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Abstract

Penalized likelihood is a general approach whereby an objective function is defined, consisting

of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently,

this objective function is maximized, yielding a solution that achieves some sort of trade-off

between the faithfulness and the smoothness of the fit. Most work on that topic focused on

the regression problem, and there has been little work on the classification problem. In this

paper we propose a new classification method using the concept of penalized likelihood (for

the two class case). By proposing a novel penalty term based on the K-nearest neighbors,

simple analytical derivations have led to an algorithm that is proved to converge to the global

optimum. Moreover, this algorithm is very simple to implement and converges typically in two

or three iterations. We also introduced two variants of the method by distance-weighting the

K-nearest neighbor contributions, and by tackling the unbalanced class patterns situation. We

performed extensive simulations experiments to compare the proposed method to several well-

known classification methods. These simulations reveal that the proposed method achieves one

of the top ranks in classification performance and with much smaller computation time than

the other higher ranked methods.

1 Introduction

Penalized likelihood is a well-known nonlinear regression model based on the premise that a good

model should possesses two indispensable properties: the goodness of fit and the smoothness of the
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fit (Green [10], and Gu and Kim [13]). However, these two are primarily conflicting goals, and usu-

ally a trade-off that suits the given application is pursued. The penalized likelihood approach seeks

to achieve that trade-off by defining an overall objective function consisting of the log-likelihood

of the data minus a roughness measure, and subsequently maximizing this objective function. The

likelihood function is a measure of the faithfulness of the fit, while the roughness function is a

penalty term that penalizes non-smooth solutions. An example of the roughness function is the

integral of the square of the second derivative of the function, leading to the following objective

function (see Green and Silverman [11]):

T = log likelihood − λ

∫

f ′′2(x)dx (1)

One example of a penalized likelihood regression is the well-known regression spline model (Berry et

al [5]). Most of the penalized regression work focused on finding a complete functional formulation

and the optimization is performed mostly in the Hilbert space (see Wahba [28]).

In contrast to the regression framework, there is little work on extending it to the classifi-

cation domain. For the classification problem the underlying function would then be the class

posterior probabilities. These are the functions which we attempt to estimate and for which we

impose smoothness. Among the works considering penalized likelihood classification is the work of

O’Sullivan et al [19], which was subsequently analyzed and extended in many other studies (see Gu

[12], Lu et al [18], Wahba [28], [29], and Wahba et al [30]). The basic idea of these approaches is

to assume that the class posterior probability (considering a two-class case with classes C1 and C2)

is modeled as a logit function applied to some (unrestricted) function. This is a mean to enforce

the [0, 1] bound on the posterior probability. In some of these works thin-plate spline is used as

smoothness penalty, and in some others general smoothness penalties are used with the help of

the theory of reproducing kernel hilbert spaces. The problem could be solved through a paramet-

ric representation, whose parameters are obtained through Newton-Raphson iteration. A related

approach is to consider the logistic regression problem (which is essentially a two-class classifica-

tion problem) in the framework of penalized likelihood regression (see Loader [17] and see also the

generalization to the multinomial logistic regression case in Cawley et al [6]), or the generalized

additive model of Hastie and Tibshirani [14] (which also tackles in some way the penalized logistic

regression problem).

A different methodology based on a Bayesian paradigm is the Gaussian process classification

(GPC) approach (Rasmussen and Williams [24]). While it does not have a penalized likelihood

element in it, it enforces smoothness by defining a Bayesian prior that assigns a higher probability

to smooth solutions. Again, imposing a logit function lead to intractable integrals that can only

be approximated. Another related approach (Holmes and Adams [15]) uses the K-nearest neighbor

class memberships in some way to describe the priors. It is a Bayesian approach, with the key

parameters being attached some priors and these are then integrated out. Again, the integral is

intractable and MCMC is proposed as a way to evaluate it.
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In this work we propose a new penalized likelihood classification method (for the two-class case).

Rather than insisting on evaluating the posterior probability as a functional form (which makes it

generally quite difficult), we evaluate it only for the points we need, that is for the training and

the testing points. We use as a measure of roughness the sum of square difference between the

posterior of a point and that of its K nearest neighbors. We therefore managed avoid the use of

the logit function, which in all above works was an obstacle to obtaining straightforward analytic

solutions. We propose an iterative algorithm that is guaranteed to converge to the maximum of the

penalized likelihood function, and generally takes only around two or three iterations to converge.

While we make use of some kind of pattern distance matrix like in the case of Gaussian process

classification, the philosophy and the approach is quite different.

We tested the proposed method on a number of UCI benchmark data. As it turns out, it

produces a classification performance beating many of the well-known methods (such as SVM and

several other methods) and comparable to GPC (it is generally believed that SVM and GPC are

among the best two classification approaches, see [16]). On the other hand the computation time

was much less than that of SVM and GPC. Another advantage of the method is that it is entirely

based on distances between the training patterns (like the K nearest neighbor classifier and the

GPC). So it can handle also non-numeric inputs, for example text inputs whereby some distance

function can be defined. The proposed method is also very simple, consisting of only a simple

iteration, and requiring little development time to implement it and no sophisticated optimization

routines.

The paper is organized as follows. In the next section we present the new approach. The

following section details the approach for parameter estimation. Section 4 proposes some variants of

the proposed approach. In Section 5 we present the simulations results, followed by the conclusions

section.

2 The Proposed Method

Let xm ∈ RL denote the feature vectors, with x1, . . . , xM denoting the training patterns, and

xM+1, . . . , xM+N denoting the test patterns. The class membership ym for training pattern xm is

defined as follows: it equals 1 if xm ∈ C1 and equals 0 if xm ∈ C2. In this work we consider only the

two-class case. Let Pm ≡ P (C1|xm) denote the posterior probability for class C1. The purpose of

the proposed method is to estimate the posterior probabilities Pm, both for the training set and the

test set. Knowing the posterior probabilities will automatically determine the classification of the

patterns. As we will shortly see, the posterior probabilities are obtained by defining the penalized

likelihood function and subsequently maximizing it, leading to an iterative algorithm.

The likelihood of the data is given by

L =
M
∏

m=1

P ym

m (1 − Pm)1−ym (2)
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Denote by K(xm) as the set of K-nearest neighbors of point xm (their indexes). We define a

roughness function based on the square differences of the posteriors of neighboring data points.

Specifically, it is given by

S =
1

K

M+N
∑

m=1

∑

m′∈K(xm)

(Pm − Pm′)2 (3)

We define our overall objective function as a combination of the log-likelihood function and the

roughness function:

J = log(L) − λS (4)

=
M
∑

m=1

[

ymlog(Pm) + (1 − ym)log(1 − Pm)
]

−
λ

K

M+N
∑

m=1

∑

m′∈K(xm)

(Pm − Pm′)2 (5)

The first term in the penalized log-likelihood J focuses on the goodness of fit aspect. It gauges how

well that the considered Pm’s fit the observed data (i.e. the given class memberships). The second

term serves to penalize the roughness of the underlying posterior function. A posterior surface

where its values for neighboring points are close (i.e. having low S) will generally be smooth, and

conversely a high S is indicative of a rough or wiggly surface. The goal is to find the posterior

probabilities that maximize the penalized log-likelihood J . We will therefore achieve a compromise

between faithfully respecting the class memberships of the training data and the smoothness prop-

erty of the posterior surface, with λ being the parameter that controls the degree of smoothness.

