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Abstract

In this paper, we discuss the problem of feature selection and the importance of using
mutual information in evaluating the discrimination ability of feature subsets between class
labels. Because of the difficulties associated with estimating the exact value of mutual infor-
mation, we propose a new evaluation measure that is based on the information gain and takes
into consideration the interaction between features. The proposed measure is integrated into
a robust feature selection scheme and compared with the well-known mutual information fea-
ture selection (MIFS) algorithm using the problems of texture classification, speech segment

classification and speaker identification.
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1 Introduction

Feature selection is a very important step in classification since the inclusion of irrelevant and
redundant features often degrade the performance of classification algorithms both in speed and
prediction accuracy. The objective of feature selection is to find the smallest subset of features
that minimizes the probability of error. Ideally, this can be achieved by examining all possible
subsets and finding the one that satisfies the above criterion. This approach is known as exhaustive
feature selection. Even with a moderate number of features, the exhaustive selection is impractical
because of its high computational requirements. Other feature selection methods were developed
to reduce computational complexity by compromising performance.

All feature selection methods need to use some sort of evaluation function together with a search
procedure to find the optimal feature set. The evaluation functions measure how good a specific
subset can be in discriminating between classes, and can be divided into two main groups: filters
and wrappers. Filters measure the relevance of feature subsets independently of any classifier,
whereas wrappers use the classifier’s performance as the evaluation measure. Search procedures,
on the other hand, are methods that only consider small portions of all possible subsets, e.g. the
branch and bound [13], stepwise [12], genetic algorithms [16], etc. In this paper, our objective is to
develop an evaluation function that can be used with any search procedure. We will consider filter
evaluation measures because they are much faster than wrappers and can handle large datasets
[4]. A variety of filter-based measures have already been proposed in the literature. The most
popular fall under the following three categories: distance measures, consistency measures, and
information measures.

Distance measures for a subset of features are based on inter-class separation, or distance
between classes. Logically, the larger the separation between classes, the easier it will be to define
a decision boundary, and to achieve a lower error rate [5, 6]. The main problem with using
distance measures as evaluation functions is that some feature subsets may have large inter-class
distances, but subsequently produce poor classification results [10]. This is because of the curse of
dimensionality, where as the number of features of a dataset increases, the resulting of estimates
of inter-class distance become less reliable.

Consistency measures on the other hand rely heavily on the training dataset in order to check
the consistency of a given subset. A subset is said to be inconsistent if there are at least two
patterns in the dataset having equal values for all features under examination with different class
labels [1]. Features that have many different values make problem for this kind of measure. An

extreme example is a feature that has as many values as there are patterns. Such feature has



little power to generalize beyond the training data, and yet according to this measure is the most
consistent [9].

The information measure is based on the concept of mutual information (MI). MI measures ar-
bitrary dependencies between random variables and thus is suitable for assessing the “information
content”. Fano [7] has shown that maximizing the MI between transformed data and the desired
target achieves the lowest probability of error. This idea has inspired Battiti in developing his
feature selection method, which he named mutual information feature selection (MIFS) [2]. The
method evaluates MI between individual features and class labels, and selects those features that
have maximum MI with class labels and are less redundant. The drawback of the MIFS algorithm
is that it does not take into consideration the interaction between features. In [14], it has been
proved that choosing features individually does not lead to an optimal solution.

Another way to reduce the dimensionality of the original feature set is through feature trans-
formation. Unlike feature selection, feature transformation (or subspace mapping) reduces the
dimensionality of features by transforming all of them, either linearly or nonlinearly, to a lower
dimension set. If the original feature set F consists of IV features, then a new feature set S that
consists of M features, M < N, can be generated through the following transformation: S = WF,
where W is the transformation matrix. A well-known feature transformation method is the prin-
cipal component analysis (PCA), which is a classical statistical method which is usually used to
create an ordered orthogonal basis with the first eigenvector corresponding to the largest variance
in the input set [5]. In other words, PCA is a general-purpose redundancy reduction method that
does not take into consideration relationships with the class labels. In this study, we will only be
concerned with feature selection, and will propose a new information-based evaluation function
that overcomes the drawbacks of the MIFS algorithm. The performance of our proposed method
will be compared to that of the MIFS and PCA.

