
A Theory of Computation Based on Quantum Logic

Mingsheng Ying∗

State Key Laboratory of Intelligent Technology and Systems,

Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China,

Email: yingmsh@tsinghua.edu.cn

Abstract

The (meta)logic underlying classical theory of computation is Boolean (two-
valued) logic. Quantum logic was proposed by Birkhoff and von Neumann as
a logic of quantum mechanics about 70 years ago. It is currently understood
as a logic whose truth values are taken from an orthomodular lattice. The
major difference between Boolean logic and quantum logic is that the latter
does not enjoy distributivity in general. The rapid development of quantum
computation in recent years stimulates us to establish a theory of computation
based on quantum logic.

Finite automata and pushdown automata are two classes of the simplest
mathematical models of computation. The present Chapter is a systematic
exposition of automata theory based on quantum logic. We introduce the no-
tions of orthomodular lattice-valued (quantum) finite and pushdown automa-
ton. The classes of languages accepted by them are defined. Various properties
of automata are carefully reexamined in the framework of quantum logic by
employing an approach of semantic analysis, including equivalence between fi-
nite automata and regular expressions (the Kleene theorem) and equivalence
between pushdown automata and context-free grammars. It is found that the
universal validity of many important properties (for example, the Kleene the-
orem) of automata depend heavily upon the distributivity of the underlying
logic. This indicates that these properties do not universally hold in the realm
of quantum logic. On the other hand, we show that a local validity of them can
be recovered by imposing a certain commutativity to the (atomic) statements
about the automata under consideration. This reveals an essential difference
between classical automata theory and automata theory based on quantum
logic.

∗This work was partly supported by the National Foundation of Natural Sciences of China (Grant
No: 60321002, 60496321) and the Key Grant Project of Chinese Ministry of Education (Grant No:
10403)

1

Key Words: Quantum logic, orthomodular lattices, algebraic semantics, finite
automata, regular languages, pushdown automata, context-free languages, quantum
computation

Contents

1. Introduction (page 3)

2. Preliminaries (page 11)

2.1. Orthomodular lattices (page 11)

2.2. The syntax of quantum logic (page 20)

2.3. The algebraic semantics of quantum logic (page 21)

2.4. Orthomodular lattice-valued sets (page 22)

2.5. Orthomodular lattice-valued relations (page 25)

2.6. Orthomodular lattice-valued languages (page 26)

3. Orthomodular lattice-valued (nondeterministic) finite automata (page 28)

3.1. Basic definitions and examples (page 28)

3.2. Orthomodular lattice-valued deterministic finite automata (page 39)

3.3. Orthomodular lattice-valued finite automata with ε−moves (page 46)

3.4. Closure properties of orthomodular lattice-valued regularity (page 52)

3.5. The Kleene theorem for orthomodular lattice-valued languages (page 68)

3.6. The Myhill-Nerode theorem for orthomodular lattice-valued languages
(page 81)

3.7. The Pumping lemma for orthomodular lattice-valued regular languages
(page 89)

4. Orthomodular lattice-valued pushdown automata (page 93)

4.1. Orthomodular lattice-valued context-free grammars (page 93)

4.2. Basic definitions of orthomodular lattice-valued pushdown automata
(page 105)

4.3. Equivalence of orthomodular lattice-valued context-free grammars and
pushdown automata (page 111)

4.4. Closure properties of orthomodular lattice-valued context-freeness (page
114)

4.5. The pumping lemma for orthomodular lattice-valued context free lan-
guages (page 125)

5. Conclusion (page 128))

6. Bibliographical notes (page 133)

References (page 135)

2

1. Introduction

It is well-known that an axiomatization of a mathematical theory consists of
a system of fundamental notions as well as a set of axioms about these notions.
The mathematical theory is then the set of theorems which can be derived from
the axioms. Obviously, one needs a certain logic to provide tools for reasoning in
the derivation of these theorems from the axioms. As pointed out by A. Heyt-
ing [32] (page 5), in elementary axiomatics logic was used in a not analyzed form.
Afterwards, in the studies for foundations of mathematics beginning in the early
of twentieth century, it had been realized that a major part of mathematics has
to exploit the full power of classical (Boolean) logic [31], the strongest one in the
family of existing logics. For example, group theory is based on first-order logic,
and point-set topology is built on a fragment of second-order logic. However, a
few mathematicians, including the big names L. E. J. Brouwer, H. Poincare, L.
Kronecker and H. Weyl, took some kind of constructive position which is in more
or less explicit opposition to certain forms of mathematical reasoning used by the
majority of mathematical community. Some of them even endeavored to establish
so-called constructive mathematics, the part of mathematics that could be rebuilt
on constructivist principles. The logic employed in the development of constructive
mathematics is intuitionistic logic [77] which is truly weaker than classical logic.

Since many logics different from classical logic and intuitionistic logic have been
invented in the last century, one may naturally ask the question whether we are able
to establish some mathematical theories based on other nonclassical logics besides
intuitionistic logic. Indeed, as early as the first nonclassical logics appeared, the
possibility of building mathematics upon them was conceived. As mentioned by A.
Mostowski [48], J. Lukasiewicz hoped that there would be some nonclassical logics
which can be properly used in mathematics as non-Euclidean geometry does. In
1952, J. B. Rosser and A. R. Turquette [60] (page 109) proposed a similar and even
more explicit idea:

“The fact that it is thus possible to generalize the ordinary two-valued logic so
as not only to cover the case of many-valued statement calculi, but of many-valued
quantification theory as well, naturally suggests the possibility of further extending
our treatment of many-valued logic to cover the case of many-valued sets, equality,
numbers, etc. Since we now have a general theory of many-valued predicate calculi,
there is little doubt about the possibility of successfully developing such extended
many-valued theories. ... we shall consider their careful study one of the major
unsolved problems of many-valued logic.”

Unfortunately, the above idea has not attracted much attention in logical com-
munity. For such a situation, A. Mostowski [48] pointed out that most of nonclassical
logics invented so far have not been really used in mathematics, and intuitionistic
logic seems the unique one of nonclassical logics which still has an opportunity to

3

carry out the Lukasiewicz’s programme. A similar opinion was also expressed by J.
Dieudonne [19], and he said that mathematical logicians have been developing a va-
riety of nonclassical logics such as second-order logic, modal logic and many-valued
logic, but these logics are completely useless for mathematicians working in other
research areas.

One reason for this situation might be that there is no suitable method to develop
mathematics within the framework of nonclassical logics. As was pointed out above,
classical logic is applied as the deduction tool in almost all mathematical theories.
It should be noted that what is used in these theories is the deductive (proof-
theoretical) aspect of classical logic. However, the proof theory of nonclassical logics
is much more complicated than that of classical logic, and it is not an easy task to
conduct reasoning in the realm of the proof theory of nonclassical logics. It is the
case even for the simplest nonclassical logics, three-valued logics. This is explicitly
indicated by the following excerpt from H. Hodes [33]:

“Of course three-valued logics will be somewhat more complicated than classical
two-valued logic. In fact, proof-theoretically they are at least twice as complicated:
.... But model-theoretically they are only 50 percent more complicated,....”

And much worse, some nonclassical logics were introduced only in a semantic
way, and the axiomatizations of some among them are still to be found, and some
of them may be not (finitely) axiomatizable. Thus, our experience in studying
classical mathematics may be not suited, or at least cannot directly apply, to develop
mathematics based on nonclassical logics. In the early 1990’s an attempt had been
made by the author [80, 81, 82] to give a partial and elementary answer in the
case of point-set topology to the J. B. Rosser and A. R. Turquette’s question raised
above. We employed a semantical analysis approach to establish topology based
on residuated lattice-valued logic, especially the Lukasiewicz system of continuous-
valued logic. Roughly speaking, the semantical analysis approach transforms our
intended conclusions in mathematics, which are usually expressed as implication
formulas in our logical language, into certain inequalities in the truth-value lattice
by truth valuation rules, and then we demonstrate these inequalities in an algebraic
way and conclude that the original conclusions are semantically valid. The rich
results achieved in [80, 81, 82] suggests that semantical analysis approach is an
effective method to develop mathematics based on nonclassical logics.

A much more essential reason for the situation that few nonclassical logics have
been applied in mathematics is absence of appealing from other subjects or appli-
cations in the real world. One major exception may be the case of quantum logic.
Quantum logic was introduced by G. Birkhoff and J. von Neumann [6] in the thir-
ties of the twentieth century as the logic of quantum mechanics. They realized
that quantum mechanical systems are not governed by classical logical laws. Their
proposed logic stems from von Neumann’s Hilbert space formalism of quantum me-
chanics. The starting point was explained very well by the following excerpt from
G. Birkhoff and J. von Neumann [6]:

“what logical structure one may hope to find in physical theories which, like quan-

4

tum mechanics, do not conform to classical logic. Our main conclusion, based on
admittedly heuristic arguments, is that one can reasonably expect to find a calculus of
propositions which is formally indistinguishable from the calculus of linear subspaces
[of Hilbert space] with respect to set products, linear sums, and orthogonal comple-
ments - and resembles the usual calculus of propositions with respect to “and”, “or”,
and “not”.”

Thus linear (closed) subspaces of Hilbert space are identified with propositions
concerning a quantum mechanical system, and the operations of set product, linear
sum and orthogonal complement are treated as connectives. By observing that
the set of linear subspaces of a finite-dimensional Hilbert space together with these
operations enjoys Dedekind’s modular law, G. Birkhoff and J. von Neumann [6]
suggested to use modular lattices as the algebraic version of the logic of quantum
mechanics, just like that Boolean algebras act as an algebraic counterpart of classical
logic. However, the modular law does not hold in an infinite-dimensional Hilbert
space. In 1937, K. Husimi [34] found a new law, called now the orthomodular law,
which is valid for the set of linear subspaces of any Hilbert space. Nowadays, what
is usually called quantum logic in the mathematical physics literature refers to the
theory of orthomodular lattices. Obviously, this kind of quantum logic is not very
logical. Indeed, there is also another much more “logical”point of view on quantum
logic in which quantum logic is seen as a logic whose truth values range over an
orthomodular lattice (for an excellent exposition for the latter approach of quantum
logic, see [13, 14, 16]).

After the invention of quantum logic, quite a few mathematicians have tried to
establish mathematics based on quantum logic. Indeed, J. von Neumann [49] himself
proposed the idea of considering a quantum set theory, corresponding to quantum
logic, as does classical set theory to classical logic. One important contribution
in this direction was made by G. Takeuti [72]. His main idea was explained, and
the nature of mathematics based on quantum logic was analyzed very well by the
following citation from the introduction of [72]:

“Since quantum logic is an intrinsic logic, i.e. the logic of the quantum world,
it is an important problem to develop mathematics based on quantum logic, more
specifically set theory based on quantum logic. It is also a challenging problem for
logicians since quantum logic is drastically different from the classical logic or the in-
tuitionistic logic and consequently mathematics based on quantum logic is extremely
difficult. On the other hand, mathematics based on quantum logic has a very rich
mathematical content. This is clearly shown by the fact that there are many com-
plete Boolean algebras inside quantum logic. For each complete Boolean algebra B,
mathematics based on B has been shown by our work on Boolean valued analysis to
have rich mathematical meaning. Since mathematics based on B can be considered
as a sub-theory of mathematics based on quantum logic, there is no doubt about the
fact that mathematics based on quantum logic is very rich. The situation seems to
be the following. Mathematics based on quantum logic is too gigantic to see through
clearly.”

5

The main technical result of G. Takeuti [72] is a construction of orthomodular
lattice-valued universe V P (H), where H is a Hilbert space, and P (H) is the ortho-
modular lattice consisting of all closed linear subspaces of H. He built up such an
universe in a way similar to Boolean-valued models of ZF + AC, and showed that
a reasonable set theory, including some axioms from ZF + AC or their slight mod-
ifications, holds in this universe. Also, he [71] defined real numbers in V P (H) and
showed that observables in quantum physics can be represented by such numbers.
Furthermore, Titani and Kozawa [74] provided a representation of unitary operators
by complex numbers in V P (H). Recently, another formal number theory based on
quantum logic was introduced by Tokuo [75]. A different attempt of developing
a theory of quantum sets was made by K. -G. Schlesinger [65] using a categorical
approach in the spirit of topos theory. He started with the category of complex
(pre-)Hilbert spaces and linear maps. This category was seen as the (basic) quan-
tum set universe. Then he was able to introduce the analog of number systems
and to deal with the analog of some algebraic structures in quantum set theory.
Indeed, K. -G. Schlesinger’s terminal goal is to build a quantum mathematics, i.e.,
a mathematical theory where all the ingredients (like logic and set theory) adhere
to the rules of quantum mechanics. According to his proposal, quantum set theory
is the quantization of the mathematical theory of pure objects, and so it is just the
first step toward his goal. It is worth noting that the role of quantum logic in such
a quantum mathematics is different from that in G. Takeuti’s quantum set theory,
and quantum logic appears as an internal logic in the former.

After a careful examination on the development of mathematics based on non-
classical logics, we now come to explore the possibility of establishing a theory of
computation based on a nonclassical logic. A formal formulation of the notion of
computation is one of the greatest scientific achievements in the twentieth century.
Since the middle of 1930’s, various models of computation have been introduced,
such as Turing machines, Post systems, λ−calculus and µ−recursive functions. In
classical computing theory, these models of computation are investigated in the
framework of classical logic; more explicitly, all properties of them are deduced
by classical logic as a (meta)logical tool. So, it is reasonable to say that classical
computing theory is a part of classical mathematics. Knowing the basic idea of
mathematics based on nonclassical logics, we may naturally ask the question: is it
possible to build a theory of computation based on a nonclassical logic, and what
are the same of and difference between the properties of the models of computation
in classical logic and the corresponding ones in nonclassical logics? There has been
a very big population of nonclassical logics. Of course, it is unnecessary to construct
models of computation in each nonclassical logic and to compare them with the
ones in classical logic because some nonclassical logics are completely irrelative to
behaviors of computation. Nevertheless, as will be explained shortly, it is absolutely
worth studying deeply and systematically models of computation based on quantum
logic.

It seems that both points of views on quantum logic mentioned above have no
obvious links to computations; but appearance of the idea of quantum computers

6

changed dramatically the long-standing situation. The idea of quantum computa-
tion came from the studies of connections between physics and computation. The
first step toward it was the understanding of the thermodynamics of classical com-
putation. In 1973, C. H. Bennet [3] noted that a logically reversible operation
does not need to dissipate any energy and found that a logically reversible Turing
machine is a theoretical possibility. In 1980, further progress was made by P. A.
Benioff [2] who constructed a quantum mechanical model of Turing machine. His
construction is the first quantum mechanical description of computer, but it is not
a real quantum computer. It should be noted that in P. A. Benioff’s model between
computation steps the machine may exist in an intrinsically quantum state, but at
the end of each computation step the tape of the machine always goes back to one
of its classical states. Quantum computers were first envisaged by R. P. Feynman
[24, 25]. In 1982, he [24] conceived that no classical Turing machine could simulate
certain quantum phenomena without an exponential slowdown, and so he realized
that quantum mechanical effects should offer something genuinely new to computa-
tion. Although R. P. Feynman proposed the idea of universal quantum simulator,
he did not give a concrete design of such a simulator. His ideas were elaborated and
formalized by D. Deutsch in a seminal paper [17]. In 1985, D. Deutsch described
the first true quantum Turing machine. In his machine, the tape is able to exist in
quantum states too. This is different from P. A. Benioff’s machine. In particular, D.
Deutsch introduced the technique of quantum parallelism by which quantum Turing
machine can encode many inputs on the same tape and perform a calculation on
all the inputs simultaneously. Furthermore, he proposed that quantum computers
might be able to perform certain types of computation that classical computers can
only perform very inefficiently. One of the most striking advances was made by P.
W. Shor [68] in 1994. By exploring the power of quantum parallelism, he discov-
ered a polynomial-time algorithm on quantum computers for prime factorization of
which the best known algorithm on classical computers is exponential. In 1996, L.
K. Grover [28] offered another apt killer of quantum computation, and he found a
quantum algorithm for searching a single item in an unsorted database in square
root of the time it would take on a classical computer. Since both prime factoriza-
tion and database search are central problems in computer science and the quantum
algorithms for them are highly faster than the classical ones, P. W. Shor and L. K.
Grover’s works stimulated an intensive investigation on quantum computation. Af-
ter that, quantum computation has been an extremely exciting and rapidly growing
field of research.

The current studies of quantum computation may be roughly divided into five
areas: (1) physical implementations; (2) physical models; (3) mathematical models;
(4) quantum algorithms and complexity; and (5) quantum programming languages.
Almost all pioneer works such as [2, 24, 17] in this field were devoted to build physical
models of quantum computing. In 1990’s, a great attention was paid to the physical
implementation of quantum computation. For example, S. Lloyd [43] considered
the practical implementation by using electromagnetic pulses and J. I. Cirac and
P. Zoller [10] used laser manipulations of cold trapped ions to implement quantum

7

computing. Of course, physical implementation is still and will continue to be one of
the most important problems in the area of quantum computation before quantum
computers come into truth.

Quantum programming is an emerging area in recent years. Some imperative
quantum programming languages was introduced by B. Őmer [53], J. W. Sanders
and P. Zuliani [61], and S. Bettelli, T. Calarco and L. Serafini [5], and a functional
quantum programming language was defined by P. Selinger [67]. Semantics of the
quantum programming languages presented in [61, 67] have been carefully examined.
More generally, it was already proposed by the UK computing research committee
as one of the grand challenges for computing research to rework and to extend the
whole of classical software engineering into the quantum domain, and finally, to
develop a mature discipline of quantum software engineering [36].

The theoretical concerns in the computer science community have mainly been
given to quantum algorithms and complexity (see [69] for a brief survey of quantum
algorithms, an explanation of why quantum algorithms are so hard to be discov-
ered, and some suggested lines of research to find new quantum algorithms). But
also there have been a few attempts to develop mathematical models of quantum
computation and to clarify the relationship between different models. For exam-
ple, except quantum Turing machines, D. Deutsch [18] also proposed the quantum
circuit model of computation, and A. C. Yao [79] showed that the quantum cir-
cuit model is equivalent to the quantum Turing machine in the sense that they can
simulate each other in polynomial time. A quantum generalization of λ−calculus,
another model of sequential computation, was introduced by A. V. Tonder [76], and
quantum process algebras have also been proposed to model quantum concurrent
computation and quantum communicating systems [27, 42]. As is well known, in
classical computing theory, there are still two important classes of automata rather
than Turing machines; namely, finite automata and pushdown automata. They have
been widely applied in the design and implementation of programming languages.
Since finite automata and pushdown automata are equipped with finite memory
or finite memory with stack, respectively, they have weaker computing power than
Turing machines. J. P. Crutchfield and C. Moore [11], A. Kondacs and J. Watrous
[40], and S. Gudder [29] tried to introduce some quantum devices corresponding to
these weaker models of computation.

In a sense, the mathematical models of quantum computation can be seen as
abstractions of its physical models. It should be noted that the theoretical mod-
els of quantum computation mentioned above, including quantum Turing machines
and quantum automata, are still developed in classical (Boolean) logic. Thus, their
logical basis is the same as that of classical computation, and we may argue that
sometimes these models might be not suitable for reasoning about quantum com-
puting systems that obey some logical laws different from that in Boolean logic.
Indeed, V. Vedral and M. B. Plenio [78] already advocated that quantum comput-
ers require “quantum logic”, something fundamentally different to classical Boolean
logic. As stated above, quantum logic has been existing for a long time. So, the

8

point is how to apply quantum logic in the analysis and design of quantum com-
puting systems. The background exposed above highly motivates us to explore the
possibility of establishing a theory of computation based on quantum logic. Such
a computing theory may be thought of as a logical foundation of quantum compu-
tation and a further abstraction of its mathematical models. We can imagine that
the relation between mathematical models of quantum computation and computing
theory based on quantum logic is quite similar to that between J. von Neumann’s
Hilbert space formalism of quantum mechanics and quantum logic.

The author and his colleagues have tried to build a theory of computation based
on quantum logic for years. Since finite automata and pushdown automata are
the simplest models of computation (with finite memory), they have focused their
attention on developing automata theory based on quantum logic as the first step
[83, 84, 44, 45, 55, 9]. The purpose of this Chapter is to give a systematic exposition
of such a new theory and to clarify the relationship between it and some related
works.

The present Chapter is organized as follows. Section 2 is a preliminary section.
In this section, we recall some basic notions and results of orthomodular lattices. The
syntax of first-order quantum logic is presented. An algebraic semantics of quantum
logic is given in terms of orthomodular lattices. Then orthomodular lattice-valued
(quantum) set theory is briefly reviewed. Finally, the notion of orthomodular lattice-
valued language is introduced, and various operations of orthomodular lattice-valued
languages are defined.

Section 3 is devoted to a systematic development of the theory of finite au-
tomata and regular languages in the framework of quantum logic. In this section,
we introduce the notion of orthomodular lattice-valued (quantum) nondeterminis-
tic finite automaton and its various variants, including orthomodular lattice-valued
deterministic automaton and finite automaton with ε−moves. The (orthomodular
lattice-valued) languages accepted by orthomodular lattice-valued finite automata
are defined according to two different principles of treating interactions between
conjunction and disjunction: the depth-first one and the width-first one. It is here
interesting to observe that a single notion of acceptance in the classical theory of
automata splits into two nonequivalent notions in the framework of quantum logic.
Indeed, both of them are natural generalizations of classical acceptance, and non-
equivalence between them arises from lack of distributivity in quantum logic. It is
shown that they are equivalent if and only if the underlying logic degenerates to
classical Boolean logic.

With each orthomodular lattice-valued generalization of acceptance, a straight-
forward quantum logical generalization of regularity in the classical theory of au-
tomata can be proposed, and it is called noncommutative regularity. Unfortunately,
in terms of noncommutative regularity, some important properties of finite automata
cannot be generalized into the setting of quantum logic; for example, the pumping
lemma. This forces us to introduce a more reasonable orthomodular lattice-valued
generalization of the regularity predicate on languages: commutative regularity. It

9

is just noncommutative regularity plus a certain commutator. Again, a single no-
tion of regularity in classical automata theory splits into two nonequivalent ones in
quantum logic.

Orthomodular lattice-valued regularity provides us with a framework in which
various properties of finite automata can be reexamined within quantum logic. The
acceptance ability of orthomodular lattice-valued nondeterministic finite automata
is then compared with that of their various variants. Furthermore, the closure prop-
erties of orthomodular lattice-valued regular languages are derived. We introduce
the notion of orthomodular lattice-valued regular expression. A generalization of
the Kleene theorem about equivalence of regular expressions and finite automata
is established in quantum logic. Also, the Myhill-Nerode theorem, which charac-
terizes regular languages in terms of certain congruence relations between words, is
extended to orthomodular lattice-valued languages. A pumping lemma for ortho-
modular lattice-valued regular languages is finally presented.

The aim of Section 4 is to develop systematically the theory of pushdown au-
tomata and context-free languages based on quantum logic. The notions of ortho-
modular lattice-valued context-free grammar and pushdown automaton are proposed
in this section. The languages generated by orthomodular lattice-valued context-
free grammars and accepted by orthomodular lattice-valued pushdown automata
are defined. Then the predicate of context-freeness may be directly generalized to
orthomodular lattice-valued languages. Similar to the case of acceptance by finite
automata, two different ways are allowed in defining these classes of languages, de-
pending on the depth-first principle or the width-first principle is employed for the
treatment of interactions between conjunction and disjunction. The non-equivalence
of these two ways ia also due to the fact that quantum logic is not distributive. Again,
we are able to show that they are equivalent if and only if the meta-logic degenerates
to classical Boolean logic.

We carefully rebuild various properties of context-free languages and pushdown
automata within the realm of quantum logic. In particular, the closure properties of
orthomodular lattice-valued context-freeness under some operations of languages are
proved, and equivalence between orthomodular lattice-valued context-free grammars
and pushdown automata is verified. It should be pointed out that many properties of
context-free languages and pushdown automata can be easily generalized into quan-
tum logic when the depth-first principle is applied, whereas a certain commutator
must be imposed for the same purpose when we adopt the width-first principle. This
is an interesting phenomenon of which we cannot find any hint in classical automata
theory.

Section 5 concludes this Chapter. In particular, we try to point out some inter-
esting implications of the essential difference between classical automata theory and
automata theory based on quantum logic and to give a physical interpretation for
it. Also, we provide some interesting problems for further studies.

10

2. Preliminaries

The aim of this section is to recall some basic notions and results about quantum
logic and quantum set theory needed in the subsequent sections from the previous
literature and to fix notations.

Quantum logic is in this Chapter understood as a complete orthomodular lattice-
valued logic. This section is mainly concerned with the semantic aspect of such a
logic, and it will be divided into six subsections. The first subsection will briefly
review some fundamental results on orthomodular lattices; for more details, we
refer to [39] and [8]. Some new lemmas on implication operators in orthomodular
lattices will be presented too. They are crucial in the proofs of several main results
in this Chapter. In the second one we shall introduce the language of first-order
quantum logic. The third will present an algebraic semantics of first-order quantum
logic in terms of orthomodular lattices. In the fourth subsection, orthomodular
lattice-valued (quantum) sets will be introduced and some of their useful properties
will be given; see [72] for details. In the fifth subsection, orthomodular lattice-
valued relations and their composition and reflexive and transitive closure will be
defined. Finally, in the sixth subsection we shall introduce orthomodular lattice-
valued generalizations of languages in automata theory as well as some of their
operations.

2.1. Orthomodular Lattices

The set of truth values of a quantum logic will be taken to be an orthomodular
lattice. So we first introduce the notion of orthomodular lattice. An ortholattice is
a 7-tuple ` = 〈L,≤,∧,∨,⊥, 0, 1〉, where:

(1) 〈L,≤,∧,∨, 0, 1〉 is a bounded lattice, 0, 1 are the least and greatest elements
of L, respectively, ≤ is the partial ordering in L, and for any a, b ∈ L, a ∧ b, and
a ∨ b stand for the greatest lower bound and the least upper bound of a and b,
respectively;

(2) ⊥ is a unary operation on L, called orthocomplement, and required to satisfy
the following conditions: for any a, b ∈ L,

(2.1) a ∧ a⊥ = 0, a ∨ a⊥ = 1;

(2.2) a⊥⊥ = a; and

(2.3) a ≤ b implies b⊥ ≤ a⊥.
It is easy to see that the condition (2.3) is equivalent to one of the De Morgan

laws: for any a, b ∈ L,

(a ∧ b)⊥ = a⊥ ∨ b⊥, (a ∨ b)⊥ = a⊥ ∧ b⊥.

11

Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an ortholattice, and let a, b ∈ L. We say that a
commutes with b, in symbols aCb, if a = (a ∧ b) ∨ (a ∧ b⊥).

An orthomodular lattice is an ortholattice ` = 〈L,≤,∧,∨,⊥, 0, 1〉 satisfying the
orthomodular law: for all a, b ∈ L,

a ≤ b implies a ∨ (a⊥ ∧ b) = b.

The orthomodular law can be replaced by the following equation:

a ∨ (a⊥ ∧ (a ∨ b)) = a ∨ b for any a, b ∈ L.

A Boolean algebra is an ortholattice ` = 〈L,≤,∧,∨,⊥, 0, 1〉 fulfilling the dis-
tributive law of join over meet: for all a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

With the De Morgan law it is easy to know that this condition is equivalent to the
distributive law of meet over join: for any a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Obviously, the distributive law implies the orthomodular law, and so a Boolean
algebra is an orthomodular lattice.

The following lemma gives a characterization of orthomodular lattices and it
distinguishes orthomodular lattices from ortholattices.

Lemma 2.1. ([8], Propositions 2.1 and 2.2) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an
ortholattice. Then the following seven statements are equivalent:

(1) ` is an orthomodular lattice;

(2) For any a, b ∈ L, if a ≤ b and a⊥ ∧ b = 0 then a = b;

(3) For any a, b ∈ L, if aCb then bCa;

(4) For any a, b ∈ L, if aCb then a⊥Cb;

(5) For any a, b ∈ L, if aCb then a ∨ (a⊥ ∧ b) = a ∨ b;
(6) The benzene ring O6 (see Figure 1) is not a subalgebra of `;

(7) For any a, b ∈ L, if a ≤ b then the subalgebra [{a, b}] of ` generated by a and
b is a Boolean algebra. �

The set of truth values of classical logic is a Boolean algebra; whereas quantum
logic is an orthomodular lattice-valued logic. It is well-known that a Boolean algebra
must be an orthomodular lattice, but the inverse is not true. Thus, quantum logic
is weaker than classical logic. The major difference between a Boolean algebra and
an orthomodular lattice is that distributivity is not valid in the latter. However,
many cases still appeal an application of the distributivity even when we manipulate

12

1

b

a b′

a′

0

Figure 1: Benzene ring

13

elements in an orthomodular lattice. This requires us to regain a certain (weaker)
version of distributivity in the realm of orthomodular lattices. The key technique for
this purpose is commutativity which is able to provide a localization of distributivity.
The following lemma together with Lemma 2.1(4) indicates that commutativity is
preserved by all operations of orthomodular lattice.

Lemma 2.2. ([8], Proposition 2.4) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomod-
ular lattice, and let a ∈ L and bi ∈ L (i ∈ I). If aCbi for any i ∈ I, then

aC(
∧
i∈I

bi) and aC(
∨
i∈I

bi)

provided
∧
i∈I bi and

∨
i∈I bi exist. �

The local distributivity implied by commutativity is then given by the following
lemma.

Lemma 2.3. ([8], Proposition 2.3) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomod-
ular lattice. For any a ∈ L and bi ∈ L (i ∈ I), if aCbi for all i ∈ I, then

a ∧ (
∨
i∈I

bi) =
∨
i∈I

(a ∧ bi),

a ∨ (
∧
i∈I

bi) =
∧
i∈I

(a ∨ bi)

provided
∧
i∈I bi and

∨
i∈I bi exist. �

The above lemma is very useful, and it often enables us to recover distributivity in
an orthomodular lattice. However, its condition that all elements involved commute
each other is quite strong, and not easy to meet. This suggests us to find a way to
weaken this condition. One solution was found by G. Takeuti [72], and he introduced
the notion of commutator which can be seen as an index measuring the degree to
which the commutativity is valid.

