ, the
transformation of|ψ〉 ⊗ |χ〉 to |ϕ〉 ⊗ |ω〉 can be realized with
certainty by LOCC, i.e.,|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉.

Proof. See Appendix C. �

Here we give some remarks:

1) In the above theorem whether|χ〉 can save entanglement
lost for the transformation of|ψ〉 to |ϕ〉 does not directly
depend on the choice of the source state|ψ〉. It only
depends on the decomposition of the target state|ϕ〉 and
the index setsIψ,ϕ andDψ,ϕ. For this reason, in what
follows, it is not necessary to specify the source state
|ψ〉 clearly. We only need to give a decomposition ofϕ
and two index setsI andD. Based on these conditions,
we can identify a class of auxiliary states|χ〉 that can
do partial entanglement recovery for any transformation
of |ψ〉 to |ϕ〉 with source state|ψ〉 satisfyingIψ,ϕ = I
andDψ,ϕ = D.

2) When |χ〉 can be used to do partial entanglement re-
covery for the transformation of|ψ〉 to |ϕ〉, the more
entangled state|ω〉 generated from|χ〉 is also explicitly
given by the above theorem. It should be noted that in
general the resulting state|ω〉 is determined by the states
|χ〉, |ψ〉 and |ϕ〉 together, although the choice of|χ〉
doesn’t depend on the source state|ψ〉. In other words,
sometimes there may not exist a universal state|ω〉 in
the sense that|ψ′〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉, |ω〉 → |χ〉 and
|χ〉 9 |ω〉 hold for all states|ψ′〉 with Dψ′,ϕ = Dψ,ϕ

andIψ′,ϕ = Iψ,ϕ.

We now examine some special cases of Theorem 4.1. The
first special case is that bothD andI are singletons.

Corollary 4.1: Let |ϕ〉 and |χ〉 be two states with decom-
positionsϕ = (ϕ1, ϕ2) and χ = (χ1, χ2), and letI = {1}
andD = {2}. If |ϕ〉 and |χ〉 satisfy

χ1

χ2
⊐
ϕ1

ϕ2
(12)

and
min{lu(|χ1〉), lu(|χ2〉)} > gu(|ϕ2〉), (13)

then|χ〉 can do partial entanglement recovery for any transfor-
mation of |ψ〉 to |ϕ〉 with source state|ψ〉 such thatIψ,ϕ = I
andDψ,ϕ = D.

A corresponding result for the dual of caseI = {2} and
D = {1} can be obtained by exchangingχ1 with χ2 andϕ1

with ϕ2 in Eq. (12) and Eq. (13), respectively.
For the sake of convenience, for twon-dimensional vectors

x andy with x ≺ y, we define∆x,y as the set of all indices

m such that the inequality in Eq. (1) holds with an equality,
i.e.,

∆x,y = {m : em(x) = em(y) and 1 ≤ m ≤ n− 1}.
Note that1 ∈ ∆x,y is equivalent tox1 = y1 andn−1 ∈ ∆ψ,ϕ

is equivalent toxn = yn.
Now we present two examples to illustrate the use of

Corollary 4.1.
Example 4.1:Let |ψ〉 and|ϕ〉 be twon×n states such that

|ψ〉 is in S(|ϕ〉) (n > 2). Assume that∆ψ,ϕ = {1}. We hope
to find an auxiliary state|χ〉 with the minimal dimension to
do partial entanglement recovery for the transformation of|ψ〉
to |ϕ〉.

To be more specific, letϕ = (β1, . . . , βn). Since∆ψ,ϕ =
{1}, it is obvious thatϕ has a normal decompositionϕ =
(ϕ1, ϕ2), whereϕ1 = (β1) andϕ2 = (β2, . . . , βn). Moreover,
Iψ,ϕ = {1} and Dψ,ϕ = {2}. Take an auxiliary state|χ〉
with χ = (χ1, χ2), whereχ1 = (γ1), χ2 = (γ2, γ3), and
γ1 > γ2 > γ3 > 0.

By Corollary 4.1, if |χ〉 satisfies Eqs. (12)–(13), then|χ〉
can do partial entanglement recovery for the transformation of
|ψ〉 to |ϕ〉. So we have

γ1/γ2 > β1/β2, (14)

γ1/γ3 < β1/βn, (15)

and
γ3/γ2 > βn/β2. (16)

By Eqs. (14) and (16), we can take positive numbersλ and
µ such that

γ1 = γ2(1 + λ)β1/β2 (17)

and
γ3 = γ2(1 + µ)βn/β2. (18)

Substituting Eqs. (17) and (18) into Eq. (15) yields0 < λ <
µ. Moreover, the constraintγ2 > γ3 and Eq. (18) yieldµ <
(β2−βn)/βn. γ2 is used to make the following normalization
condition satisfied:

3
∑

i=1

γi = 1. (19)

Notice that β2 > βn. One can easily check that such
(γ1, γ2, γ3) satisfying Eqs. (17)–(19) is a solution of the sys-
tem of inequalities defined by Eqs. (14)–(16). The parameters
λ andµ satisfy0 < λ < µ < (β2 − βn)/βn.

Thus by Corollary 4.1, the3 × 3 auxiliary state|χ〉 can
do partial entanglement recovery for the transformation
of |ψ〉 to |ϕ〉. Moreover, the state|ω〉 such that both
|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉 and |ω〉 → |χ〉 hold can be chosen
asω = (γ1, γ2 − ǫ, γ3 + ǫ) with a sufficiently small positive
numberǫ. �

We point out that the existence of such an auxiliary state
|χ〉 with χ = (γ1, γ2, γ3) has been proven in Theorem 3 in
[12], where |χ〉 is of the formχ(p, q) = (p, q, 1 − p − q),
p ≥ q ≥ 1 − p − q ≥ 0. However, an important constraint
on thep andq or the regionR, i.e., (1 − p− q)β2 > qβn, is
missing in [12]. Thus an additional case which is not included
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in Case (i) and Case (ii) in [12] is possible, which makes that
proof invalid.

A dual case of Example 4.1 is as follows:
Example 4.2:Let |ψ〉 and|ϕ〉 be twon×n states such that

|ψ〉 is in S(|ϕ〉) (n > 2). Assume that∆ψ,ϕ = {n− 1}. We
hope to find an auxiliary state|χ〉 with the minimal dimension
to do partial entanglement recovery for the transformationof
|ψ〉 to |ϕ〉.

To be more specific, letϕ = (β1, . . . , βn). Since∆ψ,ϕ =
{n−1}, it is easy to check thatϕ has a normal decomposition
ϕ = (ϕ1, ϕ2), whereϕ1 = (β1, . . . , βn−1) andϕ2 = (βn).
Similarly, let an auxiliary sate|χ〉 have a decompositionχ =
(χ1, χ2), whereχ1 = (γ1, γ2), χ2 = (γ3), and γ1 > γ2 >
γ3 > 0. By Eqs. (12) and (13) again, noticing thatIψ,ϕ = {2}
andDψ,ϕ = {1}, we have the following system of inequalities:

γ3/γ1 > βn/β1, (20)

γ3/γ2 < βn/βn−1, (21)

and
γ2/γ1 > βn−1/β1. (22)

By using a similar argument as in Example 4.1, we can take

γ2 = γ1(1 + µ)βn−1/β1 (23)

and
γ3 = γ1(1 + λ)βn/β1, (24)

where0 < λ < µ < (β1 − βn−1)/βn−1. (λ < µ is deduced
by substituting Eqs. (23) and (24) into Eq. (21),µ < (β1 −
βn−1)/βn−1 comes from Eq. (23) andγ1 > γ2). γ1 is taken
to validate the following normalization condition

3
∑

i=1

γi = 1. (25)

Since β1 > βn−1, one can easily check that such a state
|χ〉 with χ = (γ1, γ2, γ3) is a solution of the inequalities
system defined by Eqs. (20)-(22). Thus by Corollary 4.1|χ〉
can do partial entanglement recovery for the transformation
of |ψ〉 to |ϕ〉. Again, the desired state|ω〉 such that both
|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉 and |ω〉 → |χ〉 hold can be chosen as
ω = (γ1 − ǫ, γ2 + ǫ, γ3) with a suitably small positive number
ǫ. �

If one of the cases∆ψ,ϕ = {1} or ∆ψ,ϕ = {n−1} occurs,
we can always use a3 × 3 state |χ〉 to partially recover
entanglement lost in the transformation of|ψ〉 to |ϕ〉. The
explicit construction of such|χ〉 has also been presented in
the above examples.

The following corollary is another important special case of
Theorem 4.1:

Corollary 4.2: Let |ϕ〉 and |χ〉 be two states withϕ =
(ϕ1, ϕ2, ϕ3) andχ = (χ1, χ2, χ3). I = {1, 3} andD = {2}.
If |χ〉 and |ϕ〉 satisfy

χ1

χ2
⊐
ϕ1

ϕ2
, (26)

χ3

χ2
⊐
ϕ3

ϕ2
, (27)

and

min{lu(|χ1〉), lu(|χ2〉), lu(|χ3〉)} > gu(|ϕ2〉), (28)

then |χ〉 can do partial entanglement recovery for any trans-
formation of |ψ〉 to |ϕ〉 with Iψ,ϕ = I andDψ,ϕ = D.

A very interesting application of the above corollary is the
following:

Example 4.3:Let |ψ〉 and |ϕ〉 be two n × n states such
that |ψ〉 is in S(|ϕ〉) (n > 3). Assume∆ψ,ϕ = {1, n − 1}.
Our purpose here is to find an auxiliary state to do partial
entanglement recovery for the transformation of|ψ〉 to |ϕ〉.

Take a4×4 auxiliary state|χ〉 with χ = (γ1, γ2, γ3, γ4). Let
us decomposeϕ andχ, respectively, intoϕ = (ϕ1, ϕ2, ϕ3) and
χ = (χ1, χ2, χ3), whereϕ1 = (β1), ϕ2 = (β2, . . . , βn−1),
ϕ3 = (βn), χ1 = (γ1), χ2 = (γ2, γ3), χ3 = (γ4), and
γ1 > γ2 > γ3 > γ4 > 0. Since∆ψ,ϕ = {1, n − 1}, it is
easy to check thatIψ,ϕ = {1, 3} andDψ,ϕ = {2}. Thus by
Corollary 4.2,|χ〉 can do partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉 if Eqs. (26)–(28) hold. A routine
calculation leads to the following solution of Eqs. (26)–(28):

γ1 = γ2(1 + λ)β1/β2,

γ3 = γ2(1 + η)(1 + µ)βn−1/β2,

γ4 = γ2(1 + µ)βn/β2,

where 1 + λ < (1 + η)(1 + µ) < β2/βn−1, λ, µ, and η
are all positive real numbers, andγ2 is used to validate the
normalization condition

4
∑

i=1

γi = 1.

So such an auxiliary state|χ〉 for partial entanglement recovery
always exists.

Ultimately, to partially recover entanglement lost in the
transformation of|ψ〉 to |ϕ〉, it is sufficient to use an auxiliary
state |χ〉 with dimension4 × 4. Again, the more entangled
state|ω〉 generated from|χ〉 after the recovery process can be
chosen asω = (γ1, γ2− ǫ, γ3 + ǫ, γ4), whereǫ is a sufficiently
small positive number. �

In [12], it is proven that any3 × 3 state cannot be used
to partially recover entanglement lost in the transformation of
|ψ〉 to |ϕ〉 with ψ ≺ ϕ and∆ψ,ϕ = {1, n− 1}. By the above
example, we are able to show that4 × 4 auxiliary states are
necessary and sufficient to do partial entanglement recovery
for this special case.

In practice, we hope that the dimension of the auxiliary
state|χ〉 is as small as possible. In Theorem 4.1, if there are
two successive integersi andi+1 both contained inDψ,ϕ (in
Iψ,ϕ this case cannot happen), we in fact can combineχi with
χi+1 to reduce the dimension ofχ. So a careful investigation
of the structure ofDψ,ϕ is necessary.

