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Optimal Actuator/Sensor Selection Through Dynamic Output Feedback

Ahmadreza Argha∗, Steven W. Su∗, and Andrey Savkin†

Abstract— This paper is devoted to the problem of optimal
selection of a subset of available actuators/sensors through
a multi-channel H2 dynamic output feedback controller for
continuous linear time invariant systems. Incorporating two
extra terms for penalizing the number of actuators and
sensors into the optimization objective function, we develop
an iterative process to identify the favorable row/column-wise
sparse DOF gains. Employing the identified structure, we solve
the constructed row/column structured multi-channel H2 DOF
problem in order to derive a gain that exploits optimum
number of sensors/actuators by which the closed-loop stability
is maintained and the performance degradation of the closed-
loop system is restricted. Through an example we demonstrate
the remarkable performance and broad applicability of the
proposed approach.

Index Terms— Simultaneous actuator/sensor selection, multi-
channel H2 row-column-sparse dynamic output feedback
(DOF) problem, linear matrix inequality.

I. INTRODUCTION

The number of components (actuators or sensors) in
modern control systems can be very large, and hence, it
is often not very feasible to manually find a subset of all
available components to meet a specific control objective.
Hence, the problem of selecting a configuration of actuators
(sensors) from the set of all available actuators (sensors),
while the control performance remains in an acceptable level
compared to the non-sparse performance, is a well-known
problem in the literature of control theory; see e.g. [1]–[6].
This problem can equivalently be considered as the design
of a row (column) sparse feedback gain for the underling
system. This paper aims to develop a unified framework
to systematically design a sparse row-wise and column-
wise dynamic output feedback (DOF) gain via convex op-
timization, while satisfying multi-channel H2 performance
specifications. One immediate application of this issue will
be in the over-actuated (over-sensed) systems [7]. It is known
that one method for reconfiguration strategy of fault tolerant
control is usually to build an over-actuated (over-sensed)
system first and then design a nominal controller using some
of the available components. Hence whenever a fault happens
in the system, the configuration of the control system is
changed by using some of the redundant components in order
to attain the nominal control objective [8].

This problem leads to a difficult combinatorial optimiza-
tion problem. There are a large number of investigations in
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the literature in this field, but most of them do not consider
dynamical systems. The paper [1] provides a convex sensor
selection formulation for a problem with linear measure-
ments. In [2] a method is developed in order to identify
sparse subsets of sensors while it minimizes the Cramer-
Rao bound of a class of nonlinear measurement models.
A genetic algorithm-based method is proposed in [3] for
the problem of actuator selection. In [4], a convex semi-
definite programming (SDP) characterization of the problem
formulation is considered by incorporating certain forms of
sparsity in the feedback gain.

Most of the sparse control design approaches in the litera-
ture have focused on the problem of sparse static output/state
feedback design. This paper instead utilizes DOF scheme
to control the system using the measured system outputs.
Moreover, to the best knowledge of authors, concurrent
actuator and sensor selection problem through DOF has not
been researched thoroughly. Further, it should be noted that
the sparse row-column-wise feedback design using DOF is
a totally different problem compared to the case of row
(column) sparse static output (state) feedback design, as the
sparsification procedure should be applied only to a certain
part of the controller.

A well-developed method to identify sparsity patterns of
feedback gains in the literature (see e.g. [9] and [10]) is to
solve e.g. the H2 (or the H∞) problem, by incorporating a
sparsity promoting penalty function to the objective function.
Basically, the so-called reweighted `1 (REL1) norm, which
is known as a convex relaxation of the `0-norm, is usually
exploited to make a convex problem rather than the original
combinatorial optimization problem. The weights (entries
of the weighting matrix) are then updated at each step
inversely proportional to the strength of individual entries of
feedback gain in the previous step. This scheme successively
applies to the applications that the sparsity is required to be
achieved at the entry-wise level, i.e. minimizing the num-
ber of communication links in distributed control networks
exploiting the so-called bilateral communication scheme
[11]. However, in the cases that the sparsity is noted at a
group (e.g. row or column) level, the strength of groups of
variables (entries of feedback gain) should be considered.
We consider ‖·‖row−`0

(‖·‖col−`0
), that counts the number of

nonzero rows (columns) of a matrix, as the row (column)
sparsity promoting penalty function and then propose its
reweighted convex relaxation. This paper then develop an
iterative algorithm, using the relaxed row/column sparsity
promoting penalty functions, which is able to penalize the
number of sensors and actuators employed in the control
system simultaneously.