Definition 2.4. ([72], pages 305 and 307) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an
orthomodular lattice, and let A ⊆ L.

(1) If A is finite, then the commutator γ(A) of A is defined by

γ(A) =
∨
{
∧
a∈A

af(a) : f is a mapping from A into {1,−1}},

where a1 denotes a itself and a−1 denotes a⊥.

14

(2) The strong commutator Γ(A) of A is defined by

Γ(A) =
∨
{b : aCb for all a ∈ A, and (a1 ∧ b)C(a2 ∧ b) for all a1, a2 ∈ A}.

The relation between commutator and strong commutator is clarified by the
following lemma. In addition, the third item of the following lemma shows that
commutator is a relativization of the notion of commutativity.

Lemma 2.5. ([72], Proposition 4 and its corollary) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉
be an orthomodular lattice and let A ⊆ L. Then

(1) Γ(A) ≤ γ(A).

(2) If A is finite, then Γ(A) = γ(A).

(3) γ(A) = 1 if and only if all the members of A are mutually commutable. �

We now can present a generalization of Lemma 2.3 by using the tool of com-
mutator. It is easy to see from Lemmas 2.5(2) and (3) that the following lemma
degenerates to Lemma 2.3 whenever aCbi for all i ∈ I.

Lemma 2.6. ([72], Propositions 5 and 6) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an
orthomodular lattice and let A ⊆ L. Then for any a ∈ A and bi ∈ A (i ∈ I),

Γ(A) ∧ (a ∧
∨
i∈I

bi) ≤
∨
i∈I

(a ∧ bi),

Γ(A) ∧
∧
i∈I

(a ∨ bi) ≤ a ∨
∧
i∈I

bi. �

Suppose that we want to use the above lemma on a formula of the form a ∧
(
∨
i∈I bi) or a ∨ (

∧
i∈I bi) in order to get a local distributivity. In many situations,

the elements a and bi (i ∈ I) may be very complicated, and the operations ⊥, ∧ and
∨ are involved in them. Then the above lemma cannot be applied directly, and it
needs the help of the following

Lemma 2.7. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice and let
A ⊆ L. Then for any B ⊆ [A] we have Γ(A) ≤ Γ(B), where [A] stands for the
subalgebra of ` generated by A.

Proof. For any X ⊆ L, we write

K(X) = {b ∈ L : aCb and (a1 ∧ b)C(a2 ∧ b) for all a, a1, a2 ∈ X}

15

Furthermore, we set A0 = A and

Ai+1 = Ai ∪ {a⊥ : a ∈ Ai} ∪ {a1 ∧ a2 : a1, a2 ∈ Ai} (i = 0, 1, 2, ...)

First, we prove that K(Ai) = K(A) for all i ≥ 0 by induction on i. It is obvious
that K(Ai+1) ⊆ K(A). Conversely, suppose that b ∈ K(A) and we want to show
that b ∈ K(Ai+1). It is easy to see that aCb for any a ∈ Ai+1. Thus, we only need
to demonstrate the following

Claim: (a1 ∧ b)C(a2 ∧ b) for any a1, a2 ∈ Ai+1.

The essential part of the proof of the above claim is the following two cases, and
the other cases are clear, or can be treated as iterations of them:

Case 1. a1 ∈ Ai, a2 = c1 ∧ c2 and c1, c2 ∈ Ai. From the induction hypothesis we
have

(a1 ∧ b)C(c1 ∧ b), and (a1 ∧ b)C(c2 ∧ b).
This yields

(a1 ∧ b)C(c1 ∧ b) ∧ (c2 ∧ b) = (c1 ∧ c2) ∧ b = a2 ∧ b.

Case 2. a1 ∈ Ai, a2 = c⊥ and c ∈ Ai. Then from the induction hypothesis we
obtain (a1 ∧ b)C(c ∧ b), and further (a1 ∧ b)C(c ∧ b)⊥ by using Lemma 2.1(4). In
addition, (a1 ∧ b)Cb. This together with Lemma 2.2 yields (a1 ∧ b)C[b ∧ (c ∧ b)⊥].
Note that cCb and so b⊥Cc⊥. Then by Lemma 2.3 we assert that

b⊥ ∨ (c ∧ b) = b⊥ ∨ c and b ∧ (c ∧ b)⊥ = b ∧ c⊥.

Hence, it follows that (a1 ∧ b)Cb ∧ c⊥ = a2 ∧ b.
We now write

A∞ =

∞⋃
i=0

Ai.

Then

K(A∞) =

∞⋂
i=0

K(Ai) = K(A).

It is easy to see that A ⊆ A∞ is a subalgebra of `. So, [A] ⊆ A∞,

K(A) = K(A∞) ⊆ K([A]) ⊆ K(B),

and
Γ(A) =

∨
K(A) ≤

∨
K(B) = Γ(B). �

As stated in the introduction, the aim of this paper is to develop a theory of
computation based on quantum logic. The logical language for a theory of computa-
tion has to contain the universal and existential quantifiers, and the two quantifiers
are usually interpreted as (infinite) meet and join, respectively. Hence, we should
assume that the lattice of the truth values of our quantum logic is complete. A

16

complete orthomodular lattice is an orthomodular lattice ` = 〈L,≤,∧,∨,⊥, 0, 1〉 in
which for any M ⊆ L, both the greatest lower bound

∧
M and the least upper

bound
∨
M exist.

The function of a logic is to provide us with a certain reasoning ability, and the
implication connective is an intrinsic representative of inference within the logic.
Thus each logic should reasonably contain a connective of implication. To make a
complete orthomodular lattice available as the set of truth values of quantum logic,
we need to define a binary operation, called implication operator, on it such that this
operation may serve as the interpretation of implication in this logic. Unfortunately,
it is a very vexed problem to define a reasonable implication operator for quantum
logic. All implication operators that one can reasonably introduce in an orthomod-
ular lattice are more or less anomalous in the sense that they do not share most
of the fundamental properties of the implication in classical logic. This is different
from the cases of most weak logics. (For a thorough discussion on the implication
problem in quantum logic, see [13], Section 3.)

An implication operator is defined to be a mapping → from L × L into L. A
minimal condition for it is the requirement proposed by G. Birkhoff and J. von
Neumann [6]:

a→ b = 1 if and only if a ≤ b
for any a, b ∈ L. Usually in a logic, there are two ways in which implication is
introduced. The first one is to treat implication as a derived connective; that is,
implication is explicitly defined in terms of other connectives such as negation, con-
junction and disjunction. All implications of this kind were found by G. Kalmbach
[38], and they are presented by the following

Lemma 2.8. ([38]; see also [39], Theorem 15.3) The orthomodular lattice freely
generated by two elements is isomorphic to 24×MO2, where 2 stands for the Boolean
algebra of two elements, and MO2 is the lattice called “Chinese lantern”(for a
detailed description, see Example 3.8 below). The elements of 24 ×MO2 satisfying
the Birkhoff-von Neumann requirement are exactly the following five polynomials of
two variables:

a→1 b = (a⊥ ∧ b) ∨ (a⊥ ∧ b⊥) ∨ (a ∧ (a⊥ ∨ b)),
a→2 b = (a⊥ ∧ b) ∨ (a ∧ b) ∨ ((a⊥ ∨ b) ∧ b⊥),

a→3 b = a⊥ ∨ (a ∧ b),
a→4 b = b ∨ (a⊥ ∧ b⊥),

a→5 b = (a⊥ ∧ b) ∨ (a ∧ b) ∨ (a⊥ ∧ b⊥). �

Obviously, this lemma implies that the above five polynomials are all implica-
tion operators definable in orthomodular lattices. It was shown by G. Kalmbach
[38, 39] that the orthomodular lattice-valued (propositional) logic can be (finitely)

17

axiomatizable by using the modus ponens with implication→1 as the only one rule
of inference, but the same conclusion does not hold for the other implications →i

(2 ≤ i ≤ 5).

We may also define the material conditional →0 in an orthomodular lattice ` =
〈L,≤,∧,∨,⊥, 0, 1〉 by

a→0 b = a⊥ ∨ b
for all a, b ∈ L. It is easy to see that →0 does not fulfil the Birkhoff-von Neumann
requirement. On the other hand, the following lemma shows that the five implication
operators given in Lemma 2.8 degenerate to the material conditional whenever the
two operands are compatible.

Lemma 2.9. ([13], Theorem 3.2) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular
lattice. Then for any a, b ∈ L, a→i b = a→0 b if and only if aCb, where 1 ≤ i ≤ 5. �

The second way of defining an implication is to take its truth function as the ad-
junctor (i.e., residuation) of the truth function of conjunction. Note that in this case
the implication is usually not definable from negation, conjunction and disjunction,
and it has to be treated as a primitive connective. Indeed, L. Herman, E. Marsden
and R. Piziak [35] introduced an implication in the style of residuation. Further-
more, the following lemma shows that the five polynomial implication operators →i

(1 ≤ i ≤ 5) cannot be defined as the residuation of the conjunction unless ` is a
Boolean algebra.

Lemma 2.10. ([14], page 148) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular
lattice, and let 1 ≤ i ≤ 5. Then the following two statements are equivalent:

(i) ` is a Boolean algebra.

(ii) The import-export law: for all a, b ∈ L, a∧b ≤ c if and only if a ≤ b→i c. �

Among the five orthomodular polynomial implications, →3, named the Sasaki-
hook, has often been preferred since it enjoys some properties resembling those in
intuitionistic logic. The Sasaki-hook was originally introduced by P. D. Finch [26].
For a detailed discussion of the Sasaki-hook, see L. Román and B. Rumbos [58]
and L. Román and R. E. Zuazua [59]. Here we first point out that the Sasaki-
hook possesses a modification of residual characterization although it is defined as
a polynomial in orthomodular lattice. A weakening of the import-export law is the
resulting condition, called compatible import-export law, by restricting the import-
export law for any a, b ∈ L with aCb; that is, if aCb, then a ∧ b ≤ c if and only if
a ≤ b→ c.

Lemma 2.11. ([72], Proposition 1 and its corollary; [14]) Let ` = 〈L,≤

18

,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and let a, b ∈ L. Then

a→3 b =
∨
{x : xCa and x ∧ a ≤ b}.

Moreover, among the five implications →i (1 ≤ i ≤ 5), the Sasaki-hook →3 is the
only one satisfying the compatible import-export law. �

Our mathematical reasoning frequently requires that implication relation is pre-
served by conjunction and disjunction. Also, the negation is needed to be compatible
with implication in the sense that the negation can reverse the direction of impli-
cation. And, to warrant the validity of a chain of inferences, the transitivity of
implication is required. However, this is not the case in general if we are working
in an orthomodular lattice. Fortunately, if we adopt the Sasaki-hook, then these
properties of implication can be recovered by attaching a certain commutator.

Lemma 2.12. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice. Then

(1) for any ai, bi ∈ L (i = 1, ..., n), let X = {a1, ..., an} ∪ {b1, ..., bn},

Γ(X) ∧
n∧
i=1

(ai →3 bi) ≤
n∧
i=1

ai →3

n∧
i=1

bi,

Γ(X) ∧
n∧
i=1

(ai →3 bi) ≤
n∨
i=1

ai →3

n∨
i=1

bi.

(2) for any a, b ∈ L,

Γ(a, b) ∧ (a→3 b) ≤ b⊥ →3 a
⊥.

(3) for any a, b, c ∈ L,

Γ(a, b, c) ∧ (a→3 b) ∧ (b→3 c) ≤ a→3 c.

(4) for any a, b ∈ L,
Γ(a, b) ∧ b ≤ a→3 b.

(5) for any a, b ∈ L,
Γ(a, b) ∧ a ∧ (a→3 b) ≤ b.

19

Proof. (1) We only prove the first inequality, and the proof of the second is
similar. With Lemmas 2.6 and 2.7 we obtain:

n∧
i=1

ai →3

n∧
i=1

bi = (
n∧
i=1

ai)
⊥ ∨ (

n∧
i=1

ai ∧
n∧
i=1

bi)

=
n∨
i=1

ai
⊥ ∨

n∧
i=1

(ai ∧ bi)

≥ Γ(X) ∧
n∧
i=1

(
n∨
j=1

aj
⊥ ∨ (ai ∧ bi))

≥ Γ(X) ∧
n∧
i=1

(ai
⊥ ∨ (ai ∧ bi))

= Γ(X) ∧
n∧
i=1

(ai → bi).

(2) First, we note that

a ∧ b, a⊥ ∧ b, a⊥ ∧ b⊥ ≤ b ∨ (a⊥ ∧ b⊥) = b⊥ →3 a
⊥.

Thus, it follows that

Γ(a, b) = (a ∧ b) ∨ (a ∧ b⊥) ∨ (a⊥ ∧ b) ∨ (a⊥ ∧ b⊥)

≤ (b⊥ →3 a
⊥) ∨ (a ∧ b⊥),

and furthermore with Lemmas 2.6 and 2.7 we have:

Γ(a, b) ∧ (a→3 b) = Γ(a, b) ∧ (a⊥ ∨ (a ∧ b))
≤ Γ(a, b) ∧ (a⊥ ∨ b)
= Γ(a, b) ∧ Γ(a, b) ∧ (a⊥ ∨ b)
≤ Γ(a, b) ∧ [(b⊥ →3 a

⊥) ∨ (a ∧ b⊥)] ∧ (a⊥ ∨ b)
≤ [(b⊥ →3 a

⊥) ∧ (a⊥ ∨ b)] ∨ [(a ∧ b⊥) ∧ (a⊥ ∨ b)]
≤ (b⊥ →3 a

⊥) ∨ [(a ∧ b⊥) ∧ (a⊥ ∨ b)].

Note that (a ∧ b⊥)⊥ = a⊥ ∨ b and (a ∧ b⊥) ∧ (a⊥ ∨ b) = 0. Then it holds that

Γ(a, b) ∧ (a→3 b) ≤ b⊥ →3 a
⊥.

(3) Again, we use Lemmas 2.6 and 2.7. This enables us to assert that

Γ(a, b, c) ∧ (a→3 b) ∧ (b→3 c) = Γ(a, b, c) ∧ (a⊥ ∨ (a ∧ b)) ∧ (b⊥ ∨ (b ∧ c))
≤ Γ(a, b, c) ∧ ([a⊥ ∧ (b⊥ ∨ (b ∧ c))] ∨ [(a ∧ b) ∧ (b⊥ ∨ (b ∧ c))])
≤ Γ(a, b, c) ∧ (a⊥ ∨ [(a ∧ b) ∧ (b⊥ ∨ (b ∧ c))]).

20

We note that Γ(a, b, c)Ca⊥ and Γ(a, b, c)C[(a∧b)∧(b⊥∨(b∧c))]). Then it yields:

Γ(a, b, c) ∧ (a→3 b) ∧ (b→3 c) ≤ (Γ(a, b, c) ∧ a⊥) ∨ (Γ(a, b, c) ∧ [(a ∧ b) ∧ (b⊥ ∨ (b ∧ c))])
≤ a⊥ ∨ (Γ(a, b, c) ∧ [(a ∧ b) ∧ (b⊥ ∨ (b ∧ c))])
≤ a⊥ ∨ [(a ∧ b) ∧ b⊥] ∨ [(a ∧ b) ∧ (b ∧ c)]
= a⊥ ∨ [(a ∧ b) ∧ (b ∧ c)]
≤ a⊥ ∨ (a ∧ c)
= a→3 c.

(4) Using Lemmas 2.6 and 2.7 we obtain:

Γ(a, b) ∧ b ≤ Γ(a, b) ∧ (a⊥ ∨ b) = Γ(a, b) ∧ [(a⊥ ∨ a) ∧ (a⊥ ∨ b)]
≤ a⊥ ∨ (a ∧ b) = a→3 b.

(5) Also using Lemmas 2.6 and 2.7 we have:

Γ(a, b) ∧ a ∧ (a→3 b) = Γ(a, b) ∧ a ∧ [a⊥ ∨ (a ∧ b)]
≤ (a ∧ a⊥) ∨ (a ∧ a ∧ b) = a ∧ b ≤ b. �

For simplicity of presentation, we finally introduce an abbreviation. For each
implication operator →, the bi-implication operator on ` is defined as follows:

a↔ b
def
= (a→ b) ∧ (b→ a)

for any a, b ∈ L.

2.2. The Syntax of Quantum Logic

In this subsection we present the syntax of quantum logic. Given a complete
orthomodular lattice ` = 〈L,≤,∧,∨,⊥, 0, 1〉, together with an implication operator
→ over it. We require that the language of an `−valued (quantum) logic possesses
a nullary connective a for each a ∈ L as well as three other primitive connectives:
an unary one ¬ (negation) and two binary ones ∧ (conjunction), → (implication).
The language also has a primitive quantifier ∀ (universal quantifier).

It deserves an explanation for our design decision of choosing implication as a
primitive connective. In the sequel, many results only need to suppose that the im-
plication operator satisfies the Birkhoff-von Neumann requirement. It is known that
there are five polynomials fulfilling the Birkhoff-von Neumann requirement. If we
treated implication as a derived connective defined in terms of negation, conjunction
and disjunction, then it would be necessary to assume five different connectives of
implication in our logical language. This would often complicate our presentation

21

very much. On the other hand, in some cases, the Birkhoff-von Neumann condition
is not enough and it requires the implication operator to be the Sasaki-hook. So,
we decide to use implication as a primitive connective, and specify it when needed.

The syntax of `−valued logic is defined in a familiar way; we omit its details.
In addition, we often need a set-theoretic language in developing our theory of
computation based on quantum logic. So, a binary predicate symbol ∈ should be
added into the syntax, and it will be interpreted as the membership relation as in
classical set theory. To simplify the notations in what follows, it is necessary to
introduce several derived formulas:

(i) ϕ ∨ ψ def
= ¬(¬ϕ ∧ ¬ψ);

(ii) ϕ↔ ψ
def
= (ϕ→ ψ) ∧ (ψ → ϕ);

(iii) (∃x)ϕ
def
= ¬(∀x)¬ϕ;

(iv) A ⊆ B def
= (∀x)(x ∈ A→ x ∈ B); and

(v) A ≡ B def
= (A ⊆ B) ∧ (B ⊆ A).

Suppose that ∆ is a finite set of formulas. The commutator of ∆ is defined to
be

γ(∆)
def
=

∨
{
∧
ϕ∈∆

ϕf(ϕ) : f ∈ {1,−1}∆},

where ϕ1, ϕ−1 express ϕ and ¬ϕ, respectively. It is obvious that the above formula
is the counterpart of Definition 2.4(1) in the language of our quantum logic.

2.3. The Algebraic Semantics of Quantum Logic

We now turn to give the semantics of quantum logic. There are several differ-
ent versions of semantics for quantum logic; for example, quantum logic enjoys a
semantics in the Kripke style [13, 57]. What concerns us here is its algebraic seman-
tics. Assume that ` = 〈L,≤,∧,∨,⊥, 0, 1〉 is an orthomodular lattice equipped with
additionally a binary operation→ over it. The operation→ is required to be suited
to serve as the truth function of implication connective. According to our explana-
tion of the connective of implication in the last subsection, we leave the operation
→ unspecified but suppose that it satisfies the Birkhoff-von Neumann requirement.
An `−valued interpretation is an interpretation in which every predicate symbol
is associated with an `−valued relation, i.e., a mapping from the product of some
copies of the discourse universe into L, where the number of copies is exactly the
arity of the predicate symbol (see Section 2.5). The other items in `−valued logical
language are interpreted as usual. For every (well-formed) formula ϕ, its truth value
is denoted by dϕe, and it is assumed in L. The truth valuation rules for logical and
set-theoretical formulas are given as follows:

(i) dae = a;

(ii) d¬ϕe = dϕe⊥;

22

(iii) dϕ ∧ ψe = dϕe ∧ dψe;
(iv) dϕ→ ψe = dϕe → dψe;
(v) if U is the universe of discourse, then

d(∀x)ϕ(x)e =
∧
u∈U
dϕ(u)e;

(vi) dx ∈ Ae = A(x), where A is a set constant (unary predicate symbol) and
it is interpreted as a mapping, also denoted as A, from the universe into L, i.e., an
`−valued set (more exactly, an `−valued subset of the universe; see Section 2.4).

Note that in the above truth valuation rule (iii), ∧ in the left-hand side is a
connective in quantum logic, whereas ∧ in the right-hand side stands for an operation
in the orthomodular lattice ` of truth values. Also, the symbol → in the left-hand
side of (iv) is a connective in the language of quantum logic, but the symbol → in
the right-hand side of (iv) is the binary operation attached to ` that is explained at
the beginning of this subsection.

As we claimed in the introduction, quantum logic will act as our meta-logic in
the theory of automata developed in this Chapter. Then we still have to introduce
several meta-logical notions for quantum logic. For every orthomodular lattice ` =
〈L,≤,∧,∨,⊥, 0, 1〉, if Γ is a set of formulas and ϕ a formula, then ϕ is a semantic
consequence of Γ in `−valued logic, written Γ |=` ϕ, whenever∧

ψ∈Γ

dψe ≤ dϕe

for all `−valued interpretations. In particular, |=` ϕ means that ∅ |=` ϕ, i.e., dϕe = 1
always holds for every `−valued interpretation; in other words, 1 is the unique
designated truth value in `. Furthermore, if Γ |=` ϕ (resp. |=` ϕ) for all orthomodular
lattice ` then we say that ϕ is a semantic consequence of Γ (resp. ϕ is valid) in
quantum logic and write Γ |= ϕ (resp. |= ϕ).

We here are not going to give a detailed exposition on quantum logic, but would
like to point out that quantum logic gives rise to many counterexamples to some
meta-logical properties which hold for classical logic and for a large class of weaker
logics; for example, M. L. Dalla Chiara [12] showed that a minimal version of quan-
tum logic fails to enjoy the Lindenbaum property, and J. Malinowski [46] found that
the deduction theorem fails in quantum logic and some of its variants.

2.4. Orthomodular Lattice-Valued Sets

Beside the language of first-order quantum logic, we will also need some notations
such as ∈ (membership) from set-theoretical language in our study of automata the-
ory based on quantum logic. As mentioned in the introduction, a theory of quantum
sets has already been developed by G. Takeuti [72]. A careful review of quantum

23

set theory is out of the scope of the present Chapter. What mainly concerned G.
Takeuti [72] is how some axioms of classical set theory could be modified so that
they will holds in the framework of quantum logic. In other words, he tried to clarify
the relation of quantum set theory with the classical mathematics. Here, we instead
propose, for a given orthomodular lattice ` = 〈L,≤,∧,∨,⊥, 0, 1〉, some operations
of `−valued sets and also introduce several notations for some special `−valued sets.
These are needed in the subsequent sections.

We write LX for the set of all `−valued subsets of X, i.e., all mappings from
X into L. For any A ⊆ X, its characteristic function is a mapping from X into
the Boolean algebra 2 = {0, 1} of two elements, and so it can also be seen as a
mapping from X into L, namely, an `−valued subset of X. We will identify A with
its characteristic function.

For any non-empty set X, if x ∈ X and λ ∈ L− {0}, then xλ is defined to be a
mapping from X into L such that

xλ(x′) =

{
λ, if x′ = x,

0, otherwise,

and it is often called an `−valued point in X. We write p`(X) for the set of all
`−valued points in X; that is, p`(X) = {xλ : x ∈ X and λ ∈ L − {0}}. For each
e = xλ ∈ p`(X), x is called the support of e and denoted s(e), and λ is called the
height of e and written h(e). In particular, an `−valued point of height 1 is always
identified with its support. The predicate ∈ can be extended to a predicate between
`−valued points and `−valued sets in a natural way:

xλ ∈ A
def
= xλ ⊆ A.

Then it is easy to see that dxλ ∈ Ae = λ→ A(x) for any x ∈ X, λ ∈ L and A ∈ LX ,
where → is the implication operator under consideration.

The equality and inclusion between `−valued sets are defined in the usual way.
Let A,B ∈ LX . Then

A ⊆ B def
= (∀x)(x ∈ A→ x ∈ B)

A ≡ B def
= (A ⊆ B) ∧ (B ⊆ A).

From the truth valuation rules and the definition of derived formulas in the `−valued
logical and set-theoretical language, we know that

dA ⊆ Be =
∧
x∈X

(A(x)→ B(x)),

dA ≡ Be = dA ⊆ Be ∧ dB ⊆ Ae.

For any a ∈ L and A,B ∈ LX , we define all of the scalar product aA, complement
Ac, intersection A ∩ B and union A ∪ B to be `−valued subsets of X, and for all

24

x ∈ X,

x ∈ aA def
= a ∧ (x ∈ A);

x ∈ Ac def= ¬(x ∈ A);

x ∈ A ∩B def
= (x ∈ A) ∧ (x ∈ B);

x ∈ A ∪B def
= (x ∈ A) ∨ (x ∈ B).

In other words, for all x ∈ X, we have:

(aA)(x) = a ∧A(x);

(Ac)(x) = A(x)⊥;

(A ∩B)(x) = A(x) ∧B(x); and

(A ∪B)(x) = A(x) ∨B(x).

It is easy to see that in the domain of `−valued sets the intersection and union
operations are idempotent, commutative and associative, and they have X and φ,
respectively as their unit elements. The intersection and union together with the
complement satisfy the De Morgan law, but the distributivity of intersection over
union or union over intersection is no longer valid. Clearly, the laws for operations
of `−valued sets are essentially determined by the algebraic properties of the lattice
` of truth values. We can also define Cartesian product for `−valued sets. Suppose
X and Y are two sets, A ∈ LX and B ∈ LX . Then for any x ∈ X and y ∈ Y ,

(x, y) ∈ A×B def
= (x ∈ A) ∧ (y ∈ B).

Equivalently, it holds that (A×B)(x, y) = A(x) ∧B(y).

Assume that X and Y are two non-empty sets, and h : X → Y is a mapping.
For any A ∈ LX , its image h(A) under h is defined by

y ∈ h(A)
def
= (∃x ∈ X)(y = f(x) ∧ x ∈ A),

and for any B ∈ LY , its pre-image h−1(B) under h is defined by

x ∈ h−1(B)
def
= h(x) ∈ B.

The defining equations of h(A) and h−1(B) may be rewritten, respectively, as follows:
for any x ∈ X and y ∈ Y ,

h(A)(y) =
∨
{A(X) : x ∈ X and f(x) = y}, and

h−1(B)(x) = B(h(x)).

The following lemma indicates that set-theoretic equality is preserved by pre-
image operator.

25

Lemma 2.13. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, let →
enjoy the Birkhoff-von Neumann requirement, and let h : X → Y be a mapping.
Then for any A,B ∈ LY ,

`

|= A ≡ B → h−1(A) ≡ h−1(B).

Proof. From the truth valuation rules we may assert that

dh−1(A) ≡ h−1(B)e =
∧
x∈X

(h−1(A)(x)←→ h−1(B)(x))

=
∧
x∈X

(A(h(x))←→ B(h(x)))

≥
∧
y∈Y

(A(y)←→ B(y))

= dA ≡ Be. �

2.5. Orthomodular Lattice-Valued Relations

The notion of relation can be introduced in quantum set theory too. Let X and
Y be two sets. Then an `−valued (binary) relation from X to Y is an `−valued
subset of X × Y . The proposition “(x, y) ∈ R”is usually abbreviated to “xRy”.
Suppose that R is an `−valued relation from X to Y and S from Y to Z. Then
their composition R ◦ S is defined to be an `−valued relation from X to Z, and for
any x ∈ X and z ∈ Z,

x(R ◦ S)z
def
= (∃y ∈ Y)(xRy ∧ ySz).

If R is an `−valued relation from X to itself, and n ≥ 0, then we have two different
ways to define its n−power: depth-first way and width-first way. The n−power
Rn[D] of R in depth-first way is defined by

xRn[D]y
def
= (∃z1, ..., zn−1 ∈ X)(xRz1 ∧ z1Rz2 ∧ ... ∧ zn−2Rzn−1 ∧ zn−1Ry)

for any x, y ∈ X, and the n−power Rn[W] of R in width-first way is defined by{
R0[W] = IdX ,

Rn+1[W] = R ◦Rn[W], n ≥ 0,

where IdX is the identity relation on X. It is easy to see that in general Rn[D] =
Rn[W] does not holds provided n ≥ 3. On the other hand, distributivity of meet ∧
over join ∨ in the lattice ` of truth values implies Rn[D] = Rn[W]. This indicates

26

that the above two ways of defining power of a relation coincide when we work in
classical Boolean logic, but the classical definition of power of a relation splits into
two nonequivalent versions in quantum logic.

2.6. Orthomodular Lattice-Valued Languages

The notion of language in automata theory has a straightforward orthomodu-
lar lattice-valued generalization. Suppose that Σ is an alphabet, that is, a finite
nonempty set (of input symbols). We write Σ∗ for the set of strings over Σ:

Σ∗ =

∞⋃
n=0

Σn.

The empty string is usually denoted by ε. An `−valued language over Σ is defined to
be an `−valued subset of Σ∗. Thus, the set of `−valued languages over Σ is exactly
LΣ∗ .

Let A,B ∈ LΣ∗ be two `−valued subsets of Σ∗. Then we define the concatenation
A ·B of A and B as follows: for any s ∈ Σ∗,

s ∈ A ·B def
= (∃u, v ∈ Σ∗)(s = uv ∧ u ∈ A ∧ v ∈ B).

This defining equation can be translated to the following formula in the lattice of
truth values by employing the truth valuation rules: for every s ∈ Σ∗,

(A ·B)(s) =
∨
{A(u) ∧B(v) : u, v ∈ Σ∗ and s = uv}.