Note that the testing patterns are also used in the expression for the smoothness function (the

summation in S is over the entire data set). Even though they do not carry classification labels,

they could be helpful in bridging the gaps between the training patterns to achieve a smoother fit.

So in a way there is a semi-supervised element in the proposed approach. On the other hand, the

summation for the log-likelihood function is over only the training set. The reason is that class

labels are known only for the training set, but not for the test set.

3 The Proposed Algorithm

The goal is to solve the following maximization problem:

PROBLEM A): Maximize J (given by (5)) w.r.t. the variables: Pm, s.t. 0 ≤ Pm ≤ 1, m =

1, . . . ,M + N .

It is easy to see that J is a convex function w.r.t. the Pm’s. Hence the problem has a unique

maximum. The algorithm proposed below is based on cycling through all variables, each time

optimizing w.r.t. only one of the variables (through a line search). In each step, the optimum w.r.t.

one variable can be obtained analytically. Here is the algorithm:
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1. Start with any initial choice e.g. Pm = 0.5, m = 1, . . . ,M + N (or another possible choice

is Pm = ym, m = 1, . . . ,M, Pm = 0.5, m = M + 1, . . . ,M + N).

2. For a number of iterations perform the following step:

3. For m = 1 to M + N :

(a) If xm ∈ C1, then set:

Pm ≡
1

2
P̄m +

1

2

√

(P̄m)2 +
2K

λ(K + KS)
(6)

where

P̄m =
1

K + KS

[

∑

m′∈K(xm)

Pm′ +
∑

m′∈S(xm)

Pm′

]

(7)

where K is the number of nearest neighbors, S(xm) is the set of data points for which

xm is one of the K-nearest neighbors, and KS is the size of set S(xm). Thus P̄m is the

mean of the values of Pm′ for some sort of neighborhood of points around xm.

(b) If xm ∈ C2, then set:

Pm ≡ 1 −

[

1 − P̄m

2
+

1

2

√

(1 − P̄m)2 +
2K

λ(K + KS)

]

(8)

Note that 1− P̄m here represents the neighborhood average of the posteriors of class C2,

i.e. the previous equation is the analogue of (6) but with tackling 1−Pm instead of Pm.

(c) If xm is a test pattern, i.e. M + 1 ≤ m ≤ M + N , then set

Pm ≡ P̄m (9)

(d) Truncate if Pm goes out of the constraint box:

Set Pm = 1 if Pm > 1 and set Pm = 0 if Pm < 0 (10)

Essentially, what this algorithm performs is iterated local averaging of the posteriors (to obtain

P̄m), and combining the resulting average in some way with the class membership (i.e. ym) of the

considered pattern (if known), through (6) and (8). Equations (6), (8), and (9) are basically the

closed-form outcome of the one-variable search that is performed by cycling through all variables.

The iterations should carry on until the change in the posteriors from one cycle till the next is

small. Once the algorithm converges, we use the obtained final values of the Pm’s as the estimated

posteriors of data points (whether training data or testing data). Recalling that Pm ≡ P (C1|xm),

then the final classification of a data point is estimated as class C1 if Pm > 1
2 , otherwise it is class

C2.
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An alternative way is to apply the proposed algorithm only on the training set. Then, once

converged, we obtain the Pm’s of the test patterns using Eq. (9) (i.e. as the average Pm’s of

K-nearest the training patterns).

Unconstrained optimization algorithms that alternately optimize w.r.t. one variable at a time

are known to converge to the true optimum for convex functions (see [4]). However, this is generally

not the case when constraints are present, even if the feasible region is convex. So a proof of

convergence for our case has to be established (because of the presence of the box constraint, i.e.

all the Pm’s have to be between 0 and 1). This is given in the following theorem.

Theorem: The algorithm described above converges to the true maximum for Problem A).

Proof: Let us arrange the Pi’s in a vector P , and let P ∗ = (P ∗
1 , . . . , P ∗

N+M )T denote the optimal

solution of PROBLEM A) above. Consider that in some iteration we are operating on the variable

Pm. Assume for the time being that it is a training pattern and that it belongs to class C1.

Maximizing J w.r.t. Pm can be obtained by taking the derivative of J in (5) w.r.t. Pm and

equating to zero. We get

ym

Pm
−

1 − ym

1 − Pm
−

2λ

K

∑

m′∈K(xm)

(Pm − Pm′) −
2λ

K

∑

m′∈S(xm)

(Pm − Pm′) = 0 (11)

Setting ym = 1 (since the pattern is from C1), we obtain a quadratic equation, whose solution is

given by (6). A similar derivation applies for patterns from class C2 or for test patterns, leading

to (8) and (9) respectively.

For simplicity denote N ′ = N + M . Assume that the algorithm converges to a point P 0 =

(P 0
1 , . . . , P 0

N ′)T which is not the global maximum. We will then show that this leads to a contra-

diction.

Let us reshuffle the indexes of posterior vector such that the following is true:

P 0
1 = . . . = P 0

N1
= 1 (12)

P 0
N1+1 = . . . = P 0

N1+N2
= 0, (13)

0 < P 0
i < 1, for i = N1 + N2 + 1, . . . , N ′ (14)

for some N1 and N2. Since, it converged at that point, the following is true (due to the convexity

of the objective function J and the fact that for each dimension that corresponds to a border point

the maximum should be beyond that point):

∂J

∂Pi

∣

∣

∣

∣

∣

P 0

≥ 0 if i = 1, . . . , N1 (15)

≤ 0 if i = N1 + 1, . . . , N1 + N2 (16)

= 0 if i = N1 + N2 + 1, . . . , N ′ (17)
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Consider the line connecting P 0 with the true optimum P ∗. Let u be the distance along that

line starting from P 0, i.e. a point P on the line is given by

P = P 0 + u
P ∗ − P 0

‖P ∗ − P 0‖
(18)

The derivative of J along that line, evaluated at the point P 0 (i.e. corresponding to u = 0) is given

by

∂J

∂u

∣

∣

∣

∣

∣

u=0

=
N ′

∑

i=1

∂J

∂Pi

∣

∣

∣

∣

∣

P 0

P ∗
i − P 0

i

‖P ∗ − P 0‖
(19)

But according to (15) the components for which ∂J
∂Pi

are positive correspond to P 0
i = 1 and hence

P ∗
i − P 0

i ≤ 0 because P ∗
i ≤ 1 (and P 0

i = 1). Similarly the components for which ∂J
∂Pi

are negative

correspond to P 0
i = 0 and hence P ∗

i − P 0
i ≥ 0 because P ∗

i ≥ 0. Hence, from (19) ∂J
∂u

∣

∣

∣

∣

∣

u=0

≤ 0. But,

if P ∗ is the true maximum (with J(P ∗) > J(P 0)), then this cannot happen due to the convexity

of J (the derivative along the line from P 0 to the maximum P ∗ cannot start negative or zero, then

turn positive).