Notation: [Φi j]r×r is a (block) matrix with (block) entries
Φi j, i = 1, · · · ,r, j = 1, · · · ,r. diag [Φi]

r
i=1 is a (block) diag-

onal matrix with (block) entries Φi, i = 1, · · · ,r. Moreover,
col(νi(t))r

i=1 denotes a (block) vector with (block) entries
νi(t), i = 1, · · · ,r. herm(F), where F is a square matrix,
stands for F +F∗.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem statement

Consider the following LTI system,

ẋ(t) = Ax(t)+B2u(t)+B1w(t)

z(t) =C2x(t)+D2u(t)

y(t) =Cx(t),
(1)

where x∈Rn, u∈Rm, y∈Rp and z∈Rq are the state vector,
control input vector, output vector and H2 performance
output vector of system, respectively. The matrices in (1) are
constant and of appropriate dimensions. It is also assumed
that (A,B2) is stabilizable and (A,C) is detectable. w(t) is
the external disturbance of the system. The main goal of
this paper is to synthesise dynamic output feedback (DOF)
gains, utilizing optimum number of actuators and sensors,
for the system in (1), while satisfying multi-channel H2
performance specifications. In doing so, we need primarily
consider the multichannel H2 DOF synthesis. In the follow-
ing of this section, to avoid the conservatism introduced by
the so-called quadratic approach for the design of feedback
gains with respect to multichannel H2 (or mixed H2/H∞)
performance specifications, we develop a novel LMI method
for the multichannel H2 control problems. Before doing so,
let us present some definitions which we will make use of
later in this paper.

Definition 1: A matrix is said to be structure matrix if its
elements are either 0 or 1. The structure matrix of a block
matrix Y = [Yi j]m×n with Yi j ∈Rri×s j is S(Y ), [si j]m×n with

si j =

{
0 if Yi j = 0
1 otherwise.

Definition 2: Two matrices Y1 and Y2 are said to have the
same structure if S(Y1) = S(Y2).

Definition 3: The matrix Y1 with S(Y1) , [s1
i j]m×n is said

to be structurally subset of Y2 with S(Y2) , [s2
i j]m×n while

s2
i j− s1

i j ≥ 0. We denote this as S(Y1)⊆ S(Y2).

B. Controller dynamic

We represent the DOF controller K (s) in state-space as:

ẋc(t) = Acxc(t)+Bcy(t)

u(t) =Ccxc(t)+Dcy(t),
(2)

where xc ∈Rn is the state vector of the controller and Ac, Bc,
Cc and Dc are of appropriate dimensions. Let (Acl , Bcl , Ccl)
denotes realization of Twz := Ccl(sI−Acl)

−1Bcl (the closed
loop transfer function from w(t) to z(t)), where

Acl :=
[

A+B2DcC B2Cc
BcC Ac

]
, Bcl :=

[
B1
0

]
,

Ccl :=
[
C2 +D2DcC D2Cc

]
.

(3)

C. LMI characterization

1) H2 LMI characterization:
Lemma 1: Let (Acl , Bcl , Ccl) denotes realization of Twz.

The following three statements, involving symmetric matrix
variables X , Z and the general matrix variable G are equiv-
alent.

i) Acl is stable and
∥∥Ccl(sI−Acl)

−1Bcl
∥∥2

2 < γ .
ii) ∃ X > 0 and Z > 0 such that[

AclX +XAT
cl ?

CclX −γI

]
< 0,[

−Z ?
Bcl −X

]
< 0,

trace(Z)< 1.

iii) ∃ X > 0, Z > 0 and G such that −(G+GT ) ? ?
AclG+X +G −2X ?