Similar to the case of defining closure of a relation, the Kleene closure of an `−valued
language A over Σ also have two nonequivalent definitions. In the depth-first way,
it is defined to be A∗[D] ∈ LΣ∗ , where

s ∈ A∗[D] def= (∃n ≥ 0)(∃s1, ..., sn ∈ Σ∗)(s = s1...sn ∧
n∧
i=1

(si ∈ A)),

that is,

A∗[D](s) =
∨
{
n∧
i=1

A(si) : n ≥ 0, s1, ..., sn ∈ Σ∗ and s = s1...sn}

for each s ∈ Σ∗. In the width-first way, the Kleene closure of A is defined to be

A∗[W] =
∞⋃
n=0

An,

where {
A0 = {ε},
An+1 = An ·A for all n ≥ 0.

27

It is easy to demonstrate that if the meet ∧ is distributive over the join ∨ in ` (in
other words, ` is a Boolean algebra), then we have A∗[D] = A∗[W].

Let Σ and Γ be two alphabets of input symbols. Then each mapping h : Σ→ Γ∗

can be uniquely extended to a homomorphism h : Σ∗ → Γ∗ such that h(ε) = ε and
h(xy) = h(x)h(y) for all x, y ∈ Σ∗. Furthermore, we may define images of `−valued
subsets of Σ∗ under h and pre-images of `−valued subsets of Γ∗ under h. For any
A ∈ LΣ∗ and B ∈ LΓ∗ , h(A) ∈ LΓ∗ and h−1(B) ∈ LΣ∗ are given as follows:

t ∈ h(A)
def
= (∃s ∈ Σ∗)(s ∈ A ∧ h(s) = t)

or equivalently

h(A)(t) =
∨
{A(s) : s ∈ Σ∗ and h(s) = t}

for each t ∈ Γ∗, and

s ∈ h−1(B)
def
= h(s) ∈ B

or equivalently h−1(B)(s) = B(h(s)) for each s ∈ Σ∗.

28

3. Orthomodular Lattice-Valued (Nondeterministic) Finite Automata

The finite automaton is a useful mathematical model of finite state systems, with
discrete inputs and outputs, and it is one of the simplest models of computation.
There are many finite state systems in computer science and other fields that can
be described as finite automata. The theory of finite automata is an essential part
of computing theory. Classical automata theory is established in the framework of
classical Boolean logic. This section is devoted to a systematic development of a
theory of finite automata based on quantum logic.

3.1. Basic Definitions and Examples

For convenience we first recall some basic notions in classical automata theory.
Let Σ be a finite input alphabet whose elements are called input symbols or labels.
Then a nondeterministic finite automaton (NFA for short) over Σ is a quadruple
< = 〈Q, δ, I, T, 〉, in which:

(i) Q is a finite set whose elements are called states;

(ii) I ⊆ Q, and states in I are said to be initial;

(iii) T ⊆ Q, and states in T are said to be terminal; and

(iv) δ ⊆ Q×Σ×Q, and each (p, σ, q) ∈ δ is called a transition in (or an edge of)
< and it means that input σ makes state p evolves to q.

Usually, the set of initial states is taken to be a singleton {q0}. In this case, < is
simply written as 〈Q,E, q0, T 〉.

An NFA is said to be deterministic if I is a singleton, and for any p in Q and σ
in Σ, there is exactly one q in Q such that (p, σ, q) ∈ δ. Thus, the transition relation
E in a deterministic finite automaton (DFA, for short) may be seen as a mapping
from Q× Σ into Q, and it is called the transition function.

A path in < is a finite sequence of the form c = q0σ1q1...qk−1σkqk such that
(qi, σi+1, qi+1) ∈ δ for each i < k. In this case, the sequence σ1...σk is called the
label of c. A path c = q0σ1q1...qk−1σkqk is said to be successful if q0 ∈ I and qk ∈ T.
The language L(<) accepted by an automaton < is the set of labels of all successful
paths in <. The definition of accepted language is often restated as follows. For any
P ⊆ Q and σ ∈ Σ, we write

δσ(P) = {q ∈ Q : (p, σ, q) ∈ δ for some p ∈ Q}.
Furthermore, we set δε(P) = P and δsσ(P) = δσ(δs(P, s)) for any P ⊆ Q, s ∈ Σ∗

and σ ∈ Σ. Then L(<) = {s ∈ Σ∗ : δs(I) ∩ F 6= ∅}. For each A ⊆ Σ∗, A is said to
be regular if there is an automaton < over Σ such that A = L(<).

The notion of orthomodular lattice-valued finite automata is a natural general-
ization of NFAs. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and let Σ be
a finite alphabet. Then an `−valued (quantum) nondeterministic finite automaton
over Σ is a quadruple < = 〈Q, δ, I, T 〉, where:

29

(i) Q is the same as in an NFA;

(ii) I is an `−valued subset of Q; that is, a mapping from Q into L. For each
q ∈ Q, I(q) indicates the truth value (in the underlying quantum logic) of the
proposition that q is an initial state;

(iii) T is also an `−valued subset of Q, and for every q ∈ Q, T (q) expresses the
truth value (in our quantum logic) of the proposition that q is terminal; and

(iv) δ is an `−valued subset of Q×Σ×Q, that is, a mapping from Q×Σ×Q into
L, and it is called the `−valued (quantum) transition relation of <. Intuitively, δ is
an `−valued (ternary) predicate over Q,Σ and Q, and for any p, q ∈ Q and σ ∈ Σ,
δ(p, σ, q) stands for the truth value (in quantum logic) of the proposition that input
σ causes state p to become q.

The propositions of the form “q is an initial state”, written “q ∈ I”, “q is a
terminal state”, written “q ∈ T”, and “input σ causes state p to become q accord-

ing to the specification given by δ ”, written “p
δ,σ−→ q”are assumed to be atomic

propositions in our logical language designated for describing `−valued automata
<. The truth values of the above three propositions are respectively I(q), T (q) and
δ(p, σ, q). The set of these atomic propositions is denoted atom(<). Formally, we
have:

atom(<) = {q ∈ I : q ∈ Q} ∪ {q ∈ T : q ∈ Q} ∪ {p δ,σ−→ q : p, q ∈ Q and σ ∈ Σ}.

The `−valued set I of initial states is often chosen to be a singleton {q0} in an
`−valued automaton <, and in this case we simply write < = 〈Q, δ, q0, T 〉.

We write NFA(Σ, `) for the (proper) class of all `−valued nondeterministic finite
automata over Σ.

There are two nonequivalent ways of generalizing the concept of recognizability
in quantum logic: the depth-first one and the width-first one. Before defining recog-
nizability for `−valued automata in the depth-first way, we need to introduce some
auxiliary notions and notations. We set

T (Q,Σ) = (QΣ)∗Q =
∞⋃
n=0

[(QΣ)n Q],

that is, the set of all alternative sequences of states and labels beginning at a state
and also ending at a state. For any c = q1σ1q2...qkσkqk+1 ∈ T (Q,Σ), the length of c
is defined to be k and denoted by |c|, q1 is the beginning of c and denoted by b(c),
qk+1 is the end of c and denoted by e(c), and sequence s = σ1...σk is called the label
of c and denoted by lb(c).

Let < ∈ NFA(Σ, `) be an `−valued automaton over Σ. Then the `−valued
(unary) predicate Path< on T (Q,Σ) is defined as Path< ∈ LT (Q,Σ) (the set of all
mappings from T (Q,Σ) into L):

Path<(c)
def
=

k∧
i=1

[(qi, σi, qi+1) ∈ δ]

30

for every c = q1σ1q1...qkσkqk+1 ∈ T (Q,Σ). Thus, the truth value of the proposition
that c = q1σ1q1...qkσkqk+1 is a path in < is

dPath<(c)e =

k∧
i=1

δ(qi, σi, qi+1).

Note the difference between the symbols ∧ in the above two equations: the former is
a logical connective, whereas the latter is an operation on the lattice of truth values.

Now we are ready to define one of the key notions in this section, namely, rec-
ognizability for `−valued automata according to the depth-first principle. It will be
seen that the defining equation of `−valued recognizability is the same as that in
the classical theory of automata. The essential difference between the quantum rec-
ognizability and the corresponding classical notion implicitly resides in their truth
values.

Definition 3.1. Let < ∈ NFA(Σ, `). Then the recognizability rec
[D]
< by < in

the depth-first way is defined to be an `−valued (unary) predicate rec< ∈ LΣ∗ : for
every s ∈ Σ∗,

rec
[D]
< (s)

def
= (∃c ∈ T (Q,Σ))(b(c) ∈ I ∧ e(c) ∈ T ∧ lb(c) = s ∧ Path<(c)).

In other words, the truth value of the proposition that s is recognizable by < in the
depth-first way is given by

drec<(s)[D]e =
∨
{I(b(c)) ∧ T (e(c)) ∧ dPath<(c)e : c ∈ T (Q,Σ) and lb(c) = s}.

We note that rec
[D]
< is defined above as an `−valued unary predicate on Σ∗, so

it may also be seen as an `−valued subset of Σ∗, that is, a mapping rec
[D]
< : Σ∗ → L

with rec
[D]
< (s) = drec[D]

< (s)e for all s ∈ Σ∗.

We now turn to introduce `−valued recognizability in the width-first way. Sup-
pose < = 〈Q, δ, I, T 〉 ∈ NFA(Σ, `). For any P ∈ LQ and σ ∈ Σ, the image
δσ(P) ∈ LQ of P under δ with respect to σ is defined by

q ∈ δσ(P)
def
= (∃p ∈ Q)(p ∈ P ∧ (p, σ, q) ∈ δ),

that is,

δσ(P)(q) =
∨
p∈Q

(P (p) ∧ δ(p, σ, q))

for each q ∈ Q. Furthermore, δs(P) for s ∈ Σ∗ is defined by induction on the length
|s| of s: {

δε(P) = P,

δsσ(P) = δσ(δs(P)) for any σ ∈ Σ and s ∈ Σ∗.

31

Definition 3.2. Let < ∈ NFA(Σ, `). Then recognizability by < in the width-

first way is defined to be an `−valued (unary) predicate rec
[D]
< ∈ LΣ∗ : for each

s ∈ Σ∗,

rec
[D]
< (s)

def
= (∃q ∈ Q)(q ∈ δs(I) ∩ T).

The next lemma examines the relationship between the two notions of recogniz-
ability defined in depth-first and width-first ways.

Lemma 3.3. Let Σ be a nonempty finite alphabet.

(1) For any < ∈ NFA(Σ, `) and for any s ∈ Σ∗, we have:

|=` rec
[D]
< (s)→ rec

[W]
< (s).

(2) The following two statements are equivalent:

(2.1) ` is a Boolean algebra;

(2.2) for any < ∈ NFA(Σ, `) and for any s ∈ Σ∗, we have:

|=` rec
[D]
< (s)↔ rec

[W]
< (s).

(3) For any < ∈ NFA(Σ, `) and for any s ∈ Σ∗, we have:

|=` γ(atom(<)) ∧ rec[W]
< (s)→ rec

[D]
< (s),

and in particular if → = →3 then

|=` γ(atom(<))→ (rec
[D]
< (s)↔ rec

[W]
< (s)).

Proof. (1) From Definitions 3.1 and 3.2 it suffices to verify that for each c ∈
T (Q,Σ) with lb(c) = s,

I(b(c)) ∧ dPath<(c)e ≤ δs(I)(e(c)).

We proceed by induction on the length |s| of s. If s = ε, then b(c) = e(c), and the
inequality is valid. Suppose that s = σ1...σkσk+1 and c = q1σ1...qkσkqk+1σk+1qk+2.
Then the induction hypothesis implies

I(b(c)) ∧ dPath<(c)e = I(q1) ∧
k+1∧
i=1

δ(qi, σi, qi+1)

≤ δσ1...σk(I)(qk+1) ∧ δ(qk+1, σk+1, qk+2)

≤ δσk+1
(δσ1...σk(I))(qk+2)

= δs(I)(e(c)).

32

(2) The implication from (2.1) to (2.2) follows directly from (3). So, we merely
need to prove that (2.2) implies (2.1). We pick up an element σ from the nonempty
set Σ. For any λ, µ1, µ2 ∈ L, we set < = 〈{q0, q1, q2, q3, q4}, δ, q0, {q4}〉, δ(q0, σ, q1) =
µ1, δ(q0, σ, q2) = µ2, δ(q1, σ, q3) = δ(q2, σ, q3) = 1 and δ(q3, σ, q4) = λ1, and it is
assumed that δ takes value 0 for all the other arguments. A simple calculation

yields rec
[D]
< (σ3) = (λ ∧ µ1) ∨ (λ ∧ µ2) and rec

[W]
< (σ3) = λ ∧ (µ1 ∨ µ2). Then from

(2.2) we obtain λ∧ (µ1 ∨µ2) = (λ∧µ1)∨ (λ∧µ2). Thus, ` enjoys distributivity and
it is a Boolean algebra.

(3) We first prove that

dγ(atom(<))e∧δs(I)(q) ≤
∨
{I(b(c))∧dPath<(c)e : c ∈ T (Q,Σ), lb(c) = s and e(c) = q}

for each q ∈ Q. This can be done by induction on |s|. It is obvious when s = ε. In
general, for any s′ ∈ Σ∗ and σ ∈ Σ, we obtain:

dγ(atom(<))e ∧ δs′σ(I)(q) = dγ(atom(<))e ∧ δσ(δs′(I))(q)

= dγ(atom(<))e ∧
∨
p∈Q

(δs′(I)(p) ∧ δ(p, σ, q))

≤
∨
p∈Q

(dγ(atom(<))e ∧ δs′(I)(p) ∧ δ(p, σ, q))

≤
∨
p∈Q

(dγ(atom(<))e ∧ δ(p, σ, q) ∧
∨
{I(b(d)) ∧ dPath<(d)e :

d ∈ T (Q,Σ), lb(d) = s′ and e(d) = p})
≤

∨
{I(b(d)) ∧ dPath<(d)e ∧ δ(p, σ, q) : d ∈ T (Q,Σ), lb(d) = s′ and e(d) = p ∈ Q}

by using Lemmas 2.6 and 2.7 twice and by using the induction hypothesis. For
any p ∈ Q and d ∈ T (Q,Σ) with lb(d) = s′ and e(d) = p, we put c = dσq. then
c ∈ T (Q,Σ), lb(c) = s′σ, e(c) = q and

I(b(d)) ∧ dPath<(d)e ∧ δ(p, σ, q) = I(b(c)) ∧ dPath<(c)e.
Therefore, it follows that

dγ(atom(<))e∧δs′σ(I)(q) ≤
∨
{I(b(c))∧dPath<(c)e : c ∈ T (Q,Σ), lb(c) = s′σ and e(c) = q}.

Furthermore, by using Lemmas 2.6 and 2.7 twice again and by using the above
conclusion we obtain:

dγ(atom(<))e ∧ drec[W]
< (s)e = dγ(atom(<))e ∧

∨
q∈Q

(δs(I)(q) ∧ I(q))

≤
∨
q∈Q

(dγ(atom(<))e ∧ δs(I)(q) ∧ I(q))

≤
∨
q∈Q

(dγ(atom(<))e ∧ T (q)
∨
{I(b(c)) ∧ dPath<(c)e : c ∈ T (Q,Σ), lb(c) = s and e(c) = q})

≤
∨
{I(b(c)) ∧ dPath<(c)e ∧ T (q) : c ∈ T (Q,Σ), lb(c) = s and e(c) = q ∈ Q})

= drec[D]
< (s)e.

33

This completes the proof of the first part. The second part follows immediately from
the first one and Lemma 2.11. �

As a straightforward generalization of regular language, we can define regularity
for `−valued languages. But `−valued regularity may be defined in two different
ways, namely, according to the depth-first principle or the width-first one.

Definition 3.4. The two `−valued (unary) regularity predicates Reg
[D]
Σ and

Reg
[W]
Σ on LΣ∗ (the set of all `−valued subsets of Σ∗), regularity in the depth-first

way and regularity in the width-first way, are defined as Reg
[D]
Σ , Reg

[D]
Σ ∈ L(LΣ∗),

respectively: for each A ∈ LΣ∗ ,

Reg
[D]
Σ (A)

def
= (∃< ∈ NFA(Σ, `))(A ≡ rec[D]

<),

Reg
[W]
Σ (A)

def
= (∃< ∈ NFA(Σ, `))(A ≡ rec[W]

<).

Thus, the truth value of the proposition that A is regular is

dReg[D]
Σ (A)e =

∨
{dA ≡ rec[D]

< e : < ∈ NFA(Σ, `)}.

A similar calculation applies to regularity in the width-first way.

It should be noted that the (automaton) variable < bounded by the existential

quantifier in the right-hand side of the defining formula of Reg
[D]
Σ ranges over the

proper class NFA(Σ, `). Some readers who are familiar with axiomatic set theory
may worry about that this definition will cause a certain set-theoretical difficulty, but
we stay well away from anything genuinely problematic. Indeed, for any `−valued
automaton < = 〈Q, δ, I, T 〉, there is a bijection ς : Q → |Q| (the cardinality of Q)
= {0, 1, ..., |Q| − 1} and we can construct a new `−valued automaton

ς(<) = 〈|Q|, ς(δ), ς(I), ς(T)〉

where ς(δ)(m,σ, n) = δ(ς−1(m), σ, ς−1(n)) for any m,n ∈ |Q| and σ ∈ Σ. It is easy to

see that rec
[D]
< = rec

[D]
ς(<). Obviously, such a transformation also holds for regularity

in the width-first way. Then in Definition 3.4 we may only require that the variable
< bounded by the existential quantifier ranges over all `−valued automata whose
state sets are subsets of ω (the set of all non-negative integers). Note that the class of
all `−valued automata with subsets of ω as state sets is really a set, and in fact it is
a subset of (2ω)3×⋃

Q⊆ω L
Q×Σ×Q. In most situations, however, the original version

of Definition 3.4 is much more convenient and compatible with the corresponding
definition in classical automata theory.

Before investigating carefully various properties of `−valued regular languages,
we present some interesting examples. The first one indicates that every finite
`−valued language is regular in both the depth-first way and the width-first way. It
is well-known that a similar conclusion holds in classical automata theory.

34

Example 3.5. For any A ∈ LΣ∗ , if A is finite, i..e., suppA = {s ∈ Σ∗ : A(s) > 0}
is finite, then

|=` Reg
[D]
Σ (A) and |=` Reg

[W]
Σ (A).

Indeed, suppose that suppA = {σi1...σimi : i = 1, ..., k}. Then we construct an
`−valued automaton <A = (QA, IA, TA, δA) in the following way:

(i) QA = ∪ki=1{qi0, qi1, ..., qimi};
(ii) IA = {q10, q20, ..., qk0};
(iii) TA = {q1m1 , q2m2 , ..., qkmk

};
(iv) We define δA(qij , σi(j+1), qi(j+1)) = A(σi1...σimi) for any 1 ≤ i ≤ k and

0 ≤ j < mi, and we define δA(p, σ, q) = 0 for other (p, σ, q) ∈ QA × Σ × QA. Then

it is easy to see that rec
[D]
<A

= A and dReg[D]
Σ (A)e ≥ dA ≡ rec[D]

<A
e = 1. Similarly, we

have rec
[W]
<A

= A and dReg[W]
Σ (A)e = 1.

The following example may be seen as an extension of Example 3.5, and it shows
that the recognizability of a quantum language is not less than the volume of its
finite part.

Example 3.6. For any A ∈ LΣ∗ , we define:

A ↓ λ = {s ∈ Σ∗ : A(s) 6≤ λ} and A ↑ λ = {s ∈ Σ∗ : A(s) 6≥ λ}.

They are called lower and upper anti-λ−cuts of A, respectively. Then it holds that

(1) |=` µ → Reg
[D]
Σ (A) and |=` µ → Reg

[W]
Σ (A), where µ = ∨{λ⊥ : A ↓ λ is

finite};
(2) |=` θ → Reg

[D]
Σ (A) and |=` θ → Reg

[W]
Σ (A), where θ = ∨{λ : A ↑ λ is finite}.

Here → may be interpreted as any implication operator satisfying the Birkhoff-
von Neumann requirement. We only prove (1) for regularity in the depth-first way,
and the other conclusions may be proven likewise. For any λ ∈ L, if A ↓ λ is finite,
then we define A ⇓ λ ∈ LΣ∗ as follows: for any s ∈ Σ∗,

(A ⇓ λ)(s) =

{
A(s), if A(s) 6≤ λ,
0, ifA(s) ≤ λ.

Clearly, A ⇓ λ is finite. Then from Example 3.5 we know that there is an `−valued

automata <[λ] such that rec
[D]
<[λ] = A ⇓ λ, i.e., rec

[D]
<[λ] = A(s) if A(s) 6≤ λ and

rec
[D]
<[λ] = 0 if A(s) ≤ λ, and

dRec[D]
Σ (A)e ≥ dA ≡ rec[D]

<[λ]e

=
∧
{A(s)↔ rec

[D]
<[λ] : A(s) 6≤ λ} ∧

∧
{A(s)↔ 0 : A(s) ≤ λ}

=
∧
{A(s)↔ 0 : A(s) ≤ λ} ≥ λ⊥.

35

The third example gives a simple connection between recognizability in classical

automata theory and the `−valued predicates Reg
[D]
Σ and Reg

[W]
Σ introduced above.

Example 3.7. Let A ⊆ Σ∗ be a regular language (in classical automata theory),
B ∈ LΣ∗ and suppB = {s ∈ Σ∗ : B(s) > 0} ⊆ A, and let

λ =
∨
{
∧
s∈A

(a↔ B(s)) : a ∈ L}.

Then we have:
|=` λ→ Reg

[D]
Σ (B) and |=` λ→ Reg

[W]
Σ (B).

In particular, if A ⊆ Σ∗ is regular then for every a ∈ L,

|=` Reg
[D]
Σ (A[a]) and |=` Reg

[W]
Σ (A[a]),

where A[a] ∈ LΣ∗ is given as

A[a](s) =

{
a, if s ∈ A,
0, otherwise.

This conclusion is not difficult to prove. In fact, since A is regular, there must
be an automaton < = 〈Q, δ, I, T 〉 that accepts the language A. Now, for each a ∈ L,
we construct an `−valued automaton <a = 〈Q, I, T, δa) such that

δa(p, σ, q) =

{
a, if (p, σ, q) ∈ δ,
0, otherwise.

Then it is easy to know that for all s ∈ Σ∗,

drec[D]
<a

(s)e =

{
a, if s ∈ A,
0, otherwise,

and
dB ≡ rec[D]

<a
e =

∧
s∈A

(a↔ B(s)]).

Therefore, we have

dReg[D]
Σ (B)e ≥

∨
{dB ≡ rec<ae : a ∈ L} = λ.

A similar argument proves the conclusion for regularity in the depth-first way.

The fourth example demonstrates that the `−valued predicate Reg
[D]
Σ defined

above is not trivial, that is, it does not in general degenerate into a two-valued

36

(Boolean) predicate. We can also construct an example for the same purpose with

respect to Reg
[W]
Σ .

Example 3.8. We consider a canonical orthomodular lattice. This lattice has
a clear interpretation in quantum physics. One pasts together observables of the
spin one-half system. Then he will obtain an orthomodular lattice L(x) ⊕ L(x),
where L(x) = {0, p−, p+, 1} corresponds to the outcomes of a measurement of the
spin states along the x−axis and L(x) = {0 = 1, p−, p+, 1 = 0} is obtained by
measuring the spin states along a different spatial direction; and L(x)⊕L(x) may be
visualized as the “Chinese lantern”(see Figure 2, and for a more detailed description
of L(x)⊕ L(x) see [70]).

In this example, we set → = →3 (the Sasaki-hook). By a routine calculation we
have:

p− ↔ p+ = p− ↔ p− = p− ↔ p+ = 0

and p− ↔ 1 = p−. Thus, for each λ ∈ L(x) ⊕ L(x), λ 6≤ p− implies p− ↔ λ ≤ p−.
Furthermore, let Σ = {σ, τ} and A = {σnτn : n ∈ ω}, and for any t ∈ L(x)⊕ L(x),
let At ∈ LΣ∗ be given as follows:

At(s) =

{
1, if s ∈ A,
t, otherwise,

Then it holds that
`

|= p− ↔ Reg
[D]
Σ (Ap−);

that is, dReg[D]
Σ (Ap−)e = p−. In fact, we know that Σ∗ is regular (see [23], Example

II.2.3), and with Example 3.7 it is easy to see that dReg[D]
Σ (Ap−)e ≥ p−. Conversely,

for any `−valued automaton < = 〈Q, δ, I, T 〉, if |Q| = n then

dAp− ≡ rec
[D]
< e ≤ [Ap−(σnτn)↔ rec

[D]
< (σnτn)] ∧

∧
k,l∈ω s.t. k 6=l

[Ap−(σkτ l)↔ rec
[D]
< (σkτ l)]

= rec
[D]
< (σnτn) ∧

∧
k,l∈ω s.t. k 6=l

[p− ↔ rec
[D]
< (σkτ l)].

If rec
[D]
< (σnτn) ≤ p−, then dAp− ≡ rec

[D]
< e ≤ p−. Now, we consider the case of

rec
[D]
< (σnτn) 6≤ p−. For any c ∈ T (Q,Σ), if b(c) ∈ I, e(c) ∈ T and lb(c) = σnτn,

then c must be of the form c = p0σp1...pn−1σpnτq1...qn−1τqn. Since |Q| = n, there
are i, j such that i < j ≤ n and pi = pj . We put

c+ = p0σp1...pj−1σpj(= pi)σpi+1...pj−1σpjσpj+1...pn−1σpnτq1...qn−1τqn.

Then b(c+) ∈ I, e(c+) ∈ T, lb(c+) = σn+(j−i)τn and dPath<(c+)e = dPath<(c)e.

37

0

1

p− p+ p−p+

Figure 2: “Chinese lantern”

38

Therefore, it holds that

rec
[D]
< (σn+(j−i)τn) ≥

∨
{dPath<(c+)e : b(c) ∈ I, e(c) ∈ T and lb(c) = σnτn}

=
∨
{dPath<(c)e : b(c) ∈ I, e(c) ∈ T and lb(c) = σnτn}

= rec<(σnτn),

and rec
[D]
< (σn+(j−i)τn) 6≤ p−. Furthermore, we have:

dAp− ≡ rec
[D]
< e ≤ p− ↔ rec

[D]
< (σn+(j−i)τn) ≤ p−.

So, for all `−valued automata < we have dAp− ≡ rec
[D]
< e ≤ p−, and it follows that

dRec[D]
Σ (Ap−)e =

∨
{dA ≡ rec[D]

< e : < ∈ NFA(Σ, `)} ≤ p−.

This together with dReg[D]
Σ (Ap−)e ≥ p− obtained before leads to dReg[D]

Σ (Ap−)e =
p−.

Similarly, we have dReg[D]
Σ (At)e = t for t = p+, p− and p+. �

Motivated by the above example, we propose the open problem: how to describe

orthomodular lattices ` = 〈L,≤,∧,∨,⊥, 0, 1〉 which satisfy that {dReg[D]
Σ (A)e : A ∈

LΣ∗} = L, i.e., the truth values of recognizability traverse all over L, or more

explicitly, for every λ ∈ L, there is A ∈ LΣ∗ such that dReg[D]
Σ (A)e = λ? We may

ask the same question for Reg
[W]
Σ . It seems that this is a difficult problem.

The `−valued regularity predicates Reg
[D]
Σ and Reg

[W]
Σ in Definition 3.4 are a

direct generalization of the notion of regular language in classical automata theory.

In what follows, we will see that the predicate Reg
[D]
Σ and Reg

[W]
Σ do not work well

in many cases. Why this happens? Note that Reg
[D]
Σ and Reg

[W]
Σ are merely a

simple mimic of the classical concept of regular language, and an essential feature

of quantum logic is missing here. In the defining equations of Reg
[D]
Σ and Reg

[W]
Σ ,

the language A to be recognized and the automaton < for recognizing A are left
completely irrelevant. In the case of classical logic, this does not causes any difficulty
in manipulating regular languages. Nevertheless, the thing changes when we work
in quantum logic. After an analysis it was found that a suitable link between A and
< is a commutativity of them. This suggests the following:

Definition 3.9. The `−valued (unary and partial) predicates CReg
[D]
Σ and

CReg
[W]
Σ on LΣ∗ are called commutative regularity in the depth-first way and width-

first way, respectively, and they are defined as CReg
[D]
Σ , CReg

[W]
Σ ∈ L(LΣ∗) : for any

A ∈ LΣ∗ with finite Range(A) = {A(s) : s ∈ Σ∗},

CReg
[D]
Σ (A)

def
= (∃< ∈ NFA(Σ, `))(γ(atom(<) ∪ r(A)) ∧ (A ≡ rec[D]

<)),

39

CReg
[W]
Σ (A)

def
= (∃< ∈ NFA(Σ, `))(γ(atom(<) ∪ r(A)) ∧ (A ≡ rec[W]

<)),

where r(A) = {a : a ∈ Range(A)}, and a is the nullary predicate corresponding to
element a in L.

The exposition concerning the automata variable < in the defining equations of

Reg
[D]
Σ and Reg

[W]
Σ in Definition 3.4 also applies to CReg

[D]
Σ and CReg

[W]
Σ in the

above definition.

It is obvious that the notion of commutative regularity is stronger than (non-
commutative) regularity. In other words, we have for any A ∈ LΣ∗ ,

|=` CReg
[D]
Σ (A)→ Reg

[D]
Σ (A) and |=` CReg

[W]
Σ (A)→ Reg

[W]
Σ (A).

On the other hand, if ` is a Boolean algebra; that is, the underlying logic is the
classical Boolean logic, then these two notions are equivalent; or formally, for all
A ∈ LΣ∗ , it holds that

|=` CReg
[D]
Σ (A)↔ Reg

[D]
Σ (A) and |=` CReg

[W]
Σ (A)↔ Reg

[W]
Σ (A).

This is just why both the predicate Reg
[D]
Σ and Reg

[W]
Σ work very well in classical

automata theory but not in the theory of automata based on quantum logic.

As a direct corollary of Lemma 3.3 we see that CReg
[D]
Σ and CReg

[W]
Σ are equiv-

alent if we use the Sasaki implication →3.