4 Parameter Selection

From the formulation in the previous section one can see that there are two main parameters that

have to be determined, namely λ and K . Both parameters control the degree of smoothness, with

K determining neighborhood domain for which the roughness measure is estimated, while λ is the

weight attached to the roughness measure.

To determine K we first propose a measure of the variation of the posterior as a function of K.

First let KNN(xm) denote the Kth nearest neighbor for point xm, and denote by C(xm) the class

membership of the point xm. Then, the new measure is given by

V (K) =
|AK |

M
(20)

where M is the size of the training set, and |AK | means the size of the set AK , defined as

AK = {m ∈ {1, . . . ,M}|C(xm) = C(KNN(xm))} (21)

The intuitive meaning of this measure is as follows. For each point in the training set xm, we

examine its Kth nearest neighbor and check if its class agrees with that of xm. The fraction of

these data points (i.e. those whose class membership agrees with that of its Kth nearest neighbor)

represents the new measure V (K) that we seek. For the very nearest neighbors, for example

considering V (1), the measure is an approximation of how much patterns in the same neighborhood

are expected to agree (in class membership). (It can be shown that V (1) equals approximately
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E(P 2(C1|x) + P 2(C2|x)).) By considering higher values of K, the posterior probabilities will

gradually change, and the measure V (K) would then deviate from V (1). The reason is that the

class membership can be considered as the outcome of a Bernoulli trial with underlying probability

being P (C1|x). Then, two Bernoulli experiments with more different underlying probabilities will

naturally tend to disagree more. Thus the difference of V (K) from V (1) is a measure of how the

landscape of the posterior probabilities changes with varying K. It should therefore be a good

guide in choosing K. Essentially, we keep examining larger K’s until the difference between V (K)

and V (1) is significant enough to indicate that the this value of K stretches too far to sample

significantly different values of the posterior probabilities.

The function V (K) is a bit noisy, so we need to smooth it with a moving average. Figure 4

shows an example of V (K) for an artificial two-dimensional problem with two Gaussian densities

(after smoothing using a moving average window of size 21). As can be seen the behavior of V (K)

decays as K increases.

The value of K that is selected for the proposed classification method is determined as follows.

Evaluate a normalized version:

V ′(K) =
V (1) − V (K)

V (1) − min(V (j))
(22)

Starting from K = 1, find the first value of K immediately before the point when V ′(K) goes below

a threshold (call this threshold Vth). This is the value of K we should select.

Concerning λ, by performing extensive simulations using synthetic problems with Gaussian

distributions with a variety of class overlap level, sizes of the training set, dimension, etc, we found

that the best range of λ’s is generally in the range from 0.2 to 0.6. One good value to select is

the middle value, λ = 0.4. Similarly, based also on experiments on Gaussian problems, the good

range for Vth (the threshold discussed above for the V ′(K) function) is from 0.6 to 0.7. We selected

the value 0.67 and fixed it on that for all simulations on real data. It seems that one fixed choice

of the two-parameter set obtained through this large collection of Gaussian problems has led to

more robust results than tuning the parameters for each individual problem (using the training

set). While the latter approach will make the parameter values more specific to the problem, it

introduces estimation error due to the finite sample nature of the training set. This estimation

error is more dominant in our situation perhaps because there is no strong performance sensitivity

with respect the parameter values in the ranges considered above.

An alternative approach is to apply the so-called thick modeling approach (Granger and Jeon

[9]). In this approach we design a number of classifiers, each for some specific parameter values in the

good range (for example some combinations of λ = 0.2, λ = 0.4, λ = 0.6, and Vth = 0.6, Vth = 0.65,

Vth = 0.7), and then pool their outputs. This means that once each classifier is designed (one

classifier for each combination of λ/Vth), for each data point we take the estimated posteriors of

the different classifiers and average them. By observing the extensive simulations on problems with

the Gaussian distributions, we found that this latter approach did not provide improvement over the
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Figure 1:

single-parameter-value model (discussed above). Nevertheless, it is a useful approach to consider.

Both discussed approaches yield generally better than other more sophisticated parameter selection

procedures such as the K-fold validation procedure.

5 Variants of the Proposed Method

5.1 Distance Weighting

In the K nearest neighbor literature, distance-weighted versions have been reported to offer benefi-

cial performance (see Atiya [2], Bailey et al [3], and Dudani [8]). In these approaches the neighbors

of some point xm are weighted according to their distance or their order, rather than treated

equally as in the standard K-nearest neighbor method. We have also considered here the concept

of weighted KNN , and propose the following weighting function:

vk =
dK+1 − dk

∑K
j=1(dK+1 − dj)

K (23)

where dk denotes the distance between the considered point (say point xm) and its kth nearest

neighbor. (Note that the weights sum to K rather than 1 to keep the correspondence with the

standard K-nearest neighbor method, where all K weights equal 1.) The penalized log-likelihood

becomes:
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J =
M
∑

m=1

[

ymlog(Pm) + (1 − ym)log(1 − Pm)
]

−
λ

K

M+N
∑

m=1

∑

m′∈K(xm)

wm,m′(Pm − Pm′)2 (24)

where wm,m′ equals vk if xm′ is the kth nearest neighbor of xm, and equals zero if xm′ is not among

the K nearest neighbors of xm.

The update in this situation will turn out to be the following. If xm ∈ C1, then

Pm ≡
1

2
P̄m +

1

2

√

P̄ 2
m +

2K

λW
(25)

If xm ∈ C2 then update as:

Pm ≡ 1 −

[

1 − P̄m

2
+

1

2

√

(1 − P̄m)2 +
2K

λW

]

(26)

If xm is a test pattern, then:

Pm ≡ P̄m (27)

where

P̄m =
1

W

[

∑

m′∈K(xm)

wm,m′Pm′ +
∑

m′∈S(xm)

wm′,mPm′

]

(28)

W =
∑

m′∈K(xm)

wm,m′ +
∑

m′∈S(xm)

wm′,m (29)

= K +
∑

m′∈S(xm)

wm′,m (30)

5.2 Class Pattern Balancing

In many classification problems the distribution of patterns among classes is not balanced. For

instance, in medical diagnosis there may only be a small number of patients having a certain disease

compared to a much larger number of persons that are tested. The receiver operating characteristics