Let us see a simple example. Suppose that for states|ψ〉 and
|ϕ〉, Iψ,ϕ = {1, 4, 7, 12} andDψ,ϕ = {2, 3, 5, 6, 8, 9, 10, 11}.
By the construction in Theorem 4.1, we should use an
auxiliary state |χ〉 with χ = (χ1, . . . , χ12), where each
χi (i ∈ Dψ,ϕ) has dimension at least2. Thus the vector
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χ has dimension at least|Iψ,ϕ| + 2|Dψ,ϕ| = 20. If we
combine the successive integers inDψ,ϕ together, we have
D′
ψ,ϕ = {{2, 3}, {5, 6}, {8, 9, 10, 11}}, and the dimension of

χ is reduced to|Iψ,ϕ| + 2|D′
ψ,ϕ| = 10.

More formally, suppose that|ψ〉 and |ϕ〉 are two states
with normal decompositionsψ = (ψ1, . . . , ψm) and ϕ =
(ϕ1, . . . , ϕm). Let

Iψ,ϕ = {k1, . . . , kp}, 1 ≤ p ≤ m,

where

0 = k0 < k1 < · · · < kp < kp+1 = m+ 1.

We define

D′
ψ,ϕ = {Di : Di 6= ∅ and 0 ≤ i ≤ p},

where
Di = {s : ki + 1 ≤ s ≤ ki+1 − 1}.

The constraintDi 6= ∅ in the definition ofD′
ψ,ϕ needs a careful

explanation. For any1 ≤ i ≤ p, we have thatki ∈ Iψ,ϕ implies
ki + 1 /∈ Iψ,ϕ. SoDi 6= ∅ in this case. However, ifk1 = 1
or kp = m then we haveD0 = ∅ or Dp = ∅, respectively.
To avoid these two trivial cases, the constraintDi 6= ∅ is
necessary. In particular, ifIψ,ϕ = ∅ thenD′

ψ,ϕ = {Dψ,ϕ} =
{{1, . . . ,m}}. For the sake of convenience, we also define

I ′ψ,ϕ = {{i} : i ∈ Iψ,ϕ}.

In the following discussions, we shall use the elements of
I ′ψ,ϕ andD′

ψ,ϕ as indices. We define the natural order of the
elements inI ′ψ,ϕ ∪D′

ψ,ϕ as

D0 < {k1} < D1 < {k2} < · · · < {kp} < Dp,

where we assume that any term which doesn’t exist should
be omitted automatically without affecting the orders of other
terms.

Suppose thatJ is a finite set of integers. We use the
notationsmax J and min J to denote the maximal and the
minimal elements ofJ , respectively. For any real functionf(.)
defined onJ , the expressionarg mink∈Jf(k) denotes the
index i ∈ J such thatf(i) = mink∈Jf(k) (here we assume
that there is a uniquei of J that can attain the minimum).

Now we can present another condition for the existence of
partial entanglement recovery, which complements Theorem
4.1.

Theorem 4.2:Let |ψ〉 and|ϕ〉 be two states with normal de-
compositionsψ = (ψ1, . . . , ψm) andϕ = (ϕ1, . . . , ϕm) such
thatψ is majorized byϕ, and let|χ〉 be an auxiliary state with
a decompositionχ = (χD0 , χ{k1}, χD1 , . . . , χ{kp}, χDp) =
⊕i∈I′

ψ,ϕ
∪D′

ψ,ϕ
χi. If

χ{i}

χJ
⊐

ϕi

ϕJi
(29)

for all i ∈ Iψ,ϕ, J ∈ D′
ψ,ϕ andJi = arg mink∈J |i− k|,

min{lu(|χJ 〉) : J ∈ D′
ψ,ϕ} > max{gu(|ϕi〉) : i ∈ Dψ,ϕ},

(30)

and

min{lu(|χ{i}〉) : i ∈ Iψ,ϕ} > max
⋃

J∈D′

ψ,ϕ

{gu(|ϕmax J〉),

gu(|ϕmin J〉)},
(31)

then |χ〉 can do partial entanglement recovery for the trans-
formation of |ψ〉 to |ϕ〉.

Moreover, if |χ〉 satisfies Eqs. (29)-(31), then there exists
a positive numberδ such that for any state|ω〉 with a
decompositionω = ⊕i∈I′

ψ,ϕ
∪D′

ψ,ϕ
ωi satisfying

(i) ωi = χi for any i ∈ I ′ψ,ϕ; and
(ii) ‖ωi−χi‖ < δ and

∑

ωi =
∑

χi for any i ∈ D′
ψ,ϕ, the

transformation of|ψ〉 ⊗ |χ〉 to |ϕ〉 ⊗ |ω〉 can be realized with
certainty by LOCC, i.e.,|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |ω〉.
Proof. The proof is similar to Theorem 4.1, and we omit the
details. �

The key idea in the above theorem is to let all vectors
betweenϕki+1 andϕki+1−1 correspond to a singleχDi . This
reduces the dimension ofχ efficiently.

An interesting special case of Theorem 4.2 is when the
majorizationψ ≺ ϕ splits intom strict majorizations:ψi⊳ϕi.
We state this result in the following:

Corollary 4.3: Let |ψ〉 and|ϕ〉 be two states such that|ψ〉 is
in S(|ϕ〉). Suppose thatψ andϕ have normal decompositions
ψ = (ψ1, . . . , ψm) andϕ = (ϕ1, . . . , ϕm), and letIψ,ϕ = ∅.
If |χ〉 is an auxiliary state such that

lu(|χ〉) > max{gu(|ϕi〉) : 1 ≤ i ≤ m},

then |χ〉 can do partial entanglement recovery for the trans-
formation of |ψ〉 to |ϕ〉.

Proof. In fact, in this special case,D′
ψ,ϕ = {Dψ,ϕ} =

{{1, . . . ,m}}, I ′ψ,ϕ = ∅. Thus, by Theorem 4.2, to do partial
entanglement recovery, the only non-trivial condition that |χ〉
should satisfy is Eq. (30), which is exactly the assumption of
the present corollary. �

It is easy to check that in the above corollary|χ〉 can be
chosen as a2 × 2 state. However, by Theorem 4.1, we can
only find a state|χ〉 of dimension at least2m× 2m.

By summarizing Theorems 3.2, 4.1, and 4.2, we have the
following:

Theorem 4.3:Suppose that|ψ〉 and|ϕ〉 are twon×n states
such thatψ ≺ ϕ. We can always find an auxiliary state|χ〉 to
do partial entanglement recovery for the transformation of|ψ〉
to |ϕ〉, where the dimension ofχ is between2× 2 andn×n.
Moreover, such a state|χ〉 can only depend on the target state
|ϕ〉 and the presence of equalities in the majorizationψ ≺ ϕ.

Proof. The proof follows immediately from Theorems 3.2,
4.1, and 4.2. �

The upper boundn× n cannot always be reduced to(n−
1)×(n−1). We have seen in Example 4.3 that whenn = 4, an
auxiliary state|χ〉 of dimension4 × 4 is needed to do partial
entanglement recovery for the transformation of|ψ〉 to |ϕ〉
such that∆ψ,ϕ = {1, 3}.
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We conclude this section by giving an example to illustrate
the use of Theorem 4.2. This example is taken from [13].

Example 4.4:Let |ψ〉 and |ϕ〉 be two n × n states such
that |ψ〉 is in S(|ϕ〉) (n > 6). Assume that∆ψ,ϕ = {2, 3, 5}.
The goal here is to find an auxiliary state|χ〉 to do partial
entanglement recovery for the transformation of|ψ〉 to |ϕ〉.

To be specific, letϕ = (β1, . . . , βn). It is easy to check
that ϕ has a normal decompositionϕ = (ϕ1, ϕ2, ϕ3, ϕ4),
where ϕ1 = (β1, β2), ϕ2 = (β3), ϕ3 = (β4, β5), and
ϕ4 = (β6, . . . , βn). Also, Iψ,ϕ = {2} andDψ,ϕ = {1, 3, 4}.
So I ′ψ,ϕ = {{2}} andD′

ψ,ϕ = {{1}, {3, 4}}.
Take a 5 × 5 auxiliary state |χ〉 with χ =

(χ{1}, χ{2}, χ{3,4}), whereχ{1} = (γ1, γ2), χ{2} = (γ3),
χ{3,4} = (γ4, γ5), andγ1 > · · · > γ5 > 0. By Theorem 4.2,
Eq. (29) yields

χ{2}

χ{1} ⊐
ϕ2

ϕ1
(32)

and
χ{2}

χ{3,4} ⊐
ϕ2

ϕ3
. (33)

Eq. (30) yields

min{lu(|χ{1}〉), lu(|χ{3,4}〉)} > max{gu(|ϕ1〉),
gu(|ϕ3〉), gu(|ϕ4〉)}.

(34)
Eq. (31) yields

lu(|χ{2}〉) > max{gu(|ϕ1〉), gu(|ϕ3〉), gu(|ϕ4〉)}, (35)

which is automatically satisfied sincelu(|χ{2}〉) = 1 while the
right hand side of Eq. (35) is strictly less than1.

More explicitly, we have

γ3

γ1
>
β3

β1
and

γ3

γ2
<
β3

β2
, (36)

and
γ3

γ4
>
β3

β4
and

γ3

γ5
<
β3

β5
, (37)

and

min{γ2

γ1
,
γ5

γ4
) > max{β2

β1
,
β5

β4
,
βn
β6

}. (38)

With a routine calculation one can check that

γ1 = µγ3
β1

β3
,

γ2 = (1 + η)γ3
β2

β3
,

γ4 = hγ3
β4

β3
,

γ5 = (1 + λ)γ3
β5

β3

is a solution of the system of inequalities defined by Eqs.
(36)–(38), whereγ3 > 0 is used to satisfy the normalization
condition:

5
∑

i=1

γi = 1.

The parametersη, λ, µ, andh satisfy

0 < η <
β1 − β2

β2
, 0 < λ <

β4 − β5

β5
.

and

(1 + η)
β2

β1
< µ < min{(1 + η)

β2β4

β1β5
, (1 + η)

β2β6

β1βn
, 1},

(1 + λ)
β5

β4
< h < min{(1 + λ)

β1β5

β2β4
, (1 + η)

β5β6

β4βn
, 1}.

Notice thatβ1 > β2, β4 > β5, andβ6 > βn, and such a state
|χ〉 with χ = (γ1, . . . , γ5) always exists. So we have actually
constructed a class of states|χ〉 with dimension5 × 5 that
can do partial entanglement recovery for the transformation
of |ψ〉 to |ϕ〉. �

V. A POLYNOMIAL TIME ALGORITHM FOR PARTIAL

ENTANGLEMENT RECOVERY

In this section we study partial entanglement recovery from
the algorithmic viewpoint. We present a polynomial algorithm
of time complexityO(n2k4) to decide whether|χ〉 can be
used to recover some entanglement lost in the transformation
of |ψ〉 to |ϕ〉, wheren andk are the dimensions ofϕ andχ,
respectively.

The key part of Problem 1 is to solve the majorization
relationψ⊗χ ≺ ϕ⊗ω. As argued before, the main difficulty
here is how to deal with the order of the tensor productϕ⊗ω
whenω varies. We will develop some techniques to overcome
this difficulty. Notice that the map fromω to ϕ ⊗ ω is an
affine one. To make our discussions more general and more
readable, in what follows we consider affine maps instead of
tensor products.

To be concise, some concepts are introduced first.
Definition 5.1: Let f and g be real functions defined on

Rm, and letS ⊂ Rm. f andg are said to be comparable on
S if

(i) ∀x ∈ S, f(x) ≥ g(x); or
(ii) ∀x ∈ S, f(x) ≤ g(x).
Let F be a map fromRm to Rn. We write F (x) =

(f1(x), · · · , fn(x)), where eachfi is a real function defined
on Rm.