Corollary 3.10. If → = →3 then for each A ∈ LΣ∗ , we have:

|=` CReg
[D]
Σ (A)↔ CReg

[W]
Σ (A).

Proof. For any < ∈ NFA(Σ, `), using Lemmas 2.12(3) and 3.4 we obtain:

dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec[D]
< e ≤ dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec[D]

< e ∧ drec
[D]
< ≡ rec

[W]
< e

≤ dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec[W]
< e

≤ dCReg[W]
Σ (A)e.

Thus, dCReg[D]
Σ (A)e ≤ dCReg[W]

Σ (A)e. Conversely, we also have dCReg[W]
Σ (A)e ≤

dCReg[D]
Σ (A)e. �

3.2. Orthomodular Lattice-Valued Deterministic Finite Automata

The notion of nondeterminism plays a central role in the theory of computation.
The nondeterministic mechanism enables a device to change its states in a way that

40

is only partially determined by the current state and input symbol. Obviously, the
concept of `−valued automaton introduced in the last section is a generalization
of nondeterministic finite automaton. In classical theory of automata, each non-
deterministic finite automaton is equivalent to a deterministic one; more exactly,
there exists a deterministic finite automaton which accepts the same language as
the originally given nondeterministic one does. The aim of this section is just to see
whether this result is still valid in the framework of quantum logic. To this end, we
first introduce the concept of deterministic `−valued automaton.

Let < = 〈Q, δ, I, T 〉 ∈ NFA(Σ, `) be an `−valued automata over Σ. If

(i) there is a unique q0 in Q with I(q0) > 0; and

(ii) for all q in Q and σ in Σ, there is a unique state p in Q such that δ(q, σ, p) > 0,
then M is called an `−valued (quantum) deterministic finite automaton (`−valued
DFA for short). The `−valued transition relation δ in an `−valued DFA may be
equivalently represented by a mapping from Q × Σ into Q × (L − {0}). For any q
in Q and σ in Σ, if p is the unique element in Q with δ(q, σ, p) > 0, then δ(q, σ) =
(p, δ(q, σ, p)) ∈ Q× (L− {0}).

The class of `−valued DFAs over Σ is denoted DFA(Σ, `).

Suppose that < is an `−valued DFA, δ(q0, σ1) = (q1, λ1) and δ(qi, σi+1) =
(qi+1, λi+1) for all i = 1, 2, ..., n− 1. Then it is easy to see that

drec[D]
< (σ1...σn)e = drec[W]

< (σ1...σn)e = I(q0) ∧ T (qn) ∧
n∧
i=1

λi.

Consequently, for any < ∈ DFA(Σ, `), it holds that rec
[D]
< = rec

[W]
< . Thus, we shall

drop the superscripts and simply write rec< for rec
[D]
< (and rec

[W]
<) for an `−valued

deterministic finite automaton <.

Throughout this section, we always suppose that the lattice ` of truth values is
finite. The reason is that otherwise the set LQ of states in the `−valued power set
construction `< of <, defined below, will be an infinite set, and the assumption that
the set of states in an `−valued automaton is finite will be violated.

The proof of the equivalence between classical deterministic finite and nonde-
terministic finite automata is carried out by building the subset construction of a
nondeterministic finite automaton that is deterministic and can simulate the given
nondeterministic one. The subset construction can be naturally extended into the
case of `−valued automata.

Let < = 〈Q, δ, I, T 〉 ∈ NFA(Σ, `) be an `−valued nondeterministic finite au-
tomaton over Σ. We define the `−valued subset construction of < to be `−valued
automaton `< = 〈LQ, δ, I1, T 〉 over Σ, where:

(i) LQ is the set of all `−valued subsets of Q, that is, mappings from Q into L;

(ii) I1 is an `−valued point with height 1, that is, I1 ∈ L(LQ) and for all X ∈ LQ,

I1(X) =

{
1, if X = I,

0, otherwise;

41

(iii) T ∈ L(LQ), that is, T is an `−valued subset of LQ, and for any X ∈ LQ,

T (X) =
∨
q∈Q

[X(q) ∧ T (q)];

(iv) δ is a mapping from LQ × Σ into LQ, and for each X ∈ LQ, we have
δ(X,σ) ∈ LQ and for every q ∈ Q,

δ(X,σ)(q) =
∨
p∈Q

[X(p) ∧ δ(p, σ, q)].

Since L is assumed to be finite, LQ is finite too. Thus, it is easy to see that `<

is an `−valued DFA. Moreover, both the set of the initial states and the transition
relation are two-valued, namely, their truth values are either 0 or 1, and only the
set of terminal states carries `−valued information.

The following theorem compares the abilities of an `−valued automaton and its
subset construction according to the `−valued languages recognized by them in the
depth-first way.

Theorem 3.11. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be a finite orthomodular lattice, and
let→ be an implication operator satisfying the Birkhoff-von Neumann requirement.

(1) For any < ∈ NFA(Σ, `) and s ∈ Σ∗, we have:

|=` rec
[D]
< (s)→ rec`<(s).

(2) For any < ∈ NFA(Σ, `) and s ∈ Σ∗, it holds that

|=` γ(atom(<)) ∧ rec`<(s)→ rec
[D]
< (s),

and in particular if → = →3, then

|=` γ(atom(<))→ (rec`<(s)↔ rec
[D]
< (s)).

(3) The following two statements are equivalent to each other:

(3.1) ` is a Boolean algebra.

(3.2) For any < ∈ NFA(Σ, `) and s ∈ Σ∗,

|=` rec
[D]
< (s)←→ rec`<(s).

Proof. The proof of (1) is easy, and we omit it here.

(2) Suppose that < = 〈Q, δ, I, T 〉 ∈ NFA(Σ, `), and `< = 〈LQ, δ, I1, T 〉 is the
`−valued subset construction of <. Our aim is to demonstrate that

dγ(atom(<))e ∧ drec`<(s)e ≤ drec[D]
< (s)e

42

for all s ∈ Σ∗. To this end, we first prove the following

Claim : dγ(atom(<))e ∧ δ(I, σ1...σn)(qn)

≤
∨
{I(q0) ∧

n−1∧
i=0

δ(qi, σi+1, qi+1) : q0, q1, ..., qn−1 ∈ Q}

for any σ1, ..., σn ∈ Σ and q ∈ Q. We proceed by induction on n. For n = 0, it is
clear. The definition of δ yields

δ(I, σ1...σn)(qn) = δ(δ(I, σ1...σn−1), σn)(qn)

=
∨

qn−1∈Q
[δ(I, σ1...σn−1)(qn−1) ∧ δ(qn−1, σn, qn)].

We write datom(<)e = {dϕe : ϕ ∈ atom(<)}. Then it holds that dγ(atom(<))e =
γ(datom(<)e). Note that the symbol γ in the left-hand side applies to a set of logical
formulas, whereas the one in the right-hand side applies to a subset of L. Further-
more, it is easy to see that δ(qn−1, σn, qn), δ(I, σ1...σn−1)(qn−1) and dγ(atom(<))e
are all in [datom(<)e] (the subalgebra of ` generated by datom(<)e). Thus, with
Lemmas 2.6 and 2.7 and the induction hypothesis we obtain:

dγ(atom(<))e ∧ δ(I, σ1...σn)(qn) = dγ(atom(<))e ∧ dγ(atom(<))e
∧

∨
qn−1∈Q

[δ(I, σ1...σn−1)(qn−1) ∧ δ(qn−1, σn, qn)]

≤
∨

qn−1∈Q
[dγ(atom(<))e ∧ (

∨
{I(q0) ∧

n−2∧
i=0

δ(qi, σi+1, qi+1) :

q0, q1, ..., qn−2 ∈ Q}) ∧ δ(qn−1, σn, qn)].

Using Lemmas 2.6 and 2.7 again, we complete the proof of the above claim.

Now with this claim, we can use Lemmas 2.6 and 2.7 twice and derive that

dγ(atom(<))e ∧ drec`<(σ1...σn)e = dγ(atom(<))e ∧ T (δ(I, σ1...σn))

= dγ(atom(<))e ∧
∨
qn∈Q

[δ(I, σ1...σn)(qn) ∧ T (qn)]

≤
∨
qn∈Q

[dγ(atom(<))e ∧ δ(I, σ1...σn)(qn) ∧ T (qn)]

≤
∨
qn∈Q

[dγ(atom(<))e ∧ (
∨
{I(q0) ∧

n−1∧
i=0

δ(qi, σi+1, qi+1) : q0, q1, ..., qn−1 ∈ Q}) ∧ T (qn)]

≤
∨
{I(q0) ∧

n−1∧
i=0

δ(qi, σi+1, qi+1) ∧ T (qn) : q0, q1, ..., qn−1 ∈ Q}

= drec[D]
< (σ1...σn)e.

43

For the case of → = →3, what we want to prove is

dγ(atom(<))e ≤ drec`<(s)e →3 drec[D]
< (s)e.

With the above conclusion and Lemma 2.11, it suffices to show that dγ(atom(<))eCdrec[D]

`<
(s)e.

We observe that

dγ(atom(<))e =
∨
{

∧
ϕ∈datom(<)e

ϕf(ϕ) : f ∈ {0, 1}datom(<)e}.

Then Lemma 2.2 tells us that we only need to prove∧
ϕ∈datom(<)e

ϕf(ϕ)Cdrec[D]

`<
(s)e

for all f ∈ {0, 1}datom(<)e. For every ψ ∈ datom(<)e, note that∧
ϕ∈datom(<)e

ϕf(ϕ) ≤ ψf(ψ).

Then we have ∧
ϕ∈datom(<)e

ϕf(ϕ)Cψf(ψ),

and furthermore it follows that ∧
ϕ∈datom(<)e

ϕf(ϕ)Cψ

from Lemmas 2.1(3) and (4). Since drec[D]

`<
(s)e is calculated from some elements in

datom(<)e by applying a finite number of meets or unions, we complete the proof
with Lemma 2.2.

(3) Note that dγ(atom(<))e = 1 is always valid when ` is a Boolean algebra.
Thus, it is proved that (3.1) implies (3.2). We now turn to show that (3.2) implies
(3.1). It suffices to show that the meet ∧ is distributive over the union ∨, that is,
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L. Let a, b, c ∈ L. We construct an
`−valued automaton < = 〈{u, v, w}, δ, {u, v}, {w}〉 over Σ which has at least one
element σ, where δ(u, σ, u) = a, δ(u, σ, w) = c, δ(v, σ, u) = b, and δ takes the value
0 for other cases. It may be visualized by Figure 3.

In the automaton < we have:

drec[D]
< (σσ)e =

∨
{I(q0) ∧ T (q2) ∧ δ(q0, σ, q1) ∧ δ(q1, σ, q2) : q0, q1, q2 ∈ Q}

=
∨
{δ(u, σ, q1) ∧ δ(q1, σ, w) : q1 ∈ Q} ∨

∨
{δ(v, σ, q1) ∧ δ(q1, σ, v) : q1 ∈ Q}

= [δ(u, σ, u) ∧ δ(u, σ, w)] ∨ [δ(v, σ, u) ∧ δ(u, σ, w)]

= (a ∧ c) ∨ (b ∧ c).

44

w

v

❄

u

❄

✛

❄

σ, b

σ, c

Figure 3: Automaton a

45

Consider the `−valued subset construction `< of <. Then

δ(I, σ)(u) =
∨
q∈Q

[I(q) ∧ δ(q, σ, u)]

= δ(u, σ, u) ∨ δ(v, σ, u)] = a ∨ b.

Similarly, we obtain δ(I, σ)(v) = 0 and δ(I, σ)(w) = c. It follows that for any q ∈ Q,

δ(I, σσ)(q) = δ(δ(I, σ), σ)(q)

=
∨
q′∈Q

[δ(I, σ)(q′) ∧ δ(q′, σ, q)]

= [δ(I, σ)(u) ∧ δ(u, σ, q)] ∨ [δ(I, σ)(w) ∧ δ(w, σ, q)]
= (a ∨ b) ∧ δ(u, σ, q).

Thus, it follows that δ(I, σσ)(u) = (a∨b)∧a = a, δ(I, σσ)(v) = 0 and δ(I, σσ)(w) =
(a ∨ b) ∧ c. Therefore, we obtain:

drec`<(σσ)e = T (δ(I, σσ))

=
∨
q∈Q

[δ(I, σσ)(q) ∧ T (q)]

= δ(I, σσ)(w) = (a ∨ b) ∧ c.

Finally, from the assumption (3.2) we assert that

(a ∧ c) ∨ (b ∧ c) = drec[D]
< (σσ)e = drec`<(σσ)e = (a ∨ b) ∧ c. �

Many results in this Chapter appear in the same scheme as the above theorem.
So, we here give a detailed explanation of this theorem. The above theorem points
out that the ability of an `−valued nondeterministic automaton for recognizing lan-
guage according to the depth-first principle is always weaker than that of its subset
construction. On the other hand, in order to warrant that an `−valued automaton
< and its subset construction have the same ability of accepting language, the condi-
tion γ(atom(<)) has to be imposed. The intuitive meaning of this condition is that
(the truth values of) any two atomic propositions describing < should commute.
(See also the physical interpretation of commutativity presented in the concluding
section.) The third part of Theorem 3.11 indicates that the equivalence between a
nondeterministic finite automaton and its subset construction is universally valid if
and only if the underlying logic degenerates to the classical Boolean logic. In other
words, if the meta-logic that we use in our reasoning does not enjoy distributivity,
then such a meta-logic is not strong enough to guarantee the universal validity of
equivalence between a nondeterministic finite automaton and its subset construc-
tion, and we can always find a nondeterministic finite automaton such that the

46

equivalence between it and its subset construction is not derivable with the mere
inference power provided by such a meta-logic. However, the next theorem indicates
that any `−valued nondeterministic finite automaton can be simulated by its power
set construction whenever the width-first principle is employed.

Theorem 3.12. For each < ∈ NFA(Σ, `) and for each s ∈ Σ∗, it holds that

|=` rec
[W]
< (s)↔ rec`<(s).

Proof. Immediate from Definition 3.2 and the definition of `<. �

We can give a simpler proof of Theorem 3.11 by using the above theorem and
Lemma 3.3.

Comparing the above two theorems, we see an interesting phenomenon: rec-
ognizability in classical automata theory is naturally split into two nonequivalent
notions in quantum logic so that the simulation of nondeterministic finite automata
by deterministic ones is valid for one of them but not for the other.

In Section 3.1, we introduced four notions of `−valued regularity. They are
all given with respect to nondeterministic `−valued automata. Now we propose
a restricted version of them based on the smaller class of deterministic `−valued
finite automata. Note that here we do not need to distinguish the depth-first and
width-first ways.

Definition 3.13. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice. Then
the `−valued (unary) predicates DRegΣ and (unary and partial) predicate CDRegΣ

on LΣ∗ are called deterministic regularity and commutative deterministic regularity,

respectively, and they are defined as DRegΣ, CDRegΣ ∈ L(LΣ∗) : for any A ∈ LΣ∗ ,

DRegΣ(A)
def
= (∃< ∈ DA(Σ, `))(A ≡ rec<),

and for any A ∈ LΣ∗ with finite Range(A) = {A(s) : s ∈ Σ∗},

CDRegΣ(A)
def
= (∃< ∈ DA(Σ, `))(γ(atom(<) ∪ r(A)) ∧ (A ≡ rec<)),

where r(A) = {a : a ∈ Range(A)}, and a is the nullary predicate associated with
element a in L.

It is similar to the relation between Reg
[D]
Σ and CReg

[D]
Σ (as well as that between

Reg
[W]
Σ and CReg

[W]
Σ) that CDRegΣ is stronger than DRegΣ. In other words, it

holds that for any A ∈ LΣ∗ ,

|=` CDRegΣ(A)→ DRegΣ(A).

47

The following corollary shows that a certain commutativity condition guarantees
that these two predicates are equivalent. Furthermore, if ` is a Boolean algebra,

then the six notions Reg
[D]
Σ , Reg

[W]
Σ , CReg

[D]
Σ , CReg

[W]
Σ DRegΣ and CDRegΣ all

coincide.

Corollary 3.14. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be a finite orthomodular lattice.
Then for any A ∈ LΣ∗ , we have:

|=` Reg
[W]
Σ (A)↔ DRegΣ(A) and |=` CReg

[W]
Σ (A)↔ CDRegΣ(A),

and if → = →3, then

|=` CReg
[D]
Σ (A)↔ CDRegΣ(A).

Furthermore, if ` is a Boolean algebra, then for any A ∈ LΣ∗ ,

|=` Reg
[D]
Σ (A)↔ DRegΣ(A).

Proof. The first part is immediate from Theorem 3.12. The second part comes
from Corollary 3.10 and the first part. The third part is a simple corollary of the
second one. �

3.3. Orthomodular Lattice-Valued Finite Automata with ε−Moves

Finite automata with ε−moves are nondeterministic finite automata in which
transitions on the empty input ε are included, and they have the same power for
accepting languages. In the classical theory of automata, automata with ε−moves
are very convenient tools in building complex automata from simple ones and in
proving the closure properties of regular languages. The aim of this section is to
introduce an orthomodular lattice-valued extension of automaton with ε−moves.

Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice. Then an `−valued fi-
nite automaton with ε−moves over Σ is a quadruple < = 〈Q, δ, I, T 〉 in which all
components are the same as in an `−valued nondeterministic finite automaton (with-
out ε−moves), but the domain of the quantum transition relation δ is changed to
Q× (Σ ∪ {ε})×Q, that is, δ is a mapping from Q× (Σ ∪ {ε})×Q into L, where ε
stands for the empty string of input symbols. Thus, in an `−valued finite automaton

with ε−moves, transitions of the form “p
δ,ε−→ q”are allowed. So, atom(<) contains

the atomic propositions “p
δ,ε−→ q”, and their truth values are given as δ(p, ε, q) for

all p, q ∈ Q.
Now let < = 〈Q, δ, I, T 〉 be an `−valued finite automaton with ε−moves. We

put

Tε(Q,Σ) = (Q(Σ ∪ {ε}))∗Q =
∞⋃
n=0

[(Q(Σ ∪ {ε}))nQ].

48

The difference between T (Q,Σ) and Tε(Q,Σ) is that in the latter the empty string
may be used as labels. For any c = q0σ1q1...qk−1σkqk ∈ Tε(Q,Σ), lbε(c) is defined
to be the sequence σ1...σk with all occurrences of ε deleted. Note that it is possible

that the length of lbε(c) is strictly smaller than k. Then the recognizability rec
[D]
< in

the depth-first way is also defined as an `−valued unary predicate over Σ∗, and it is
given by

rec
[D]
< (s)

def
= (∃c ∈ Tε(Q,Σ))(b(c) ∈ I ∧ e(c) ∈ T ∧ lbε(c) = s ∧ Path<(c))

for all s ∈ Σ∗, where Path< is defined in the same way as in an `−valued automaton

without ε−moves. The defining equation of rec
[D]
< may be rewritten in terms of

truth valued as follows:

drec[D]
< (s)e =

∨
{I(b(c)) ∧ T (e(c)) ∧ dPath<(c)e : c ∈ Tε(Q,Σ) and lbε(c) = s},

where

dPath<(c)e =
k−1∧
i=0

δ(qi, σi+1, qi+1)

if c = q0σ1q1...qk−1σkqk.

To introduce recognizability rec
[W]
< ∈ LΣ∗ in the width-first way, we define s−ε ∈

Σ∗ to be the sequence of input symbols obtained from s by deleting all occurrences
of ε for each s ∈ (Σ ∪ {ε})∗. Then for each s ∈ Σ∗,

rec
[W]
< (s)

def
= (∃t ∈ (Σ ∪ {ε})∗, q ∈ Q)(t−ε = s ∧ q ∈ δt(I) ∧ q ∈ T),

where δt is defined in the same way as in an `−valued automaton without ε (that
is, ε−moves are treated as usual moves with input symbols).

For any `−valued finite automaton < = 〈Q, δ, I, T 〉 with ε−moves, its ε−reduction
is defined to be the `−valued finite automaton <−ε = 〈Q, δ′, I, T ′〉 (without ε−moves)
in which

(i) for any q ∈ Q,

q ∈ T ′ def= (q ∈ T) ∨ (q ∈ I ∧ (∃p ∈ Q,m ≥ 0)(p ∈ T ∧ δ(q, εm, p))),

that is,

T ′(q) = T (q) ∨ [I(q) ∧
∨

p∈Q,m≥0

(T (p) ∧ δ(q, εm, p))];

(ii) for any p, q ∈ Q and σ ∈ Σ,

δ′(p, σ, q)
def
= (∃m,n ≥ 0)δ(p, εmσεn, q),

that is,

δ′(p, σ, q) =
∨

m,n≥0

δ(p, εmσεn, q),

49

where for all k ≥ 1, q0, qk ∈ Q and σ1, ..., σk ∈ Σ,

δ(q0, σ1...σk, qk)
def
= (∃q1, ..., qk−1 ∈ Q)(δ(q0, σ1, q1)∧δ(q1, σ2, q2)∧...∧δ(qk−1, σk, qk)),

or equivalently,

δ(q0, σ1...σk, qk) =
∨
{(δ(q0, σ1, q1)∧δ(q1, σ2, q2)∧...∧δ(qk−1, σk, qk) : q1, ..., qk−1 ∈ Q}.

The following theorem gives a clear relation between the language accepted by an
`-valued automaton with ε−moves and that accepted by its ε−reduction. In general,
the ε−reduction of an automaton with ε−moves has a stronger power of acceptance
than itself. A certain commutativity between basic actions of the automaton implies
the equivalence between an automaton with ε−moves and its ε−reduction. How-
ever, an universal validity of such an equivalence requires that the underlying logic
degenerates to the classical Boolean logic.

Theorem 3.15. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and let
→ be an implication operator satisfying the Birkhoff-von Neumann requirement.

(1) For any `−valued automaton < with ε−moves over Σ, and for any s ∈ Σ∗,
we have:

|=` rec
[D]
< (s)→ rec

[D]
<−ε(s).

(2) For any `−valued automaton < with ε−moves over Σ, and for any s ∈ Σ∗,

|=` γ(atom(<)) ∧ rec[D]
<−ε(s)→ rec

[D]
< (s),

|=` γ(atom(<)) ∧ rec[W]
< (s)→ rec

[W]
<−ε(s),

|=` γ(atom(<)) ∧ rec[W]
<−ε(s)→ rec

[W]
< (s),

and in particular if → = →3 then

|=` γ(atom(<))→ (rec
[D]
< (s)↔ rec

[D]
<−ε(s)),

|=` γ(atom(<))→ (rec
[W]
< (s)↔ rec

[W]
<−ε(s)).

(3) The following four statements are equivalent:

(3.1) ` is a Boolean algebra;

(3.2) for all `−valued automaton < with ε−moves over Σ, and for all s ∈ Σ∗,

|=` rec
[D]
< (s)↔ rec

[D]
<−ε(s);

(3.3) for all `−valued automaton < with ε−moves over Σ, and for all s ∈ Σ∗,

|=` rec
[W]
< (s)→ rec

[W]
<−ε(s);

50

(3.4) for all `−valued automaton < with ε−moves over Σ, and for all s ∈ Σ∗,

|=` rec
[W]
<−ε(s)→ rec

[W]
< (s).

Proof. The proof of (1) is similar to that of (2), so we omit it. We now prove
(2). First, we use induction on the length |c| of c to show that for any c ∈ T (Q,Σ),

Claim : dγ(atom(<)e∧dPath<−ε(c)e ≤
∨
{dPath<(c′)e : c′ ∈ Tε(Q,Σ), b(c′) = b(c),

e(c′) = e(c) and lbε(c
′) = lb(c)}.

For the case of |c| = 1, it is immediate from the definition of transition relation δ′

in <−ε. If c = c′σq, then with the induction hypothesis and Lemmas 2.6 and 2.7, we
have:

dγ(atom(<))e ∧ dPath<−ε(c)e = dγ(atom(<))e ∧ dPath<−ε(c′)e ∧ δ′(e(c′), σ, q)
= dγ(atom(<))e ∧ dγ(atom(<))e ∧ dPath<−ε(c′)e ∧

∨
m,n≥0

δ(e(c′), εmσεn, q)

≤
∨

m,n≥0

(dγ(atom(<))e ∧ dPath<−ε(c′)e ∧ δ(e(c′), εmσεn, q))

≤
∨

m,n≥0

[dγ(atom(<))e ∧
∨
{dPath<(d′)e : d′ ∈ Tε(Q,Σ), b(d′) = b(c′), e(d′) = e(c′)

and lbε(d
′) = lb(c′)} ∧ δ(e(c′), εmσεn, q)]

≤
∨
{dγ(atom(<))e ∧ dPath<(d′)e ∧ δ(e(c′), εmσεn, q) : m,n ≥ 0, d′ ∈ Tε(Q,Σ),

b(d′) = b(c′), e(d′) = e(c′), lbε(d′) = lb(c′)}.

Furthermore, we know that

δ(e(c′), εmσεn, q) =
∨
{δ(e(c′), ε, p1) ∧ δ(p1, ε, p2) ∧ ... ∧ δ(pm−1, ε, pm) ∧ δ(pm, σ, qn)

∧δ(qn, ε, qn−1) ∧ ... ∧ δ(q2, ε, q1) ∧ δ(q1, ε, q) : p1, ..., pm, q1, ..., qn ∈ Q}.
Again, we use Lemmas 2.6 and 2.7 and obtain

dγ(atom(<))e ∧ dPath<−ε(c)e ≤
∨
{dPath<(d′)e ∧ δ(e(c′), ε, p1) ∧ δ(p1, ε, p2) ∧ ...

∧δ(pm−1, ε, pm) ∧ δ(pm, σ, qn) ∧ δ(qn, ε, qn−1) ∧ ... ∧ δ(q2, ε, q1) ∧ δ(q1, ε, q) :

m,n ≥ 0, d′ ∈ Tε(Q,Σ) with b(d′) = b(c′), e(d′) = e(c′)

and lbε(d
′) = lb(c′), p1, ..., pm, q1, ..., qn ∈ Q}.

We put d = d′εp1εp2...pm−1εpmσqnεqn−1...q2εq1εq. Then b(d) = b(d′) = b(c′), e(d) =
q = e(c), lbε(d) = lbε(d

′)σ = lb(c′)σ = lb(c), and

dPath<(d)e =dPath<(d′)e ∧ δ(e(c′), ε, p1) ∧ δ(p1, ε, p2) ∧ ... ∧ δ(pm−1, ε, pm)

∧ δ(pm, σ, qn) ∧ δ(qn, ε, qn−1) ∧ ... ∧ δ(q2, ε, q1) ∧ δ(q1, ε, q).

51

Therefore,

dγ(atom(<))e ∧ dPath<−ε(c)e ≤
∨
{dPath<(d)e : d ∈ Tε(Q,Σ), b(d) = b(c),

e(d) = e(c) and lbε(d) = lb(c)}

and the claim holds for the case of |c| = |c′|+ 1.

Now it follows from the above claim and Lemmas 2.6 and 2.7 that

dγ(atom(<))e ∧ drec[D]
<−ε(s)e = dγ(atom(<))e ∧ dγ(atom(<))e ∧

∨
{I(b(c)) ∧ T ′(e(c))

∧ dPath<−ε(c)e : c ∈ T (Q,Σ), lb(c) = s}
≤

∨
{dγ(atom(<))e ∧ I(b(c)) ∧ T ′(e(c)) ∧ dPath<−ε(c)e : c ∈ T (Q,Σ), lb(c) = s}

≤
∨
{dγ(atom(<))e ∧ I(b(c)) ∧ T ′(e(c)) ∧ ∨{dPath<(c′)e : c′ ∈ Tε(Q,Σ), b(c′) = b(c),

e(c′) = e(c) and lbε(c
′) = lb(c)} : c ∈ T (Q,Σ), lb(c) = s}

≤
∨
{dγ(atom(<))e ∧ I(b(c)) ∧ T ′(e(c)) ∧ dPath<(c′)e : c ∈ T (Q,Σ),

c′ ∈ Tε(Q,Σ), b(c′) = b(c), e(c′) = e(c) and lbε(c
′) = lb(c) = s}.

Note that for any c ∈ T (Q,Σ) and c′ ∈ Tε(Q,Σ) with b(c′) = b(c), e(c′) = e(c) and lbε(c
′) =

lb(c) = s}, we have:

dγ(atom(<))e ∧ I(b(c)) ∧
∨

q∈Q,m≥0

(T (q) ∧ δ(e(c), εm, q)) ∧ dPath<(c′)e

≤
∨

q∈Q,m≥0

(I(b(c)) ∧ T (q) ∧ dPath<(c′)e ∧ δ(e(c), εm, q))

≤
∨

q,q1,...,qm−1∈Q,m≥0

{dγ(atom(<))e ∧ I(b(c)) ∧ T (q) ∧ dPath<(c′)e

∧ δ(e(c), ε, q1) ∧ δ(q1, ε, q2) ∧ ... ∧ δ(qm−2, ε, qm−1) ∧ δ(qm−1, εq).

If we write d = c′εq1εq2...qm−2εqm−1εq, then b(d) = b(c′) = b(c), e(d) = q, lbε(d) =
lb(c′) = s and

dPath<(d)e = dPath<(c′)e∧δ(e(c), ε, q1)∧δ(q1, ε, q2)∧...∧δ(qm−2, ε, qm−1)∧δ(qm−1, ε, q).

Thus, by the definition of T ′ it is easy to see that

dγ(atom(<))e ∧ drec[D]
<−ε(s)e ≤

∨
{I(b(d)) ∧ T (e(d)) ∧ dPath<(d)e : d ∈ Tε(Q,Σ), lbε(d) = s}

= drec[D]
< (s)e.

The conclusions for recognizability in the width-first way may also be proved by
repeated applications of Lemmas 2.6 and 2.7, and we omit the details here.