(ROC) has been recognized as an essential tool for the analysis of imbalanced datasets and has

been widely used in the medical diagnosis field [27], and also in the pattern classification field in

general [21]. The ROC curve is using the so-called sensitivity and specificity, as shown by the curve

in Fig. 5.2. The mathematical definitions of sensitivity and specificity are given by (see also Table

1):

Sensitivity =
No. of true positives

No. of true positives + No. of false negatives
(31)

Specificity =
No. of true negatives

No. of true negatives + No. of false positives
(32)
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Actual outcome

True False

Classifier positive True positive False positive

outcome negative False negative True negative

Sensitivity Specificity

Table 1: Sensitivity and Specificity

If a classification algorithm merely attempts to maximize the classification accuracy (no. of true

positives + no. of true negatives) without taking into consideration the individual accuracy of each

class, then such a system may not be very beneficial. Hence, to better evaluate the performance of

a classifier when dealing with imbalanced data, we are going to consider also the averaged class-wise

accuracy, which reflects the trade-off between sensitivity and specificity. Many pattern classification

algorithms, including the traditional K-nearest neighbor, do not take the class-wise accuracy into

consideration. We propose in this section a procedure that attempts to address this issue. The

procedure is implemented as follows:

• For every pattern xm find the K-nearest neighbors that belong to only a specific class Cj

(j = 1, 2). Compute the average of the distances from that point xm to these K-nearest

neighbors. Let that average be d̄j,m.

• Compute a distance weighting function

Q =

∑

m d̄2,m
∑

m d̄1,m +
∑

m d̄2,m

(33)

• Given a pattern xm that needs to be classified, the K nearest neighbors are computed by

re-weighting the distances according to Q. Specifically we multiply all distances from xm to
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the training patterns from class C1 by Q. Also, we multiply all distances from xm to the

training patterns from class C2 by 1 − Q. The resulting distances are then sorted and the

smallest K distances are selected to give the new K nearest neighbors.

According to this procedure, if class C1 is underrepresented, then the distances d̄1,m will tend

to be higher than d̄2,m. The reason is that every pattern has to reach out further to get to its

K nearest neighbors that are from the same class. Therefore, it is expected to have Q < 0.5 in

that situation. Due to the re-weighting step, the lower value of Q will make the patterns that

belong to C1 more represented in the new K nearest neighbors. We use this procedure in selecting

the K-nearest neighbors for the proposed penalized likelihood method. We experimented this

procedure on some Gaussian problems, and found a noticeable improvement in averaged class-wise

classification accuracy for the case of imbalanced class distribution. We are going to present results

with and without this variant of the penalized likelihood classifier.

5.3 Multi-Class Case

The proposed approach has been developed primarily for the two-class case. It is a little hard to

generalize it to the multi-class case. The optimization formulation does not yield to a straight-

forward or simple algorithm (as it did for the two-class case), due mainly to the more involved

inequality constraints. One way to tackle the multi-class case is to divide the original problem into

binary subtasks and repeatedly apply the two-class formulation on these. Approaches along this

line have been investigated thoroughly in the literature for SVM’s. SVM’s are originally two-class

classifiers, but extensions to the multi-class case include methods such as one versus all, one versus

one, binary tree based approaches, etc. To avoid distraction, these multi-class extensions in con-

junction with the proposed penalized likelihood method will not be investigated in this work, and

will be tackled it in a future study.

6 Simulation Results

To test the performance of the proposed method, we have conducted a comparative study using a

number of real-world benchmark problems. We have compared the performance of the proposed

method to that of the following well-known methods:

• Bayes classifier (Duda et al [7], p. 168) with the class-conditional densities estimated according

to the Parzen window density estimator (PARZEN) (Silverman [26]). A key parameter for

the Parzen estimator is the width of kernels h. We used the value derived by [26] (Silverman’s

rule):

h = σ̂

[

4

(2L + 1)I

]
1

L+4

(34)
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where σ̂2 ≡
∑L

i=1Sii/L denotes the mean of the diagonal of the sample covariance matrix

S, L is the dimension of the space, and I is the number of data points (we used Gaussian

kernels).

• Gaussian mixture model classifier (GMM) [20]. It is basically a Bayes classifier with the class-

conditional densities estimated as a mixture of Gaussian functions. We used the software

developed by [20], where the mixture estimation algorithm is chosen to be the EM algorithm.

• Gaussian process classification using the expectation propagation approximation [24]. We

used the non-optimized (GPC) and optimized (GPCo) versions. The latter attempts to

approximate the integrals in the Gaussian process classification formula. We used the software

available in [23].

• Support vector machines (SVM) (Scholkopf and Smola [25]). We tested two versions. A linear

SVM (referred to as SVM1) implemented using the Liblinear SVM software1, and a radial

basis function SVM (referred to as SVM2) implemented using the OSUsvm toolbox2. The

values of C and γ for the latter are set using a K-fold validation procedure (we used five-fold

validation and allowed C and γ to range between [0.5, 1.5]).

• K-nearest neighbor classifier. The value of K was set using a five-fold validation process (only

odd numbers that range between 3 and 25 were considered). In addition to the traditional

algorithm (KNN), we also used a weighted version (KNNw), where weights have been assigned

to the neighbors based on their distance from the tested pattern (Eq. 23).

• Evidential K-nearest neighbor (KNNds). This algorithm is based on the Dempster-Shafer

theory of evidence taking into account the distance and class label information of the neighbors

for generating soft decision vectors [33]3.

• Neighborhood components analysis (NCA). This algorithm attempts to maximize a stochastic

variant of the leave-one-out KNN score on the training set [?]4.

The parameters of the proposed penalized likelihood classification method were selected as described

in Section 4 (K is selected based on the posterior variability function with a smoothing window

of size 3 and cut-off threshold of 0.67 for V ′(K), and λ = 0.4). We used the weighted distance

version (described in Subsection 5.1) without class pattern balancing (abbreviated as PLC) and

with the class pattern balancing modification that was described in Subsection 5.2 (referred to as

PLCm). Table 6 lists the classification models considered in the comparison study, together with

their abbreviations.

1obtained from http://www.csie.ntu.edu.tw/ cjlin/liblinear/
2obtained from http://downloads.sourceforge.net/svm/osu-svm-3.0.zip
3the KNNds software is available at http://www.hds.utc.fr/ tdenoeux/software.htm
4the NCA software is available at http://www.cs.berkeley.edu/ fowlkes/software/nca/
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Figure 3: Two-spiral dataset

We tested all these competing methods on real-world pattern classification problems, mostly

from the UCI repository [1]. We also tested those algorithms on the Brain Computer Interface (BCI)

problem, which is a challenging biosignal driven application that utilizes the electroencephalogram

(EEG) signal. The EEG is a recording of electrical activity originating from the brain. The EEG

dataset used in this paper was taken from the Department of Medical Informatics in the University

of Technology, Graz in Austria. The EEG signals were recorded from three right handed females

who were asked to imagine right and left finger movements. A total of 406 trials were used, 208 for

the left movement and 198 for right movement. Two channels were used here with five frequency

bands extracted from each channel. More details on experiment set-up can be found in Ramoser

et al [22]. In addition, the well-known two-spiral classification problem is also used. This dataset

consists of points on two inter-wined spirals that cannot be linearly separated, as shown in Fig. 6.