The paper is organized as follows: The measurement of MI and its importance in performing
feature selection is explained in section two. Section three presents our proposed evaluation
function. Experimental results and comparison in terms of classification accuracy between our
proposed method, Battiti’s method and the PCA is presented in section four, while section five

concludes the paper.



2 Mutual Information

2.1 Definition and Measurement

The MI between random variables X and Y, I(X;Y), measures the amount of information in X

that can be predicted when Y is known. If X and Y are continuous,

I(X;Y) = H(X) - HX|Y) 1)

:/ny(w, y) log[Pxy (z,y)/Px (z) Py (y)]dz dy

where H (X)) is the entropy of X, which is a measure of its uncertainty, H(X|Y) is the conditional
entropy, which represents the uncertainty in X after knowing Y. When we deal with real data, the
main problem for evaluating I(X;Y") is the estimation of probabilities Px (z),Py (y) and Pxy (x,y).
One possible solution is to subdivide the XY plane into boxes of size AzAy. By doing so, we
are able to estimate the discrete values of Px, Py and Pxy. Fraser and Swinney [8] proposed an
alternative approach which uses variable box size over the XY plane, while Darbellay and Vajda
[3] developed a method that estimates the MI by an adaptive partitioning of the observation space.
However, for simplicity, we used here a fixed box size implementation.
Given the assumption above, the MI can be rewritten as:
I(X;Y) = Z ZPXY(rmary) log[Pxy (rz,ry)/Px (r2) Py (ry)] (2)
Te Ty

where, 7, and r, are the discrete levels for X and Y respectively. If r, = r, = R, we would need
R? boxes to estimate Pxy. In the case of three variables, we would need R® boxes to estimate
Pxyz, and so on. This number becomes very large as the number of variables increases. Note
that Eq. 2 is also applicable to random variables which are originally discrete, and hence, it is

applicable to categorical features, where r, in this case represent the categories.

2.2 Importance of Using MI for Feature Selection

An evaluation function is defined as a measure of the ability of feature subsets in distinguishing
between class labels. If a number of feature subsets have different levels of knowledge about the
class labels, then an evaluation function is said to be optimal if it can rank the subsets according
to their discrimination abilities.

To show the importance of using MI in feature selection, we consider here a simple case of
five input variables, F = {fi1, f2, f3, f1, f5}, and three class labels, C = {¢1, 2, ¢35}, which are pre-

specified using linear combinations of input variables. An Artificial neural network (ANN) trained



with a backpropagation algorithm was used as a classifier. We first measured the MI between
class labels and all possible subsets of 1, 2, 3 and 4 variables, and sorted them accordingly, then
a comparison was performed between these sorted subsets with respect to their classification
accuracy. The results, displayed in Fig. 1, show that for the four cases of 1, 2, 3 and 4 variables,
and for almost all subsets, the classification accuracy increases as the MI between variable subsets
and class label increases. This monotonic characteristic between these two quantities can provide
useful information about the ability of feature subsets in distinguishing between class labels (i.e.,
the highest the MI, the better the classification accuracy). Therefore, the importance of any
subset, £, can be measured by I(C; L).

Insert Fig. 1 here

However, because of the computational load involved in estimating I(C; £), especially when £
contains a large number of features, (as described in section 2.1), we need to find an alternative
evaluation function that is computationally feasible and yet reflects the goodness of each subset.

The MIFS algorithm reduces the computational load using a “greedy” procedure that only
computes I(C; f) and I(f; f'), where f and f' are individual features, according to the following

evaluation function:

Gures (F) = 1(C; ) — %' D (3)

seS

where § is the subset of already selected features and the parameter § regulates the relative
importance of MI between the non-selected feature f and the already selected feature s with

respect to MI between f and C.