CclG 0 −γI

< 0, (4)

[
−Z ?
Bcl −X

]
< 0, (5)

trace(Z)< 1. (6)
Proof: Refer to Appendix.

Remark 1: The advantage of the item iii) over the LMI
condition derived in [12] lies within the smaller dimension
of the first LMI in iii) than that of in [12].
It should be emphasized that the specific LMI characteriza-
tion in (4) enables us to utilize different Lyapunov matrices
(Xh) for each of the involved LMI constraints in the problem.
Moreover, the advantage of the LMI (4) lies within this
fact that the product terms between the matrix Acl and the
Lyapunov matrices (Xh) is disappeared. More importantly,
the control gain does not depend on the Lyapunov matrix,
but the instrumental matrix variable G. This feature has a
significant implication in the design of controllers satisfying
multiple objectives such as the multi-channel H2 (or even
mixed multi-channel H2/H∞) specifications. It is also worth
mentioning that, usually, the projection lemma is used, in
the field of robust control, to eliminate the variable which
contains the controller state-space data, and thus, deal only
with a set of LMIs which include less number of decision
variables. However, as seen, the proposed methodology here
utilizes the projection lemma in the opposite direction, that is,
introducing an additional matrix variable G to the problem.

2) Multi-channel H2 synthesis using improved LMI char-
acterizations: Our target is primarily to compute a full-
order DOF K (s) presented in (2) which meets several
performance specifications of the form

minimize
∥∥Twkzk

∥∥
2 (7)

subject to ‖Tw1z1‖
2
2 < γ1, · · · ,

∥∥Twk−1zk−1

∥∥2
2 < γk−1,∥∥Twk+1zk+1

∥∥2
2 < γi+1, · · · ,

∥∥TwN zN

∥∥2
2 < γN ,

where ‖Twizi‖2 := ‖LiTwzRi‖2, in which Li and Ri are selection
matrices that specify which channel is involved in the asso-
ciated constraint, and notice that N hereafter denotes the



number of channels. Furthermore, a realization of the closed
loop system Twizi will be obtained by replacing matrices B1,
C2 and D2 by B1,i, C2,i and D2,i, i = 1, · · · ,N , respectively,
in (1). Notice that, in such a case, the closed-loop per-
formance is ensured by constraining (minimizing) the H2
norm of the closed-loop transfer functions associated with
the (input/output) signals wi = Riw and zi = Liz; see [13],
[14]. Letting each channel to be associated with the LMI
constraints in (4), (5), and (6), the desired characterization
with multi-channel specifications can be obtained by intro-
ducing a different Lyapunov variable Xh for every channel
and exploiting common variable G for all channels. Hence,
it is readily verified that using the part iii) of Lemma 1, the
LMI characterization for each channel l can be written as: −(G+GT ) ? ?

AclG+Xl +G −2Xl ?
Ccl,lG 0 −γlI

< 0, (8)

[
−Zl ?
Bcl,l −Xl

]
< 0, (9)

trace(Zl)< 1, (10)

where Xl > 0, Zl > 0 and G are LMI variables. Now the
multi-objective problem described in (7) can be set as

minimize γk (MCH2)
subject to (8), (9), and (10) for k-th channel,

(8), (9), and (10) for j-th channel,
with given γl , l = 1, · · · ,N , l 6= k.

III. ROW-COLUMN-SPARSE MULTI-CHANNEL H2 DOF

The aim is to design a feedback gain such that it
• ensures the H2 performances with respect to channels

j = 1, · · · ,N , l 6= k which means that for a prescribed
closed loop H2 performance γl > 0, we have

∥∥Twlzl

∥∥2
2 <

γl ;
• minimizes the H2 performance of the k-th channel

subject to the above constraints and S(Ka) ⊆ Γa,
S(Ks)⊆ Γs, where Γa and Γs are given row and column
sparse structures, respectively, and Ka , [Cc Dc ], Ks ,
[BT

c DT
c ]