Table 6 summarizes the characteristics of the datasets used in this paper.

Patterns that consist of missing values were removed from the datasets. In certain cases,

attributes that consist of many missing values were excluded to minimize the number of removed

patterns. Categorical attributes were changed to attributes with integer values to enable the chosen

algorithms to handle them. For the contraceptive method choice (cmc) dataset, which corresponds

to a 3-class classification problem, we considered here distinguishing between classes 2 and 3 only

(long term vs. short term contraceptive). For the teaching assistant dataset, which represents the

evaluation of teaching performance according to 3 classes, we chose to combine classes 2 and 3,

and hence form a two-class problem, i.e., low vs. medium or high. For all considered problems the

input attributes are first scaled so that they lie in a suitable range. We used 80% of the data as

a training set, and the remaining 20% as a test set. We performed 20 runs for each method, each

run with a different random train/test partition. Then we average the classification accuracies on
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Classifier Abbreviation

Parzen window Bayes classifier Parzen

Gaussian mixture model Bayes classifier GMM

Gaussian process classifier (using EP, non-optimized) GPC

Gaussian process classifier (using EP, non-optimized) GPCo

Support vector machines (linear) SVM1

Support vector machines (RBF kernel) SVM2

K-nearest neighbor KNN

Weighted K-nearest neighbor KNNw

Evidential K-nearest neighbor KNNds

Neighborhood components analysis NCA

Proposed penalized likelihood classifier (without class balancing) PLC

Proposed penalized likelihood classifier (with class balancing) PLCm

Table 2: The classification models used in the comparison, and their abbreviations

Dataset # Attributes # Patterns Class distribution

Aus. Credit 14 690 0.44/0.56

Ger. Credit 24 1000 0.70/0.30

Cylender bands 30 350 0.62/0.38

Blood transfusion 4 748 0.24/0.76

cancer 9 683 0.65/0.35

census income 14 >1500 0.75/0.25

contracep. meth. choi. 9 844 0.39/0.61

haberman’s survival 3 306 0.73/0.27

heart 22 267 0.79/0.21

heart SPECT 13 270 0.55/0.45

hill-valley 100 606 0.51/0.49

ionosphere 33 351 0.64/0.36

mammographic 5 814 0.48/0.52

musk 166 476 0.57/0.43

parkinsons 22 195 0.75/0.25

pima 8 768 0.35/0.65

sonar 60 208 0.53/0.47

Teaching Assistant 5 161 0.68/0.32

Two Spiral 2 194 0.50/0.50

WDBC 30 569 0.63/0.37

EEG 10 406 0.49/0.51

Table 3: Datasets used to evaluate the performance of classifiers
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the test sets of the 20 runs.

In order to compare the performance of the various algorithms mentioned above, we used the

following measures:

• Mean classification accuracy (Acc). This measure gives a general indication about the

performance of each classifier.

• Mean class-wise accuracy (Acw). This measure is more suitable for imbalanced classes,

as it is calculated by averaging the accuracies of class 1 and class 2. In other words, it is the

average of the sensitivity and the specificity.

• Estimated standard deviation of the accuracy. It is calculated by dividing the standard

deviation of Acc (or Acw) by the square root of the number of runs.

• Significance test. A two-tailed paired t-test is performed with significance level of α = 0.05.

This indicates if there is a significant difference in the performance of two classifiers.

• Geometric mean error ratio. For the two classifiers that have errors a1, a2 . . . , an and

b1, b2 . . . , bn respectively (n represents the number of runs), the geometric error ratio is:

exp

∑n
i=1 log(ai/bi)

n
= n

√

√

√

√

n
∏

i=1

ai/bi (35)

This measure reflects the relative performance of one classifier with respect to another. If the

outcome is less than 1, then it is an indication that the first classifier outperforms the second

classifier in terms of error reduction.

• Win-Tie-Loss. This is an important measure, where the three values are the number of

datasets for which classifier a obtained better, equal, or worse performance outcomes than

classifier b.

• Sign test. The p-values of a two-tailed sign test based on the win-tie-loss record. if p is

significantly low, then one can conclude that it is unlikely that the outcome was obtained

by chance, i.e., the difference between the two classifiers is significant. On the other hand, a

higher p value indicates that the two classifiers are not significantly different.

For detailed description of these measures the reader is referred to [32, 31].

Table 6 shows the average classification accuracy of the competing methods with the estimated

standard deviation. It also shows if (PLC) is significantly different from other classifiers from a

statistical viewpoint. For a given dataset, if PLC is significantly better than a certain classifier,

then a bullet is displayed next to that classifier’s result. On the other hand, an open circle indicates

that the classifier is significantly better than PLC. A quick glance at the table would show that

there are more bullets than open circles. PLC is found to be particularly better than Parzen,
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GMM, KNNds and NCA. However, the results indicate that PLC is quite similar to KNNw and

it is not significantly better than the Gaussian process and SVM, particularly GPCo and SVM2.

As mentioned earlier, these two classifiers are considered in the literature to be among the best

classification approaches. The table also indicates that KNNw is better than KNN in classifying

most of the datasets. It makes sense to have the effects of the different neighbors taper off as we

move far away. Similarly GPCo is found to be better than GPC and SVM2 is slightly better than

SVM1.

In order to present a more detailed analysis of the classification results, Table 6 gives more com-

parison measures. The first row of the table represents the mean accuracy across all the datasets.

According to this measure PLC is found to be the second best classifier, after GPCo, outperforming

all remaining classifiers, including SVM2. The table also presents pair-wise comparisons between

the classifiers according to their geometric error ratio (ṙ), and the win-tie-loss (s). Also shown is

the p-value of the sign test for the win-tie-loss (p). According to these measures, PLC outperformed

Parzen, GMM, KNN, KNNw, KNNds and NCA. In fact the geometric error ratio also ranks PLC

second after GPCo. On the other hand, the win-tie-loss favors the Gaussian process and support

vector machine variants over PLC. However, as seen from the p-value numbers from among these

classifiers only the outperformance of only GPCo is significant. It is worth mentioning that for the

hill/valley and musk datasets, the GMM classifier could not produce any results, as there was an

error in estimating the probabilities. Hence, for this particular classifier the remaining 19 datasets

were only used in the measures of Table 6.