Definition 5.2: F is said to have a fixed order onS if for
any 1 ≤ i < j ≤ n, fi andfj are comparable onS.

SupposeF has a fixed order onS, and assume that whether
fi and fj are comparable onS can be determined inO(1)
time. Then there exists a common algorithm which can sort
the entries ofF (x) into non-increasing order for anyx ∈ S in
O(n log2 n) time. This fact is extremely useful in the following
discussions.

If some entries ofF are not comparable onS, then by the
above definitionF does not have a fixed order. An important
question naturally arises: how many different orders canF
have onS?

Definition 5.3: F is said to have at mostM different orders
on S if there exists a decomposition ofS, say,S1, · · · ,SM ,
such that

(i) S = S1 ∪ · · · ∪ SM ; and
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(ii) F has a fixed order on eachSi, i = 1, · · · ,M .
Now let F be an affine map,F (x) = Ax + b, whereA ∈

Rn×m and b ∈ Rn. At first glance,F may haven! different
orders onRm. However, this is not always true. A somewhat
surprising fact is that the number of different orders ofF can
be dramatically reduced toO(n2m) whenm is a constant.

Lemma 5.1:F has at mostO(n2m) different orders onRm.
Proof. For any1 ≤ i < j ≤ n, the difference offi(x) and

fj(x) crosses zero (from positive to negative, or negative to
positive) if and only ifx crosses the hyperplane determined
by the equationfi(x) − fj(x) = 0, or more precisely,

Γij = {(x1, · · · , xm) :
m

∑

s=1

(ais − ajs)xs + (bi − bj) = 0}.

It should be noted that there are two cases whereΓij does not
define a legal hyperplane. The first case isΓij = ∅ and the
second one isΓij = Rm. We will exclude these cases since in
both of themfi andfj remain comparable whateverx varies.
Denote

Γ = {Γij : Γij 6= ∅ and Γij 6= Rm, 1 ≤ i < j ≤ n}.

The number of hyperplanes inΓ is less than or equal
to n(n − 1)/2. These hyperplanes divideRm into at most
O((n(n − 1)/2)m) = O(n2m) different parts.F has a fixed
order on each part. With that we complete the proof. �

It is obvious that the above lemma holds for any subset of
Rm.

Lemma 5.1 indicates that we can decomposeRm into
O(n2m) parts,D1, · · · ,DM , such that on each part,F has a
fixed order. In practice it is important to construct these parts
explicitly. To see how this procedure can be done efficiently,
let us first examine a special case wherem = 1.

Example 5.1:Let F (x) = (a1x− b1, · · · , anx− bn), where
x ≥ 0. For simplicity assumeai 6= aj , bi 6= bj , ai, bi > 0 for
any 1 ≤ i < j ≤ n.

By Lemma 5.1,F has at mostO(n2) different orders when
x varies as a non-negative number. In what follows we will
show how to determine these orders explicitly.

Step 1. For each1 ≤ i < j ≤ n, solve equationaix− bi =
ajx−bj. The solution is given byθij = (bi−bj)/(ai−aj). Let
Γ = {θij : 1 ≤ i < j ≤ n} ∪ {0}. The number of elements of
Γ is denoted byM . It is easy to see thatM ≤ n(n−1)/2+1.

Step 2. Sort the elements inΓ into non-decreasing order,
say0 = c0 < c1 < · · · < cM−1.

Step 3. Construct a sequence of intervals:D1 = [c0, c1], · · ·,
DM = [cM−1,+∞).

It is clear thatF has a fixed order on each interval. The
above procedure is completed inO(n2) + O(M log2M) +
O(M) = O(n2 log2 n) time.

It is notable that the leftmost interval[c0, c1] can be located
in O(n2) time. This fact will be useful in the following
discussions. �

To deal with the general case, we need a lemma in com-
putational geometry. LetH be a set ofn hyperplanes inRd

with d > 1. ThenH dividesRd intoO(nd) parts with pairwise

disjoint interiors. We call the set of these parts ad-arrangement
of H. A celebrated result in computational geometry shows
that thed-arrangement ofH can be enumerated efficiently
[24].

Lemma 5.2:The d-arrangement ofn hyperplanes may be
computed in timeO(nd).

Employing Lemma 5.2, we can easily see that the above
decompositionD1, · · · ,DM can be computed inO(n2m) time
in the case thatm > 1.

With the aid of Lemma 5.1, we are able to solve a
majorization inequality of the formc ≺ Ax + b by using
linear programming methods.

Lemma 5.3:The majorization inequalityc ≺ F (x) can be
solved in O(n2m+1 log2 n) time, wherem is treated as a
constant.

ProofBy Lemma 5.1,F has at mostM = O(n2m) different
orders onRm. Let us decomposeRm into M parts and
enumerate them asD1, · · · ,DM . On each partDi, F has
a fixed order. This procedure needs timeO(n2m). In what
follows we will show on each part, the majorization inequality
c ≺ F (x) can be solved inO(n log2 n) time by using
standard methods of linear programming. Hence we obtain an
algorithm with time complexityO(n2m)+O(n2mn log2 n) =
O(n2m+1 log2 n) to solve the desired majorization inequality
on Rm.

Let us concentrate on a specificDi. An algorithm to solve
the majorization inequality onDi is as follows:

Step 1. Sortc and F (x) into non-increasing order, re-
spectively. Assumec↓ = (c(1), · · · , c(n)) and F ↓(x) =
(a(1)(x), · · · , a(n)(x)).

Step 2. Transform the majorization inequalityc ≺ F (x) into
the following linear system of inequalities:

l
∑

s=1

c(s) ≤
l

∑

s=1

a(s)(x), 1 ≤ l ≤ n, (39)

with equality holding whenl = n.
Step 3. Solve the system of inequalities in Eq. (39) using

standard techniques of linear programming.
Now let us calculate the time complexity of each step. It is

obvious thatc can be sorted non-increasingly inO(n log2 n)
time. SinceF has a fixed order onDi, F (x) can also be
sorted into non-increasing order inO(n log2 n) time. So Step
1 can be completed inO(n log2 n) time. To figure out the time
complexity of Step 2, we need the following simple fact: the
linear transform of(y1, · · · , yn) to (y1, y1 + y2, · · · , y1 + y2 +
· · · + yn) needs onlyO(n) time. So Step 2 needsO(nm) =
O(n) time. The time complexity of Step 3 needs a careful
analysis. By applying the well-known Karmarkar’s algorithm
in the theory of linear programming [25] directly, Step 3 needs
O(n3.5) time. However, in [26], it has been shown that linear
programming can be solved in linear timeO(n) when the
dimension of variablex is fixed. Hence the total time to solve
c ≺ F (x) onDi is

O(n log2 n) +O(n) +O(n) = O(n log2 n).

With that we complete the proof of Lemma 5.3. �
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Now we are able to present our algorithms about partial
entanglement recovery. The first algorithm to solve Problem1
is a direct consequence of Lemma 5.3.

Theorem 5.1:Problem 1 is solvable inO(n2k−1 log2 n)
time, wherek is treated as a constant.

Proof. The key here is to solve the majorization inequality
ψ ⊗ χ ≺ ϕ ⊗ ω. Notice that whenϕ is fixed, the map
from ω to ϕ⊗ is an affine one. So Lemma 5.3 works. A
subtle point here is thatω is a k-dimensional probability
vector and has onlyk − 1 independent parameters. In
addition, the relationsω ≺ χ and χ↓ 6= ω↓ can easily
be cast into linear constraints ofω. The total number
of these constraints is at mostO(k!) = O(1) when
k is a constant. Hence the time complexity is in fact
O((nk)2(k−1)+1 log2 n) +O(1) = O(n2k−1 log2 n). �

The main advantage of the above algorithm is that it can
determine all the resulting states|ω〉 in the process of partial
entanglement recovery. However, this algorithm is efficient
only whenk is treated as a constant. Ifk varies freely, it will
turn into exponential time complexity and cannot be efficient
anymore. To further reduce the time complexity, some lemmas
are necessary.

Let χ↓ = (γ1, · · · , γk). For the sake of convenience, we
assume allk entries ofχ are distinct. The general case can
be considered similarly by using the compact form ofχ. For
each1 ≤ i < j ≤ k and ǫ > 0 we introduce the following
vector:

χ(i, j, ǫ) = (γ1, · · · , γi − ǫ, · · · , γj + ǫ, · · · , γk). (40)

To keep the order ofχ(i, j, ǫ) fixed when ǫ varies, the
constraints

γi − ǫ ≥ γi+1 and γj−1 ≥ γj + ǫ

should be satisfied. Letδij be (γi − γi+1)/2 if j = i+ 1, and
be min{γi − γi+1, γj−1 − γj} otherwise. Thenǫ ∈ [0, δij ].

The following two lemmas exhibit some interesting
properties of the solutions of Problem 1. Interestingly, the
first lemma shows that we only need to consider the solution
|ω〉 with the Schmidt coefficient vector of a special form
given in Eq. (40).

Lemma 5.4:Problem 1 has a solution if and only if there
exist 1 ≤ i < j ≤ k and ǫ ∈ (0, δij ] such thatψ ⊗ χ ≺
ϕ⊗ χ(i, j, ǫ).

Proof. Sufficiency: Suppose suchi, j, and ǫ do exist. It is
easy to verifyχ(i, j, ǫ) ≺ χ andχ↓ 6= χ↓(i, j, ǫ). These facts,
together with the hypothesisψ ⊗ χ ≺ ϕ ⊗ χ(i, j, ǫ), indicate
thatχ(i, j, ǫ) is a solution of Problem 1.

Necessity: Assume Problem 1 has a solution|ω〉. Then we
haveψ ⊗ χ ≺ ϕ⊗ ω, ω ≺ χ, andω↓ 6= χ↓. The existence of
i, j, and ǫ such thatψ ⊗ ϕ ≺ ϕ ⊗ χ(i, j, ǫ) follows directly
from the following two facts:

(a) If ω ≺ χ andχ↓ 6= ω↓ then there exist1 ≤ i < j ≤ k
and ǫ ∈ (0, δij ] such thatω ≺ χ(i, j, ǫ) ≺ χ. This is a direct
consequence of Lemma 7.1 in Appendix B.

(b) Any state|χ′〉 such thatω ≺ χ′ ≺ χ andχ↓ 6= χ′↓ is
also a solution of Problem 1. This follows directly from our

formulation of Problem 1. �

Lemma 5.5:If |χ(i, j, ǫ0)〉 is a solution of Problem 1, then
for any 0 < ǫ < ǫ0, |χ(i, j, ǫ)〉 is also a solution.

Proof. Immediately from the formulation of Problem 1 and
Eq. (40). �

We are now in a position to state the main result of this
section, the promised algorithm of time complexityO(n2k4).

Theorem 5.2:Problem 1 is solvable inO(n2k4) time.
Proof. By Lemma 5.4, we only need to consider the

following problem: for each specific pair(i, j) such that
1 ≤ i < j ≤ k, decide whether there existsǫ ∈ (0, δij ] such
thatψ⊗χ ≺ ϕ⊗χ(i, j, ǫ). In what follows we show that this
problem can be solved inO(n2k2) time. Then by enumerating
all possible pairs of(i, j), we get anO(k(k − 1)/2n2k2) =
O(n2k4) time algorithm to solve Problem 1.