Insert Fig. 2 here

Fig. 2 shows the classification accuracy of the different feature subsets and their corresponding
MIFS evaluation measures. It is clear from both the number and amount of fluctuations for the
three cases that the MIFS is far from achieving the objective of optimal evaluation function. This
is mainly because this measure evaluates features individually and it does not perfectly regulates
the importance of each feature with respect to its dependency with the already selected features.
The next section describes a new proposed evaluation function that overcomes the drawbacks of
the MIFS algorithm by considering the interaction between features and appropriately evaluating

the redundancy with the already selected features.



3 The Proposed MI-based Evaluation Function

The new proposed evaluation function for a given subset £, denoted as g(£), will be based on the
MI but with less computational complexity than I(C;L). Accordingly, ¢(.) should have similar
properties to I(C;.), and thus should satisfy the following conditions for any two subsets K and
L

1. Lower bound: if K C £, then g(K U L) = g(L).
2. Upper bound: if K and £ are independent, then g(K U £) = g(K) + g(£L).

3. Monotonicity: if £ C £, then g(K) < g(£).

The first and second properties highlight the dependency between features. If the features in
K are either irrelevant or totally dependent upon those in £, then K does not provide any new
information compared to that of £. However, if K and £ are independent, then K provides new
information that is not given by L. The relevance of each feature, f;, can be indicated by its MI
with class labels, I(C; f;). The degree of dependency between two features f; and f; is measured
using I(fi; f;). The monotonic property guarantees that any feature added to X will not reduce
the new value of the evaluation function. Another important property that should be considered
is the interaction between features. f; and f; are said to be working well together if their joint
MI with class labels, I(C; {fi, fj}), is high.

From the above discussion, the terms I(C; f;), I(C; { fi, f;}), I(fi; fj), and H(f;) will be consid-
ered in order to determine an expression for the evaluation function g(.). The proposed algorithm

for determining g(.) can be summarized in four steps, as described below:

Step 1: choose the feature f; € £, that produces maximum value of I(C; f;); set K «+ {f;};
9(K) = I(C; f)

Step 2: For each feature f; € £, f; ¢ K
e compute: m(f;) = g(K) + M (C; f;), where X represents the information gain
e choose the feature f; that maximizes m

o set K < KU{fi}; 9(K) =m(f:)
Step 3: if |K| < |£] go to step 2

Step 4: g(£) = g(K)

IThe reader may refer to appendix A for proofs that MI between C and the two subsets KC and L, satisfies these

conditions



In the first step, g(.) is initialized to the maximum MI between a single feature and the class
labels, I(C; f;), and the subset of the chosen features, K, is initialized to {f;}. Step 2 defines the
intermediate function m of feature f;, which is the summation of the latest value of ¢(.) and its
MI with class labels multiplied by A. This is an approximation of the amount of information that
can be added to g(.) when choosing f;. The value of A ranges between [0, 1]. If no information is
gained from f;; A = 0. On the other hand, A — 1 if f; is independent from all the features chosen
so far. If f; is partially dependent upon any of the features in I, then A will vary between 0 and
1. Using a concept drawn by analogy with ANNs, we found that a suitable expression for A can

be formulated as follows:

2

A= 1+ exp(—aD) -1 @

where

— i |G I f) ] 1 ICA{fi fiD) '
D = iy [T P o (e rem) | ®)

the parameters «, § and + are constants, and |K| is the cardinal of K.

The first term of D reflects the degree of dependency between f; and the already chosen features
in K, f;. If f; is highly dependent upon any of the chosen features, then D — 0, and hence A — 0.
To achieve this, we subtract the value of MI between f; and f; from the entropy of f;. If the
outcome approaches 0, then f; and f; are highly dependent.

When f; is independent from all the features chosen so far, then D should be large enough to
make A — 1. Note that the first term of D will be 1 because I(f;; f;) = 0. On the other hand, the
second term will be exp(f), because I(C;{fi, f;}) = I(C; fi) + I(C; f;) (see appendix A.2). After
intensive experiments, we found that § = 2.5 and a = 0.3 are appropriate for many classification
tasks.

For the case when f; is partially dependent upon all the features considered so far, which is the
common case, it is very important that we take into consideration how f; and f; interact together
in order to calculate D properly. The second expression of D evaluates the ratio of how f; and f;
work together to that when they are considered individually. A reasonable choice for v was found
to be 3.