As shown in Table 6 the class distribution of many of the datasets used are unbalanced. Hence,

to give a better indication about the performance of the various classifiers, the mean class-wise

accuracy (Acw) is used, as shown in Table 6. It is clear from this figure that PLCm has managed

to achieve a higher bullet/open circle ratio than that of Table 6. With the exception of GPCo,

the significant outperformance of PLCm over the remaining classifiers is quite obvious. The results

presented in Table 6 further prove the superiority of PLCm. The mean accuracy clearly favors

PLCm over all other methods, including GPCo, with close to 2% improvment over its closest rival.

The geometric error ratio of all methods with respect to PLCm is greater than 1, i.e., the rest of

the methods achieved worse error than PLCm. The win-tie-loss also favors PLCm, while GPCo

being very close (11 vs. 10).

The above results indicate that the performance of PLCm and is quite close to that of GPCo, and

the both outperform the remaining classification methods. So, we thought it would be important to

compare these two classifiers in terms of computational complexity. Table 6 shows the computation

time of both GPCo and PLCm for all considered datasets. The table indicates that PLCm is

considerably faster than GPCo, which represents a great advantage for the proposed algorithm.

In summary, the proposed PLC method offers a performance commensurate with the top classifi-

cation methods, including the optimized expectation propagation Gaussian process, but with much

smaller computational requirements. As such, it can be ranked among the top binary classification
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Parzen GMM GPC GPCo SVM1 SVM2

AusCred 84.06±0.64 83.12±1.18 85.98±0.59 85.91±0.53 85.54±0.51 85.00±0.56

GerCred 68.52±0.38• 64.25±3.57• 76.90±0.51◦ 77.15±0.60◦ 77.55±0.51◦ 75.17±0.47◦

bands 67.71±1.21• 72.64±1.07 74.21±0.99◦ 75.29±1.06◦ 70.79±0.89 73.21±0.75◦

Btrans 77.33±0.40 76.93±0.68 76.47±0.31 78.17±0.54◦ 76.50±0.27 76.17±0.19

cancer 96.39±0.35 95.62±0.31• 96.93±0.31 96.93±0.31 96.72±0.32 96.75±0.32

census 79.63±0.57 73.47±1.35• 81.78±0.55 83.63±0.52◦ 82.35±0.54◦ 82.40±0.44◦

cmc 62.46±0.72 57.04±1.86• 63.93±0.63◦ 63.55±0.62◦ 63.11±0.73 62.93±0.67

EEG 63.84±1.08 63.78±0.99 66.59±1.18 68.23±1.06◦ 66.77±0.99 67.26±1.22

haber 71.80±0.60◦ 66.89±1.32 74.18±0.64◦ 74.59±0.75◦ 74.75±0.73◦ 72.87±0.44◦

heart 79.91±1.30• 82.36±0.79 82.74±1.05 84.81±0.68 83.77±1.05 84.43±0.78

heartS 79.17±1.32 77.41±0.92 82.13±0.94 84.26±1.00◦ 84.07±1.06◦ 80.83±1.14

hill 53.72±0.72• 49.59±0.66• 50.74±0.46• 60.00±0.53◦ 49.30±0.59•

ion 87.14±0.66 87.14±1.18 88.93±0.64 95.07±0.66◦ 86.50±1.03 93.93±0.58◦

mamm 80.19±0.65 80.74±0.71 82.50±0.65◦ 83.09±0.66◦ 82.41±0.70◦ 82.69±0.80◦

musk 85.11±0.81 86.84±0.90 90.00±0.68◦ 84.63±0.75 90.84±0.67◦

parkinson 94.74±0.78 83.46±0.94• 83.97±1.00• 91.67±0.98 83.33±0.78• 87.44±0.89•

pima 72.05±0.79 68.12±1.15• 75.32±0.61 76.33±0.61◦ 75.62±0.54 75.88±0.56◦

sonar 83.05±1.45 65.12±3.27• 83.90±1.22 83.41±1.27 76.34±1.24• 86.10±1.19

TeachAs 73.83±1.42◦ 69.83±1.29 68.83±1.22 72.67±1.50 68.67±1.66 68.33±1.12

TwoSpiral 33.68±1.44• 43.16±1.09• 48.68±1.59• 50.53±0.31• 50.92±1.75• 48.95±1.40•

WDBC 96.73±0.31 95.18±0.35• 97.35±0.31 97.57±0.31 97.43±0.25 97.26±0.29

KNN KNNw KNNds NCA PLC PLCm

AusCred 85.62±0.55 85.00±0.64 84.38±0.55 83.88±0.72 85.29±0.62 85.40±0.58

GerCred 72.03±0.42 72.32±0.37 71.37±0.51 70.90±0.84 71.75±0.38 67.00±0.82•

bands 70.14±1.03 69.29±1.02 67.71±1.16• 65.00±1.85• 70.79±0.75 71.86±0.96

Btrans 78.17±0.47◦ 77.67±0.63 73.80±0.62• 76.33±0.57 76.33±0.62 71.27±0.76•

cancer 96.93±0.34 96.61±0.32 97.15±0.28 97.19±0.38 97.08±0.33 96.79±0.31

census 80.35±0.55 79.90±0.64 78.38±0.60• 79.10±0.71 80.28±0.58 73.40±0.73•

cmc 61.36±0.78 60.83±0.81 62.07±0.80 60.33±1.30 61.39±0.64 60.98±0.63

EEG 63.35±1.10 62.99±1.00 62.20±0.99 60.30±1.56• 64.94±1.01 64.57±1.02

haber 74.67±0.72◦ 72.87±0.75◦ 67.70±0.85 74.18±0.58◦ 67.54±1.10 66.72±1.36

heart 81.32±0.96 80.94±1.34 80.75±1.27 80.57±1.46 83.58±0.66 80.47±1.24•

heartS 81.48±1.08 80.93±1.04 78.61±1.10 75.74±1.40• 79.54±0.96 79.26±1.03

hill 55.00±0.97 56.07±0.94 55.50±1.11 52.69±0.69• 57.11±0.77 57.60±0.82

ion 84.79±0.56• 86.43±0.79 88.71±0.54 84.93±1.03• 87.50±0.65 94.93±0.70◦

mamm 80.90±0.59 80.25±0.72 79.17±0.74 82.22±0.76◦ 79.44±0.90 78.83±0.73

musk 82.16±1.06• 84.37±0.99 82.42±1.02• 67.32±1.47• 85.47±0.92 87.21±0.83

parkinson 92.05±1.27 94.23±0.83 93.21±1.04 82.69±1.49• 92.95±0.93 87.69±1.24•

pima 72.99±0.71 73.21±0.92 72.76±0.89 73.02±1.05 73.73±0.79 72.53±0.71

sonar 81.59±1.33 85.00±1.22 82.07±1.19 70.49±2.16• 84.76±1.13 85.85±0.96

TeachAs 68.50±1.42 71.50±1.15 70.50±1.53 56.83±2.35• 69.00±1.69 68.17±2.06

TwoSpiral 74.74±2.10• 83.68±1.41• 74.74±2.10• 85.26±3.93 88.03±1.14 87.63±1.08

WDBC 96.68±0.37 96.55±0.44 97.12±0.35 96.73±0.36 97.39±0.32 96.68±0.33

Table 4: Classification accuracy and estimated standard deviation for the considered classifiers.