Let us begin with two specific indicesi andj. By Lemma
5.1, the number of the different orders ofϕ ⊗ χ(i, j, ǫ) is at
mostO((nk)2) when ǫ varies in [0, δij ]. With Lemma 5.5 in
mind, it is enough to consider one special order among them.
More precisely, suppose the interval[0, δij ] is divided intoM
parts (intervals), namely,

D1 = [c0, c1],D2 = [c1, c2], · · · ,DM = [cM−1, cM ],

where0 = c0 < c1 < · · · < cM = δij , andM = O((nk)2).
On each intervalϕ⊗χ(i, j, ǫ) has a fixed order. By lemma 5.5,
if |χ(i, j, ǫ0)〉 is a solution of Problem 1, then any|χ(i, j, ǫ)〉
such that0 < ǫ ≤ min{ǫ0, c1} is also a solution. So we need
only to consider the leftmost intervalD1. Our algorithm goes
as follows:

Step 1: Findc1;
Step 2: Sortψ ⊗ χ andϕ ⊗ χ(i, j, ǫ) into non-increasing

order, respectively, whereǫ ∈ [0, c1];
Step 3: Solve the system of inequalities induced by the

majorization relationψ ⊗ χ ≺ ϕ⊗ χ(i, j, ǫ).
Step 4: Output: if a solution ofǫ > 0 is obtained in Step 3,

then Problem 1 has a solution|χ(i, j, ǫ)〉; otherwise Problem
1 does not has a solution of the form|χ(i, j, ǫ)〉 for fixed i
andj, andǫ ∈ (0, δij ].

Step 1 requires that we search for the smallest positive
elements amongM items, which requiresO(M) = O((nk)2)
time (see also Example 5.1). Step 2 needsO(nk log2 nk) time.
Step 3 merely needsO(nk) time since there is only a single
parameterǫ. Step 4 only needsO(1) time. In sum, only

O((nk)2) +O(nk log2 nk) +O(nk) +O(1) = O((nk)2)

time is required. �

In view of Theorem 5.2, we can say that Problem 1 is
efficiently solvable. It also suggests that we can study the
process of partial entanglement recovery using algorithmic
methods.

To conclude our discussions about Problem 1, we would
like to address an important issue for further study. In almost
all the results we obtained so far, we are only concerned
with the feasibility of partial entanglement recovery, while the
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efficiency of this process has not been touched yet. These
results are of limited use in practice, when we hope to
minimize entanglement lost in LOCC transformations. In other
words, we require the resulting state|ω〉 to be not only more
entangled than|χ〉, but also an “optimal” one that we can
achieve in this process. Using entropy of entanglement as
a measure, we suggest the following optimization problem.
We also note that some aspects of the efficiency of partial
entanglement recovery have been discussed in [14].

Open problem:Given a triple of states(|ψ〉, |ϕ〉, |χ〉) such
that ψ ≺ ϕ, let Ω = {ω : ψ ⊗ χ ≺ ϕ ⊗ ω and ω ≺ χ}.
MaximizeE(|ω〉), subject toω ∈ Ω.

In the above problem we remove the constraintχ↓ 6=
ω↓. This makesΩ compact. Thus the continuous function
E(|ω〉) can attain its maximum onΩ. Suppose|ω0〉 is one
of the states attaining the maximum. Noticing that the entropy
of entanglement decreases under majorization, we have the
following simple relation

E(|χ〉) ≤ E(|ω0〉) ≤ E(|ψ〉) − E(|ϕ〉) + E(|χ〉),

where the first inequality is fromω0 ≺ χ, and the second
inequality is fromψ ⊗ χ ≺ ϕ ⊗ ω0 and the additivity of
entropy of entanglement. The first inequality is an equality
if and only if ω↓ = χ↓ for any ω ∈ Ω, i.e., |χ〉 cannot do
partial entanglement recovery for the transformation of|ψ〉 to
|ϕ〉. The second inequality is an equality if and only if(ψ ⊗
χ)↓ = (ϕ⊗ ω0)

↓. Theorem 5.2 in fact provides a polynomial
time algorithm to determine whether the first inequality holds
strictly. How to design efficient algorithms to find the optimal
state|ω0〉 seems to be a challenging and worthwhile problem.

VI. SOME APPLICATIONS

In this section, we establish some interesting connectionsof
partial entanglement recovery to the generation of maximally
entangled states, quantum catalysis, mutual catalysis, and
multiple-copy entanglement transformation.

A. How to obtain maximally entangled states by using partial
entanglement recovery

Maximally entangled states play a crucial role in many strik-
ing applications of quantum entanglement such as quantum
superdense coding [2] and quantum teleportation [3]. It is
very important to generate such states in practical information
processing. Under the constraint of LOCC, a natural way
to obtain a maximally entangled state is to concentrate a
large number of partially entangled states [5]. However, such
a concentrating protocol involves infinitely many copies of
the source state while in practice only finitely many copies
can be available. One can find various deterministic protocols
based on Nielsen’s theorem [6] and probabilistic protocols
based on Vidal’s theorem [17] (see also [16]). It has been
shown that two2×2 partially entangled states sometimes can
be concentrated into an EPR pair deterministically [10]. An
extensive generalization of such a deterministic concentration
protocol was presented in [11], where the maximal number
of Bell states that can be concentrated from a finite number

of partially entangled states was derived. In what follows,we
consider deterministic transformations only.

The following theorem shows that almost all deterministic
entanglement transformations can concentrate a partiallyen-
tangled pure state into a maximally entangled state with the
same dimension providing that they are close enough to each
other.

Theorem 6.1:Let |ψ〉 be a state inSo(|ϕ〉) and let|Φ+〉 =
∑k
i=1

1√
k
|i〉|i〉 be a k × k maximally entangled state. Then

there exists a positive numberδ such that for anyk × k state
|χ〉 satisfying‖|χ〉−|Φ+〉‖ < δ, the transformation of|ψ〉⊗|χ〉
to |ϕ〉 ⊗ |Φ+〉 can be realized with certainty by LOCC, i.e.,
|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |Φ+〉.

Proof. This is a simple application of Lemma 2.3. Since
So(|ϕ〉) is not empty andlu(|Φ+〉) = 1 > gu(|ϕ〉), it follows
from Lemma 2.3 that

ψ ⊗ Φ+
⊳ ϕ⊗ Φ+. (41)

An arbitrary but small enough perturbation on|Φ+〉 in the
left hand side of Eq. (41) can still keep the relation ‘⊳’.
Hence the existence ofδ is proven. �

The above theorem tells us that for any given|ψ〉 ∈ So(|ϕ〉)
and k > 1, we can find a partially entangled pure state
|χ〉 satisfying |ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |Φ+〉. It is obvious that
|χ〉 depends not only on|ϕ〉 and k, but also |ψ〉. At first
glance, this seems to be contradicting our result about partial
entanglement recovery, which states the auxiliary state|χ〉 for
partial entanglement recovery only depends on the target state
|ϕ〉 and the presence of equalities in the majorizationψ ≺ ϕ.
The key point is when we consider whether|χ〉 can be used to
do partial entanglement recovery for a transformation withthe
target state|ϕ〉, the resulting state|ω〉 is not specified; while
the resulting state here is given and is maximally entangled. By
Nielsen’s theorem,|χ〉 should be determined by the relation
ψ ⊗ χ ≺ ϕ ⊗ Φ+, which obviously depends on the source
state, the target state andk.

Theorem 6.1 confirms the existence of the partially entan-
gled state|χ〉. But it cannot yield a complete characterization
of |χ〉. To obtain such a characterization, we need to apply
Nielsen’s theorem and solve the corresponding majorization
relation directly. To illustrate this procedure better, let us
examine a simple case where|ψ〉 and |ϕ〉 are both2 × 2-
dimensional. In particular, the following example deals with
the case ofk = 2.

Example 6.1:Let |ψ〉, |ϕ〉, and |Φ+〉 be three2 × 2 states
with ψ = (a, 1 − a), ϕ = (b, 1 − b), andΦ+ = (1

2 ,
1
2 ), where

1
2 < a < b ≤ 1. We are going to find a2 × 2 partially
entangled state|χ〉 such that the transformation of|ψ〉 to |ϕ〉
can concentrate|χ〉 into the maximally entangled state|Φ+〉.

Suppose that|χ〉 is of the form χ = (p, 1 − p), where
1
2 < p < 1. By Nielsen’s theorem, we only need|χ〉 to satisfy

ψ ⊗ χ ≺ ϕ⊗ Φ+.

Notice thatϕ⊗Φ+ has only two distinct components12b and
1
2 (1−b). By the definition of majorization, the above equation
holds if and only if

ap ≤ 1

2
b
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and
(1 − a)(1 − p) ≥ 1

2
(1 − b).

Hence
1

2
< p < min{ b

2a
,
1 − 2a+ b

2(1 − a)
}.

Note that 1
2 < a < b < 1, so the above equation can be

simplified into
1

2
< p ≤ b

2a
, (42)

which is exactly the result obtained in [10]. �

More generally, suppose that thek×k auxiliary state|χ〉 is
of the formχ = (γ1, . . . , γk). Then to obtain ak×k maximally
entangled state|Φ+〉 from the above transformation of|ψ〉 to
|ϕ〉, it suffices to haveψ ⊗ χ ≺ ϕ⊗ Φ+, which is equivalent
to

γ1a ≤ b

k

and
γk(1 − a) ≥ 1 − b

k
.

Thus
1 − b

k(1 − a)
≤ γk < γ1 ≤ b

ka
. (43)

If k = 2, we can show that Eq. (43) can be reduced to Eq.
(42).

One can similarly consider the general case where bothk
andn are arbitrary positive integers.

B. Partial entanglement recovery and quantum catalysis

In the above discussions, we always assume that the source
state |ψ〉 is comparable to the target state|ϕ〉, i.e., the
transformation of|ψ〉 to |ϕ〉 can be realized with certainty
under LOCC. How about the case where|ψ〉 and |ϕ〉 are
not comparable? The general answer to this question remains
unknown.

In [14] a special case where the transformation of|ψ〉 to
|ϕ〉 has a catalyst state|c〉 such that|ψ〉 ⊗ |c〉 → |ϕ〉 ⊗ |c〉
[18], i.e., the transformation of|ψ〉 to |ϕ〉 can be realized
under ELOCC, was examined carefully. It was shown that
the problem of doing partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉 with ψ ⊀ ϕ may be reduced to
the problem of finding a catalyst state|c〉 and then seeking a
suitable auxiliary state|χ〉 to do partial entanglement recovery
for the new transformation of|ψ〉 ⊗ |c〉 to |ϕ〉 ⊗ |c〉 such that
ψ⊗ c ≺ ϕ⊗ c. For this purpose, in [14] an algorithm of time
complexityO((nk)!) was proposed to find ak×k catalyst|c〉
for a transformation of|ψ〉 to |ϕ〉 in which the source state
and the target state are bothn× n-dimensional.

However, the above algorithm is intractable since it is
of exponential time complexity. In [22] a polynomial time
algorithm of n for fixed k was given. With the aid of this
efficient algorithm, one can quickly determine whether an
n×n incomparable pair has ak×k catalyst. Then by the results
obtained in the present paper, such as Theorems 3.2, 4.1, or
4.2, a state|χ〉 that can do partial entanglement recovery for
the transformation of|ψ〉 to |ϕ〉 can be explicitly constructed.

Therefore, if the transformation of|ψ〉 to |ϕ〉 can be
realized with certainty under ELOCC, then we can find an
auxiliary state|χ〉 to do partial entanglement recovery for this
transformation.

C. Partial entanglement recovery and mutual catalysis

In [23], an interesting phenomenon namedmutual catalysis
was demonstrated. If|ψ〉 9 |ϕ〉 and |α〉 9 |β〉 but |ψ〉 ⊗
|α〉 → |ϕ〉 ⊗ |β〉, we say that|ψ〉 and |α〉 can be mutually
catalyzed by each other. The trivial case such that|ψ〉 → |β〉
and |α〉 → |ϕ〉 is not necessary to consider. With the help
of the results obtained in previous sections, one can easily
construct many non-trivial instances with the mutual catalysis
effect. First, let us reexamine an example from [23].