T .
Remark 2: It is worth mentioning that each nonzero row

of Ka corresponds to an actuator used by the DOF controller,
and likewise, each nonzero column of Ks corresponds to a
sensor employed by the DOF controller.
This problem can be formulated through an optimization
program in decision variables Xl > 0, Zl > 0, l = 1, · · · , N ,
G, Ac, Bc, Cc, Dc and γk > 0:

minimize γk subject to (11)
(8), (9), and (10), for k-th channel,
(8), (9), and (10), for l-th channel,
with given γl , l = 1, · · · ,N , l 6= k,

S(Ka)⊆ Γa and S(Ks)⊆ Γs,

where Γa and Γs are preset row and column sparse structure
matrices respectively. A difficulty in (11) is that it involves

nonlinear terms. The nonlinearities can fortunately be elim-
inated by some appropriate change of controller variables.
The change of variables here is performed inspired by the
one introduced in [12]. We let the instrumental variable G
and V = G−1 be of the form:

G :=
[

G1 G3
G2 G4

]
, V :=

[
V1 V3
V2 V4

]
, (12)

where dim G1 = dim V1 = dim A. As stated in e.g. [12] and
[15], without loss of generality it can be assumed that G2
and V2 are invertible. Now consider the following invertible
matrices:

TG :=
[

G1 I
G2 0

]
, TV :=

[
I V1
0 V2

]
. (13)

It can readily be deduced that

VTG = TV , GTV = TG.

Now, performing congruence transformations
diag(TV ,TV , I), diag(I,TV ), and diag(Iξ ⊗TV , Iξ ⊗TV , Iξ ⊗
TV ) in (8) and (9) respectively, along with the following
change of variables:

Ãc :=V T
1 AG1 +V T

1 B2DcCG1 +V T
2 BcCG1

+V T
1 B2CcG2 +V T

2 AcG2, (14)

B̃c :=V T
1 B2Dc +V T

2 Bc, (15)

C̃c :=DcCG1 +CcG2, (16)
D̃c :=Dc, (17)

X̃l :=TT
V XlTV ,

H :=GT
1 V1 +GT

2 V2,

lead to the LMIs in (18) and (19). Therefore, the sparse
row/column-wise multi-channel H2 DOF problem can be
recast as an optimization program in decision variables X̃l =[

X̃l,1 X̃l,2

X̃T
l,2 X̃l,3

]
> 0, Zl > 0, l = 1, · · · , N , V1, G1, H, Ãc, B̃c, C̃c,

D̃c and γk > 0:

minimize γk subject to (SMH2)
(18), (19), and (10), for k-th channel,
(18), (19), and (10), for l-th channel,
with given γl , l = 1, · · · ,N , l 6= k,

S( ˜Ka)⊆ Γa and S( ˜Ks)⊆ Γs,

where ˜Ka := [C̃c D̃c ] and ˜Ks := [ B̃c D̃c ].
Remark 3: It is readily derived that[

Ãc B̃c
C̃c D̃c

]
=

[
V T

2 V T
1 B2

0 I

][
Ac Bc
Cc Dc

][
G2 0

CG1 I

]
(20)

+

[
V T

1 AG1 0
0 0

]
.

As a result, it can be seen

˜Ka = Ka

[
G2 0

CG1 I

]
.




−(G1 +GT

1 ) ? ? ? ?
−HT − I −(V1 +V T

1 ) ? ? ?
AG1 +B2C̃c + X̃l,1 +G1 A+B2D̃cC+ X̃l,2 + I −2X̃l,1 ? ?

Ãc + X̃T
l,2 +HT V T

1 A+ B̃cC+ X̃l,3 +V T
1 −2X̃T

l,2 −2X̃l,3 ?

C2G1 +D2C̃c C2 +D2D̃cC 0 0 −γlI

< 0 (18)

 −Z ? ?
B1 −X̃l,1 ?

V T
1 B1 −X̃T

l,2 −X̃l,3

< 0 (19)

Thus, since post-multiplication retains the row-wise sparsity,
it can be stated that Ka is row-sparse if and only if ˜Ka is
row-sparse. Moreover, as

˜Ks =

[
V T

2 V T
1 B2

0 I

]
Ks,

and since pre-multiplication retains the column-wise sparsity,
then Ks is column-sparse if and only if ˜Ks is column sparse.
Obtaining a solution from (SMH2), the DOF controller can
readily be found from:
1) computing a full rank factorization GT

2 V2 of H −GT
1 V1

and thus invertible G2 and V2;
2) solving the equations (14)-(17) for controller matrices Ac,
Bc, Cc and Dc.