For (3), the part from (3.1) to (3.2), (3.3) or (3.4) is immediate from (2) by
noting that dγ(atom(<))e = 1 always holds in a Boolean algebra `. Conversely, we

52

q5q4q1q0

q2

q3

✲ ✲

❃

s

s

✶

✲
σ, a

ε

ε

ε, b

ε, c

σ

Figure 4: Automaton b

53

demonstrate that (3.2) implies (3.1). For any a, b, c ∈ L, consider `−valued automa-
ton < = 〈{q0, q1, ..., q5}, δ, {q0}, {q5}〉 with ε−moves in which σ ∈ Σ, δ(q0, σ, q1) = a,
δ(q1, ε, q2) = δ(q1, ε, q3) = δ(q4, σ, q5) = 1, δ(q2, ε, q4) = b, δ(q3, ε, q4) = c, and δ
takes values 0 for other arguments (see Figure 4).

By a routine calculation we know that its ε−reduction is <−ε = 〈{q0, q1, ..., q5}, δ′, {q0}, {q5}〉
where δ′(q0, σ, q1) = δ′(q0, σ, q2) = δ′(q0, σ, q3) = a, δ′(q0, σ, q4) = (a ∧ b) ∨ (a ∧ c),
δ′(q1, σ, q5) = b ∨ c, δ′(q2, σ, q5) = b, δ′(q3, σ, q5) = c, δ′(q4, σ, q5) = 1, and δ takes
value 0 for other arguments (see Figure 5). Then it follows from (3.2) that

a ∧ (b ∨ c) = [a ∧ (b ∨ c)] ∨ (a ∧ b) ∨ (a ∧ c) ∨ [(a ∧ b) ∨ (a ∧ c)]
= drec[D]

<−ε(σσ)e
= drec[D]

< (σσ)e = (a ∧ b) ∨ (a ∧ c).

This shows that ` enjoys the distributivity of meet over union, and it is a Boolean
algebra.

To show that (3.3) implies (3.1), let < = 〈{q0, q1, q2, q3, q4}, δ, {q0}, {q4}〉, where
δ(q0, ε, q1) = b, δ(q0, ε, q2) = c, δ(q1, ε, q3) = δ(q2, ε, q3) = 1 and δ(q3, σ, q4) = a.

Then rec
[W]
< (σ2) = a ∧ (b ∨ c) and rec

[W]
<−ε(σ

2) = (a ∧ b) ∨ (a ∧ c).
The implication from (3.4) to (3.1) can be proved by a similar construction. Put

< = 〈{q0, q1, q2, q3, p1, p2}, δ, {q0}, {q3}〉, δ(q0, σ, q1) = a, δ(q1, σ, q2) = δ(p1, ε, q3) =
δ(p2, ε, q3) = 1, δ(q2, ε, p1) = b and δ(q2, ε, p2) = c, and let δ take value 0 for other

cases. Then rec
[W]
< (σ2) = (a ∧ b) ∨ (a ∧ c) and rec

[W]
<−ε(σ

2) = a ∧ (b ∨ c). �

3.4. Closure Properties of Orthomodular Lattice-Valued Regularity

It was shown in the classical automata theory that the class of regular languages
is closed under various operations such as union, intersection, complement, concate-
nation, the Kleene closure, substitution and homomorphism. In this section, we
are going to examine the closure properties of orthomodular lattice-valued regular
languages under these operations.

We first consider the inverse of an `−valued language. Let A ∈ LΣ∗ . Then the
inverse A−1 ∈ LΣ∗ of A is defined as follows: A−1(σ1...σm) = A(σm...σ1) for any
m ∈ ω and for any σ1, ..., σm ∈ Σ.

The following proposition shows that regularity and commutative regularity,
both in the depth-first way and the width-first way, are preserved by the inverse
operation.

Proposition 3.16. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be a complete orthomodular
lattice, and let → fulfil the property that a ↔ a = 1 for any a ∈ L. Then for any

54

q5

q4

q1

✲

q2

q3

σ, a

q0

✯

✿

③

s

❥③
✿

✯

σ, a

σ, a

σ, (a ∧ b) ∨ (a ∧ c)

σ, b ∨ c

σ, b

σ, c

σ

Figure 5: Automaton c

55

A ∈ LΣ∗ , we have:

|=` Reg
[D]
Σ (A)↔ Reg

[D]
Σ (A−1) and |=` Reg

[W]
Σ (A)↔ Reg

[W]
Σ (A−1);

|=` CReg
[D]
Σ (A)↔ CReg

[D]
Σ (A−1) and |=` CReg

[W]
Σ (A)↔ CReg

[W]
Σ (A−1).

Proof. We first consider Reg
[D]
Σ . Noting that A = (A−1)−1, it suffices to show

that
dReg[D]

Σ (A)e ≤ dReg[D]
Σ (A−1)e.

For any `−valued automaton < = (Q, δ, I, T), we define the inverse of < = 〈Q, δ, I, T 〉
to be the `−valued automaton <−1 = 〈Q, δ−1, T, I, 〉, where δ−1(p, σ, q) = δ(q, σ, p)

for any p, q ∈ Q and σ ∈ Σ. Then it is easy to see that rec
[D]
<−1 = (rec

[D]
<)−1, and

furthermore we have:

dReg[D]
Σ (A)e =

∨
{dA ≡ rec[D]

< e : < ∈ NFA(Σ, `)}

=
∨
{dA−1 ≡ (rec

[D]
<)−1e : < ∈ NFA(Σ, `)}

=
∨
{dA−1 ≡ rec[D]

<−1e : < ∈ NFA(Σ, `)}

≤
∨
{dA−1 ≡ rec[D]

℘ e : ℘ ∈ NFA(Σ, `)} = dRec[D]
Σ (A−1)e.

The proof for other versions of regularity is similar. �

The commutative regularity is preserved by the complement operation, but it is
not the case for the (noncommutative) regularity predicate.

Proposition 3.17. If ` = 〈L,≤,∧,∨,⊥, 0, 1〉 is a finite orthomodular lattice,
and → = →3, then for any A ∈ LΣ∗ , we have:

|=` CReg
[D]
Σ (A)→ CReg

[D]
Σ (Ac).

The same conclusion is valid for CReg
[W]
Σ .

Proof. For any < = 〈Q, δ, I, T 〉 ∈ NFA(Σ, `), we observe that `< = 〈LQ, δ, I1, T 〉
is an `−valued deterministic automaton and only T carries `−valued information.
Then we set (`<)c = 〈LQ, δ, I1, T

c〉, where for any X ∈ LQ, T c(X) = (T (X))c. It is

easy to see that for all s ∈ Σ∗, rec[D]

(`<)c
(s) = (rec

[D]

`<
(s))⊥.

56

Now by using Theorem 3.11 and Lemmas 2.6 and 2.7 we obtain:

dγ(atom(<) ∪ r(A)e ∧ dA ≡ rec[D]
< e ≤ dγ(atom(<) ∪ r(A)e ∧ dA ≡ rec[D]

< e ∧ drec
[D]
< ≡ rec

[D]

`<
e

=
∧
s∈Σ∗

(dγ(atom(<) ∪ r(A)e ∧ (A(s)→ rec
[D]
< (s)) ∧ (rec

[D]
< (s)→ rec

[D]

`<
(s)))∧∧

s∈Σ∗

(dγ(atom(<) ∪ r(A)e ∧ (rec
[D]

`<
(s)→ rec

[D]
< (s)) ∧ (rec

[D]
< (s)→ A(s)))

≤
∧
s∈Σ∗

(dγ(atom(<) ∪ r(A)e ∧ (A(s)→ rec
[D]

`<
(s)))∧∧

s∈Σ∗

(dγ(atom(<) ∪ r(A)e ∧ (rec
[D]

`<
(s)→ A(s))).

Then Lemma 2.12(2) yields:

dγ(atom(<) ∪ r(A)e ∧ dA ≡ rec[D]
< e ≤

∧
s∈Σ∗

((rec
[D]

`<
(s))⊥ → A⊥(s)) ∧

∧
s∈Σ∗

(A⊥(s)→ (rec
[D]

`<
(s))⊥)

=
∧
s∈Σ∗

(A⊥(s)↔ (rec
[D]

`<
(s))⊥)

=
∧
s∈Σ∗

(A⊥(s)↔ rec
[D]

(`<)c
(s))

= dAc ≡ rec[D]

(`<)c
e.

In addition, we have

dγ(atom(<) ∪ r(A)e ≤ dγ(atom(<) ∪ r(Ac)e

from Lemma 2.6. Therefore,

dγ(atom(<) ∪ r(A)e ∧ dA ≡ rec[D]
< e ≤ dγ(atom(<) ∪ r(Ac)e ∧ dAc ≡ rec[D]

(`<)c
e

≤ dCReg[D]
Σ (Ac)e.

Finally, since < is allowed to be arbitrary, it follows that

dCReg[D]
Σ (A)e =

∨
<∈NFA(Σ,`)

dγ(atom(<) ∪ r(A)e ∧ dA ≡ rec[D]
< e

≤ dCReg[D]
Σ (Ac)e. �

We now turn to deal with recognizability of the union of two `−valued languages.
For this purpose, we first introduce the union operation of `−valued finite automata.
Let < = 〈QA, δA, IA, TA〉 and ℘ = 〈QB, δB, IB, TB〉 ∈ NFA(Σ, `) be two `−valued
finite automata over Σ. We assume that QA ∩ QB = φ. Then the (disjoint) union
< ∪ ℘ of < and ℘ is defined to be = = 〈QC , δC , IC , TC〉, where:

57

(i) QC = QA ∪QB;

(ii) IC = IA ∪ IB;

(iii) TC = TA ∪ TB; and

(iv) δC : QC × Σ×QC → L is given as follows: for any p, q ∈ QC and σ ∈ Σ,

δC(p, σ, q) =


δA(p, σ, q), if p, q ∈ QA,
δB(p, σ, q), if p, q ∈ QB,
0, otherwise.

The following proposition describes the recognizability of the union of two `−valued
automata. As in the classical automata theory, a word s in Σ∗ is recognized by the
union of two `−valued automata if and only if s is recognized by one of them, no
matter the depth-first or width-first principle is adopted.

Proposition 3.18. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be a complete orthomodular
lattice. If the implication operator → satisfies that a ↔ a = 1 for any a ∈ L, then
for any <, ℘ ∈ NFA(Σ, `) and for any s ∈ Σ∗,

|=` rec<∪℘(s)↔ rec
[D]
< (s) ∨ rec[D]

℘ (s) and |=` rec<∪℘(s)↔ rec
[W]
< (s) ∨ rec[W]

℘ (s).

Proof. We only prove the conclusion in the depth-first way, and the other case
if left for the reader. Let s = σ1...σk. Then

drec[D]
<∪℘(s)e =

∨
{(IA ∪ IB)(q0) ∧ (TA ∪ TB)(qk) ∧

k−1∧
i=0

δA∪B(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QA ∪QB}

= [
∨
{(IA ∪ IB)(q0) ∧ (TA ∪ TB)(qk) ∧

k−1∧
i=0

δA∪B(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QA}]

∨ [
∨
{(IA ∪ IB)(q0) ∧ (TA ∪ TB)(qk) ∧

k−1∧
i=0

δA∪B(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QB}]

∨ [
∨
{(IA ∪ IB)(q0) ∧ (TA ∪ TB)(qk) ∧

k−1∧
i=0

δA∪B(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QA ∪QB,

and there are i, j such that 0 ≤ i, j ≤ k and qi ∈ QA and qj ∈ QB}].

From the definition of < ∪ ℘, we know that for any q0, q1, ..., qk ∈ QA,

(IA ∪ IB)(q0) = IA(q0),

(TA ∪ TB)(qk) = TA(qk),

k−1∧
i=0

δA∪B(qi, σi+1, qi+1) =

k−1∧
i=0

δA(qi, σi+1, qi+1),

58

and for any q0, q1, ..., qk ∈ QB,

(IA ∪ IB)(q0) = IB(q0),

(TA ∪ TB)(qk) = TB(qk),

k−1∧
i=0

δA∪B(qi, σi+1, qi+1) =
k−1∧
i=0

δB(qi, σi+1, qi+1).

If q0, q1, ..., qk ∈ QA ∪ QB, and there are i, j such that 0 ≤ i, j ≤ k and qi ∈ QA
and qj ∈ QB, then we can find some m ∈ {0, 1, ..., k − 1} such that qm ∈ QA and
qm+1 ∈ QB, or qm ∈ QB and qm+1 ∈ QA. Then δA∪B(qm, σm+1, qm+1) = 0, and

k−1∧
i=0

δA∪B(qi, σi+1, qi+1) = 0.

Therefore, it follows that

drec[D]
<∪℘(s)e = [

∨
{IA(q0) ∧ TA(qk) ∧

k−1∧
i=0

δA(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QA}]

∨ [
∨
{IB(q0) ∧ TB(qk) ∧

k−1∧
i=0

δB(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QB}]

= drec[D]
< (s) ∨ rec[D]

℘ (s)e. �

The following corollary slightly generalizes Example 3.5 as well as the last part
of Example 3.7.

Corollary 3.19. If Range(A) = {A(s) : s ∈ Σ∗} is finite, and Aλ = {s ∈
Σ∗ : A(s) ≥ λ} is a regular language (in classical automata theory) for every λ ∈
Range(A), then it holds that

|=` Reg
[D]
Σ (A).

Proof. Suppose that Range(A) = {λ1, ..., λn}. Then it is easy to see that

A =

n⋃
i=1

λiAλi .

From Example 3.7 we know that there exists an `−valued automaton <i such that
rec<i

= λiAλi for each i ≤ n. Thus, by proposition 3.18 we obtain

rec
[D]⋃n

i=1 <i
=

n⋃
i=1

λiAλi = A

59

and complete the proof. �

To present the fact that regularity is preserved by union operation of `−valued
languages, we need to introduce a new notion of conformal and commutative regu-
larity.

Definition 3.20. Let Σ be a nonempty finite alphabet. The conformal and
commutative regularity of depth-first is defined to be a binary `−valued predicate

on Σ∗, ConCReg[D]
Σ ∈ LLΣ∗×LΣ∗

, and for each A,B ∈ LΣ∗ ,

ConCReg
[D]
Σ (A,B)

def
= (∃<, ℘ ∈ NFA(Σ, `))(γ(atom(<) ∪ atom(℘) ∪ r(A)

∪ r(B)) ∧A ≡ rec[D]
< ∧B ≡ rec[D]

℘).

We can also define a notion of conformal and commutative regularity in the
width-first way, but we may note that it is equivalent to the one in the depth-first
way whenever the implication operator is taken to be the Sasaki hook→3 by Lemma
3.3.

Corollary 3.21. If → = →3, then for any A,B ∈ LΣ∗ , we have:

|=` ConCReg
[D]
Σ (A,B)→ CReg

[D]
Σ (A ∪B).

Proof. It suffices to show that for <, ℘ ∈ NFA(Σ, `),

dγ(Atom)e ∧ dA ≡ rec[D]
< e ∧ dB ≡ rec[D]

℘ e ≤ dCReg[D]
Σ (A ∪B)e,

where Atom = atom(<) ∪ atom(℘) ∪ r(A) ∪ r(B). In fact, it follows from Lemmas
2.7 and 2.12(1) and Proposition 3.18 that

dγ(Atom)e ∧ dA ≡ rec[D]
< e ∧ dB ≡ rec[D]

℘ e = dγ(Atom)e∧∧
s∈Σ∗

(A(s)↔ rec
[D]
< (s)) ∧

∧
s∈Σ∗

(B(s)↔ rec[D]
℘ (s))

= dγ(Atom)e ∧
∧
s∈Σ∗

[(A(s)↔ rec
[D]
< (s)) ∧ (B(s)↔ rec[D]

℘ (s))]

≤ dγ(Atom)e ∧
∧
s∈Σ∗

[(A ∪B)(s)↔ rec
[D]
<∪℘(s)]

≤ dγ(atom(< ∪ ℘) ∪ r(A ∪B))e ∧ dA ∪B ≡ rec[D]
<∪℘e

≤ dCReg[D]
Σ (A ∪B)e. �

60

We now consider the product of two `−valued automata. Let < = 〈QA, δA, IA, TA〉
and ℘ = 〈QB, δB, IB, TB〉 ∈ NFA(Σ, `) be two `−valued automata over Σ. Then
their product <× ℘ is defined to be = = 〈QC , δC , IC , TC〉, where:

(i) QC = QA ×QB;

(ii) IC = IA × IB;

(iii) TC = TA × TB; and

(iv) δC : QC × Σ×QC → L and for any pa, qa ∈ QA, pb, qb ∈ QB and σ ∈ Σ,

δC((pa, pb), σ, (qa, qb)) = δA(pa, σ, qa) ∧ δB(pb, σ, qb).

It is well-known in the classical automata theory that the language accepted by
the union of two finite automata is the union of the languages accepted by these
two automata, and the language accepted by the product of two finite automata is
the intersection of the languages accepted by the factor automata. Proposition 3.18
shows that the conclusion about the union of two automata can be generalized into
the theory of automata based on quantum logic without appealing any additional
condition. One may naturally expect that the conclusion for product of automata
can also be easily generalized into the framework of quantum logic. However, the
case for the product of two automata is much more complicated, and the follow-
ing proposition tells us that in order to make the above conclusion about product
of automata still valid in the automata theory based on quantum logic, a certain
commutativity is necessary to be added on the basic actions of the factor automata.

Proposition 3.22. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be a complete orthomodular
lattice.

(1) For any <, ℘ ∈ NFA(Σ, `), and for any s ∈ Σ∗, we have:

|=` rec
[D]
<×℘(s)→ rec

[D]
< (s) ∧ rec[D]

℘ (s) and |=` rec
[W]
<×℘(s)→ rec

[W]
< (s) ∧ rec[W]

℘ (s).

(2) For any <, ℘ ∈ NFA(Σ, `), and for any s ∈ Σ∗, we have:

|=` γ(atom(<) ∪ atom(℘)) ∧ rec[D]
< (s) ∧ rec[D]

℘ (s)→ rec
[D]
<×℘(s),

|=` γ(atom(<) ∪ atom(℘)) ∧ rec[W]
< (s) ∧ rec[W]

℘ (s)→ rec
[W]
<×℘(s),

and in particular if → = →3, then

|=` γ(atom(<) ∪ atom(℘))→ (rec
[D]
< (s) ∧ rec[D]

℘ (s)↔ rec
[D]
<×℘(s)),

|=` γ(atom(<) ∪ atom(℘))→ (rec
[W]
< (s) ∧ rec[W]

℘ (s)↔ rec
[W]
<×℘(s)).

(3) The following three statements are equivalent:

(3.1) ` is a Boolean algebra.

61

(3.2) for all <, ℘ ∈ NFA(Σ, `), and for all s ∈ Σ∗,

|=` rec
[D]
< (s) ∧ rec[D]

℘ (s)↔ rec
[D]
<×℘(s).

(3.3) for all <, ℘ ∈ NFA(Σ, `), and for all s ∈ Σ∗,

|=` rec
[W]
< (s) ∧ rec[W]

℘ (s)↔ rec
[W]
<×℘(s).

Proof. We first prove (1) and (2) for recognizability in the depth-first way. We
have directly:

drec[D]
<×℘(s)e =

∨
{(IA × IB)(qa0, qb0) ∧ (TA × TB)(qak, qbk) ∧

k−1∧
i=0

δA×B((qai, qbi),

σi+1, (qa(i+1), qb(i+1))) : qa0, qa1, ..., qak ∈ QA and qb0, qb1, ..., qbk ∈ QB}

=
∨
{IA(qa0) ∧ IB(qb0) ∧ TA(qak) ∧ TB(qbk) ∧

k−1∧
i=0

δA(qai, σi+1, qa(i+1))∧

k−1∧
i=0

δB(qbi, σi+1, qb(i+1)) : qa0, qa1, ..., qak ∈ QA and qb0, qb1, ..., qbk ∈ QB},

and

drec[D]
< (s) ∧ rec[D]

℘ (s)e = [
∨
{IA(q0) ∧ TA(qk) ∧

k−1∧
i=0

δA(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QA}]

∧ [
∨
{IB(q0) ∧ TB(qk) ∧

k−1∧
i=0

δB(qi, σi+1, qi+1) : q0, q1, ..., qk ∈ QB}]

from the definitions of product and recognizability of `−valued automata. It is clear
that

drec[D]
<×℘(s)e ≤ drec[D]

< (s) ∧ rec[D]
℘ (s)e.

This indicates that (1) is true for recognizability of depth-first. By using Lemmas
2.5(2), 2.6 and 2.7 twice, we can deduce that

dγ(atom(<) ∪ atom(℘)) ∧ rec[D]
< (s) ∧ rec[D]

℘ (s)e ≤ drec[D]
<×℘(s)e.

Thus, (2) is proved for recognizability of depth-first.

Similarly, we are able to prove (1) and (2) for recognizability of width-first.

The part of (3) that (3.1) implies (3.2) and (3.3) is immediately derivable from
(2) because we have dγ(atom(<) ∪ atom(℘))e = 1 provided ` is a Boolean algebra.
Conversely, we show that (3.2) implies (3.1) by constructing two `−valued automata
and examining the behavior of their product. For any a, b, c ∈ L, we choose some

62

σ0 ∈ Σ and set < = 〈{p}, δA, {p}, {p}〉, where δA(p, σ, p) = a if σ = σ0 and 0
otherwise, and ℘ = 〈{q, r, s}, δB, {q}, {r, s}〉, where δB(x, σ, y) = b if x = q, y = r,
and σ = σ0; c if x = q, y = s, and σ = σ0; 0 otherwise. Then <, ℘ ∈ NFA(Σ, `),
and it is easy to see that

<× ℘ = 〈{(p, q), (p, r), (p, s)}, δA×B, {(p, q)}, {(p, r), (p, s)}〉,

where δA×B((p, x), σ, (p, y)) = a ∧ b if x = q, y = r and σ = σ0; a ∧ c if x = q, y = s
and σ = σ0; and 0 otherwise (see Figure 6). Furthermore, by a routine calculation
we have:

drec[D]
< (σ0)e = a,

drec[D]
℘ (σ0)e = b ∨ c, and

drec[D]
<×℘(σ0)e = (a ∧ b) ∨ (a ∧ c).

Therefore, with (3.2) we finally obtain

a ∧ (b ∨ c) = drec[D]
< (σ0)e ∧ drec[D]

℘ (σ0)e
= drec[D]

<×℘(σ0)e = (a ∧ b) ∨ (a ∧ c).

Note that for any < = 〈Q, δ, I, T 〉 ∈ NFA(Σ, `), it holds that drec[W]
< (s)e =

drec[D]
< (s)e if |s| = 1 and T is a classical (two-valued) subset of Q. Thus, the above

construction can also be used to show that (3.3) implies (3.1). �

Corollary 3.23. If → = →3 then for any A,B ∈ LΣ∗ , we have:

|=` ConCReg
[D]
Σ (A,B)→ CReg

[D]
Σ (A ∩B).

Proof. Similar to Corollary 3.21. �

To prove the closure property of orthomodular lattice-valued regularity under
the concatenation operation of languages, we propose the concept of concatenation
of two orthomodular lattice-valued automata. Suppose that <1 = 〈Q1, δ1, I1, T1〉,
<2 = 〈Q2, δ2, I2, T2〉 ∈ NFA(Σ, `) be two `−valued finite automata, andQ1∩Q2 = φ.
We define the concatenation of <1 and <2 to be `−valued automaton <1<2 =
〈Q1 ∪Q2, δ, I1, T2〉 with ε−moves, where δ : Q× (Σ ∪ {ε})×Q→ L is given by

δ(p, σ, q) =


δ1(p, σ, q), if p, q ∈ Q1 and σ 6= ε,

δ2(p, σ, q), if p, q ∈ Q2 and σ 6= ε,

T1(p) ∧ I2(q), if p ∈ Q1, q ∈ Q2 and σ = ε,

0, otherwise.

63

(p, r)

(p, s)

✲

σ0, a ∧ c

σ0, a ∧ b
✿

③

(p, q)

Figure 6: Automaton d

64

The following proposition clarifies the relation between the language recognized
by the concatenation of two orthomodular lattice-valued automata and the concate-
nation of the languages recognized by the two automata.

Proposition 3.24. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice and
→ fulfil the Birkhoff-von Neumann requirement.

(1) For all <1,<2 ∈ NFA(Σ, `), and for each s ∈ Σ∗,

|=` rec
[D]
<1<2

(s)→ (rec
[D]
<1
· rec[D]

<2
)(s) and |=` rec

[W]
<1<2

(s)→ (rec
[W]
<1
· rec[W]

<2
)(s).

(2) For all <1,<2 ∈ NFA(Σ, `), and for each s ∈ Σ∗,

|=` γ(atom(<1) ∪ atom(<2)) ∧ (rec
[D]
<1
· rec[D]

<2
)(s)→ rec

[D]
<1<2

(s),

|=` γ(atom(<1) ∪ atom(<2)) ∧ (rec
[W]
<1
· rec[W]

<2
)(s)→ rec

[W]
<1<2

(s),

and if → = →3 then

|=` γ(atom(<1) ∪ atom(<2))→ (rec
[D]
<1<2

(s)↔ (rec
[D]
<1
· rec[D]

<2
)(s)),

|=` γ(atom(<1) ∪ atom(<2))→ (rec
[W]
<1<2

(s)↔ (rec
[W]
<1
· rec[W]

<2
)(s)).

(3) The following three statements are equivalent:

(3.1) ` is a Boolean algebra;

(3.2) for all <1,<2 ∈ NFA(Σ, `), and for each s ∈ Σ∗,

|=` rec
[D]
<1<2

(s)↔ (rec
[D]
<1
· rec[D]

<2
)(s).

(3.3) for all <1,<2 ∈ NFA(Σ, `), and for each s ∈ Σ∗,

|=` rec
[W]
<1<2

(s)↔ (rec
[W]
<1
· rec[W]

<2
)(s).

Proof. (1) We first consider the case of depth-first recognizability. For any
q0, q1, ..., qm ∈ Q1∪Q2, σ1, ..., σm ∈ Σ∪{ε} with σ1...σm = s (note that it is possible
that |s| < m since σ1, ..., σm may contain ε’s), if

I1(q0) ∧ T2(qm) ∧
m∧
i=1

δ(qi−1, σi, qi) > 0,

then there exists j ≤ m such that σj = ε, σi 6= ε (i 6= j), q0, ..., qj−1 ∈ Q1,

65

qj , ..., qm ∈ Q2. Thus, s = σ1...σj−1σj+1...σn, and

I1(q0) ∧ T2(qm) ∧
m∧
i=1

δ(qi−1, σi, qi) = I1(q0) ∧ T2(qm) ∧
j−1∧
i=1

δ1(qi−1, σi, qi)

∧ T1(qj−1) ∧ I2(qj) ∧
m∧

i=j+1

δ2(qi−1, σi, qi)

= [I1(q0) ∧ T1(qj−1) ∧
j−1∧
i=1

δ1(qi−1, σi, qi)] ∧ [I2(qj) ∧ T2(qm) ∧
m∧

i=j+1

δ2(qi−1, σi, qi)]

≤ rec[D]
<1

(σ1...σj−1) ∧ rec[D]
<2

(σj+1...σm)

≤
∨
{rec[D]

<1
(s1) ∧ rec[D]

<2
(s2) : s1s2 = s}

= d(rec[D]
<1
· rec[D]

<2
)(s)e.

For width-first recognizability, we note that

drec[W]
<1<2

(s)e =
∨

t−ε=s,q∈Q2

[δt(I1)(q) ∧ T2(q)].

So, it suffices to show that for each t ∈ (Σ∪{ε})∗ with t−ε = s, and for each q ∈ Q2,

δt(I1)(q) ∧ T2(q) ≤
∨

s1s2=s

(drec[W]
<1

(s1)e ∧ drec[W]
<2

(s2)e).

From the definitions of δ and δt(·) it may be observed that δt(I1)(q) = 0 whenever t
contains zero or more than two occurrences of ε. Thus, we can assume that t = t1εt2
and t1, t2 ∈ Σ∗. For any q ∈ Q1, it is obvious that δt1ε(I1)(q) = 0. If q ∈ Q2, then

δt1ε(I1)(q) =
∨
p∈Q1

[δt1(I1)(p) ∧ δ(p, ε, q)]

=
∨
p∈Q1

[δt1(I1)(p) ∧ T1(p) ∧ I2(q)]

≤
∨
p∈Q1

(δt1(I1)(p) ∧ T1(p)) ∧ I2(q)

= drec[W]
<1

(t1)e ∧ I2(q).

Furthermore, for any q ∈ Q2, we can show that

δt(I1)(q) = δt2(δt1ε(I1))(q) ≤ drec[W]
<1

(t1)e ∧ δt2(I2)(q)

66

by induction on the length |t2| of t2. Since t−ε = s, we have t1t2 = s. Therefore,

δt(I1)(q) ∧ T2(q) ≤ drec[W]
<1

(t1)e ∧ δt2(I2)(q) ∧ T2(q)

≤ drec[W]
<1

(t1)e ∧
∨
p∈Q2

[δt2(I2)(p) ∧ T2(p)]

= drec[W]
<1

(t1)e ∧ drec[W]
<2

(t2)e
≤

∨
s1s2=s

(drec[W]
<1

(s1)e ∧ drec[W]
<2

(s2)e)

= d(rec[W]
<1
· rec[W]

<2
)(s)e.

(2) We only consider the depth-first case. First, we can use Lemmas 2.6 and 2.7
to derive that

dγ(atom(<1) ∪ atom(<2)) ∧ (rec
[D]
<1
· rec[D]

<2
)(s)e

= dγ(atom(<1) ∪ atom(<2)) ∧ (∃s1, s2 ∈ Σ∗)(s1s2 = s ∧ rec[D]
<1

(s1) ∧ rec[D]
<2

(s2))e
= dγ(atom(<1) ∪ atom(<2))e ∧

∨
s1s2=s

(rec
[D]
<1

(s1) ∧ rec[D]
<2

(s2))

≤
∨

s1s2=s

(dγ(atom(<1) ∪ atom(<2))e ∧ rec[D]
<1

(s1) ∧ rec[D]
<2

(s2)).