Example 6.2:Let |ψ〉, |ϕ〉, |α〉, and|β〉 be four states with
ψ = (0.33, 0.32, 0.3, 0.05), ϕ = (0.6, 0.2, 0.14, 0.06), α =
(0.6, 0.3, 0.1, 0), and β = (0.46, 0.46, 0.08, 0). It is easy to
see that both the transformations of|ψ〉 to |ϕ〉 and of |α〉 to
|β〉 cannot happen with certainty even under ELOCC. But we
do have|ψ〉 ⊗ |α〉 → |ϕ〉 ⊗ |β〉 in a non-trivial way. This is
just the effect of mutual catalysis.

From another point of view, this example can be
treated as a special instance of partial entanglement
recovery. To see this, let us relabel the above four states
as follows:χ = (0.6, 0.3, 0.1, 0), ω = (0.6, 0.2, 0.14, 0.06),
ψ = (0.33, 0.32, 0.3, 0.05), andϕ = (0.46, 0.46, 0.08, 0). It is
obvious thatψ ⊳ ϕ. Noticing thatlu(|ω〉) > gu(|ϕ〉) = 0, we
have thatψ⊗ω⊳ϕ⊗ω by Lemma 2.3. A small perturbation
on ω will generateχ = ω + (0, 0.1,−0.04,−0.06). Note that
E(|χ〉) = 1.2955 < E(|ω〉) = 1.5472. So the entropy of
entanglement of|χ〉 is enhanced. �

The above example suggests a connection between partial
entanglement recovery and mutual catalysis. More generally,
any pairs{|ψ〉, |χ〉} and {|ϕ〉, |ω〉} such that|ψ〉 ⊗ |χ〉 →
|ϕ〉⊗ |ω〉, |χ〉 9 |ω〉, |χ〉 9 |ϕ〉, and|ψ〉 9 |ϕ〉⊗ |ω〉 can be
treated as nontrivial instances of mutual catalysis. Thesepairs
can be easily obtained with the aid of lemma 2.3. Furthermore,
one can choose the state|ω〉 satisfyingω ≺ χ but χ ⊀ ω. We
omit the construction details.

D. Multiple-copy is essential for partial entanglement recov-
ery

Multiple-copy entanglement transformation is another in-
teresting topic in quantum entanglement theory. Let us review
this concept briefly. In [15], it was demonstrated that some-
times multiple copies of a source state may be transformed
into the same number of copies of a target state although the
transformation cannot happen for a single copy. That is, for
some states|ψ〉 and |ϕ〉, although the transformation of|ψ〉
to |ϕ〉 cannot be realized with certainty by LOCC, there may
existm > 1 such that the transformation of|ψ〉⊗m to |ϕ〉⊗m
can be achieved deterministically. This kind of transformation
that uses multiple copies of a source state and then transforms
all of them together into the same number of copies of a
target state is intuitively called ‘multiple-copy entanglement
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transformation’, or MLOCC for short. See [15], [19], [20],
and [21] for more about MLOCC.

It may be of interest to study the relations between partial
entanglement recovery and multiple-copy entanglement trans-
formation. To our surprise, entanglement lost in a multiple-
copy entanglement transformation can be recovered more
easily than that in a single-copy transformation when the
auxiliary state is specified. To demonstrate this point, we need
the following theorem as a useful tool.

Theorem 6.2:Let |ϕ〉 and |χ〉 be two partially entangled
states. If|χ〉 has at least two distinct nonzero Schmidt coef-
ficients, then there exists a positive integerk0 such that for
any k ≥ k0 and |ψ〉 ∈ So(|ϕ〉), entanglement lost in the
transformation of|ψ〉⊗k to |ϕ〉⊗k can be partially recovered
by |χ〉.
The most interesting part of the above theorem is that the
choice ofk0 only depends on|χ〉 and |ϕ〉.

Proof. First, applying Lemma 1 in [20] yields thatψ ⊳ ϕ
implies ψ⊗k ⊳ ϕ⊗k for any k ≥ 1. Second, notice that
gu(|ϕ〉⊗k) = gku(|ϕ〉) and gu(|ϕ〉) < 1. By the assumption
on |χ〉, we have0 < Lu(|χ〉) < 1. Thus there existsk0 ≥ 1
such thatLu(|χ〉) > gku(|ϕ〉) for any k ≥ k0. Therefore, by
Theorem 3.2, we deduce that|χ〉 can be used to do partial
entanglement recovery for the transformation of|ψ〉⊗k to
|ϕ〉⊗k such thatk ≥ k0 and |ψ〉 ∈ So(|ϕ〉). �

Let us take now two states|ϕ〉 and |χ〉 such that0 <
Lu(|χ〉) < gu(|ϕ〉) < 1. By Theorem 3.2,|χ〉 cannot do
partial entanglement recovery for any transformation withthe
target |ϕ〉 since Lu(|χ〉) < gu(|ϕ〉). On the other hand,
it is easy to see that|ϕ〉 and |χ〉 satisfy the assumptions
of Theorem 6.2. Hence, there existsk0 such that for any
k ≥ k0 and |ψ〉 ∈ So(|ϕ〉), entanglement lost in thek-copy
transformation, i.e., the transformation of|ψ〉⊗k to |ϕ〉⊗k, can
be partially recovered by|χ〉.

We give an intuitive explanation for the above theorem. If
the auxiliary state|χ〉 cannot do partial entanglement recovery
for the transformations with the target state|ϕ〉, then the target
state is too uniform, and it is too entangled relative to|χ〉.
So for any state|ψ〉 that can be transformed into|ϕ〉 under
LOCC, the extra entanglement left (except the necessary part
to finish the transformation of|ψ〉 to |ϕ〉) is not enough to be
transferred into|χ〉. But if multiple copies of the source state
are provided, the extra entanglement will accumulate. Such
extra entanglement can be transferred into the state|χ〉 when
it exceeds a threshold.

It is also interesting to investigate the partial entanglement
recovery power when multiple copies of the auxiliary state
|χ〉 are available. We restrict ourselves to the special case that
|χ〉 is 2 × 2-dimensional. A surprising result appears as the
following:

Theorem 6.3:Let |χ〉 be a 2 × 2-dimensional partially
entangled state and|ϕ〉 be any partially entangled state. If
Lu(|χ〉) < gu(|ϕ〉), then for anyk ≥ 1, |χ〉⊗k cannot
do partial entanglement recovery for any transformation with
target state|ϕ〉.
Intuitively, if the auxiliary state|χ〉 is 2 × 2-dimensional,
then more copies of|χ〉 do not provide any extra power of

partial entanglement recovery ifLu(|χ〉) < gu(|ϕ〉). This is
very reasonable since the key point of such a recovery is the
difference between the entanglement resource of the source
state and that of the target state, which keeps invariant during
the process of increasing the number of copies of the auxiliary
state.

Proof. By (3) of Lemma 2.2 we have that
Lu(|χ〉⊗k) = Lu(|χ〉) since |χ〉 is a 2 × 2 state. So by
the assumptionLu(|ψ〉) < gu(|ϕ〉), it follows from Theorem
3.2 that |χ〉⊗k cannot be used to do partial entanglement
recovery for any transformation with the target state|ϕ〉. �

In the case whenLu(|χ〉) = gu(|ϕ〉), however, the partial
entanglement recovery capability of|χ〉⊗k may be strictly
more powerful than that of|χ〉 for suitably largek. That
is, |χ〉⊗k can do partial entanglement recovery for some
transformation with the target state|ϕ〉 while |χ〉 cannot. See
the following example.

Example 6.3:Let |χ〉 be a state withχ = (p, 1− p), where
1
2 < p < 1. Then by Theorem 3.2 we know that|χ〉 cannot
do partial entanglement recovery for any transformation with
target state|ϕ〉 such thatϕ = (p, p, p, p, 1−p, 1−p)/(2+2p).

However, by Theorem 3.2 again, |χ〉⊗2 with
χ⊗2 = (p2, p(1 − p), p(1 − p), (1 − p)2) can do partial
entanglement recovery for any transformation of|ψ〉 to |ϕ〉
such that|ψ〉 is in So(|ϕ〉). �

A more general result in this special case is: if|ϕ〉 has
only two distinct nonzero Schmidt coefficients, then for a
sufficiently largek, |χ〉⊗k can always do partial entanglement
recovery for any transformation of|ψ〉 to |ϕ〉 with |ψ〉 ∈
So(|ϕ〉); otherwise such a recovery is impossible for arbitrarily
largek.

VII. C ONCLUSION

To summarize, we obtain a complete characterization of
an auxiliary bipartite entangled state|χ〉 that can do partial
entanglement recovery for the transformation of|ψ〉 to |ϕ〉
whereψ is strictly majorized byϕ. It is interesting that the
choice of the auxiliary state can only depend on the target
state|ϕ〉 and the presence of the equalities in the majorization
relationψ ≺ ϕ. We further propose two sufficient conditions
for |χ〉 that can be used to do partial entanglement recovery
for a class of transformations of|ψ〉 to |ϕ〉 with ψ ≺ ϕ. We
also study the feasibility of partial entanglement recovery from
the algorithmic viewpoint. A polynomial algorithm of time
complexityO(n2k4) is presented for deciding the possibility
of partial entanglement recovery. As applications, we establish
some interesting connections of partial entanglement recovery
to the generation of maximally entangled states, quantum
catalysis, mutual catalysis, and multiple-copy entanglement
transformation. We hope the results presented here may help
us to manipulate quantum entanglement more economically.

APPENDIX A: PROOF OFLEMMA 2.3

Take |ψ〉 ∈ So(|ϕ〉). Assumeψ↓ = (α1, α2, . . . , αn), ϕ↓ =
(β1, β2, . . . , βn), andχ↓ = (γ1, γ2, . . . , γk). If k = 1 then the
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result follows trivially. In what follows we assumek > 1.
First we prove that iflu(|χ〉) > gu(|ϕ〉) then |ψ〉 ⊗ |χ〉 is

in So(|ϕ〉 ⊗ |χ〉). In other words, we shall prove

el(ψ ⊗ χ) < el(ϕ⊗ χ) (44)

for any 1 ≤ l < nk.
We rewrite

el(ψ ⊗ χ) =

k
∑

i=1

eli(γiψ), (45)

where0 ≤ li ≤ n and
∑k

i=1 li = l. Easily see thatγiψ⊳ γiϕ
for all 1 ≤ i ≤ k. So we merely need to consider the following
two cases:

Case 1: There exists1 ≤ s ≤ k such that0 < ls < n. In
this case,els(γsψ) < els(γsϕ) holds. Then Eq. (44) follows
from

el(ψ ⊗ χ) =
∑k

i=1 eli(γiψ)

<
∑k

i=1 eli(γiϕ)
≤ el(ϕ⊗ χ),

where the equality is by Eq. (45), and the second inequality
is by the definition ofel(ϕ⊗ χ).

Case 2: For any1 ≤ i ≤ k, li ∈ {0, n}. Let h be the
maximal index satisfyinglh = n. Then1 ≤ h < k; otherwise
h = k implies l = nk, which contradicts the assumptionl <
nk. Noticing lu(|χ〉) > gu(|ϕ〉), we haveγh+1/γh > βn/β1,
or

γhβn < γh+1β1. (46)

By the definition ofenh(ψ⊗χ) and the assumption onh, we
further have

enh(ψ ⊗ χ) =
∑h
i=1 en(γiψ)

=
∑h−1
i=1 en(γiϕ) +

∑n−1
i=1 γhβi + γhβn,

where the second equality is due toen(ψ) = en(ϕ).
Substituting Eq. (46) into the above equation, we have

enh(ψ ⊗ χ) <
∑h−1

i=1 en(γiϕ) +
∑n−1

i=1 γhβi + γh+1β1

≤ enh(ϕ⊗ χ),

where the second inequality is by the definition ofenh(ϕ⊗χ).
Therefore Eq. (44) holds for any1 ≤ l < nk. By the

definition, we have|ψ〉 ⊗ |χ〉 is in So(|ϕ〉 ⊗ |χ〉). (Note that
enk(ψ ⊗ χ) = enk(ϕ⊗ χ) holds for anyχ wheneverψ ⊳ ϕ).