The abbreviations of the considered classifiers can be found in Table 6.
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Parz GMM GPC GPCo SVM1 SVM2 KNN KNNw KNNds NCA PLC PLCm

Mean 75.76 73.56 77.51 79.22 77.51 77.99 77.85 78.60 77.16 75.03 78.76 77.85

acc.

Parz

ṙ 0.85 1.053 1.192 1.03 1.109 1.039 1.086 1.03 0.928 1.116 1.077

s 14-1-4 4-0-17 3-0-18 6-0-15 4-0-17 8-0-13 7-0-14 11-1-9 13-1-7 6-0-15 9-0-12

p 0.031 0.007 0.001 0.078 0.007 0.383 0.189 0.824 0.263 0.078 0.664

GMM

ṙ 1.243 1.403 1.209 1.292 1.238 1.289 1.223 1.13 1.321 1.261

s 2-0-17 0-0-19 5-0-14 2-0-17 5-0-14 5-0-14 5-0-14 8-0-11 4-0-15 7-0-12

p 0.001 0 0.064 0.001 0.064 0.064 0.064 0.648 0.019 0.359

GPC

ṙ 1.132 0.979 1.054 0.987 1.032 0.978 0.881 1.06 1.023

s 3-1-17 10-0-11 11-0-10 15-1-5 15-0-6 16-0-5 17-1-3 13-0-8 15-0-6

p 0.003 1 1 0.041 0.078 0.027 0.003 0.383 0.078

GPCo

ṙ 0.865 0.931 0.872 0.911 0.864 0.779 0.937 0.904

s 17-0-4 19-0-2 15-2-4 17-0-4 17-0-4 18-0-3 16-0-5 18-0-3

p 0.007 0 0.019 0.007 0.007 0.001 0.027 0.001

SVM1

ṙ 1.077 1.009 1.054 0.999 0.9 1.083 1.045

s 10-0-11 15-0-6 16-0-5 15-0-6 19-0-2 13-1-7 14-0-7

p 1 0.078 0.027 0.078 0 0.263 0.189

SVM2

ṙ 0.937 0.979 0.928 0.836 1.006 0.971

s 12-0-9 13-2-6 16-0-5 16-0-5 13-0-8 15-0-6

p 0.664 0.167 0.027 0.027 0.383 0.078

KNN

ṙ 1.045 0.991 0.893 1.074 1.036

s 12-0-9 11-1-9 15-0-6 7-0-14 13-1-7

p 0.664 0.824 0.078 0.189 0.263

KNNw

ṙ 0.948 0.854 1.028 0.992

s 17-0-4 16-0-5 8-0-13 10-0-11

p 0.007 0.027 0.383 1

KNNds

ṙ 0.901 1.084 1.046

s 14-0-7 6-0-15 12-0-9

p 0.189 0.078 0.664

NCA

ṙ 1.203 1.161

s 3-1-17 9-0-12

p 0.003 0.664

PLC

ṙ 0.965

s 15-0-6

p 0.078

Table 5: Comparison of averaged classification accuracy, geometric error, win-tie-loss, and p-value

of the sign test across all the used datasets. The abbreviations of the considered classifiers can be

found in Table 6.
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Parzen GMM GPC GPCo SVM1 SVM2

AusCred 83.93±0.64• 83.04±1.12• 85.89±0.61 85.87±0.55 85.96±0.48 85.18±0.56

GerCred 61.45±0.48• 59.25±3.24 67.29±0.62 67.94±0.74◦ 69.30±0.69◦ 64.17±0.67

bands 65.27±1.27• 68.25±1.20 70.28±1.11 72.47±1.12 66.89±1.06• 69.10±0.88

Btrans 57.01±0.65• 63.78±1.10 53.21±0.44• 58.65±0.76• 52.89±0.40• 50.77±0.38•

cancer 95.85±0.44• 95.79±0.31• 96.78±0.37 96.85±0.36 96.46±0.37• 96.76±0.36

census 73.45±0.68 72.87±0.79• 74.38±0.70 77.47±0.70◦ 75.03±0.70 71.92±0.58•

cmc 60.36±0.80 58.21±1.38 60.88±0.65 60.30±0.63 59.83±0.76 59.42±0.70

EEG 63.87±1.08 63.84±0.99 66.66±1.18 68.27±1.06◦ 66.85±1.00 67.48±1.22

haber 52.49±0.74• 53.29±1.26• 53.50±0.88• 57.10±1.04 55.30±1.01• 49.49±0.28•

heart 70.38±1.76 71.76±1.34 68.31±1.53 69.62±1.24 73.83±1.85 67.70±1.40

heartS 78.69±1.38 77.02±0.88 81.56±0.96 84.04±0.96◦ 83.81±1.02◦ 80.15±1.15

hill 52.87±0.72• 48.76±0.66• 50.25±0.42• 59.02±0.54 48.39±0.58•

ion 82.93±0.91• 87.56±1.06• 85.52±0.81• 94.12±0.77 82.26±1.36• 93.23±0.63

mamm 80.34±0.65 80.87±0.72 82.64±0.65◦ 83.12±0.66◦ 82.55±0.69◦ 82.85±0.79◦

musk 85.86±0.77 86.91±0.89 89.63±0.70◦ 84.46±0.80 90.07±0.72◦

parkinson 94.01±1.10◦ 67.75±1.83• 71.86±1.77• 87.03±1.56 72.74±1.46• 76.32±1.75•

pima 67.08±1.03• 64.42±1.23• 70.01±0.73• 71.83±0.71 70.24±0.71• 70.22±0.71•

sonar 82.72±1.49 64.84±3.63• 83.67±1.25 83.33±1.29 76.32±1.22• 85.95±1.20

TeachAs 67.50±1.80 69.25±1.54 61.37±1.48 66.75±1.95 61.38±1.64 62.13±1.91

TwoSpiral 33.68±1.44• 43.16±1.09• 48.68±1.59• 50.53±0.31• 50.92±1.75• 48.95±1.40•