For any s1, s2 ∈ Σ∗ with s1s2 = s, we use Lemmas 2.6 and 2.7 again, and this
yields:

dγ(atom(<1) ∪ atom(<2))e ∧ rec[D]
<1

(s1) ∧ rec[D]
<2

(s2) = dγ(atom(<1) ∪ atom(<2))e∧∨
lb(c1)=s1

(I1(b(c1)) ∧ T1(e(c1)) ∧ dPath<1(s1)e) ∧ ∨lb(c2)=s2(I2(b(c2)) ∧ T2(e(c2)) ∧ dPath<2(s2)e)

≤
∨

lb(c1)=s1,lb(c2)=s2

(I1(b(c1)) ∧ T1(e(c1)) ∧ dPath<1(s1)e ∧ I2(b(c2)) ∧ T2(e(c2)) ∧ dPath<2(s2)e).

Furthermore, for any c1 = p0σ1p1...pm−1σmpm and c2 = q0τ1q1...qn−1τnqn with
s1 = σ1...σm and s2 = τ1...τn, we have:

I1(b(c1)) ∧ T1(e(c1)) ∧ dPath<1(s1)e ∧ I2(b(c2)) ∧ T2(e(c2)) ∧ dPath<2(s2)e =

I1(p0) ∧ T2(qm) ∧
m∧
i=1

δ1(pi−1, σi, pi) ∧ T1(pm) ∧ I2(q0) ∧
n∧
j=1

δ2(qj−1, τj , qj)

= I1(p0) ∧ T2(qm) ∧ dPath<1<2(p0σ1p1...pm−1σmpmεq0τ1q1...qn−1τnqn)e
≤ rec[D]

<1<2
(s).

(3) The part that (3.1) implies (3.2) and (3.3) is a simple corollary of (2). Con-
versely, to prove the implication from (3.2) to (3.1), it suffices to show that ` en-
joys distributivity, that is, for any a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). Let

67

<1 = 〈{p0, p1}, δ1, {p0}, {p1}〉 and <2 = 〈{q0, q1, q2}, {q0}, δ2, {q1, q2}〉, where σ ∈ Σ,
δ1(p0, σ, p1) = a, δ2(q0, σ, q1) = b, δ2(q0, σ, q2) = c, and δ1, δ2 take value 0 for other
arguments (see Figure 7). Then it follows that

a ∧ (b ∨ c) = d(∃s1, s2 ∈ Σ∗)(s1s2 = σσ ∧ rec[D]
<1

(s1) ∧ rec[D]
<2

(s2))e
= drec[D]

<1<2
(σσ)e

= (a ∧ b) ∨ (a ∧ c).

The above automata show that (3.3) implies (3.1) too. �

Corollary 3.25. Let → = →3. Then for any A,B ∈ LΣ∗ , it holds that

|=` ConCReg
[D]
Σ (A,B)→ CReg

[D]
Σ (A ·B).

Proof. Similar to Corollary 3.21. �

We now turn to consider the Kleene closure of an orthomodular lattice-valued
language. For this purpose, we need to introduce the fold construction of an or-
thomodular lattice-valued automaton. Let < = 〈Q, δ, I, T 〉 ∈ NFA(Σ, `) be an
`−valued automaton, and let q0 /∈ Q be a new state. We define the fold of < to be
`−valued automaton <∗ = 〈Q ∪ {q0}, δ∗, {q0}, T ∪ {q0}〉 with ε−moves, where

δ∗ : (Q ∪ {q0})× (Σ ∪ {ε})× (Q ∪ {q0})→ L

is given by

δ∗(p, σ, q) =


I(q), if p = q0 and σ = ε,

δ(p, σ, q), if p, q ∈ Q and σ 6= ε,

T (p) ∧ I(q), if p, q ∈ Q and σ = ε,

0, otherwise.

The language accepted by the fold of an orthomodular lattice-valued automaton
is then clearly presented by the following proposition.

Proposition 3.26. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and
let → enjoy the Birkhoff-von Neumann requirement.

(1) For any < ∈ NFA(Σ, `) and for all s ∈ Σ∗,

|=` rec
[D]
<∗ (s)→ (rec

[D]
<)∗[D](s) and |=` rec

[W]
<∗ (s)→ (rec

[W]
<)∗[W](s).

(2) For any < ∈ NFA(Σ, `) and for each s ∈ Σ∗,

|=` γ(atom(<)) ∧ (rec
[D]
<)∗[D](s)→ rec

[D]
<∗ (s),

68

q2

q0p0

✯

❥

✲ ✲

q1

.................✲
ε

σ, b

σ, a

σ, c

❄

p1

Figure 7: Automaton e

69

|=` γ(atom(<)) ∧ (rec
[W]
<)∗[W](s)→ rec

[W]
<∗ (s),

and in particular if → = →3, then

|=` γ(atom(<))→ (rec
[D]
<∗ (s)↔ (rec

[D]
<)∗[D](s)),

|=` γ(atom(<))→ (rec
[W]
<∗ (s)↔ (rec

[W]
<)∗[W](s)).

(3) The following three statements are equivalent:

(3.1) ` is a Boolean algebra;

(3.2) for all < ∈ NFA(Σ, `) and s ∈ Σ∗,

|=` rec
[D]
<∗ (s)↔ (rec

[D]
<)∗[D](s);

(3.3) for all < ∈ NFA(Σ, `) and s ∈ Σ∗,

|=` rec
[W]
<∗ (s)↔ (rec

[W]
<)∗[W](s).

Proof. We only prove (1) for width-first recognizability and that each of (3.2)
and (3.3) implies (3.1). For the other part, the proof is similar to that of Proposition
3.24, and here we omit the details.

To show that drec[W]
<∗ (s)e ≤ d(rec[W]

<)∗[W](s)e, we observe that

drec[W]
<∗ (s)e =

∨
t−ε=s,q∈Q∪{q0}

[δ∗t (q0)(q) ∧ (T ∪ {q0})(q)].

Consequently, it suffices to demonstrate that for each t ∈ (Σ ∪ {ε})∗ with t−ε = s,
and for each q ∈ Q ∪ {q0}, there exists n ≥ 0 such that

δ∗t (q0)(q) ∧ (T ∪ {q0})(q) ≤ (rec
[W]
<)n(s).

It is clear for the case of |t| = 0 or 1. Note that δ∗t (q0)(q0) = 0 if |t| ≥ 1. Thus we
can assume that q ∈ Q. In this case, (T ∪ {q0})(q) = T (q0), and we only need to
show that

δ∗t (q0)(q) ∧ T (q) ≤ (rec
[W]
<)n(s)

for some n ≥ 0. If ε is not the first symbol of t, it is easy to see that δ∗t (q0)(q) = 0.
Thus, it suffices to consider the case of t = εu for some u ∈ (Σ ∪ {ε})∗. If u ∈ Σ∗,
then u = s, and from δ∗ε(q0) = I we know that

δ∗t (q0)(q) ∧ T (q) ≤ δs(I)(q) ∧ T (q) ≤ rec[W]
< (s).

70

If u contains ε, we suppose that u = u1εu
′ and u1 does not contain ε. Then for any

p ∈ Q we have:

δ∗ε(δ
∗
εu1

(q0))(p) =
∨

p′∈Q∪{q0}
[δ∗εu1

(q0)(p′) ∧ δ∗(p′, ε, p)]

=
∨
p′∈Q

[δ∗u1
(I)(p′) ∧ T (p′) ∧ I(p)]

≤
∨
p′∈Q

[δ∗u1
(I)(p′) ∧ T (p′)] ∧ I(p)

= rec
[W]
< (u1) ∧ I(p).

Since δ∗t (q0)(q) = δ∗u2
(δ∗ε(δ

∗
εu1

(q0)))(q), we can repeat this procedure for u′. The
above inequality will be used in this repetition. Note that |u2| < |t|. Such a repeti-
tion should stop in n steps for some n <∞, and we finally obtain u1, u2, ..., un ∈ Σ∗

such that s = u1u2...un and

δ∗t (q0)(q) ∧ T (q) ≤ (rec
[W]
<)n(u1u2...un) = (rec

[W]
<)n(s).

To show that (3.2) implies (3.1), we assume that a, b, c ∈ L and want to construct
an `−valued automaton for which the validity of (3.2) leads to a∧(b∨c) = (a∧b)∨(a∧
c). Let < = 〈{q1, q2, ..., q6}, δ, {q1, q2, q3}, {q6}〉 in which δ(q1, σ, q4) = δ(q3, σ, q5) = 1,
δ(q2, σ, q6) = a, δ(q4, σ, q6) = b, δ(q5, σ, q6) = c, and δ takes value 0 for the other
arguments. Then <∗ is visualized as Figure 8.

We now have

a ∧ (b ∨ c) = d(∃m ≥ 0, s1, ..., sm ∈ Σ∗)(s1...sm = σ3 ∧
m∧
i=1

rec
[D]
< (si))e

= rec
[D]
<∗ (σ3)

= (a ∧ b) ∨ (a ∧ c).

A similar construction shows that (3.3) implies (3.1). �

From the above proposition, we are able to demonstrate that the predicates

CReg
[D]
Σ and CReg

[W]
Σ are preserved by the Kleene closure. The corresponding

result for the predicate Reg
[D]
Σ or Reg

[W]
Σ is not true in general.

Corollary 3.27. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and
let → = →3 . Then for any A ∈ LΣ∗ , we have:

|=` CReg
[D]
Σ (A)→ CReg

[D]
Σ (A∗[D]) and |=` CReg

[W]
Σ (A)→ CReg

[W]
Σ (A∗[W]).

71

q6

q4q1

q2

q3 q5

q0

❄

❄

❄

✲

❥
✲

✲

✯

.....
.....

.....
.....

.....
.....

..

.............................

.................................

✯

✲

❥

■

ε

ε

ε

σ

σ, a

σ, b

σ, c

...

.............................

......
......

......
......

.......
....

....
....

....
....

...

σ

ε

Figure 8: Automaton f

72

Proof. We only prove the first conclusion, and the second is left for the reader.
The proof is similar to that of Proposition 3.17. The point here is to show the
following inequality:

dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec[D]
< e ≤ dA∗ ≡ rec

[D]
<∗ e

for any < ∈ NFA(Σ, `). In fact, by using Lemma 2.12(1) we have:

dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec[D]
< e = dγ(atom(<) ∪ r(A))e ∧

∧
s∈Σ∗

(A(s)↔ rec
[D]
< (s))

≤ dγ(atom(<) ∪ r(A))e ∧
∧
s∈Σ∗

(
∨

s1...sm=s

m∧
i=1

A(si)↔
∨

s1...sm=s

m∧
i=1

rec
[D]
< (si))

= dγ(atom(<) ∪ r(A))e ∧ dA∗ ≡ (rec
[D]
<)∗[D]e.

On the other hand, it follows from Proposition 3.25 that

dγ(atom(<))e ≤ d(rec[D]
<)∗[D] ≡ rec[D]

<∗ e.

Then with Lemma 2.12(3) we obtain:

dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec[D]
< e ≤ dγ(atom(<) ∪ r(A))e ∧ dA∗ ≡ (rec

[D]
<)∗[D]e

∧ d(rec[D]
<)∗[D] ≡ rec[D]

<∗ e
≤ dA∗ ≡ rec[D]

<∗ e. �

To conclude this section, we show that both the predicates Reg
[D]
Σ , Reg

[W]
Σ ,

CReg
[D]
Σ and CReg

[W]
Σ are preserved by the pre-image of a homomorphism between

two languages. But the closure property of an orthomodular lattice-valued regular
language under homomorphism is postponed to be examined in the next section,
after the notion of orthomodular lattice-valued regular expression is proposed.

Let < = 〈Q, δ, I, T 〉 ∈ NFA(Γ, `) be an `−valued automaton over Γ. Then
the pre-image of < under h is defined to be an `−valued automaton h−1(<) =
〈Q, h−1(δ), I, T 〉 ∈ NFA(Σ, `) over Σ, where for any p, q ∈ Q and σ ∈ Σ,

h−1(δ)(p, σ, q) = δ(p, h(σ), q).

The pre-image of a homomorphism has a very nice compatibility with the predi-

cates Reg
[D]
Σ , Reg

[W]
Σ , CReg

[D]
Σ and CReg

[W]
Σ , and no commutativity is needed here.

Proposition 3.28. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, let
→ enjoy the Birkhoff-von Neumann requirement, and let h : Σ→ Γ∗ be a mapping.
Then for any < ∈ NFA(Γ, `) and for any s ∈ Σ∗, it holds that

|=` rec
[D]
h−1(<)

(s)↔ rec
[D]
< (h(s)) and |=` rec

[W]
h−1(<)

(s)↔ rec
[W]
< (h(s)).

73

Proof. We only consider depth-first recognizability, and the case of width-first
recognizability is similar. Suppose that s = σ1σ2...σn. Then

drec[D]
h−1(<)

(s)e =
∨
{I(q0) ∧ T (qn) ∧

n−1∧
i=0

h−1(δ)(qi, σi+1, qi+1) : q0, q1, ..., qn ∈ Q}

=
∨
{I(q0) ∧ T (qn) ∧

n−1∧
i=0

δ(qi, h(σi+1), qi+1) : q0, q1, ..., qn ∈ Q}

= drec[D]
< (h(σ1)h(σ2)...h(σn))e

= drec[D]
< (h(s))e. �

Corollary 3.29. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, let →
enjoy the Birkhoff-von Neumann requirement, and let h : Σ → Γ∗ be a mapping.
Then for any B ∈ LΓ∗ ,

|=` Reg
[D]
Γ (B)→ Reg

[D]
Σ (h−1(B)) and |=` Reg

[W]
Γ (B)→ Reg

[W]
Σ (h−1(B)),

|=` CReg
[D]
Γ (B)→ CReg

[D]
Σ (h−1(B)) and |=` CReg

[W]
Γ (B)→ CReg

[W]
Σ (h−1(B)).

Proof. From the above proposition we have

h−1(rec
[D]
<)(s) = rec

[D]
< (h(s)) = rec

[D]
h−1(<)

(s)

for all s ∈ Σ∗. Then with Lemma 2.13 we obtain

dReg[D]
Γ (B)e =

∨
{dB ≡ rec[D]

< e : < ∈ NFA(Γ, `)}

≤
∨
{dh−1(B) ≡ h−1(rec

[D]
<)e : < ∈ NFA(Γ, `)}

=
∨
{dh−1(B) ≡ rec[D]

h−1(<)
e : < ∈ NFA(Γ, `)}

≤
∨
{dh−1(B) ≡ rec[D]

℘ e : ℘ ∈ NFA(Σ, `)}

= dReg[D]
Σ (h−1(B))e.

It is similar for the other cases. �

3.5. The Kleene Theorem for Orthomodular Lattice-Valued Lan-
guages

One of the most interesting results in classical automata theory is the Kleene
theorem which shows the equivalence between finite automata and regular expres-
sions. The main aim of this section is to present an orthomodular lattice-valued
generalization of the Kleene theorem.

74

Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and let Σ be an nonempty
set of input symbols. Then the language of `−valued regular expressions over Σ has
the alphabet (Σ ∪ {ε, φ}) ∪ (L ∪ {+, ·, ∗}). The symbols in Σ ∪ {ε, φ} will be used
to stand for atomic expressions, and the symbols in L ∪ {+, ·, ∗} will be used to
denote operators for building up compound expressions: ∗ and all λ ∈ L are unary
operators, and +, · are binary ones. We use α, β, ... to act as meta-symbols for
regular expressions. For any expression α, L[D](α) and L[W](α) denote the languages
generated by α in the depth-first way and the width-first way, respectively. Thus,
both L[D](α) and L[W](α) will be used to denote an `−valued subset of Σ∗; that
is, L[D](α), L[W](α) ∈ LΣ∗ . Orthomodular lattice-valued regular expressions and
the orthomodular lattice-valued languages denoted by them are formally defined as
follows:

(i) For each a ∈ Σ, a is a regular expression, and L[D](a) = L[W](a) = {a}; ε and
φ are regular expressions, and L[D](ε) = L[W](ε) = {ε}, L[D](φ) = L[W](φ) = ∅.

(ii) If both α and β are regular expressions, then for each λ ∈ L, λα is a regular
expression, and

L[D](λα) = λL[D](α), L[W](λα) = λL[W](α),

and α+ β, α · β and α∗ are all regular expressions, and

L[D](α+ β) = L[D](α) ∪ L[D](β), L[W](α+ β) = L[W](α) ∪ L[W](β),

L[D](α · β) = L[D](α) · L[D](β), L[W](α · β) = L[W](α) · L[W](β),

L[D](α∗) = L(α)∗[D], L[W](α∗) = L(α)∗[W].

It is easy to see that the only difference between orthomodular lattice-valued regular
expressions and the classical ones is that the additional unary (scalar) operators
λ ∈ L are permitted to occur in the former.

The central part of the Kleene theorem is a mechanism to transform a finite au-
tomaton into a regular expression. This mechanism has a straightforward extension
in the framework of orthomodular lattice-valued automata. Let < = 〈Q, δ, I, T 〉 ∈
NFA(Σ, `) be an `−valued automaton over Σ. For any u, v ∈ Q and X ⊆ Q, αXuv is
defined by induction on the cardinality |X| of X :

(1)

α∅uv =

{∑
σ∈Σ δ(u, σ, v)σ, if u 6= v,

ε+
∑

σ∈Σ δ(u, σ, v)σ, if u = v.

(2) if X 6= ∅, then we choose any q ∈ X and define

αXuv = αX−{q}uv + αX−{q}uq · (αX−{q}qq)∗ · αX−{q}qv .

Then the `−valued regular expression

k(<) =
∑
u,v∈Q

(I(u) ∧ T (v))αQuv

75

is called a Kleene representation of <.
The following theorem describes properly the relationship between the language

recognized by an orthomodular lattice-valued automaton and the language expressed
by its Kleene representation.

Theorem 3.30. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and
let → satisfy the Birkhoff-von Neumann requirement.

(1) For any < ∈ NFA(Σ, `) and s ∈ Σ∗, if k(<) is a Kleene representation of <,
then

|=` rec
[D]
< (s)→ s ∈ L[D](k(<)) and |=` rec

[W]
< (s)→ s ∈ L[W](k(<))

(2) For any < ∈ NFA(Σ, `) and s ∈ Σ∗, and for any Kleene representation k(<)
of <, we have:

|=` γ(atom(<)) ∧ s ∈ L[D](k(<))→ rec
[D]
< (s),

|=` γ(atom(<)) ∧ s ∈ L[W](k(<))→ rec
[W]
< (s),

and especially if → = →3, then

|=` γ(atom(<))→ (rec
[D]
< (s)↔ s ∈ L[D](k(<))),

|=` γ(atom(<))→ (rec
[W]
< (s)↔ s ∈ L[W](k(<))).

(3) The following three statements are equivalent:

(3.1) ` is a Boolean algebra.

(3.2) for any < ∈ NFA(Σ, `) and s ∈ Σ∗, and for any Kleene representation k(<)
of <,

|=` rec
[D]
< (s)↔ s ∈ L[D](k(<)).

(3.3) for any < ∈ NFA(Σ, `) and s ∈ Σ∗, and for any Kleene representation k(<)
of <,

|=` rec
[W]
< (s)↔ s ∈ L[W](k(<)).

Proof. We only consider the depth-first case, and the width-first case is left for
the reader. We prove (1) and (2) together. To this end, we have to demonstrate
that for any u, v ∈ Q, X ⊆ Q and s ∈ Σ∗,

(a)
∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = u, e(c) = v,M(c) ⊆ X, lb(c) = s} ≤ L[D](αXuv)(s),

(b) dγ(atom(<))e∧L[D](αXuv)(s) ≤∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = u, e(c) = v,M(c) ⊆ X, lb(c) = s},

76

where M(c) stands for the set of states along c except u and v; more exactly, M(c) =
{q1, ..., qk−1} if c = uσ1q1...qk−1σkv. This claim may be proved by induction on |X|.
For the case of X = φ, it is easy. We now suppose that q ∈ X 6= ∅ and

αXuv = αX−{q}uv + [αX−{q}uq (αX−{q}qq)∗]αX−{q}qv .

We first show that (a) is valid in this case. From the induction hypothesis we have

(c)
∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = e(c) = q,

M(c) ⊆ X − {q}, lb(c) = s} ≤ L[D](αX−{q}qq)(s)

for each s ∈ Σ∗. Then we assert that for all s ∈ Σ∗,

(d)
∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = e(c) = q,M(c) ⊆ X, lb(c) = s}

≤ L[D]((αX−{q}qq)∗)(s).

In fact, for any c ∈ T (Q,Σ), if b(c) = e(c) = q,M(c) ⊆ X and lb(c) = s, we write ci
for the substring of c beginning with the ith q and ending at the (i+ 1)th q. If the
number of occurrences of q in c is m+ 1, then

dPath<(c)e =
m∧
i=1

dPath<(ci)e.

Furthermore, by using (c) and noting that s = lb(c1)...lb(cm) we obtain:

dPath<(c)e =
m∧
i=1

L[D](αX−{q}qq)(lb(ci))

≤
∨
{
n∧
i=1

L[D](αX−{q}qq)(si) : n ≥ 0, s1, ..., sn ∈ Σ∗, s = s1...sn}

= (L[D](αX−{q}qq))∗(s)

= L[D]((αX−{q}qq)∗)(s).

Let c range over {c ∈ T (Q,Σ) : b(c) = e(c) = q,M(c) ⊆ X, lb(c) = s}. Then (d) is
proved.

From the induction hypothesis and (d) we have:

([L[D](αX−{q}uq)L[D]((αX−{q}qq)∗)]L[D](αX−{q}qv))(s) =∨
{[L[D](αX−{q}uq)L[D]((αX−{q}qq)∗)](x) ∧ L[D](αX−{q}qv)(y) : s = xy}

=
∨
{
∨
{L[D](αX−{q}uq)(x1) ∧ L[D]((αX−{q}qq)∗)(x2) : x = x1x2} ∧ L[D](αX−{q}qv)(y) : s = xy}

≥
∨
{L[D](αX−{q}uq)(x1) ∧ L[D]((αX−{q}qq)∗)(x2) ∧ L[D](αX−{q}qv)(y) : s = x1x2y}

≥
∨
{dPath<(c1)e ∧ dPath<(c2)e ∧ dPath<(c3)e : c1, c2, c3 ∈ T (Q,Σ),

b(c1) = u, e(c1) = b(c2) = e(c2) = b(c3) = q, e(c3) = v, s = lb(c1)lb(c2)lb(c3)}
=

∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = u, e(c) = v, q ∈M(c)}.

77

This yields further

L[D](αXuv)(s) = L[D](αX−{q}uv)(s) ∨ ([L[D](αX−{q}uq)L[D]((αX−{q}qq)∗)]L[D](αX−{q}qv))(s)

≥ the left− hand side of (a).

We now turn to consider (b). The induction hypothesis gives

(e) dγ(atom(<))e∧L[D](αX−{q}uv)(s) ≤
∨
{dPath<(c)e : c ∈ T (Q,Σ),

b(c) = u, e(c) = v,M(c) ⊆ X − {q}, lb(c) = s}.
For any n ≥ 0 and s1, ..., sn ∈ Σ∗ with s = s1...sn, from (e) we can apply Lemmas
2.6 and 2.7 to obtain:

dγ(atom(<))e ∧
n∧
i=1

L[D](αX−{q}qq)(si) = dγ(atom(<))e ∧
n∧
i=1

[dγ(atom(<))e ∧ L[D](αX−{q}qq)(si)]

≤ dγ(atom(<))e ∧
n∧
i=1

∨
{dPath<(ci)e : ci ∈ T (Q,Σ),

b(ci) = e(ci) = q,M(ci) ⊆ X − {q}, lb(ci) = si}

≤
∨
{
n∧
i=1

dPath<(ci)e : ci ∈ T (Q,Σ), b(ci) = e(ci) = q,M(ci) ⊆ X − {q},

lb(ci) = si for each i = 1, 2, ..., n}
≤

∨
{dPath<(c1...cn)e : ci ∈ T (Q,Σ), b(ci) = e(ci) = q,M(ci) ⊆ X − {q},

lb(ci) = si for each i = 1, 2, ..., n},

where c1...cn = c1c
′
2...c

′
n, c
′
i is the resulting string after removing the first q in ci for

each i ≥ 2. Note that lb(c1...cn) = s1...sn = s whenever lb(ci) = si (i = 1, 2, ..., n).
We write

λ =
∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = e(c) = q,M(c) ⊆ X, lb(c) = s}.

Then it holds that

dγ(atom(<))e ∧
n∧
i=1

L[D](αX−{q}qq)(si) ≤ λ.

Moreover, note that dγ(atom(<))e, L[D](α
X−{q}
qq)(si) ∈ [atom(<)]. It follows that

dγ(atom(<))e ∧ L[D]((αX−{q}qq)∗)(s) = dγ(atom(<))e ∧ dγ(atom(<))e∧∨
{
n∧
i=1

L[D](αX−{q}qq)(si) : n ≥ 0, s = s1...sn}

≤
∨
{dγ(atom(<))e ∧

n∧
i=1

L[D](αX−{q}qq)(si) : n ≥ 0, s = s1...sn} ≤ λ.

78

This enables us to obtain:

dγ(atom(<))e ∧ [L[D](αX−{q}uq)L[D]((αX−{q}qq)∗)](x)

= dγ(atom(<))e ∧ dγ(atom(<))e ∧
∨
{L[D](αX−{q}uq)(x1) ∧ L[D]((αX−{q}qq)∗)(x2) : x = x1x2}

≤
∨
{dγ(atom(<))e ∧ L[D](αX−{q}uq)(x1) ∧ L[D]((αX−{q}qq)∗)(x2) : x = x1x2}

=
∨
{dγ(atom(<))e ∧ [dγ(atom(<))e ∧ L[D](αX−{q}uq)(x1)]∧

[dγ(atom(<))e ∧ L[D]((αX−{q}qq)∗)(x2)] : x = x1x2}
≤

∨
{dγ(atom(<))e ∧ [

∨
{dPath<(c1)e : c1 ∈ T (Q,Σ), b(c1) = u, e(c1) = q,

M(c1) ⊆ X − {q}, lb(c1) = x1}] ∧ [
∨
{dPath<(c2)e : c2 ∈ T (Q,Σ), b(c2) =

e(c2) = q,M(c2) ⊆ X, lb(c2) = x2}] : x = x1x2}
≤

∨
{dPath<(c1)e ∧ dPath<(c2)e : c1, c2 ∈ T (Q,Σ), b(c1) = u, e(c1) = b(c2) = e(c2) = q,

M(c1) ⊆ X − {q},M(c2) ⊆ X,x = lb(c1)lb(c2)}.

Furthermore, we can derive in a similar way that

dγ(atom(<))e ∧ ([L[D](αX−{q}uq)L[D]((αX−{q}qq)∗)]L[D](αX−{q}qv))(s)

≤
∨
{dPath<(c1)e ∧ dPath<(c2)e ∧ dPath<(c3)e : c1, c2, c3 ∈ T (Q,Σ), b(c1) = u,

e(c1) = b(c2) = e(c2) = b(c3) = q, e(c3) = v, s = lb(c1)lb(c2)lb(c3)}
=

∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = u, e(c) = v, q ∈M(c), s = lb(c)}.

Consequently, it holds that

dγ(atom(<))e ∧ L[D](αXuv)(s) = dγ(atom(<))e ∧ {L[D](αX−{q}uv)(s)∨
([L[D](αX−{q}uq)L[D]((αX−{q}qq)∗)]L[D](αX−{q}qv))(s)}

≤ [dγ(atom(<))e ∧ L[D](αX−{q}uv)(s)] ∨ {dγ(atom(<))e ∧ ([L[D](αX−{q}uq)

L[D]((αX−{q}qq)∗)]L[D](αX−{q}qv))(s)}
≤ the right− hand side of (b).

After proving (a), we can assert that

ds ∈ L[D](k(<))e =
∨

u,v∈Q
[I(u) ∧ T (v) ∧ L[D](αQuv)(s)]

≥
∨

u,v∈Q
[(I(u) ∧ T (v)) ∧

∨
{dPath<(c)e : c ∈ T (Q,Σ), b(c) = u, e(c) = v, lb(c) = s}

≥
∨

u,v∈Q

∨
{I(u) ∧ T (v) ∧ dPath<(c)e : c ∈ T (Q,Σ), b(c) = u, e(c) = v, lb(c) = s}

= drec[D]
< (s)e.

79

By using (b) and Lemmas 2.6 and 2.7, we have:

dγ(atom(<))e ∧ ds ∈ L[D](k(<))e = dγ(atom(<))e ∧
∨

u,v∈Q
[I(u) ∧ T (v) ∧ L[D](αQuv)(s)]

≤
∨

u,v∈Q
[I(u) ∧ T (v) ∧ dγ(atom(<))e ∧ L[D](αQuv)(s)]

≤
∨

u,v∈Q
[(I(u) ∧ T (v)) ∧ dγ(atom(<))e ∧

∨
{dPath<(c)e : c ∈ T (Q,Σ),

b(c) = u, e(c) = v, lb(c) = s}]
≤

∨
u,v∈Q

∨
{I(u) ∧ T (v) ∧ dPath<(c)e : c ∈ T (Q,Σ), b(c) = u, e(c) = v, lb(c) = s}

= drec[D]
< (s)e.

Thus, (1) and (2) are proved, and the part that (3.1) implies (3.2) and (3.3) of (3)
is a simple corollary of (2). We now turn to prove that (3.2) implies (3.1). For any
a, b, c ∈ L, we consider the `−valued automaton < = 〈{u, v}, δ, ua, {u, v}〉, where
δ(u, σ, u) = b, δ(u, σ, v) = c, and δ takes value 0 for other cases (see Figure 9). Then

drec[D]
< (σ)e =

∨
{I(q0) ∧ T (q1) ∧ δ(q0, σ, q1) : q0, q1 ∈ Q}

= (a ∧ b) ∨ (a ∧ c).