Conversely, suppose|ψ〉 ⊗ |χ〉 is in So(|ϕ〉 ⊗ |χ〉), while
there exists some1 ≤ h < k, such that

γh+1

γh
≤ βn
β1
,

or equivalently,
γhβn ≥ γh+1β1.

Then we have

enh(ϕ⊗ χ) =
∑h

i=1 en(γiϕ)

=
∑h

i=1 en(γiψ)
≤ enh(ψ ⊗ χ),

which contradicts the assumption thatel(ψ ⊗ χ) < el(ϕ⊗ χ)
for any 1 ≤ l < nk.

With that we complete the proof of Lemma 2.3.

APPENDIX B: PROOF OFTHEOREM 3.2

To prove Theorem 3.2, we need the following three auxiliary
facts about majorization.

Lemma 7.1:Let y ∈ Rn with compact form y↓ =
(y′⊕k11 , . . . , y′⊕kss ), and let x ∈ Rn satisfying x ≺ y but
y ⊀ x. Then there existsz ∈ Rn such thatx ≺ z ≺ y
and

z↓ = [y′⊕k11 , . . . , y′⊕ki−1
i , y′i − ǫ,

. . . , y′j + ǫ, y
′⊕kj−1
j , . . . , y′⊕kss ],

for some1 ≤ i < j ≤ s andǫ > 0.
Proof.This is a direct consequence of B.1. Lemma in [7] (page
21). �

Lemma 7.2:If x′ ≺ y′ and x′′ ≺ y′′, then (x′, x′′) ≺
(y′, y′′).
Proof. See part (i) of A.7. Lemma in [7] (page 121). �

Lemma 7.3:Let x↓ = (x′↓, x′′↓) and y↓ = (y′↓, y′′↓). If
x ≺ y and x′ ≺ y′ (or x′′ ≺ y′′), then x′′ ≺ y′′ (resp.
x′ ≺ y′).
Proof. Supposex′, y′ ∈ Rm and x′′, y′′ ∈ Rn. By the
assumption, we have

el(x
′′) = em+l(x) − em(x′) (47)

and
el(y

′′) = em+l(y) − em(y′) (48)

for any 1 ≤ l ≤ n.
Noticing x′ ≺ y′ andx ≺ y, we also have

em(x′) = em(y′) (49)

and
el(x) ≤ el(y) (50)

for any 1 ≤ l ≤ m + n and the inequality is an equality if
l = m+ n. Thus Eqs. (47)– (50) give

el(x
′′) ≤ el(y

′′)

for any 1 ≤ l ≤ n, with the equality holding whenl = n.
That meansx′′ ≺ y′′. If x ≺ y andx′′ ≺ y′′, we can prove
x′ ≺ y′ similarly. �

Now we proceed to the proof of Theorem 3.2. We first deal
with the case where all the nonzero Schmidt coefficients of
|χ〉 are identical, i.e.,Lu(|χ〉) = 0 or Lu(|χ〉) = 1.

Assumeχ↓ = (( 1
a
)⊕a, 0⊕k−a). If a = k, then|χ〉 is ak×k

maximally entangled state. There cannot be anotherk×k state
|ω〉 that is more entangled than|χ〉. So partial entanglement
recovery is not possible in this case.

Now suppose1 ≤ a < k. If |χ〉 can do partial entanglement
recovery for some transformation of|ψ〉 to |ϕ〉 such that|ψ〉
is in S(|ϕ〉), then the state|ω〉 such thatψ ⊗ χ ≺ ϕ⊗ ω and
ω ≺ χ, butχ↓ 6= ω↓ should have at leasta+1 nonzero Schmidt
coefficients. By the property of majorization, the number of
nonzero Schmidt coefficients ofψ⊗χ is not less than that of
ϕ⊗ ω, i.e.,

n′′a ≥ n′(a+ 1),
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wheren′′ denotes the number of nonzero Schmidt coefficients
of |ψ〉. Obviously,n′′ ≤ n, thus we have

na ≥ n′(a+ 1). (51)

Conversely, if Eq. (51) holds, we will show that|χ〉 can be
used to do partial entanglement recovery for any transforma-
tion of |ψ〉 to |ϕ〉 with |ψ〉 ∈ So(|ϕ〉). Let us take

χ(ǫ) = ((
1

a
)⊕a−1,

1

a
− ǫ, ǫ, 0⊕k−a−1),

whereǫ is a suitably small positive number. We have that

χ(ǫ) ≺ χ and χ↓ 6= χ↓(ǫ)

for any 0 < ǫ < 1
2a . Noticing |ψ〉 ∈ So(|ϕ〉), by Lemma 2.3

we have

(ψ ⊗ (
1

a
)⊕a) ⊳ (ϕ⊗ (

1

a
)⊕a).

Combining the above equation with Eq. (51) gives

(ψ ⊗ (
1

a
)⊕a) ⊳ (ϕ⊗ ((

1

a
)⊕a, 0))1na,

where the notation(x)ij denotes the segment(x↓i , . . . , x
↓
j ) of

x↓. Since a sufficiently small perturbation on the right-hand
side of the above equation cannot change the relation⊳, we
have that

(ψ ⊗ (
1

a
)⊕a) ⊳ (ϕ⊗ ((

1

a
)⊕a−1,

1

a
− ǫ, ǫ))1na (52)

for small enough positive numberǫ.
Appending suitable number of zeros on the both sides of

Eq. (52) gives
ψ ⊗ χ ≺ ϕ⊗ χ(ǫ),

which proves that|χ〉 can do partial entanglement recovery
for the transformation of|ψ〉 to |ϕ〉.

Now we turn to the general case that|χ〉 has at least two
nonzero distinct Schmidt coefficients, i.e.,0 < Lu(|χ〉) < 1.
We shall consider the following three cases: (i)Lu(|χ〉) >
gu(|ϕ〉); (ii) Lu(|χ〉) < gu(|ϕ〉); and (iii) Lu(|χ〉) = gu(|ϕ〉).

First, we deal with case (i). We shall prove that ifLu(|χ〉) >
gu(|ϕ〉), then|χ〉 can do partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉 such that|ψ〉 is in So(|ϕ〉).

Supposeχ↓ = (γ⊕k11 , . . . , γ⊕kmm ). Then there exists1 ≤
i < m such that

gu(|ϕ〉) < Lu(|χ〉) =
γi+1

γi
< 1. (53)

Let us denote (γ⊕k11 , . . . , γ⊕ki−1
i ), (γi, γi+1), and

(γ
⊕ki+1−1
i+1 , . . . , γ⊕kmm ) by γ′, γ′′, and γ′′′, respectively. If

ki = 1 or ki+1 = 1, we simply omit the meaningless terms
γ′ or γ′′′, respectively. For any|ψ〉 ∈ So(|ϕ〉), we have

ψ ⊗ γ′ ≺ ϕ⊗ γ′, (54)

ψ ⊗ γ′′ ⊳ ϕ⊗ γ′′, (55)

and
ψ ⊗ γ′′′ ≺ ϕ⊗ γ′′′, (56)

where Eq. (55) comes from Eq. (53) and Lemma 2.3. So for
a sufficiently small positive numberǫ, we have

ψ ⊗ γ′′ ⊳ ϕ⊗ γ′′(ǫ), (57)

whereγ′′(ǫ) = (γi− ǫ, γi+1 + ǫ). By Eqs. (54), (56) and (57),
applying Lemma 7.2 gives

ψ ⊗ χ ≺ ϕ⊗ ω,

where χ↓ = (γ′, γ′′, γ′′) and ω↓ = (γ′, γ′′(ǫ), γ′′′). It is
obvious thatω ≺ χ but χ↓ 6= ω↓.

Second we deal with case (ii). Suppose thatLu(|χ〉) <
gu(|ϕ〉). We shall prove that|χ〉 cannot do partial entangle-
ment recovery for any transformation|ψ〉 → |ϕ〉 such that|ψ〉
is in S(|ϕ〉).

By contradiction, suppose that there exists a state|ω〉 such
thatψ ⊗ χ ≺ ϕ⊗ ω, ω ≺ χ andχ↓ 6= ω↓. For any state|χ′〉
such thatω ≺ χ′ ≺ χ we have

ψ ⊗ χ ≺ ϕ⊗ χ′, (58)

where we have used the assumptionψ ⊗ χ ≺ ϕ⊗ ω.
By Lemma 7.1,χ′ can be chosen as

χ′↓ = (γ′, γ′′(ǫ), γ′′′), (59)

whereγ′ = (γ⊕k11 , . . . , γ⊕ki−1
i ), γ′′(ǫ) = (γi− ǫ, . . . , γj + ǫ),

γ′′′ = (γ
⊕kj−1
j , . . . , γ⊕kmm ), 1 ≤ i < j ≤ m, and ǫ is an

arbitrarily positive but small enough real number. In particular,

χ↓ = (γ′, γ′′, γ′′′), (60)

whereγ′′ = γ′′(0) = (γi, . . . , γj). However, we shall prove
that such two indicesi andj cannot exist, and thus complete
the proof of this case.

For simplicity, let n = dim(ϕ). By the assumption
Lu(|χ〉) < gu(|ϕ〉), it follows that

γsβn > γs+1β1, for any 1 ≤ s ≤ m− 1, (61)

whereβ1 and βn are the greatest and the least components
of ϕ, respectively. Notice thatψ ≺ ϕ. Applying part (6) of
Lemma 2.1 givesgu(|ψ〉) ≥ gu(|ϕ〉), thusLu(|χ〉) < gu(|ψ〉),
or more explicitly,

γsαn > γs+1α1, for any 1 ≤ s ≤ m− 1, (62)

whereα1 andαn are the greatest and the least components of
ψ, respectively.

Eqs. (60) and (62) imply

(ψ ⊗ χ)↓ = ((ψ ⊗ γ′)↓, (ψ ⊗ γ′′)↓, (ψ ⊗ γ′′′)↓). (63)

Eqs. (59), (61), andǫ > 0 imply

(ϕ⊗ χ′)↓ = ((ϕ ⊗ γ′)↓, (ϕ⊗ γ′′(ǫ))↓, (ϕ⊗ γ′′′)↓). (64)

Applying Lemma 7.3 to Eqs. (63) and (64) yields

ψ ⊗ γ′′ ≺ ϕ⊗ γ′′(ǫ), (65)

where we have used the assumptionψ ≺ ϕ and Eq. (58).
According to Eq. (61), we can take a sufficiently small

positive numberǫ such that

(γi − ǫ)βn > (γi+1 + ǫ)β1.
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Then
en(ϕ⊗ γ′′(ǫ)) = (γi − ǫ)en(ϕ)

< γien(ψ)
≤ en(ψ ⊗ γ′′),

which contradicts Eq. (65).
Finally, we deal with case (iii), i.e.,Lu(|χ〉) = gu(|ϕ〉).

This case is much more complicated than the previous two
cases. It is in fact the most non-trivial part of Theorem 3.2.
Since this case is of considerable interest, we will presenta
detailed proof for it. To keep the proof as readable as possible,
the lengthy proof is divided into two easier lemmas. It is worth
noting that both lemmas are interesting in their own right.

The first lemma shows that an auxiliary state can do partial
entanglement recovery for a specific transformation if and only
if some of its segments can do partial entanglement recovery
for the same transformation.

Lemma 7.4:Let |ψ〉 and |ϕ〉 be two states such thatψ ≺
ϕ, and let |χ〉 be a partially entangled state with compact
form χ↓ = (γ⊕k11 , . . . , γ⊕kmm ) for somem > 1. If Lu(|χ〉) =
gu(|ϕ〉), then the following two statements are equivalent:

(i) |χ〉 can do partial entanglement recovery for the trans-
formation of |ψ〉 to |ϕ〉;

(ii) There exists an indexi such that the unnormalized state
|χ′〉 with χ′↓ = (γ⊕kii , γ

⊕ki+1

i+1 ) can do partial entanglement
recovery for the transformation of|ψ〉 to |ϕ〉, where1 ≤ i < m
and γi+1

γi
= gu(|ϕ〉).