After computing m for all non-chosen features in the subset £, we add the feature that max-
imizes m to K, and substitute its value into g(.) (step 2). This procedure is repeated until we
consider all the features in the subset £. When tested on the simulated data of section 2.2, its

performance was found to be comparable to that of I(C; £), as shown in Fig. 3, where the relation-



ship between the proposed subset measure and classification accuracy tends to be monotonic. The
figure also shows that both the number and amount of fluctuations are less than those of MIFS.
The proposed evaluation function will be called mutual information evaluation function (MIEF),

and in this paper it will be used with the stepwise search procedure.

Insert Fig. 3 here

Given the MI and entropy arguments of Eq. 5, the MIEF can be implemented quite fast
using an ordinary PC. In other words, since both MIFS and MIEF require the computation of MI
between pairs of features, the computational time required by MIEF, i.e., the implementation of

Eqgs. 4 and 5, is very much similar to that of the MIFS, which requires the execution of Eq. 3.

4 Experimental Results

4.1 Texture Classification

A first set of experiments were carried in texture classification. The textures considered here were:
bark, brick, bubbles, leather, raffia, water, weave, wood and wool [15]. In the first experiment,
the classification of the first two textures was carried out. The classification of the first five,
then the classification of all the nine textures was considered in the second and third experiments
respectively. Gaussian noise, with different signal-to-noise ratio, has been added to (1024 x 1024
pixels) images of each texture class to form the training and testing sets. 961 patterns were
obtained from each image using (64 x 64) windows with an overlap of 32 pixels. Figs. 4 and 5

show the clean and noisy texture images used.

Insert Figs. 4 and 5 here

Four 9 dimensional feature vectors were calculated using statistics of sum and difference his-
togram (SDH) of the co-occurrence matrix with different directions: vertical, horizontal, and the
two diagonals (SDH;, SDH>, SDH; and SDH,). For each direction, the features used were:
mean, variance, energy, correlation, entropy, contrast, homogeneity, cluster shade, and cluster
prominence. The fractal dimension (F'D) has also been used to form the tenth feature of each
vectors. The energy contents of texture images (E) has been used to form another feature vector
using 9 different masks, and its tenth feature was F'D.

Each one of these five feature vectors was used as input to an ANN. The numbers of training
and testing patterns depend upon the number of classes considered, i.e., for the case of two classes,

15376 patterns were used to train the networks and 5766 to test them. The classification accuracies



obtained are shown in Table 1. Note that as the number of classes increases the overall accuracy
decreases. It is worth mentioning that the first four feature vectors were found to exhibit a high
degree of correlation. Fig. 6 shows the classification accuracy of the selected and transformed

features obtained by applying the MIFS, MIEF and PCA methods for the three experiments.

Insert Table 1 here

It is clear that the PCA has the lowest classification accuracy, compared to MIFS and MIEF, for
the three experiments. This is expected because it does not take into consideration relationships
between input features and class labels. Therefore, for the rest of the paper, we will only analyze
the performance of MIFS and MIEF. As shown in Table 1, the E vector performed extremely well
compared to the other four vectors. For example, in the first experiment, the ratio between the
error rate of the second best vector and that of F is 5.64. A good feature selection method must
achieve a similar performance to that of the E vector with less number of features. This is the
case for MIEF, where it achieves similar classification accuracy using 9, 7 and 6 features for the
first, second and third experiments respectively, as shown in Fig. 6. A further improvement in
performance is achieved when the number of features increases. On the other hand, the MIFS
is not able to achieve the same performance of the E vector for the first experiment even when
considering up to 16 features. For the second and third experiments, it reaches similar results
when considering 10 and 7 features respectively. Therefore, the MIFS does not achieve the goal
of feature selection in the first two cases, but it is successful in the last case. In addition, Fig. 6
shows that the MIEF is better than the MIFS by at least 2% when selecting more than 5 features
for the three experiments. The difference between their performance is especially clear when the
number of selected features ranges between 6 and 9 for the second experiment, as it exceeds 6%.
It is quite evident that the MIEF outperforms the MIFS in all cases. The standard deviation of
the classification accuracy of the two methods is measured and found to be less than 1 for all
cases. As such, the difference in classification accuracy between the two methods suggests that
the MIEF can achieve better results, for almost all the cases, compared to the MIFS.