On the other hand, we have 
α∅uu = ε+ bσ,

α∅uv = cσ,

α∅vv = ε,

α∅vu = φ.

Therefore,

α{v}uu = α∅uu + [α∅uv(α
∅
vv)
∗]α∅vu

= (ε+ bσ) + [cσ(ε)∗]φ = ε+ bσ,

α{v}uv = α∅uv + [α∅uv(α
∅
vv)
∗]α∅vv

= cσ + [cσ(ε)∗]ε = cσ,

and

α{u,v}uv = α{v}uu + [α{v}uu (α{v}u)∗]α{v}uv
= ε+ bσ + [(ε+ bσ)(ε+ bσ)∗](cσ).

80

v
σ, c

✲✲

σ, b

a
u

Figure 9: Automaton g

81

From the assumption (3.2) we know that

(a ∧ b) ∨ (a ∧ c) = drec[D]
< (σ)e

= L[D](k(<))(σ)

= [L[D](aα{u,v}u) ∪ L[D](aα{u,v}uv)](σ)

≥ L[D](aα{u,v}u)(σ)

= a ∧ L[D](α{u,v}u)(σ)

= a ∧ L[D](ε+ bσ + [(ε+ bσ)(ε+ bσ)∗](cσ))(σ)

≥ a ∧ (b ∨ c).

The implication from (3.3) to (3.1) may be proved in a similar way. This completes
the proof. �

Corollary 3.31. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and
let → = →3. Then for any A ∈ LΣ∗ , we have:

|=` CReg
[D]
Σ (A)→ (∃ regular expression α)(A ≡ L[D](α)),

|=` CReg
[W]
Σ (A)→ (∃ regular expression α)(A ≡ L[W](α)).

Proof. It can be derived from Theorem 3.30 in a way similar to the proof of
Corollary 3.14. �

We now turn to consider homomorphisms of `−valued regular expressions. Let
Σ and Γ be two alphabet, and let h : Σ→ Γ∗ be a mapping. Then it can be uniquely
extended to a mapping, denoted still by h, from `−valued regular expressions over
Σ into `−valued regular expressions over Γ. For any `−valued regular expression α
over Σ, h(α) is defined to be the `−valued regular expression over Γ obtained by
replacing each letter σ ∈ Σ appearing in α with the string h(σ) ∈ Γ∗. Formally, h(α)
is defined by induction on the length of α :

h(ε) = ε,

h(φ) = φ,

h(σ) is already given for each σ ∈ Σ,

h(λα) = λh(α),

h(α1 + α2) = h(α1) + h(α2),

h(α1 · α2) = h(α1) · h(α2),

h(α∗) = (h(α))∗.

82

For each `−valued regular expression α over Σ, we write Λ(α) for the set of scalar
values λ ∈ L occurring in α. Indeed, Λ(α) may be formally defined by induction on
the length of α as follows:

Λ(ε) = Λ(φ) = Λ(σ) = ∅ for every σ ∈ Σ,

Λ(λα) = {λ} ∪ Λ(α),

Λ(α1 + α2) = Λ(α1 · α2) = Λ(α1) ∪ Λ(α2),

Λ(α∗) = Λ(α).

It is easy to see that Λ(α) is a finite subset of L. Moreover, we write ∆(α) = {a :
a ∈ Λ(α)} for the set of (constant) propositions in our logical language corresponding
to the elements in Λ(α).

The following two lemmas are very useful when we are dealing with orthomodular
lattice-valued expressions, and they evaluate the range of language generated by an
orthomodular lattice-valued regular expression. In particular, it will be shown in
Lemma 3.33 that this range is a finite set whenever the lattice ` of truth values is a
Boolean algebra.

Lemma 3.32. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice. Then for
any `−valued regular expression α, we have {L[D](α)(s) : s ∈ Σ∗} ⊆ [Λ(α)], where
[A] denotes the subalgebra of ` generated by A for any A ⊆ L. The same conclusion
holds for L[W](·).

Proof. We only prove this lemma for L[D](·), the case of L[W](·) is similar. We
use an induction argument on the length of α. For simplicity, we only consider the
following two cases, and the other cases are easy or similar.

(1) From the induction hypothesis we know that

L[D](λ.α)(s) = λ ∧ L[D](α)(s) ∈ [{λ} ∪ Λ(α)] = [Λ(λ.α)]

for each s ∈ Σ∗.

(2) Let s ∈ Σ∗. For any s1, ..., sn ∈ Σ∗ with s1...sn = s, we suppose that
si1 , ..., sim 6= ε and si = ε for every i ∈ {1, ..., n} − {i1, ..., im}. Then si1 ...sim = s
and

L[D](α)(s1)∧...∧L[D](α)(sn) =

{
L[D](α)(si1) ∧ ... ∧ L[D](α)(sim), if m = n,

L[D](α)(si1) ∧ ... ∧ L[D](α)(sim) ∧ L[D](α)(ε), if m < n.

Furthermore, we note that

{(s1, ..., sn) : n ≥ 0, s1, ..., sn ∈ Σ∗ − {ε} and s1...sn = s}

is finite. Therefore,

{L[D](α)(s1) ∧ ... ∧ L[D](α)(sn) : s1...sn = s}

83

is also finite, and with the induction hypothesis we have

L[D](α∗)(s) =
∨
{L[D](α)(s1) ∧ ... ∧ L[D](α)(sn) : s1...sn = s} ∈ [Λ(α)]. �

Lemma 3.33. If ` = 〈L,≤,∧,∨,⊥, 0, 1〉 is a Boolean algebra, then for any
`−valued regular expression α, {L[D](α)(s) : s ∈ Σ∗} is a finite set.

Proof. From Lemma 3.32 and the distributivity of ∧ over ∨ we know that for
any s ∈ Σ∗, there are λiji ∈ Λ(α) (i = 1, ...,m; ji = 1, ..., ni) such that

L[D](α)(s) =
m∨
i=1

(

ni∧
ji=1

λiji).

Since Λ(α) is finite, both

Λ(α)(∧) = {λ1 ∧ ... ∧ λn : n ≥ 0, λ1, ..., λ ∈ Λ(α)}

and
Λ(α)(∧)(∨) = {

∨
M : M ⊆ Λ(α)(∧)}

are also finite. Therefore,

Λ(α)(∧)(∨) ⊇ {L[D](α)(s) : s ∈ Σ∗}

is a finite set. �

Note that the above lemma is also true for L[W](·) because L[W](·) = L[D](·)
when ` is a Boolean algebra.

The following proposition shows that a homomorphism preserves the language
generated by an orthomodular lattice-valued regular expression under the condition
that all elements in the range of the expression under consideration are commutative.

Proposition 3.34. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice and
→ fulfil the Birkhoff-von Neumann requirement, and let Σ and Γ be two alphabets.

(1) For any mapping h : Σ→ Γ∗, and for any `−valued regular expression α over
Σ,

|=` h(L[D](α)) ⊆ L[D](h(α)) and |=` h(L[W](α)) ⊆ L[W](h(α)).

(2) For any mapping h : Σ→ Γ∗, for any `−valued regular expression α over Σ,
and for any t ∈ Γ∗,

|=` γ(∆(α)) ∧ t ∈ L[D](h(α))→ t ∈ h(L[D](α)),

|=` γ(∆(α)) ∧ t ∈ L[W](h(α))→ t ∈ h(L[W](α)).

84

and if → = →3 then

|=` γ(∆(α))→ L[D](h(α)) ≡ h(L[D](α)) and |=` γ(∆(α))→ L[W](h(α)) ≡ h(L[W](α)).

(3) The following three statements are equivalent:

(3.1) ` is a Boolean algebra.

(3.2) for any mapping h : Σ → Γ∗, and for any `−valued regular expression α
over Σ,

|=` h(L[D](α)) ≡ L[D](h(α)).

(3.3) for any mapping h : Σ → Γ∗, and for any `−valued regular expression α
over Σ,

|=` h(L[W](α)) ≡ L[W](h(α)).

Proof. We only consider L[D](·) and prove (2) and (3). (1) can be observed from
the proof of (2). The part that (3.1) implies (3.2) and (3.3) may be derived from
(2); and it can also be proved directly by using Lemma 3.33.

Our first aim is to prove that

dγ(∆(α))e ∧ L[D](h(α))(t) ≤ h(L[D](α))(t)

for any t ∈ Γ∗ and for any `−valued regular expression α over Σ. We proceed by
induction on the length of α.

(a) It is obvious for the case of α = ε or φ, or α ∈ Σ.

(b) With the definitions of h(·) and L[D](·) and the induction hypothesis we
derive that

L[D](h(λ.α))(t) = L[D](λ.h(α))(t)

= λ ∧ L[D](h(α))(t)

= λ ∧ h(L[D](α))(t)

= λ ∧
∨
{L[D](α)(s) : s ∈ Σ∗ and h(s) = t}.

Then from Lemmas 2.6, 2.7 and 3.33, it follows that

dγ(∆(α))e ∧ L[D](h(λ.α))(t) ≤
∨
{λ ∧ L[D](α)(s) : s ∈ Σ∗ and h(s) = t}

=
∨
{L[D](λ.α)(s) : s ∈ Σ∗ and h(s) = t}

= h(L[D](λ.α))(t).

(c) It is easy to observe that h(A ∪ B) = h(A) ∪ h(B) for all A,B ∈ LΣ∗ . This

85

together with the induction hypothesis as well as Lemmas 2.6 and 2.7 yields:

dγ(∆(α1 + α2))e ∧ L[D](h(α1 + α2))(t) = dγ(∆(α1 + α2))e ∧ L[D](h(α1) + h(α2))(t)

= dγ(∆(α1 + α2))e ∧ dγ(∆(α1 + α2))e ∧ [L[D](h(α1))(t) ∨ L[D](h(α2))(t)]

≤ [dγ(∆(α1 + α2))e ∧ L[D](h(α1))(t)] ∧ [dγ(∆(α1 + α2))e ∧ L[D](h(α2))(t)]

≤ [dγ(∆(α1))e ∧ L[D](h(α1))(t)] ∧ [dγ(∆(α2))e ∧ L[D](h(α2))(t)]

≤ h(L[D](α1))(t) ∨ h(L[D](α2))(t)

= h(L[D](α1) ∪ L[D](α2))(t)

= h(L[D](α1 + α2))(t).

(d) For any t ∈ Γ∗, Lemmas 2.6, 2.7 and 3.33 enable us to assert that

dγ(∆(α1 · α2))e ∧ L[D](h(α1 · α2))(t) = dγ(∆(α1 · α2))e ∧ L[D](h(α1) · h(α2))(t)

= dγ(∆(α1 · α2))e ∧ L[D](h(α1))L[D](h(α2))(t)

= dγ(∆(α1 · α2))e ∧
∨
{L[D](h(α1))(t1) ∧ L[D](h(α2))(t2) : t1t2 = t}

≤
∨
{dγ(∆(α1 · α2))e ∧ L[D](h(α1))(t1) ∧ L[D](h(α2))(t2) : t1t2 = t}

=
∨
{dγ(∆(α1 · α2))e ∧ (dγ(∆(α1))e ∧ L[D](h(α1))(t1)) ∧ (dγ(∆(α2))e

∧ L[D](h(α2))(t2)) : t1t2 = t}
≤

∨
{dγ(∆(α1 · α2))e ∧ h(L[D](α1))(t1) ∧ h(L[D](α2))(t2) : t1t2 = t}.

Furthermore, by using Lemmas 2.6, 2.7 and 3.33 again we obtain:

dγ(∆(α1 · α2))e ∧ h(L[D](α1))(t1) ∧ h(L[D](α2))(t2) = dγ(∆(α1 · α2))e∧
(
∨
{L[D](α1)(s1) : h(s1) = t1}) ∧ (

∨
{L[D](α2)(s2) : h(s2) = t2})

≤
∨
{L[D](α1)(s1) ∧ L[D](α2)(s2) : h(s1) = t1 and h(s2) = t2}.

Therefore, it follows that

dγ(∆(α1 · α2))e ∧ L[D](h(α1 · α2))(t) ≤
∨
{L[D](α1)(s1)∧

L[D](α2)(s2) : h(s1) = t1, h(s2) = t2 and t1t2 = t}
=

∨
{L[D](α1)(s1) ∧ L[D](α2)(s2) : h(s1s2) = t}

= h(L[D](α1)L[D](α2))(t) = h(L[D](α1α2))(t).

86

(e) For every t ∈ Γ∗, Lemmas 2.6, 2.7 and 3.33 guarantee that

dγ(∆(α∗))e ∧ L[D](h(α∗))(t) = dγ(∆(α∗))e ∧ L[D]((h(α))∗)(t)

= dγ(∆(α∗))e ∧ (L[D](h(α)))∗(t)

= dγ(∆(α∗))e ∧
∨
{
n∧
i=1

L[D](h(α))(ti) : n ≥ 0, t1, ..., tn ∈ Γ∗, t1...tn = t}

≤
∨
{dγ(∆(α∗))e ∧

n∧
i=1

L[D](h(α))(ti) : n ≥ 0, t1, ..., tn ∈ Γ∗, t1...tn = t}

=
∨
{dγ(∆(α))e ∧

n∧
i=1

(dγ(∆(α))e ∧ L[D](h(α))(ti)) : n ≥ 0, t1, ..., tn ∈ Γ∗, t1...tn = t}

≤
∨
{dγ(∆(α))e ∧

n∧
i=1

h(L[D](α))(ti) : n ≥ 0, t1, ..., tn ∈ Γ∗, t1...tn = t}.

On the other hand, we have:

dγ(∆(α))e ∧
n∧
i=1

h(L[D](α))(ti) = dγ(∆(α))e ∧
n∧
i=1

(
∨
{L[D](α)(si) : h(si) = ti})

≤
∨
{
n∧
i=1

L[D](α)(si) : h(si) = ti (i = 1, ..., n)}.

This further yields:

dγ(∆(α∗))e ∧ L[D](h(α∗))(t) ≤
∨
{
n∧
i=1

L[D](α)(si) : n ≥ 0, h(si) = ti (i = 1, ..., n) and t = t1...tn}

=
∨
{
n∧
i=1

L[D](α)(si) : n ≥ 0, h(s1...sn) = t}

=
∨
{L[D](α)∗(s) : h(s) = t}

= h((L[D](α))∗)(t) = h(L[D](α∗))(t).

What remains is to prove that (3.2) or (3.3) implies (3.1). We only consider
(3.2), and the other case is left to the reader. This needs indeed to show that
the distributivity of ∧ over ∨ is derivable from the statement (3.2). Suppose that
a, b, c ∈ L. We choose an symbol σ ∈ Σ and an symbol γ ∈ Γ, and define h(σ) = ε
and h(σ′) = γ for every σ′ ∈ Σ − {σ}. We further set α1 = a.σ and α2 = b.ε + c.σ.
Then

L[D](α1.α2)(σ) =


a ∧ b, if n = 1,

a ∧ c, if n = 2,

0, otherwise,

87

and

h(L[D](α1.α2))(ε) =

∞∨
n=0

L[D](α1.α2)(σn)

= (a ∧ b) ∨ (a ∧ c).
On the other hand, we have:

L[D](h(α1.α2))(ε) = L[D]((a.ε).(b.ε+ c.ε))(ε)

= L[D](a.ε)(ε) ∧ L[D](b.ε+ c.ε)(ε) = a ∧ (b ∨ c).

From (3.2) we know that h(L(α1.α2))(ε) = L(h(α1.α2))(ε). This indicates that
(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c). �

3.6. The Myhill-Nerode Theorem for Orthomodular Lattice-Valued
Languages

The Myhill-Nerode theorem in classical automata theory gives another nice char-
acterization of regular languages in terms of binary relations over strings of input
symbols. In this section, we are going to establish a generalization of this theorem
in the framework of quantum logic.

Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, let Σ be a finite alphabet,
and let A be an `−valued language over Σ. For any `−valued binary relation ≈ over
Σ∗, namely, a mapping ≈ from Σ∗ × Σ∗ into L, we first introduce the following
derived logical formulas:

Ref(≈)
def
= (∀x ∈ Σ∗)(x ≈ x);

Sym(≈)
def
= (∀x, y ∈ Σ∗)(x ≈ y → y ≈ x);

Tran(≈)
def
= (∀x, y, z ∈ Σ∗)(x ≈ y ∧ y ≈ z → x ≈ z);

RCon(≈)
def
= (∀x, y ∈ Σ∗)(∀σ ∈ Σ)(x ≈ y → xσ ≈ yσ);

Refin(≈, A)
def
= (∀x, y ∈ Σ∗)[x ≈ y → (x ∈ A↔ y ∈ A)];

FInd(≈)
def
= (∃n ∈ ω)(∃x1, ..., xn ∈ Σ∗)(∀x ∈ Σ∗)(∃i ≤ n)(x ≈ xi),

where ω is the set of nonnegative integers. Intuitively, Ref(≈), Sym(≈) and Tran(≈
) mean that ≈ is reflexive, symmetric and transitive, respectively; RCon(≈) means
that ≈ is a right congruence; Refin(≈, A) indicates that ≈ refines A; and FInd(≈)
expresses that ≈ is of finite index. It should be noted that the defining formula of
predicate FInd(·) is essentially not a formula in the ordinary first-order language
but a formula in infinitary logic.

Recall that for any set X we use p`(X) to denote the set of `−valued points in
X. Moreover, for every e ∈ p`(X), s(e) and h(e) stand respectively for the support

88

and height of e. Then an `−valued DFA over Σ is a quadruple < = 〈Q, δ, e0, T 〉
where Q is a finite set of states, e0 ∈ p`(Q), T is an `−valued subsete of Q, and
δ : Q × Σ → p`(Q) is a mapping. The transition function δ may be extended to
δ : p`(Q)× Σ→ p`(Q) in a natural way:

δ(qλ, σ) = s(δ(q, σ))λ∧h(δ(q,σ))

for any q ∈ Q, λ ∈ L − {0} and σ ∈ Σ. Furthermore, it can be extended to
δ : p`(Q) × Σ∗ → p`(Q) by induction on the length of input string s as follows:
δ(e, sσ) = δ(δ(e, s), σ) for any e ∈ p`(Q), s ∈ Σ∗ and σ ∈ Σ.

We suppose that < is an `−valued DFA. Then it induces an `−valued binary
relation ≈< on Σ∗ in the following way:

x ≈< y
def
= δ(e0, x) ≈ δ(e0, y)

for all x, y ∈ Σ∗. It is easy to see that the truth value of statement x ≈< y is given
by

dx ≈< ye =

{
[h(δ(e0, x))→ 0] ∧ [h(δ(e0, y))→ 0], if s(δ(e0, x)) 6= s(δ(e0, y))

h(δ(e0, x))→ h(δ(e0, y)), otherwise.

We now want to present some basic properties of relation ≈<. To this end, we
need to introduce a weakened notion of finiteness for orthomodular lattices.

Definition 3.35. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and
let a ∈ L. If for any subset K of L, there exists a finite subset H of K such that for
every λ ∈ K, we have: ∨

µ∈H
(λ↔ µ) ≥ a

then ` is said to be a−finite.

Intuitively, the above inequality means that for each element λ of K we can
find an element µ of H such that the nearness degree between them, measured by
λ↔ µ, is greater than or equal to a pre-specified threshold value a. It is clear that
` is 1−finite whenever L is finite.

Lemma 3.36. For any < ∈ DFA(Σ, `), we have:

(1) |=` Ref(≈<);

(2) |=` Sym(≈<); and

(3) if a ∈ L and ` is a−finite, then |=` a → FInd(≈<), where a is the nullary
predicate associated with a.

In particular, if → = →3 then we have:

89

(4) |=` γ(atom(<))→ Tran(≈<);

(5) |=` γ(atom(<))→ RCon(≈<); and

(6) |=` γ(atom(<))→ Refin(≈<, rec<).

Proof. (1) and (2) are obvious.

(3) We first define (two-valued) binary relation ∼ on Σ∗ as follows:

x ∼ y if and only if s(δ(e0, x)) = s(δ(e0, y))

for any x, y ∈ Σ∗. It is obvious that ∼ is an equivalence relation. Since Q is
finite, the quotient Σ∗/ ∼ = {[x] : x ∈ Σ∗} should be a finite set, where [x] stands
for the equivalence class of x with respect to ∼ for each x ∈ Σ∗. Assume that
Σ∗/ ∼ = {[x1], ..., [xm]}. For every i ≤ m, we set Ki = {h(δ(e0, x)) : x ∈ [xi]}. Since
` is a−finite, there must be a finite subset Hi of Ki such that for any λ ∈ Ki,∨

µ∈Hi

(λ↔ µ) ≥ a.

Now for each µ ∈ Hi, there exists xiµ ∈ [xi] such that h(δ(e0, xiµ)) = µ.

Let Ei = {xiµ : µ ∈ Hi} for all 1 ≤ i ≤ m, and let E =
⋃m
i=1Ei. Then E is a

finite set, and for any x ∈ Σ∗, there is i ≤ m such that x ∈ [xi]. This implies that
h(δ(e0, x)) ∈ Ki, and∨

y∈E
dx ≈< ye ≥

∨
y∈Ei

dx ≈< ye

=
∨
y∈Ei

(h(δ(e0, x))↔ h(δ(e0, y)))

=
∨
y∈Hi

(h(δ(e0, x))↔ µ) ≥ a.

Therefore, we have:

dFInd(≈<)e =
∨

n∈ω,x1,...,xn∈Σ∗

∧
x∈Σ∗

∨
i≤n
dx ≈< xie

≥
∧
x∈Σ∗

∨
y∈E
dx ≈< ye ≥ a.

(4) We write su = s(δ(e0, u)) for u ∈ {x, y, z} and consider the following cases:

Case 1. sx = sy and sy = sz. It follows from Lemmas 2.7 and 2.12(3), (4).

Case 2. sx 6= sy, sy 6= sz and sx = sz. It suffices to note that

dx ≈< y ∧ y ≈< ze = (hx → 0) ∧ (hy → 0) ∧ (hz → 0)

≤ (hx → hz) ∧ (hz → hx) = dx ≈< ze

90

where hu = h(δ(e0, u)) for u ∈ {x, y, z}.
(5) Assume that δ(e0, x) = pλ, δ(e0, y) = qµ, δ(p, σ) = p′λ′ and δ(q, σ) = q′µ′ . We

consider the following three cases:

Case 1. p = q. Then p′ = q′, λ′ = µ′, and by using Lemma 2.12(1) we obtain:

dγ(atom(<))e ∧ dx ≈< ye = dγ(atom(<))e ∧ (λ↔ µ)

≤ λ ∧ λ′ ↔ µ ∧ λ′ = dxσ ≈< yσe.

Case 2. p 6= q and p′ = q′. Note that λ → 0 ≤ λ ∧ λ′ → 0 ≤ λ ∧ λ′ → µ ∧ µ′.
Likewise, we have µ→ 0 ≤ µ ∧ µ′ → λ ∧ λ′. Therefore,

dx ≈< ye = (λ→ 0) ∧ (µ→ 0)λ ∧ λ′ → µ ∧ µ′ = dxσ ≈< yσe.

Case 3. p 6= q and p′ 6= q′. Similar to Case 2.

(6) We also assume that δ(e0, x) = pλ and δ(e0, y) = qλ. Then it is easy to see
that rec<(x) = T (p) ∧ λ and rec<(y) = T (q) ∧ λ. If p = q, then it follows from
Lemma 2.12(1) that

dγ(atom(<))e ∧ dx ≈< ye = dγ(atom(<))e ∧ (λ↔ µ)

≤ T (p) ∧ λ↔ T (p) ∧ µ
= drec<(x)↔ rec<(y)e.

If p 6= q, then we can derive dx ≈< ye ≤ drec<(x) ↔ rec<(y)e in a way similar to
Case 2 in the proof of (4). �

The above lemma shows that the relation ≈< induced by an `−valued DFA
satisfies the six logical formulas given at the beginning of this section with respect
to the `−valued language rec< accepted by < (if some extra conditions are fulfilled).
This suggests us to introduce the Myhill-Nerode property by putting these formulas,
each of which stands for a certain constraint on binary relations over input strings,
together.

Definition 3.37. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and
let Σ be a finite alphabet.

(1) For any `−valued language A over Σ, `−valued unary predicate MNR(·, A)
over `−valued binary relations on Σ∗ is defined as follows:

MNR(≈, A)
def
= Ref(≈) ∧ Sym(≈) ∧ Tran(≈)

∧RCon(≈) ∧Refin(≈, A) ∧ FInd(≈)

for each `−valued binary relation ≈ on Σ∗. The predicate MNR(·, A) is called the
Myhill-Nerode property with respect to A, and MNR(≈, A) expresses that ≈ is a
Myhill-Nerode relation for A.

91

(2) For any `−valued binary relation ≈ on Σ∗ with finite Range(≈) = {≈ (x, y) ∈
L : x, y ∈ Σ∗}, and for any `−valued language A on Σ with finite Range(A),

CMNR(≈, A)
def
= γ(r(≈) ∪ r(A)) ∧MNR(≈, A),

where r(≈) = {a : a ∈ Range(≈)}. The predicate CMNR(·, A) is called the
commutative Myhill-Nerode property.

As usual the Myhill-Nerode property in classical automata theory splits into two
versions, noncommutative one and commutative one, in quantum logic. With the
above definition, Lemma 3.36 may be roughly rephrased as that the relation ≈<
induced by an `−valued DFA < satisfies the Myhill-Nerode property with respect
to rec<.

We now turn to consider a binary relation on input strings induced naturally
from a given language. Let A be an `−valued language over Σ. We define `−valued
binary relation ≈A as follows:

x ≈A y def
= (∀z ∈ Σ∗)(xz ∈ A↔ yz ∈ A).

Thus the truth value of statement x ≈A y is given by

dx ≈A ye =
∧
z∈Σ∗

(A(xz)↔ R(yz)).

The following lemma presents some basic properties of relation ≈A.

Lemma 3.38. For any `−valued language A over Σ, it holds that

(1) |=` Ref(≈A);

(2) |=` Sym(≈A);

(3) |=` RCon(≈A); and

(4) |=` Refin(≈A, A).

In particular, if→ =→3 and Range(A) = {A(s) : s ∈ Σ∗} is finite then we have:

(5) |=` γ(r(A)) → Tran(≈A), where r(A) = {a : a ∈ Range(A)}, and a is the
nullary predicate associated with a for every a ∈ L.

Proof. (1), (2), (3) and (4) are obvious. For (5), it suffices to show that
dγ(r(A))e ∧ dx ≈A ye ∧ dy ≈A ze ≤ dx ≈A ze for any x, y, z ∈ Σ∗. Indeed, with
Lemma 2.12(3) we have:

dγ(r(A))e ∧ dx ≈A ye ∧ dy ≈A ze = dγ(r(A))e ∧
∧
u∈Σ∗

(A(xu)↔ A(yu)) ∧
∧
v∈Σ∗

(A(yv)↔ A(zv))

≤
∧
u∈Σ∗

(dγ(r(A))e ∧ (A(xu)↔ A(yu)) ∧ (A(yu)↔ A(zu)))

≤
∧
u∈Σ∗

(A(xu)↔ A(zu)) = dx ≈A ze. �

92

By combining the results obtained above we are able to establish an orthomod-
ular lattice-valued generalization of the Myhill-Nerode theorem. A simpler presen-
tation of this generalization requires us to introduce the following two auxiliary
notions.

Definition 3.39. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice and
a ∈ L. If for any subset M of L, there exists b ∈ M such that a ≤ b provided
a ≤ ∨

M , then a is called an atom of `.

Definition 3.40. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and
let ϕ be a logical formula and Φ a set of logical formulas. If for any `−valued
interpretation, and for any atom a of `, we have dϕe ≥ a whenever dψe ≥ a for all
ψ ∈ Φ, then ϕ is called an atomic consequence of Φ, and we write Φ
` ϕ.

It is obvious that Φ |=` ϕ implies Φ
` ϕ. Now we are ready to give the main
result of this section.

Theorem 3.41. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, let
→ = →3, and let Σ be a finite alphabet.

(1) If a ∈ L satisfies aCb for every b ∈ L, and ` is a−finite, then for any `−valued
language A over Σ with finite Range(A), we have:

|=` a ∧ CDRegΣ(A)→ (∃(`− valued) binar relation ≈ on Σ∗)MNR(≈, A).

(2) For any `−valued language A over Σ, it holds that

|=` (∃ (`− valued) binary relation ≈ on Σ∗)CMNR(≈, A)→ FInd(≈A).

(3) For any `−valued language A over Σ, we have:

FInd(≈A) ∧ γ(r(A))
` DRegΣ(A).

Proof. (1) First, if < ∈ DFA(Σ, `), then for any x, y ∈ Σ∗, it follows from Lemma
2.12(1) and (4) that

dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec<e ∧ dRefin(≈<, rec<)e ≤ dγ(atom(<) ∪ r(A))e∧
[x ≈< y → (rec<(x)↔ rec<(y))] ∧ (A(x)↔ rec<(x)) ∧ (A(y)↔ rec<(y))

≤ dγ(atom(<) ∪ r(A))e ∧ [x ≈< y → (rec<(x)↔ rec<(y))] ∧ [x ≈< y → (A(x)↔ rec<(x))]∧
[x ≈< y → (A(y)↔ rec<(y))] ∧ [x ≈< y → dγ(atom(<) ∪ r(A))e]

≤ x ≈< y → dγ(atom(<) ∪ r(A))e ∧ (rec<(x)↔ rec<(y)) ∧ (A(x)↔ rec<(x)) ∧ (A(y)↔ rec<(y))

≤ x ≈< y → (A(x)↔ A(y)).

93

Therefore, we obtain:

dγ(atom(<) ∪ r(A))e ∧ dA ≡ rec<e ∧ dRefin(≈<, rec<)e ≤ dRefin(≈<, A)e.