IV. ACTUATOR/SENSOR SELECTION

While the previous section considers the design of a multi-
channel H2 DOF with a priori specified set of actuators
and sensors, this section explores favorable row and column
sparse DOF gains (selection of actuators and sensors). To
do so, an optimization framework, in which the sparsity of
the feedback gain is directly incorporated into the objective
function, is considered here. This problem can be formulated
as:

minimize γk +ηa
∥∥ ˜Ka

∥∥
row−`0

+ηs
∥∥ ˜Ks

∥∥
col−`0

, (RC0)

subject to the constraints given in (SMH2) except the struc-
tural constraint on ˜Ka and ˜Ks, where the row-`0 (col-
`0) is a quasi-norm that counts the number of non-zero
rows (columns) of ˜Ka ( ˜Ks), and ηa > 0 (ηs > 0) is the
regularization parameter that implies the emphasis on the
row-sparsity (column-sparsity) of ˜Ka ( ˜Ks); i.e. a larger ηa
(ηs) will result in a more row-sparse (column-sparse) ˜Ka
( ˜Ks). Clearly the optimization problem (RC0) is a combina-
torial one and broadly speaking impossible to solve, as an
intractable combinatorial search is required to address this
problem. In the literature several alternatives such as `1-norm
or weighted `1-norm are proposed as convex relaxations of
the `0-quasi-norm [16]. Besides, [16] proposes an iterative
scheme, called reweighted `1 (REL1) minimization, that
solves a sequence of weighted minimization problems, which
the weights are updated according to the previous iteration’s
solution. The REL1 algorithm has recently been used by a
number of researchers (e.g. see [17], [18]) for the design
of sparse controllers for the distributed systems. Notice that
the variable selection in the aforementioned papers typically

amounts to the selection of important individual variables
(elements in the feedback gain) rather than the important
groups of variables (rows or columns).

Let us now recast the optimization problem (RC0) as

minimize γk +ηa f ( ˜Ka)+ηsg( ˜Ks) (SAS)
subject to (18), (19), and (10), for k-th channel,

(18), (19), and (10), for l-th channel,
with given γl , l = 1, · · · ,N , l 6= k,

where f (·) (g(·)) denotes the relaxed row-sparsity (column-
sparsity) promoting function for which different choices will
be proposed in the following.

A. Row (column) sparsity promoting penalty function

Let us consider a relaxed row-sparsity promoting function
as

f ( ˜Ka) = ∑
i, j

Wa,i| ˜Ka,i j|, (21)

where Wa,i denotes the weight corresponds to the i-th row
of ˜Ka. One may now resort to update the weights inversely
proportional to the `1-norm of its corresponding row in ˜Ka
obtained at the previous iteration:

W l
a,i =

1

∑ j | ˜K
(l−1)

a,i j |+ ε

, (22)

and form the weighting matrix as Wa = diag[Wa,i]
m
i=1. One

can also imagine a variety of possible norms in place of
(22), e.g. `2-norm and `∞-norm. Therefore the update rule in
(22) can be revised to:

W l
a,i =

1√
∑ j | ˜K

(l−1)
a,i j |2 + ε

, (23)

for `2-norm, and

W l
a,i =

1

max
j
(| ˜K

(l−1)
a,i j |)+ ε

, (24)

for `∞-norm. Although we have found the one in (22) to
perform well in a wide range of experiments, using `2-norm
or `∞-norm can sometimes outperform `1-norm. Notice that
these norms only indicate the method that we update the
weighting matrix Wa, while the sparsity term in the objective
function is considered as the one in (21). For the sensor



selection problem, we can similarly replace column-`0 by a
relaxed column-sparsity promoting function as

g( ˜Ks) = ∑
i, j
| ˜Ks,i j|Ws, j, (25)

while the update rule e.g. in (22) can be converted to:

W l
s, j =

1

∑i | ˜K
(l−1)

s,i j |+ ε

, (26)

and the weighting matrix is similarly formed as Ws =
diag[Ws, j]

p
j=1. Algorithm 1 is presented in Appendix to

identify a row-sparse ˜Ka and a column-sparse ˜Ks. We denote
the obtained structure of the minimization problem (SAS),
as S( ˜Ka), Γa and S( ˜Ks), Γs. Eventually, in order to find
the multi-channel H2 DOF associated with the achieved Γa
and Γs, we turn to the minimization problem in (SMH2).