Proof. The essential part of the lemma is (i)⇒ (ii).
Suppose that|χ〉 can do partial entanglement recovery for the
transformation of|ψ〉 to |ϕ〉. That is, there exists a state|ω〉
satisfyingψ⊗χ ≺ ϕ⊗ω, ω ≺ χ, andχ↓ 6= ω↓. Moreover, by
Lemma 7.2, we can assume that|ω〉 is of the following form:

ω↓ = (γ′, γ′′(ǫ), γ′′′),

where γ′ = (γ⊕k11 , . . . , γ
⊕ki−1

i−1 ), γ′′(ǫ) = (γ⊕ki−1
i , γi −

ǫ, . . . , γj + ǫ, γ
⊕kj−1
j ), γ′′′ = (γ

⊕kj+1

j+1 , . . . , γ⊕kmm ), 1 ≤ i <

j ≤ m, and ǫ > 0. To make(γ′′(ǫ))↓ = γ′′(ǫ) hold, we
have assumed thatǫ satisfiesγp − ǫ > γp+1 + ǫ for any
1 ≤ p ≤ m− 1. We also have

χ↓ = (γ′, γ′′(0), γ′′′),

whereγ′′(0) = (γ⊕kii , . . . , γ
⊕kj
j ).

By the assumptionsLu(|χ〉) = gu(|ϕ〉) and ψ ≺ ϕ, we
have

(ψ ⊗ χ)↓ = ((ψ ⊗ γ′)↓, (ψ ⊗ γ′′(0))↓, (ψ ⊗ γ′′′)↓). (66)

and

(ϕ⊗ ω)↓ = ((ϕ ⊗ γ′)↓, (ϕ⊗ γ′′(ǫ))↓, (ϕ⊗ γ′′′)↓). (67)

Applying Lemma 7.3 to Eqs. (66) and (67) yields

ψ ⊗ γ′′(0) ≺ ϕ⊗ γ′′(ǫ), (68)

where we have used the assumptions thatψ⊗χ ≺ ϕ⊗ω and
ψ ≺ ϕ.

Therefore, for the simplicity of notations and without any
loss of generality, we can assume thati = 1 and j = m.
More directly, we can writeγ′′(0) and γ′′(ǫ) as χ and ω,
respectively. This, of course, will not cause any confusion.

We shall provem = 2 and γ2
γ1

= gu(|ϕ〉) to complete the
proof of the lemma.

For simplicity, we assume thatn = dim(ψ) in the rest of
proof.

First, we prove1 < m ≤ 3. By contradiction, suppose that
m > 3. Let us decompose

χ = (χ′(0), χ′′(0))

and
ω = (χ′(ǫ), χ′′(ǫ)),

where
χ′(ǫ) = (γ⊕k1−1

1 , γ1 − ǫ, γ⊕k22 )

and
χ′′(ǫ) = (γ⊕k33 , . . . , γm + ǫ, γ⊕km−1

m ).

Again,Lu(|χ〉) = gu(|ϕ〉) andψ ≺ ϕ give

γ3/γ2 ≤ gu(|ϕ〉) and γ3/γ2 ≤ gu(|ψ〉).
That immediately yields

(ψ ⊗ χ)↓ = ((ψ ⊗ χ′(0))↓, (ψ ⊗ χ′′(0))↓)

and
(ϕ⊗ ω)↓ = ((ϕ⊗ χ′(ǫ))↓, (ϕ⊗ χ′′(ǫ))↓).

So,

e(k1+k2)n(ψ ⊗ χ) = e(k1+k2)n(ψ ⊗ χ′(0))
= k1γ1 + k2γ2

and

e(k1+k2)n(ϕ⊗ ω) = e(k1+k2)n(ϕ⊗ χ′(ǫ))
= k1γ1 + k2γ2 − ǫ,

thus
e(k1+k2)n(ψ ⊗ χ) > e(k1+k2)n(ϕ⊗ ω)

for any smallǫ > 0. This contradicts the assumptionψ⊗χ ≺
ϕ⊗ ω. Hence1 < m ≤ 3

Second, we prove that for any1 ≤ i ≤ m − 1, it holds
that γi+1/γi = βn/β1, whereβ1 andβn are the greatest and
the least components ofϕ, respectively. By contradiction, we
need to consider two cases: (1)m = 2 and (2)m = 3.

(1) m = 2. Suppose thatγ2/γ1 < βn/β1. Let us choose a
suitably small positive numberǫ such that

(γ2 + ǫ)β1 < (γ1 − ǫ)βn.

A routine calculation shows that

ek1n(ψ ⊗ χ) = ek1n(ψ ⊗ γ⊕k11 )
= k1γ1

and

ek1n(ϕ⊗ ω) = e(k1−1)n(ϕ⊗ γ⊕k1−1
1 ) + en((γ1 − ǫ)ϕ)

= k1γ1 − ǫ,

which yields

ek1n(ψ ⊗ χ) > ek1n(ϕ⊗ ω)

for any smallǫ > 0. That again contradictsψ ⊗ χ ≺ ϕ⊗ ω.
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(2) m = 3. Suppose thatγ2/γ1 < βn/β1 or γ3/γ2 <
βn/β1. We only consider the case whereγ3/γ2 < βn/β1,
and the left case is similar to case (i). Choose a suitably small
positive numberǫ such that

(γ3 + ǫ)β1 < γ2βn.

Then a simple analysis shows

e(k1+k2)n(ψ ⊗ χ) = ek1n(ψ ⊗ γ⊕k11 ) + ek2n(ψ ⊗ γ⊕k22 )
= k1γ1 + k2γ2

and

e(k1+k2)n(ϕ⊗ ω) = e(k1−1)n(ϕ⊗ γ⊕k1−1
1 )

+en((γ1 − ǫ)ϕ) + ek2n(ϕ⊗ γ⊕k22 )
= k1γ1 + k2γ2 − ǫ,

which yields

e(k1+k2)n(ψ ⊗ χ) > e(k1+k2)n(ϕ⊗ ω).

That is a contradiction withψ ⊗ χ ≺ ϕ⊗ ω.
Third, we prove thatm = 2. By contradiction, we shall

show that ifm = 3 then

ψ ⊗ χ ≺ ϕ⊗ ω

cannot hold for any small enough positive numberǫ, where
χ↓ = (γ⊕k11 , γ⊕k22 , γ⊕k33 ), ω↓ = (γ⊕k1−1

1 , γ1 − ǫ, γ⊕k22 , γ3 +
ǫ, γ⊕k3−1

3 ), γ2/γ1 = γ3/γ2 = gu(|ϕ〉).
To be specific, letϕ↓ = (β⊕m1

1 , . . . , β⊕mh
h ) for someh ≥ 2.

Obviously,n = dim(ψ) =
∑h

t=1mt. Chooseǫ such that

(γ1 − ǫ)βi > γ1βi+1

and
(γ3 + ǫ)βi+1 < γ3βi

for any 1 ≤ i ≤ h− 1.
In addition to the above constraints, we also needǫ satisfy-

ing
(γ1 − ǫ)γh > (γ3 + ǫ)β1.

A direct calculation gives

(ψ ⊗ χ)↓ = (ϕ′(0), ϕ′′(0))

and
(ϕ⊗ ω)↓ = (ϕ′(ǫ), ϕ′′(ǫ)),

where

ϕ′(ǫ) = [γ1β
⊕(k1−1)m1

1 , (γ1 − ǫ)β⊕m1

1 ,

. . . , γ1β
⊕(k1−1)mh−1

h−1 , (γ1 − ǫ)β
⊕mh−1

h−1 ],

and

ϕ′′(ǫ) = [γ1β
⊕(k1−1)mh+k2m1

h , (γ1 − ǫ)β⊕mh
h ,

. . . , (γ3 + ǫ)β⊕mh
h , γ3β

⊕(k3−1)mh
h ],

where we have usedγ1βh = γ2β1.
It can be readily verified that

ek1n(ψ ⊗ χ) = ek1(n−mh)(ϕ
′(0)) + ek1mh(ϕ

′′(0))
= k1γ1

and

ek1n(ϕ⊗ ω) = ek1(n−mh)(ϕ
′(ǫ)) + ek1mh(ϕ

′′(ǫ))
= (k1γ1 − ǫ)(1 −mhβh) + ek1mh(ϕ

′′(ǫ)).

To calculateek1mh(ϕ
′′(ǫ)), we need to consider the follow-

ing two cases:
(a) k2m1 ≥ mh. Then

ek1mh(ϕ
′′(ǫ)) = ek1mh(γ1β

⊕k1mh
h )

= k1mhγ1βh,

thus
ek1n(ϕ⊗ ω) = k1γ1 − ǫ(1 −mhβh)

< ek1n(ψ ⊗ χ)

providing ǫ > 0.
(b) k2m1 < mh. Then

ek1mh(ϕ
′′(ǫ)) = el1(γ1β

⊕l1
h ) + el2((γ1 − ǫ)β⊕l2

h )
= k1mhγ1βh − ǫ(mh − k2m1)βh,

wherel1 = (k1 − 1)mh + k2m1 and l2 = mh − k2m1. Thus

ek1n(ϕ⊗ ω) = k1γ1 − ǫ(1 − k2m1βh)
< k1γ1 − ǫ(1 −mhβh)
< ek1n(ψ ⊗ χ)

providingǫ > 0. In the above two cases we have usedγ1βh =
γ2β1 to simplify the calculations.

Both the above two cases contradictψ ⊗ χ ≺ ϕ⊗ ω. Thus
m = 3 is impossible.

With that we complete the proof of Lemma 7.4. �

By Lemma 7.4, under the conditionLu(|χ〉) = gu(|ϕ〉), we
only need to consider a special form of|χ〉. More precisely,χ
has only two distinct components. The following lemma will
just handle such a special form of|χ〉.

Lemma 7.5:Let |χ〉 be a partially entangled state with
compact formχ↓ = (β⊕k1

1 , β⊕k2
2 ) for someβ1 > β2 > 0, and

let |ϕ〉 be another state satisfyinggu(|ϕ〉) = Lu(|χ〉). Then|χ〉
can do partial entanglement recovery for the transformation of
|ψ〉 to |ϕ〉 such that|ψ〉 is in So(|ϕ〉) if and only if

ϕ↓ = (
χ′⊕m

C
)↓, (69)

whereχ′ is a segment ofχ↓ with two distinct components,C
is a normalization factor, andm ≥ 1.

Moreover, if |χ〉 and |ϕ〉 don’t satisfy Eq. (69), then|χ〉
cannot do partial entanglement recovery for any transformation
of |ψ〉 to |ϕ〉 such that|ψ〉 is in S(|ϕ〉).

Proof. We first prove that if|χ〉 can do partial entanglement
recovery for some transformation of|ψ〉 to |ϕ〉 with ψ ≺ ϕ,
i.e., there exists a state|ω〉 satisfyingψ⊗χ ≺ ϕ⊗ω, ω ≺ χ,
andχ↓ 6= ω↓, then |χ〉 and |ϕ〉 should satisfy Eq. (69).

Suppose that|ϕ〉 and |ω〉 have compact forms

ϕ↓ = (β⊕m1

1 , . . . , β⊕mh
h )

and
ω↓ = (γ⊕k1−1

1 , γ1 − ǫ, γ2 + ǫ, γ⊕k2−1
2 ).