The performance of the whole feature set, which contains 50 feature, is indicated by the
horizontal dotted lines in the figure. We find that both MIEF and MIFS could achieve more than
96% of the performance of the whole feature set, with better results achieved by the MIEF.

The above three experiments clearly show the superiority of the MIEF, since it achieves a
similar or better performance to the best original feature vector with a lower number of features,

and outperforms the MIFS in all considered cases.

Insert Fig. 6 here




4.2 Classification of Speech Segments

The purpose of this experiment is to classify speech segments according to their manner of ar-
ticulation. The classification results can later be incorporated in speech therapy, learning second
language or speech recognition systems. Six classes were considered: vowel, nasal, fricative, stop,
glide, and silence. Speech signals have been divided into segments (e.g. Sn—1,Sn, Snt1, etc.) and
frames (e.g. fi1, f2, f3, etc.) as shown in Fig. 7. From each frame, three different set of features
were extracted: 16 log mel-filter bank (MFB), 12 linear predictive reflection coefficients (LPR),
and 10 wavelet energy bands (WVT). A context dependent approach was adopted to perform the
classification. So, for each speech segment (e.g. S,,), the baseline features were the average frame
features over the first and second half of segment S,, and the average frame features of the previous
and following segments (S,—1 and S, 11 respectively). Thus, based on MFB, the baseline features
of S,, were 64, since there were 32 features extracted from the average frame features of the first
and second halves of S,,, and 16 features extracted from each of the two segments S,,_; and S, 11.
The baseline features based on LPR and WVT were calculated in a similar way with total number
of 48 and 40 respectively. Each of these three baseline features was used as input to an ANN,
hence, the number of input units were 64, 48 and 40 for MFB, LPR and WVT respectively. For
this experiment, speech was obtained from the TIMIT database [11]. Segments from 152 speakers
(56456 segments) were used to train the ANNs, and from 52 speakers (19228 segments) to test
them. The classification accuracy for MFB, LPR and WVT were 85.50%, 74.06% and 84.33% re-
spectively. It is clear that the MFB is superior to both LPR and WV'T, but it used more features.

The performance of LPR, on the other hand, was not good as it used more features than WVT.

Insert Fig. 7 here

It is worth mentioning that because of the large number of input units used by the three
ANNs compared to that of the texture experiments, more weights were needed to be adjusted in
the training face, and hence more computational time. Therefore, it will be very useful to select
the most important features such that similar or better performance is achieved with reduced
computational time. The three baseline features are concatenated to form 152 features for each
segment. Both MIFS and MIEF are then used to select from these features. The classification
accuracy of the selected MIFS and MIEF features are shown in Fig. 8. The figure shows that
both MIFS and MIEF meet the objective of feature selection by achieving similar performance but
with a reduced number of features compared to the MFB, LPR and WVT baseline features. The
MIEF and the MIFS achieve similar performance to the MFB baseline features using 45 and 50

features respectively. When comparing the performance of MIFS to that of WVT, no improvement

10



is achieved when selecting up to 45 features. In contrast, the MIEF achieves better performance
when selecting 30 and more features. The figure also shows that both MIFS and MIEF are able
to achieve more than 97% of the performance of the whole feature set using 75 features, which
is less than half the number of original features. In summary, the results show that the MIEF
outperforms the MIFS most cases, especially for the first 50 features, where an improvement of up

to 3% is achieved. It also outperforms the original feature vectors using same number of features.

Insert Fig. 8 here

4.3 Speaker Identification

In this experiment, speech signals of four different speakers (two females and two males) are used
to identify the speakers. Similar to the speech segment experiment, the speech data were obtained
from the TIMIT database [11], and the three set of features used to represent each frame were
MFB, LPR and WVT, which use 16, 12 and 11 features respectively. The baseline features of a
given pattern consisted of the features of three successive frames, which are 48, 36, and 30 features
for MFB, LPR and WVT respectively. 5931 patterns were used for training and 2542 for testing.
Each set of baseline features was used to train an ANN to identify between the four speakers. The
classification accuracy for MFB, LPR, and WVT were: 85.1%, 74.8% and 71.6% respectively. It is
worth mentioning that unlike the speech segment experiment, the set of LPR features outperform
that of the WVT features. General purpose dimensionality reduction techniques that only look
for specific properties in the features without considering their relationship with class labels, like

the principal component analysis, will certainly fail to provide optimal feature subsets.