Remark 4: It should be pointed out that if due to some
reasons (e.g. high execution cost or faulty situation), some
actuators (sensors) are required to be by-passed, one can
penalize those actuators (sensors) by a large initial weight
(e.g. 1/ε) in the proposed iterative algorithm.

V. NUMERICAL EXAMPLES

A numerical example is presented here in order to evaluate
the effectiveness of the proposed method for the problem of
actuator-sensor selection via DOF approach. All the LMI
optimization problems are solved by YALMIP [19] as the
interface and SDPT3 [20] as the solver.
Let us consider the problem HE3 from COMPleib [21]. This
problem is related to the eight order linearized state space
model of the dynamics of the Bell201A-1 helicopter that
has four inputs and six outputs. The system matrices can
be seen in [21]. Besides, we let C1 =

[
C

04×8

]
, D1 =

[
06×4

I4

]
,

C2 =
[

C̃
04×8

]
and D2 =

[
02×4

I4

]
, where

C̃ =

[
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

]
.

The objective is firstly to identify the minimum number of
actuators and sensors by which the closed-loop stability is
maintained and the performance degradation of the closed-
loop system is restricted. Solving the optimization problem
in (SMH2), with N = 2, γ2 < 10, Γa = 1m×(n+p), Γs =
1(n+m)×p, results in a true H2 cost of 0.8117 for channel
1 and 0.4608 for channel 2.

Remark 5: Notice that the value of the H2 cost obtained
from (SMH2) is not the true one, due to the conservatism
introduced by employing common G, Ac, Bc, Cc and Dc.
Nevertheless, the true value can be computed by solving the
following Lyapunov equation

Xi,trueAcl +AT
clXi,true +CT

cl,iCcl,i = 0. (27)

One can then find the H2 cost as
√

trace(BT
cl,iXi,trueBcl,i).

Now we solve the optimization problem in (SAS) by utilizing
Algorithm 1 in Appendix with β = 0.1, ε = 0.0001 and
exploiting the row-sparsity promoting function (21) and
the column-sparsity promoting function (25) in addition to

TABLE I
SUMMARY OF THE OBTAINED RESULTS FOR DIFFERENT VALUES OF ηs

AND ηa

ηa ηs H2 cost (Ch 1) Sensors Actuators

0 0 0.8117 All All

1 0.5 0.9946 1&2&3 2&3

5 10 0.9946 2&3 2&3

the update rule in (23) and its counterpart for the sensor
selection, respectively. As increases ηa and ηs the underlying
Ka and Ks gradually become row-sparse and column-sparse,
respectively. For instance, with ηa = 1 and ηs = 0.5 the
algorithm suggests exploiting only the control inputs 2 and 3,
while the controller does not receive information of sensors
4, 5 and 6, but at the expense of about 23% H2 performance
degradation in channel 1 compared to the non-sparse K .
Moreover, letting ηa = 5 and ηs = 10, Algorithm 1 pro-
poses exploiting sensors 2 and 3 and actuators 2 and 3
(‖Ka‖row−`0

= 2 and ‖Ks‖col−`0
=2). About 23% H2 per-

formance degradation happens in channel 1, in this case.
The obtained results for different values of ηs and ηa is
summarized in Table I.