WDBC 96.20±0.37 95.38±0.34 96.72±0.42 97.29±0.35 96.84±0.32 96.87±0.36

KNN KNNw KNNds NCA PLC PLCm

AusCred 85.62±0.57 84.95±0.66 84.26±0.56 83.71±0.75• 85.27±0.63 85.71±0.59

GerCred 59.18±0.54• 61.83±0.48• 62.65±0.60• 61.90±1.31• 61.56±0.49• 65.48±0.90

bands 64.41±1.21• 64.71±1.22• 64.09±1.26• 61.34±2.04• 66.65±0.85• 70.06±1.08

Btrans 61.36±0.82• 61.98±0.99• 60.76±1.01• 52.79±0.70• 61.29±0.91• 66.32±1.08

cancer 96.70±0.41 96.36±0.39• 97.71±0.23 97.19±0.41 97.18±0.38 97.43±0.25

census 73.77±0.73 73.56±0.84 72.22±0.76• 72.03±1.04• 73.56±0.75 75.29±0.70

cmc 58.87±0.80 58.45±0.87• 59.97±0.83 56.58±1.37• 58.85±0.80 61.01±0.75

EEG 63.44±1.09 63.07±1.00 62.31±0.99 60.32±1.56• 64.99±1.01 64.63±1.02

haber 57.06±1.04 55.93±1.05• 54.05±0.72• 53.70±1.00• 52.93±1.03• 59.82±1.44

heart 72.45±1.75 70.19±1.60 66.39±2.42 67.27±3.13 68.17±1.26 68.89±1.68

heartS 80.85±1.11 80.27±1.07 78.23±1.14 75.19±1.43• 79.02±0.98 79.04±1.03

hill 54.95±0.97 56.04±0.95 55.50±1.11 51.71±0.73• 57.09±0.77 57.46±0.83

ion 79.72±0.78• 82.16±1.07• 85.22±0.72• 81.21±1.27• 83.74±0.86• 94.99±0.71

mamm 81.00±0.59◦ 80.31±0.72 79.19±0.74 82.25±0.75◦ 79.49±0.90 79.04±0.73

musk 83.20±0.99• 85.27±0.93 83.47±0.96• 66.90±1.49• 85.34±0.91 86.74±0.87

parkinson 89.74±1.88 94.32±1.23◦ 91.50±1.65 72.80±2.13• 89.85±1.52 88.61±1.43

pima 67.40±0.72• 68.62±1.04• 68.76±1.03• 68.15±1.28• 69.40±0.91• 72.33±0.76

sonar 81.14±1.32• 84.52±1.26 81.59±1.19• 70.47±2.16• 84.41±1.15 86.01±0.96

TeachAs 62.88±1.67 66.13±1.39 64.25±1.67 49.50±2.81• 62.87±1.94 66.88±2.35

TwoSpiral 74.74±2.10• 83.68±1.41• 74.74±2.10• 85.26±3.93 88.03±1.14 87.63±1.08

WDBC 95.92±0.45 96.01±0.51 96.52±0.46 95.91±0.45 96.88±0.40 96.36±0.40

Table 6: Averaged class-wise accuracy and estimated standard deviation for the considered classi-

fiers. The abbreviations of the considered classifiers can be found in Table 6.
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Parz GMM GPC GPCo SVM1 SVM2 KNN KNNw KNNds NCA PLC PLCm

Mean 71.71 73.56 72.14 74.88 72.52 72.24 73.54 74.68 73.49 69.82 74.60 76.65

acc.

Parz

ṙ 0.897 0.998 1.155 0.99 1.043 1.024 1.095 1.053 0.902 1.103 1.217

s 11-0-8 5-0-16 5-0-16 7-0-14 8-0-13 10-0-11 9-0-12 11-0-10 15-0-6 6-0-15 4-0-17

p 0.648 0.027 0.027 0.189 0.383 1 0.664 1 0.078 0.078 0.007

GMM

ṙ 1.113 1.289 1.099 1.152 1.151 1.23 1.186 1.041 1.239 1.372

s 4-0-15 3-0-16 4-0-15 5-0-14 6-0-13 7-0-12 8-0-11 9-0-10 7-0-12 3-0-16

p 0.019 0.004 0.019 0.064 0.167 0.359 0.648 1 0.359 0.004

GPC

ṙ 1.157 0.991 1.045 1.025 1.097 1.055 0.903 1.105 1.219

s 3-0-18 8-0-13 11-0-10 14-0-7 13-0-8 14-0-7 16-0-5 13-0-8 8-0-13

p 0.001 0.383 1 0.189 0.383 0.189 0.027 0.383 0.383

GPCo

ṙ 0.857 0.904 0.886 0.948 0.912 0.781 0.955 1.054

s 16-0-5 19-0-2 16-0-5 15-0-6 16-0-5 18-0-3 15-0-6 10-0-11

p 0.027 0 0.027 0.078 0.027 0.001 0.078 1

SVM1

ṙ 1.054 1.034 1.106 1.064 0.911 1.115 1.229

s 11-0-10 14-0-7 14-0-7 13-0-8 18-0-3 12-0-9 8-0-13

p 1 0.189 0.189 0.383 0.001 0.664 0.383

SVM2

ṙ 0.981 1.049 1.009 0.864 1.057 1.166

s 11-0-10 12-0-9 12-0-9 15-0-6 10-0-11 5-0-16

p 1 0.664 0.664 0.078 1 0.027

KNN

ṙ 1.07 1.028 0.881 1.078 1.189

s 9-0-12 9-1-11 15-0-6 9-0-12 4-0-17

p 0.664 0.824 0.078 0.664 0.007

KNNw

ṙ 0.962 0.824 1.008 1.111

s 15-0-6 17-0-4 9-1-11 4-0-17

p 0.078 0.007 0.824 0.007

KNNds

ṙ 0.857 1.048 1.156

s 18-0-3 7-0-14 4-0-17

p 0.001 0.189 0.007

NCA

ṙ 1.223 1.349

s 4-0-17 1-0-20

p 0.007 0

PLC

ṙ 1.103

s 5-0-16

p 0.027

Table 7: Comparison of averaged class-wise accuracy, geometric error, win-tie-loss, and p-value of

the sign test across all the used datasets. The abbreviations of the considered classifiers can be

found in Table 6.
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AusCred GerCred bands Btrans cancer census cmc EEG haber heart

GPCo 102.9 534.8 18.16 155.8 136.2 2722 211.0 25.86 12.70 12.72

PLCm 1.177 3.347 0.382 1.299 1.072 9.416 1.684 0.413 0.255 0.291

heartS hill ion mamm musk parkin pima sonar teach TwoSpiral WDBC

GPCo 9.233 24.28 24.01 185.1 50.14 6.336 176.0 7.044 2.115 1.784 76.78

PLCm 0.241 1.569 0.462 1.413 1.397 0.156 1.305 0.200 0.108 0.135 0.927

Table 8: Execution Time for GPCo and PLCm, measured in CPU time (sec). This time includes

training time and testing time

algorithms.

7 Conclusion

In this paper we have developed a new classification method based on the penalized likelihood

concept. The new method is based on defining a roughness term based on the K-nearest neighbors.

We have developed an algorithm that is guaranteed to converge to the global optimum. We have

also developed variants of the proposed method that can handle aspects such as unbalanced class

distribution. The proposed method was compared with several existing classification methods. It

gave a performance competitive with the top model, but with a much less computational time. We

therefore believe that the proposed approach offers superior performance and speed advantages,

and as such it should be one of the major contenders to be tested or used in any binary classification

task.
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