Insert Fig. 9 here

Both MIFS and MIEF are used to select features from the concatenated three baseline sets (a
total of 114 features), and the results obtained are shown in Fig. 9. The MIFS meets the objective
of feature selection by achieving similar performance, compared to WVT and LPR, by using 12
and 16 features. However, it fails with the MFB, where it needs at least 52 features to achieve
similar performance. On the other hand, the MIEF achieves similar performance to WVT, LPR
and MFB using 6, 8, and 18 features only, and its 48 selected features achieve an accuracy of
90%. In addition, the performance of MIEF is found to be superior to that of MIFS in all cases,
where an improvement of up to 10% is achieved. The MIFS needs to use 60 features to achieve
the performance of 27 features selected by the MIEF. Moreover, when selecting 57 features, which
represent half the number of all features, the MIEF achieved 99% of the performance of the whole
feature set compared to 95% for the MIFS.

11



Even thought for all our experiments we used ANNSs for classification, the findings of this paper
can be extended to other classifiers, such as Bayes classifiers, since the algorithm focuses on finding
the best set of features independently of the classifier used.

The above experiments show the strength of our proposed measure, and suggests that even if
the domain expert, who can choose the most relevant features, is not involved, we can still achieve
very good results. This is implied by the very close performance of the selected features to that

of the whole feature set.

5 Conclusion

A new evaluation function based on the concept of mutual information has been presented. The
function takes into consideration the interaction between features and measures the ability of
feature subsets in distinguishing between class labels. When the function was used with the
stepwise selection procedure, it improves classification accuracy with a lesser number of features
compared to the conventional MIFS method and the best original feature vector for all three
problems of texture classification, speech segment classification and speaker identification. The
major advantage of the proposed measure is that it takes into account different features interaction

without noticeable increase in the computational complexity compared to the MIFS.

A Appendix: Evaluation Function Conditions for I(C; L)

A.1 Lower Bound

If £ C £ or K is fully dependent upon £, then P(K, L) = P(L), and P(C,K, L) = P(C, L).

‘ B P(C,K, L)
I1(C{K, L}) = Ek:l P(C,K,L)log {719(0)19(/@ 5)}
B P(C,L)
=3 P 00s | p,
I(CHK, L})=1(C; L) (6)

12



A.2 Upper Bound

If € and £ are independent, then P(K, L) = P(K)P(L), and:

P((K, £)|C) =P(K|C)P(L|C)
on the other hand P((K,L)|C)=P(C,K,L)/P(C)
P(C,K,L)=P(K|C)P(L|C)P(C)

=P(C,K)P(C,L)/P(C)
Using these formulas in calculating the MI will lead to:

(G K. £)) = 3 P, ) log |

c,k,l
P(C,K)P(C,L) [ P(C,K)P(C,L)
PC) [P(@ZP(/C)P(EJ

_P(C.K)P(C,L) P(C,K) P,
=2 PO {l°g P(C)P(/C)]“‘)g[ )

A.3 Monotonicity

If £ C £, then let J be a subset such that U J = L. According to Eqs. 6 and 7, the lower and
upper bounds of I(C; L) are I(C;K) and I(C;K) + I(C; J) respectively. Therefore,

I1(C;K) < I(C; L) (8)
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Table 1: Texture classification accuracy of the five original classifiers for different number of output

classes

No. of classes SDH, SDH, SDH3; SDH, E

2 88.45 89.65 89.85 88.81 98.20
) 7964 79.79 79.06 7896 90.49
9 75.07 7189 7172 7179 89.01
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“Fig. 8 Performance of MIEF and MIFS in speech segment classification”

“Fig. 9 Performance of MIEF and MIFS in speaker identification”
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