VI. CONCLUSIONS

This paper develops a framework for addressing the issue
of selecting an optimal set of actuators (sensors) for dy-
namical systems, satisfying several performance constraints.
Firstly, an LMI-based framework for the design of multi-
channel H2 DOF gain has been proposed. Besides, this
framework is capable of incorporating additional structural
constraints as well as, e.g., regional pole placement con-
straints on the feedback gain matrix. Then a procedure
has been developed which includes two stages; the first
stage identifies the desirable row-column-sparsity pattern for
necessary parts of dynamic feedback gain via iterative pro-
cesses and then the second one solves the multi-channel H2
problem, augmented by structural constraints. The simulation
results illustrated the effectiveness of our proposed approach.

APPENDIX

A. Proof of Lemma 1
The equivalence between the first two statements is a

standard H2 state feedback synthesis and can be seen e.g. in
[22]. We just show the equivalence between the statements
ii) and iii). Exploiting the well-known Schur complement,
one can show that the first LMI in iii) can be reformulated
as [

−(G+GT )+ γ−1(CclG)T (CclG) ?
AclG+X +G −2X

]
< 0.

Note that as GT +G > 0, G is invertible. By performing con-
gruence transformation

[
G−T 0

0 X−1

]
in the above inequality,

we obtain [
−(G̃+ G̃T )+ γ−1CT

clCcl ?
X̃Acl + X̃ + G̃ −2X̃

]
< 0.



where G̃ = G−1 and X̃ = X−1. The above inequality can be
written as[

γ−1CT
clCcl+ ?

X̃Acl + X̃ −2X̃

]
+herm

([
−I
I

]
G̃
[
I 0

])
< 0.

According to the well-known Projection lemma, the above
inequality holds if and only if the following two projection
inequalities with respect to G̃ are satisfied:[

I
I

]T [
γ−1CT

clCcl ?
X̃Acl + X̃ −2X̃

][
I
I

]
< 0, (28)[

0
I

]T [
γ−1CT

clCcl ?
X̃Acl + X̃ −2X̃

][
0
I

]
< 0. (29)

As seen the inequality (29) indeed becomes the trivial
inequality −X̃ < 0 and (28) is equivalent to

X̃Acl +AT
clX̃ + γ

−1CT
clCcl < 0,

which with pre- and post-multiplying by X = X̃−1 leads to

AclX +XAT
cl + γ

−1XCT
clCclX < 0,

The above inequality can simply be written as item ii), using
the Schur complement.

B. Iterative algorithm for identifying row-column-sparsity
patterns through DOF

Define the matrices Ra =
[
0(n+p)×n 1(n+p)×m

]
and Rs =[

0(n+m)×n 1(n+m)×p

]T . The optimization problem in (SAS), by
letting f ( ˜Ka) and g( ˜Ks) as (21) and (25) respectively, is
equivalent to

minimize γk +ηatrace(RaW )+ηstrace(W Rs)

subject to (18), (19), and (10), for k-th channel,
(18), (19), and (10), for l-th channel,
with given γl , l 6= k, l = 1, · · · ,N ,

−W ≤ diag(I,Wa) · ˜K ·diag(I,Ws)≤W , (30)

where Wa and Ws denote the weighting matrices and the last
inequality is element-wise with W ∈ R(n+m)×(n+p) whose
entries are nonnegative. Besides, to solve the above opti-
mization problem, the following algorithm is utilized:

Algorithm 1: 1) With given ε > 0, β > 0, ηa > 0 and
ηs > 0, initialize Wa = Im, Ws = Ip, l = 1 and ˜K l = 0.

2) Solve the minimization problem (30) to obtain ˜K ? and
the associated ˜K ?

a = [C̃?
c D̃?

c ] and ˜K ?
s = [ B̃?

c D̃?
c ]

T .
3) Update W l

a,i using the update rule in (22) (or (23) or
(24)) and its counterpart W l

s,i for sensor selection e.g. in
(26), form W l

a = diag[W l
a,i]

m
i=1 and W l

s = diag[W l
s, j]

p
j=1.

5) If
∥∥ ˜K ?− ˜K l

∥∥≤ β go to Step 6, else ˜K l = ˜K ?, l =
l +1 and return to Step 2.

6) Let the unnecessary rows of ˜K ?
a and columns of ˜K ?

s
be zero and return Γ?

a = S( ˜K ?
a ) and Γ?

s = S( ˜K ?
s ).
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