We shall prove that ifψ ⊗ χ ≺ ϕ ⊗ ω and ω ≺ χ for any
sufficiently small positive numberǫ, then

h = 2 and
1

k2
≤ m1

m2
≤ k1. (70)
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Or more compactly,ϕ has the form as in Eq. (69).
The conditionLu(|χ〉) = gu(|ϕ〉) is equivalent to

γ2β1 = γ1βh. (71)

For any1 ≤ i ≤ h− 1, chooseǫ such that

(γ1 − ǫ)βi > γ1βi+1, (72)

and
(γ2 + ǫ)βi+1 < γ2βi. (73)

In addition to the above conditions, we also chooseǫ
satisfying

(γ1 − ǫ)βh−1 > (γ2 + ǫ)β1, (74)

and
(γ1 − ǫ)βh > (γ2 + ǫ)β2. (75)

By the conditionLu(|χ〉) = gu(|ϕ〉) andψ ≺ ϕ, it is easy
to verify that

(ψ ⊗ χ)↓ = ((ψ ⊗ γ⊕k11 )↓, (ψ ⊗ γ⊕k22 )↓). (76)

Take

n = dim(ϕ) =

h
∑

i=1

mi. (77)

Then by Eq. (76),

ek1n(ψ ⊗ χ) = k1γ1. (78)

By Eqs. (71)–(75), a careful analysis gives

(ϕ⊗ ω)↓ = (ϕ′, ϕ′′),

where

ϕ′ = [γ1β
⊕m1(k1−1)
1 , (γ1 − ǫ)β⊕m1

1 ,

. . . , γ1β
⊕mh−1(k1−1)
h−1 , (γ1 − ǫ)β

⊕mh−1

h−1 ]

and

ϕ′′ = [(γ2 + ǫ)β⊕m1

1 , γ1β
⊕mh(k1−1)+m1(k2−1)
h ,

(γ1 − ǫ)β⊕mh
h , . . . , γ2β

⊕mh(k2−1)
h ].

So

ek1n(ϕ⊗ ω) = ek1(n−mh)(ϕ
′) + ek1mh(ϕ

′′)
= (k1γ1 − ǫ)(1 −mhβh) + ek1mh(ϕ

′′).
(79)

We need to consider the following four cases according to
the values ofek1mh(ϕ

′′):
Case (a):m1 > k1mh. Then it is obvious that

ek1mh(ϕ
′′) = ek1mh((γ2 + ǫ)β⊕k1mh

1 )
= k1mh(γ2 + ǫ)β1.

(80)

Combining Eqs. (79) with (80), we have

ek1n(ϕ⊗ ω) = k1γ1 + ǫ(k1mhβ1 +mhβh − 1),

where we have used the relationγ1βh = γ2β1 to simplify the
calculations.

Sinceψ⊗χ ≺ ϕ⊗ω, it follows thatek1n(ϕ⊗ω) ≥ ek1n(ψ⊗
χ), i.e.,

k1γ1 + ǫ(k1mhβ1 +mhβh − 1) ≥ k1γ1.

Or equivalently,

k1mhβ1 +mhβh ≥ 1. (81)

However, bym1 > k1mh and
∑h

i=1miβi = 1, it follows that

k1mhβ1 +mhβh < m1β1 +mhβh ≤ 1,

which contradicts Eq. (81).
Case (b):mh ≤ m1 ≤ k1mh. It is easy to calculate that

ek1mh(ϕ
′′) = em1

((γ2 + ǫ)β⊕m1

1 )

+ ek1mh−m1
(γ1β

⊕k1mh−m1

h )
= ǫm1β1 + k1mhγ1βh.

(82)

By Eqs. (79) and (82), it follows that

ek1n(ϕ⊗ ω) = k1γ1 + ǫ(m1β1 +mhβh − 1).

Sinceψ⊗χ ≺ ϕ⊗ω, it follows thatek1n(ϕ⊗ω) ≥ ek1n(ψ⊗
χ), i.e.,

k1γ1 + ǫ(m1β1 +mhβh − 1) ≥ k1γ1.

Or equivalently,
m1β1 +mhβh ≥ 1. (83)

It is easy to verify that Eq. (83) holds if and only ifh = 2.
Case (c):m1 ≤ mh ≤ k2m1. Similar to Case (b),ψ⊗χ ≺

ϕ ⊗ ω holds for any small enough positiveǫ if and only if
h = 2.

Case (d):mh > k2m1. Similar to Case (a), this also causes
a contradiction.

Summarizing the above four cases, we obtain that|ϕ〉
should satisfy Eq. (70), which is equivalent to Eq. (69).

Now we turn to prove that the condition in Eq. (69) is also
sufficient for partial entanglement recovery. Suppose that|ϕ〉
and |ω〉 are with compact forms

ϕ↓ = (β⊕m1

1 , β⊕m2

2 )

and
ω↓ = (γ⊕k1−1

1 , γ1 − ǫ, γ2 + ǫ, γ⊕k2−1
2 ),

where
β2

β1
=
γ2

γ1
and

1

k2
≤ m1

m2
≤ k1. (84)

Take |ψ〉 ∈ So(|ϕ〉). We shall prove that for a sufficiently
small positive numberǫ, the transformation of|ψ〉 ⊗ |χ〉 to
|ϕ〉 ⊗ |ω〉 can be realized with certainty under LOCC.

By the assumptionsLu(|χ〉) = gu(|ϕ〉) and ψ ≺ ϕ, it is
easy to verify that

(ψ ⊗ χ)↓ = (ψ′, ψ′′), (85)

whereψ′ = (ψ ⊗ γ⊕k11 )↓ andψ′′ = (ψ ⊗ γ⊕k22 )↓. Similarly,

(ϕ⊗ χ)↓ = (ϕ′, ϕ′′), (86)

whereϕ′ = (ϕ⊗ γ⊕k11 )↓ andϕ′′ = (ϕ⊗ γ⊕k22 )↓.
By Eq. (84), it holds thatγ1β2 = γ2β1. Hence we also have

ϕ′ = (γ1β
⊕k1m1

1 , γ2β
⊕k1m2

1 ) (87)

and
ϕ′′ = (γ1β

⊕k2m1

2 , γ2β
⊕k2m2

2 ). (88)
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Similarly,
(ϕ⊗ ω)↓ = (ϕ′(ǫ), ϕ′′(ǫ)), (89)

where

ϕ′(ǫ) = [γ1β
⊕(k1−1)m1

1 , (γ1 − ǫ)β⊕m1

1 ,

(γ2 + ǫ)β⊕m1

1 , γ2β
⊕k1m2−m1

1 ]
(90)

and
ϕ′′(ǫ) = [γ1β

⊕m1k2−m2

2 , (γ1 − ǫ)β⊕m2

2 ,

(γ2 + ǫ)β⊕m2

2 , γ2β
⊕(k2−1)m2

2 ].
(91)

Note that Eqs. (90) and (91) are well-defined since we have
Eq. (84). We have also assumed thatǫ in Eqs. (90) and (91)
satisfies the following constraints:

(γ1 − ǫ)β1 > (γ2 + ǫ)β1 and (γ2 + ǫ)β2 < (γ1 − ǫ)β2. (92)

Sinceψ ⊳ ϕ, by Eqs. (85) and (86), applying Lemma 2.3
gives

ψ′
⊳ ϕ′ and ψ′′

⊳ ϕ′′. (93)

A careful observation caries out thatϕ′(ǫ) and ϕ′′(ǫ) are
obtained by adding perturbations onϕ′ andϕ′′, respectively.
So we have

ψ′
⊳ ϕ′(ǫ) and ψ′′

⊳ ϕ′′(ǫ) (94)

for a sufficiently small positive numberǫ.
Thus by Eqs. (85), (89), and (94), applying Lemma 7.2 gives

ψ ⊗ χ ≺ ϕ⊗ ω. (95)

It is easy to see thatω ≺ χ and χ↓ 6= ω↓ providing the
positive numberǫ small enough. In other words,|χ〉 can do
partial entanglement recovery for any transformation of|ψ〉 to
|ϕ〉 such that|ψ〉 is in So(|ϕ〉).

With that we complete the proof of Lemma 7.5. �

APPENDIX C: PROOF OFTHEOREM 4.1

For simplicity, we denoteIψ,ϕ and Dψ,ϕ by I and D,
respectively. We only need to show that for any1 ≤ l <
dim(ψ)dim(χ), one of the following two cases holds:

Case 1:el(ψ ⊗ χ) < el(ϕ⊗ χ); or
Case 2:el(ψ ⊗ χ) = el(ϕ ⊗ χ), but both sides are not

related toχi (i ∈ D) and both of them remain unchanged
by an arbitrary but small enough perturbations onχi(i ∈ D).
Here we should point out that

∑

χi is supposed to be kept as a
constant for eachi ∈ D during the perturbations to guarantee
that |χ〉 is a valid quantum state.

For this purpose, we rewriteel(ψ ⊗ χ) as follows:

el(ψ ⊗ χ) =

m
∑

i=1

m
∑

j=1

eli,j (ψ
i ⊗ χj),

where
∑

i,j li,j = l and 0 ≤ li,j ≤ dim(ψi ⊗ χj).
It is easy to see that

el(ψ ⊗ χ) =
∑

i,j eli,j (ψ
i ⊗ χj)

≤ ∑

i,j eli,j (ϕ
i ⊗ χj)

≤ el(ϕ ⊗ χ),

(96)

where the first inequality follows fromψi ⊗ χj ≺ ϕi ⊗ χj

and the second one follows from the definition ofel(ϕ ⊗ χ).

If one of these inequalities is strict, then Case 1 holds, and
the proof is completed; otherwise we only need to prove that
Case 2 holds.

More precisely, we only need to show that ifel(ψ ⊗ χ) =
el(ϕ⊗χ) then for any1 ≤ i ≤ m andj ∈ D, li,j can only take
two values:0 or dim(ψi⊗χj) . Notice thatI∪D = {1, . . . ,m}
andI ∩D = ∅. It suffices to proveli,j ∈ {0, dim(ψi ⊗ χj)}
for two cases: (1)i ∈ I, j ∈ D, and (2)i ∈ D, j ∈ D.

Let us consider the case wheni ∈ I and j ∈ D first. By
Eq. (10), we have

ϕi ⊗ χj ⊏ ϕj ⊗ χi, for all i ∈ I and j ∈ D. (97)

That is, the values of the extreme components ofϕi ⊗ χj are
strictly bounded by those ofϕj ⊗ χi. Thus, we have

(ϕi ⊗ χj)↓1 < (ϕj ⊗ χi)↓1

and
(ϕi ⊗ χj)↑1 > (ϕj ⊗ χi)↑1.

Hence by the assumption that all inequalities in Eq. (96) hold
with equalities and the definition ofel(ϕ ⊗ χ), together with
the above two equations, we have

lj,i = 0 ⇒ li,j = 0

and

lj,i = dim(ψj ⊗ χi) ⇒ li,j = dim(ψi ⊗ χj).

So, in order to proveli,j ∈ {0, dim(ψi⊗χj)} in the case ofi ∈
I andj ∈ D, we only need to show thatlj,i ∈ {0, dim(ψj ⊗
χi)} for i ∈ I and j ∈ D. Or equivalently, to showli,j ∈
{0, dim(ψi⊗χj)} for i ∈ D andj ∈ I. (Here we interchange
the indicesi andj for convenience.)

So combining this with the case ofi ∈ D and j ∈ D, the
only thing left to be proven is that

li,j ∈ {0, dim(ψi⊗χj)} for all i ∈ D and 1 ≤ j ≤ m. (98)

By Eq. (11) and Lemma 2.3 we have

ψi ⊗ χj ⊳ ϕi ⊗ χj for all i ∈ D and 1 ≤ j ≤ m. (99)

If there exists ∈ D and 1 ≤ t ≤ m such that0 < ls,t <
dim(ψs ⊗ χt), then by Eq. (99) we have

els,t(ψ
s ⊗ χt) < els,t(ϕ

s ⊗ χt). (100)

It follows that the first inequality in Eq. (96) strictly holds,
which contradictsel(ψ ⊗ χ) = el(ϕ ⊗ χ). So Eq. (98) holds.
With that we complete the proof of Theorem 4.1.
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