Second, for any < ∈ DFA(Σ, `), using the above inequality and Lemma 3.36(1)-
(6) we obtain:

dMNR(≈<, A)e ≥ dMNR(≈<, rec<)e ∧ dA ≡ rec<e ∧ dγ(atom(<) ∪ r(A))e
≥ a ∧ dγ(atom(<))e ∧ dA ≡ rec<e ∧ dγ(atom(<) ∪ r(A))e
= a ∧ dA ≡ rec<e ∧ dγ(atom(<) ∪ r(A))e.

Consequently, it follows from Lemma 2.3 that

d(∃(`− valued) binary relation ≈ on Σ∗)MNR(≈, A) ≥
∨

<∈DFA(Σ,`)

dMNR(≈<, A)e

≥
∨

<∈DFA(Σ,`)

(a ∧ dA ≡ rec<e ∧ dγ(atom(<) ∪ r(A))e

= a ∧
∨

<∈DFA(Σ,`)

(dA ≡ rec<e ∧ dγ(atom(<) ∪ r(A))e

= a ∧ dCDRegΣ(A)e

because aCb for every b ∈ L.

(2) We first show that

dx ≈ ye ∧ dRCon(≈)e ∧ dγ(r(≈))e ≤ dxz ≈ yze

for any x, y, z ∈ Σ∗ by induction on the length |z| of z. It is clear for the case of
z = ε. Suppose that the conclusion holds for z. Then for each σ ∈ Σ, with Lemma
2.12(5) we have:

dx ≈ ye ∧ dRCon(≈)e ∧ dγ(r(≈))e ≤ dxz ≈ yze ∧ dRCon(≈)e ∧ dγ(r(≈))e
≤ dxz ≈ yze ∧ (dxz ≈ yz → xzσ ≈ yzσe ∧ dγ(r(≈))e
≤ dxzσ ≈ yzσe.

Second, it follows from Lemma 2.12(5) that

dx ≈ ye ∧ dRCon(≈)e ∧ dRefin(≈, A)e ∧ dγ(r(≈) ∪ r(A))e ≤
dxz ≈ yze ∧ dRefin(≈, A)e ∧ dγ(r(≈) ∪ r(A))e

≤ dxz ≈ yze ∧ (dxz ≈ yze → (A(xz)↔ A(yz))) ∧ dγ(r(≈) ∪ r(A))e
≤ A(xz)↔ A(yz)

for any z ∈ Σ∗. Therefore, it holds that

dx ≈ ye ∧ dRCon(≈)e ∧ dRefin(≈, A)e ∧ dγ(r(≈) ∪ r(A))e ≤

94

∧
z∈Σ∗

(A(xz)↔ A(yz)) = dx ≈A ye

for all x, y ∈ Σ∗.

Third, for each `−valued binary relation ≈ on Σ∗, using Lemmas 2.6 and 2.7 we
obtain:

dCMNR(≈, A)e ≤ dRCon(≈)e ∧ dRefin(≈, A)e ∧ dFInd(≈)e ∧ dγ(r(≈) ∪ r(A))e
= dRCon(≈)e ∧ dRefin(≈, A)e ∧ dγ(r(≈) ∪ r(A))e ∧

∨
n∈ω,x1,...,xn∈Σ∗

∧
x∈Σ∗

∨
i≤n
dx ≈ xie

≤
∨

n∈ω,x1,...,xn∈Σ∗

∧
x∈Σ∗

∨
i≤n

(dRCon(≈)e ∧ dRefin(≈, A)e ∧ dγ(r(≈) ∪ r(A))e ∧ dx ≈ xie)

≤
∨

n∈ω,x1,...,xn∈Σ∗

∧
x∈Σ∗

∨
i≤n
dx ≈A xie

= dFInd(≈A)e.

This yields:

d∃ (`− valued) binary relation ≈ on Σ∗)CMNR(≈, A)e =∨
{dCMNR(≈, A)e :≈ is an `− valued binary relation on Σ∗}

≤ dFInd(≈A)e.

(3) For any `−valued interpretation, and for every atom a of `, suppose that
a ≤ dFInd(≈A) ∧ γ(r(A))e, that is,

a ≤ dFInd(≈A)e =
∨

n∈ω,x1,...,xn∈Σ∗

∧
x∈Σ∗

∨
i≤n
dx ≈A xie

and a ≤ dγ(r(A))e. We define binary relation
a∼ on Σ∗ as follows:

x
a∼ y if and only if dx ≈A ye (under this interpretation)

for any x, y ∈ Σ∗. It is clear from Lemma 3.38(1) and (2) that
a∼ is reflexive and

symmetric. For any x, y, z ∈ Σ∗, if x
a∼ y and y

a∼ z, then dx ≈A ye ≥ a and
dy ≈A ze ≥ a. With Lemma 3.38(5) we know that

dx ≈A ye ∧ dy ≈A ze ∧ dγ(r(A))e ≤ dx ≈A ze.

Noting that dγ(r(A))e ≥ a we obtain dx ≈A ze ≥ a and x
a∼ z. Therefore,

a∼ is
transitive.

We now construct the quotient Σ∗/ a∼ = {[x] : x ∈ Σ∗}, where [x] stands for the
equivalence class of x with respect to

a∼ for any x ∈ Σ∗. From dFInd(≈A)e ≥ a, we
know that there are x1, ..., xn ∈ Σ∗ (n ∈ ω) such that for each x ∈ Σ∗, dx ≈A xie ≥ a
for some i ≤ n because a is an atom of `. Consequently, for any x ∈ Σ∗, it holds
that x

a∼ xi for some i ≤ n, and Σ∗/ a∼ = {[x1], ..., [xn]} is a finite set (note

95

that it is possible to have [xi] = [xj] for some 1 ≤ i < j ≤ n). This enables us to

construct an `−valued deterministic finite automaton with Σ∗/ a∼ as its set of states:
< = 〈Σ∗/ a∼, δ, [ε], T 〉, where

(i) ε is the empty string;

(ii) T : Σ∗/ a∼→ L is defined by

T ([x]) =
∨
y∈[x]

A(y)

for every x ∈ Σ∗; and

(iii) δ([x], σ) = [xσ] for any x ∈ Σ∗ and σ ∈ Σ.

It is guaranteed by Lemma 3.38(3) that δ is well-defined (note that δ is an
ordinary mapping from Σ∗/ a∼ ×Σ into Σ∗/ a∼, and ` is indeed not involved in δ).
Moreover, it is easy to see that δ([x], y) = [xy] by induction on the length of y for
any x, y ∈ Σ∗.

Finally, we assert that

DRegΣ(A) ≥ dA ≡ rec<e
=

∧
x∈Σ∗

(A(x)↔ T (δ([ε], x)))

=
∧
x∈Σ∗

(A(x)↔ T ([x]))

=
∧
x∈Σ∗

(A(x)↔
∧
y∈[x]

A(y))

≥
∧
x∈Σ∗

[
∧
y∈[x]

(A(x)↔ A(y)) ∧ dγ(r(A))e ≥ a

because dγ(r(A))e ≥ a, and for each x ∈ Σ∗ and y ∈ [x], with Lemma 3.38(4) it
holds that A(x)↔ A(y) ≥ dx ≈A ye ≥ a. �

3.7. Pumping Lemma for Orthomodular Lattice-Valued Regular Lan-
guages

The pumping lemma in the classical automata theory is a powerful tool to show
that certain languages are not regular, and it exposes some limitations of finite
automata. The purpose of this section is to establish a generalization of the pump-
ing lemma for orthomodular lattice-valued languages. It is worth noting that the
following orthomodular lattice-valued version of pumping lemma is given for the
commutative regularity. In general, the pumping lemma is not valid for noncom-
mutative regularity. In addition, in the pumping lemma we take the implication
operator to be the Sasaki hook →3, and such a pumping lemma does not hold if

other implications are adopted. From Corollary 3.10 we know that CReg
[D]
Σ and

CReg
[W]
Σ are equivalent. Thus, in this section we only consider CReg

[D]
Σ .

96

Theorem 3.42. (The pumping lemma) Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an or-
thomodular lattice, and let → = →3 . For any A ∈ LΣ∗ , if Range(A) is finite,
then

|=` CReg
[D]
Σ (A)→ (∃n ≥ 0)(∀s ∈ Σ∗)[s ∈ A ∧ |s| ≥ n→

(∃u, v, w ∈ Σ∗)(s = uvw ∧ |uv| ≤ n ∧ |v| ≥ 1 ∧ (∀i ≥ 0)(uviw ∈ A))],

where for any word t = σ1...σk ∈ Σ∗, |t| stands for the length n of t.

Proof. For simplicity, we use X(s, n) to mean the statement that u, v, w ∈
Σ∗, s = uvw, |uv| ≤ n, and |v| ≥ 1 for each s ∈ Σ∗ and n ≥ 0. Then it suffices to
show that

dCReg[D]
Σ (A)e ≤

∨
n≥0

∧
s∈Σ∗,|s|≥n

(A(s)→
∨

X(s,n)

∧
i≥0

A(uviw)).

From Definition 3.9 we know that

dCReg[D]
Σ (A)e =

∨
<∈NFA(Σ,`)

(dγ(atom(<) ∪ r(A)e ∧ dA ≡ rec[D]
< e).

Thus, we only need to prove that for any < ∈ NFA(Σ, `),

dγ(atom(<) ∪ r(A)e ∧ dA ≡ rec[D]
< e ≤

∨
n≥0

∧
s∈Σ∗,|s|≥n

(A(s)→

∨
X(s,n)

∧
i≥0

A(uviw)).

Let Q be the set of states of <. First, it holds that for any s ∈ Σ∗ with |s| ≥ |Q|,

(1) rec
[D]
< (s) ≤

∨
X(s,n)

∧
i≥0

rec
[D]
< (uviw).

In fact, suppose that s = σ1...σk. Then

(2) rec
[D]
< (s) =

∨
q0,q1,...,qk

[I(q0) ∧ T (qk) ∧
k−1∧
i=0

δ(qi, σi+1, qi+1)].

Therefore, it amounts to showing that for any q0, q1, ..., qk ∈ Q,

(3) I(q0) ∧ T (qk) ∧
k−1∧
i=0

δ(qi, σi+1, qi+1) ≤
∨

X(s,n)

∧
i≥0

rec
[D]
< (uviw).

Since k = |s| ≥ |Q|, there are two identical states among q0, q1, ..., q|Q|; in other
words, there are m ≥ 0 and n > 0 such that m + n ≤ |Q| and qm = qm+n. We

97

set u0 = σ1...σm, v0 = σm+1...σm+n, and w0 = σm+n+1...σk. Then s = u0v0w0,
|u0v0| = m+ n ≤ |Q|, |v| = n ≥ 1, and

(4)
∨

X(s,n)

∧
i≥0

rec
[D]
< (uviw) ≥

∧
i≥0

rec
[D]
< (u0v

i
0w0).

From the definition of rec
[D]
< , it is easy to see that for all i ≥ 0,

(5) rec
[D]
< (u0v

i
0w0) ≥ dPath<(q0σ1q1...σmqm

(σm+1qm+1...σm+nqm+n)iσm+n+1qm+n+1...σkqk)e

= I(q0) ∧ T (qk) ∧
m+n−1∧
j=0

δ(qj , σj+1, qj+1) ∧
i−1∧
l=1

[δ(qm+n, σm+1, qm+1)∧

m+n−1∧
j=m+1

δ(qj , σj+1, qj+1)] ∧
k−1∧

j=m+n

δ(qj , σj+1, qj+1)

= I(q0) ∧ T (qk) ∧
k−1∧
j=0

δ(qj , σj+1, qj+1)

because qm+n = qm and δ(qm+n, σm+1, qm+1) = δ(qm, σm+1, qm+1). Thus, by com-
bining (4) and (5), we obtain (3) which, together with (2), yields (1).

Now we use Lemmas 2.12(1) and (3) and obtain:∨
X(s,|Q|)

∧
i≥0

rec
[D]
< (uviw)→

∨
X(s,|Q|)

∧
i≥0

A(uviw) ≥ dγ(atom(<) ∪ r(A)e∧

∧
X(s,|Q|)

(
∧
i≥0

rec
[D]
< (uviw)→

∧
i≥0

A(uviw))

≥ dγ(atom(<) ∪ r(A)e ∧
∧

X(s,|Q|)

∧
i≥0

(rec
[D]
< (uviw)→ A(uviw))

≥ dγ(atom(<) ∪ r(A)e ∧
∧
t∈Σ∗

(rec
[D]
< (t)→ A(t))

= dγ(atom(<) ∪ r(A)e ∧ drec[D]
< ⊆ Ae.

98

Furthermore, from the above inequality we have:

dγ(atom(<) ∪ r(A)e ∧ drec[D]
< ≡ Ae = dγ(atom(<) ∪ r(A)e ∧ dA ⊆ rec[D]

< e ∧ drec
[D]
< ⊆ Ae

= dγ(atom(<) ∪ r(A)e ∧
∧
s∈Σ∗

(A(s)→ rec
[D]
< (s)) ∧ drec[D]

< ⊆ Ae

≤ dγ(atom(<) ∪ r(A)e ∧
∧

s∈Σ∗,|s|≥|Q|
(A(s)→ rec

[D]
< (s)) ∧ drec[D]

< ⊆ Ae

=
∧

s∈Σ∗,|s|≥|Q|
(dγ(atom(<) ∪ r(A)e ∧ (A(s)→ rec

[D]
< (s)) ∧ dγ(atom(<) ∪ r(A)e ∧ drec[D]

< ⊆ Ae)

≤
∧

s∈Σ∗,|s|≥|Q|
(dγ(atom(<) ∪ r(A)e ∧ (A(s)→ rec

[D]
< (s))

∧ (
∨

X(s,|Q|)

∧
i≥0

rec
[D]
< (uviw)→

∨
X(s,|Q|)

∧
i≥0

A(uviw))).

Then from (1) it follows that

dγ(atom(<) ∪ r(A)e ∧ drec[D]
< ≡ Ae ≤

∧
s∈Σ∗,|s|≥|Q|

(dγ(atom(<) ∪ r(A)e∧

(A(s)→
∨

X(s,|Q|)

∧
i≥0

rec
[D]
< (uviw))∧

(
∨

X(s,|Q|)

∧
i≥0

rec
[D]
< (uviw)→

∨
X(s,|Q|)

∧
i≥0

A(uviw))).

By using Lemmas 2.12(1) and (3) we know that

dγ(atom(<) ∪ r(A)e ∧ drec[D]
< ≡ Ae ≤

∧
s∈Σ∗,|s|≥|Q|

(A(s)→
∨

X(s,|Q|)

∧
i≥0

A(uviw))

≤
∨
n≥0

∧
s∈Σ∗,|s|≥n

(A(s)→
∨

X(s,n)

∧
i≥0

A(uviw)),

and this completes the proof. �

99

4. Orthomodular Lattice-Valued Pushdown Automata

Pushdown automaton is another mathematical model of finite state machines.
It is more powerful than finite automaton, and it differs from finite automaton in
two ways: (1) it has a stack and can use the top symbol of the stack to figure out
what transition to take; and (2) it can manipulate the stack during performing a
transition. Pushdown automata and their accepted context-free languages have been
widely applied in the specification of programming languages and in the design and
implementation of compilers. They have also found successful applications in the
study of natural languages.

The purpose of this Section is to re-build the theory of pushdown automata in
the framework of quantum logic and to observe the essential difference between it
and the classical theory of pushdown automata.

4.1. Orthomodular Lattice-Valued Context-Free Grammars

We recall that a context-free grammar over a given finite alphabet Σ, whose
elements are usually called terminals, is a triple G = 〈N,P, S〉, where

(i) N is a finite set of nonterminal symbols, and it is required that N ∩ Σ = ∅;
(ii) S ∈ N is the start symbol; and

(iii) P is a finite subset of Prod(G)
def
= {A → α : A ∈ N and α ∈ (N ∪ Σ)∗},

whose elements are called productions.

For a context-free grammar G = 〈N,P, S〉 over alphabet Σ, the direct derivation
relation ⇒

G
is defined to be a binary relation on (N ∪ Σ)∗ in such a way: α ⇒

G
β if

and only if there are α1, α2 ∈ (N ∪ Σ)∗ and A → γ ∈ P such that α = α1Aα2 and

β = α1γα2. We write
∗⇒
G

for the reflexive and transitive closure of⇒
G

, and it is called

the derivation relation in G. Then the language L(G) generated by G is defined by

L(G)
def
= {w ∈ Σ∗ : S

∗⇒
G
w}.

A language A ⊆ Σ∗ is said to be context-free if A = L(G) for some context-free
grammar G.

The notion of orthomodular lattice-valued context-free grammar can be formally
defined in a similar way.

Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice and Σ a finite alphabet.
Then an `−valued context-free grammar (CFG for short) is a triple G = 〈N,P, S〉,
where N and S are the same as in a classical context-free grammar, P is a finite
`−valued subset of Prod(G), that is, a mapping from Prod(G) into L such that
suppP = {p ∈ Prod(G) : P (p) > 0} is a finite set, and Prod(G) is defined as in the
classical case.

The (proper) class of `−valued CFGs over Σ is denoted by CFG(Σ, `).

100

There are two ways of defining the language generated by an `−valued CFG.
Both of them are natural generalizations of the corresponding classical definition.
In classical automata theory, distributivity of Boolean logic warrants that these two
ways are equivalent. However, they become nonequivalent in the case of `−valued
CFGs due to lack of distributivity in quantum logic. The difference between them
comes mainly from how we evaluate the truth value of the proposition that a word
is generated from the truth values of the propositions concerning the involved tran-
sitions.

We first consider the depth-first way. Let G = 〈N,P, S〉 be an `−valued CFG
over alphabet Σ. For any α, β ∈ (N ∪Σ)∗ and production p = A→ γ ∈ Prod(G), if
there exist α1, α2 ∈ (N ∪ Σ)∗ such that α = α1Aα2 and β = α1γα2, then it is said
that p is compatible with the direct derivation relation α⇒

G
β.

By the term a quasi-derivation (of length n ≥ 0) we mean an element

d = ((α0, α1, ..., αn), (p1, ..., pn)) ∈ (N ∪ Σ)n+1 × Prod(G)n

such that pi is compatible with αi−1 ⇒
G
αi for all i ≤ n. The length of d is |d| = n. We

write QDerG for the set of quasi-derivations in G. The `−valued (unary) predicate
DerG ∈ LQDerG , interpreted as “to be a derivation in G”, is then defined by

DerG((α0, α1, ..., αn), (p1, ..., pn))
def
=

n∧
i=1

(pi ∈ P)

for any d = ((α0, α1, ..., αn), (p1, ..., pn)) ∈ QDerG, n ≥ 0.

With the above technical notations we are able to present a formal definition of
the language generated by an `−valued CFG in the depth-first way.

Definition 4.1. For any `−valued CFG G = 〈N,P, S〉 over Σ. The language
L[D](G) generated by G in the depth-first way is defined to be an `−valued subset
of Σ∗, and it is given by

w ∈ L[D](G)
def
= (∃d ∈ QDerG)(DerG(d) ∧ I(d) = S ∧ L(d) = w)

for every w ∈ Σ∗, where I(d) and L(d) are respectively the first and the last strings
of nonterminals and terminals in d, namely, I(d) = α0 and L(d) = αn whenever
d = ((α0, α1, ..., αn), (p1, ..., pn)).

The context-freeness in automata theory based on quantum logic is defined to
be an `−valued predicate over `−valued languages. Remember that regularity of
languages in classical automata theory splits into two nonequivalent versions in
quantum logic: (noncommutative) regularity and commutative regularity. The latter
is obtained by adding a certain commutator into the former (see Definitions 3.4 and
3.9). Obviously, we can also define commutative and noncommutative versions of

101

context-freeness. But it may be observed that in evaluating the language generated
by an `−valued CFG according to the depth-first principle, all meet operations
occur at the innermost, and they do not interact with any join operations which
are at the outermost. Thus, distributivity of meet over join is not required at all,
and we do not need to add any commutator in order to recover local distributivity.
This suggests us to consider only noncommutative version of context-freeness when
depth-first principle is applied.

Definition 4.2. Let Σ be a finite alphabet. The `−valued (unary) predicate

CFG
[D]
Σ on LΣ∗ is defined by

CFG
[D]
Σ (A)

def
= (∃G ∈ CFG(Σ, `))(A ≡ L[D](G))

for each A ∈ LΣ∗ , and it is interpreted as “to be a (noncommutative) context-free
language over Σ according to the depth-first principle.”

The appearance of the proper class CFG(Σ, `) in the above definition requires
a set-theoretic explanation. Indeed, a simple modification of the foundational expo-
sition after Definition 3.2 can serve for this purpose.

To illustrate the above two definitions, let us consider a simple example.

Example 4.3. We consider the orthomodular lattice ` = MOn (n ≥ 2) (see
Figure 10). Note that MO2 is exactly the lattice L(x)⊕L(x) considered in Example
3.8. Let Σ = {a, b} and N = {S, S1, ..., Sn}. We put

P (S → anSbn) = 1,

P (S → aSib) = λi and P (S → ai−1bi−1) = 1 (i = 1, ..., n),

and P (p) = 0 for other productions p. Then G = 〈N,P, S〉 is an `−valued CFG over
Σ, and

L(D)(G)(w) =

{
λi, if w = akn+ibkn+i for some k ≥ 0,

1, otherwise.

We further suppose that 1 ≤ l ≤ n, and `−valued language Al over Σ is defined by

Al(w) =


λi, if w = akn+ibkn+i for some k ≥ 0,

λ⊥l , if |w| ≡ l(mod n) and w is not of the form ambm for any m ≥ 1,

1, otherwise.

Then if → = →j (j = 0, 1, ..., 5) we have:

dCFL[D]
Σ (Al)e ≥ dA ≡ L[D](G)e = λ⊥l ↔ 0 = λl.

102

λ2 λ⊥
2λ⊥

1 · · · · · · λn λ⊥
n

1

λ1

0

Figure 10: Orthomodular lattice MOn

It is obvious that there may be some symbols in an `−valued CFG G which are
useless in generating its language L[D](G). As in the case of classical context-free
grammars, `−valued CFGs can be simplified by dropping these useless symbols. Let
G〈N,P, S〉 be an `−valued CFG over Σ and L[D](G) 6= ∅. For any symbol X in N
or Σ, if there exists a quasi-derivation ((α0, α1, ..., αn), (p1, ..., pn)) in G such that
α0 = S, αn ∈ Σ∗, X appears in at least one of αi (0 ≤ i ≤ n), and

∧n
i=1 P (pi) > 0,

then X is said to be useful. Clearly, S is useful because L[D](G) 6= ∅. We put N ′ and
Σ′ to be the sets of useful symbols in N and Σ, respectively, and define P ′(p) = P (p)
if all symbols in p are in N ′ and Σ′. Then G′ = 〈N ′, P ′, S〉 is an `−valued CFG over
Σ′, and L[D](G) = L[D](G′).

As shown by the next lemma, we can further simplify an `−valued CFG by
eliminating some trivial productions.

Lemma 4.4. For any `−valued CFG G = 〈N,Σ, P, S〉, there exists an `−valued
CFG G′ = 〈N,Σ, P ′, S〉 satisfying the following conditions:

(1) P ′(p) = 0 for all p ∈ Prodε(G) = {A→ ε : A ∈ N ′}, the set of ε−productions
in G′;

(2) P ′(p) = 0 for all p ∈ Produnit(G) = {A → B : A,B ∈ N ′}, the set of unit
productions in G′; and

(3) L[D](G′) = L[D](G)−{ε}, where for any `−valued language L over Σ, L−{ε}
is defined by

(L− {ε})(w) =

{
L(w), if w 6= ε,

0, if w = ε.

Proof. We constructG′ fromG in two steps. First, we eliminate all ε−productions
from G. For any production p = A → X1X2...Xn ∈ Prod(G), for any subsequence
I = (i1, i2, ..., in) of (1, 2, ..., n), and for any dj ∈ QDerG with I(dj) = Xij and

L(dj) = ε (j = 1, 2, ..., k), we introduce new terminals A
(p,I,
−→
d)

j (j = 1, 2, ..., k),

103

where
−→
d = (d1, d2, ..., dk). Note that A

(p,I,
−→
d)

j are not defined whenever Xij is a

terminal for some j ≤ k. Moreover, A
(p,I,
−→
d)

j are different for different (p, I,
−→
d).

Let

N ′′ = N ∪
⋃
p,I,
−→
d

{A(p,I,
−→
d)

1 , ..., A
(p,I,
−→
d)

k }

and G′′ = 〈N ′′, P ′′, S〉, where P ′′ is defined as follows:

P ′′(A→ X1...Xi1−1A
(p,I,
−→
d)

1) = P (p),

P ′′(A(p,I,
−→
d)

1 → Xi1+1...Xi2−1A
(p,I,
−→
d)

2) = dDerG(d1)e,
............

P ′′(A(p,I,
−→
d)

k−1 → Xik−1+1...Xik−1A
(p,I,
−→
d)

k) = dDerG(dk−1)e,

P ′′(A(p,I,
−→
d)

k → Xik+1...Xn) = dDerG(dk)e,
and P ′′(p) = P (p) if p ∈ Prod(G) − Prodε(G), P ′′(p) = 0 for other productions p
in Prod(G′′). It is clear that G′′ satisfies the condition (1). On the other hand, for
each w ∈ Σ∗ − {ε}, and for each A ∈ N , it is routine to prove the following claim
by induction on the length |d| of d:

Claim 1. for any d ∈ QDerG with I(d) = A and L(d) = w, we can find
d′′ ∈ QDerG′′ such that I(d′′) = A, L(d′′) = w, and dDerG′′(d′′)e = dDerG(d)e.

Similarly, we can prove the following claim:

Claim 2. for any d ∈ QDerG′′ with I(d) = A and L(d) = w, we can find
d′′ ∈ QDerG such that I(d′′) = A, L(d′′) = w, and dDerG(d′′)e = dDerG′′(d)e.

By combining the above two claims we are able to assert that L[D](G)(w) =
L[D](G′′)(w) provided w 6= ε.

Second, we eliminate all unit productions from G′′. For any A, B ∈ N ′′, and for
any d ∈ QDerG′′ with I(d) = A and L(d) = B, we set

PA,B,d(p) =

{
P (B → α) ∧ dDerG′′e, if p = A→ α, where α ∈ (N ′′ ∪ Σ)∗,

0, otherwise.

Furthermore, we define

P ∗ = P ∪
⋃
A,B,d

PA,B,d

and

P ′(p) =

{
0, if p ∈ Produnit(G′′),
P ∗(p), otherwise.

Then we have G′ = 〈N ′′, P ′, S〉 ∈ CFG(`,Σ), and it satisfies the conditions (1) and
(2). Finally, it is easy to verify that L[D](G′) = L[D](G′′) = L[D](G)− {ε}. �

104

Two of the most useful special forms of context-free grammars are Chomsky
normal form and Greibach normal form. The orthomodular lattice-valued extensions
of them are give by the following definition.

Definition 4.5. Let Σ be an alphabet and N a set of nonterminal symbols. We
write

CNF (Σ, N)
def
= {A→ a : A ∈ N and a ∈ Σ} ∪ {A→ BC : A,B,C ∈ N}

and
GNF (Σ, N)

def
= {A→ aα : a ∈ Σ and α ∈ N∗}.

Then for any G = 〈N,P, S〉 in CFG(Σ, `), we say G is in Chomsky normal form
(CNF for short) if suppP ⊆ CNF (Σ, N), and G is said to be in Greibach normal
form (GNF for short) if suppP ⊆ GNF (Σ, N).

The next two theorems establish the generalizations of Chomsky normal form
theorem and Greibach normal form theorem in quantum logic.

Theorem 4.6. For any `−valued language A ∈ LΣ∗ over Σ, we have:

|=` CFL
[D]
Σ (A)→ (∃CNF G)(L[D](G) ≡ A− {ε}).

Proof. For any G′ in CFG(Σ, `), with Lemma 4.4 we are able to find G′′ in
CFG(Σ, `) satisfying the following two conditions:

(i) L[D](G′′) = L[D](G′ − {ε};
(ii) P ′′(p) = 0 for all p ∈ Prodε(G′′) ∪ Produnit(G′′).
Consequently, it holds that

dCFL[D]
Σ (A)e =

∨
G′∈CFG(Σ,`)

dA ≡ L((D)G′)e

≤
∨

G′′ satisfies (ii)

dA− {ε} ≡ L(D)(G′′)e.

Now it suffices to show that for any G′′ = 〈N ′′, P ′′, S〉 ∈ CFG(Σ, `), there exists
CNF G ∈ CFG(Σ, `) with L[D](G) = L[D](G′′) provided G′′ satisfies (ii). The
proof is similar to Theorem 4.5 in [37]. First, for each a ∈ Σ, we introduce a new
nonterminal symbol Ca. Let N1 = N ′′ ∪ {Ca : a ∈ Σ}. We put G1 = 〈N1, P1, S〉 ∈
CFG(Σ, `), where for each p ∈ Rule(G1), P1(p) is defined as follows:

P1(p) =


P ′′(p′), if p is obtained from p′ ∈ Rule(G′′) by replacing all terminals

a in p with Ca,

1, if p = Ca → a for some a ∈ Σ,

0, otherwise.

105

It is easy to see that P1 is well-defined. Furthermore, by induction on the length
of d we may prove the following two claims (here the routine but dull details are
omitted), which imply L[D](G1) = L[D](G′′):

Claim 1. For any d ∈ QDerG′′ , there exists d′ ∈ QDerG1 such that I(d′) = I(d),
L(d′) = L(d) and dDerG1(d′)e = dDerG′′(d)e.

Claim 2. For any d ∈ QDerG1 , there exists d′ ∈ QDerG′′ such that I(d′) = I(d),
L(d′) = L(d) and dDerG1(d)e ≤ dDerG′′(d′)e.

We now construct G = 〈N,P, S〉 by modifying G1. Obviously, for any p ∈
Rule(G1), if P1(p) > 0, then p is of the form A → a or A → A1...An with

A,A1, ..., An ∈ N1, a ∈ Σ and n ≥ 2. For any
−→
A = (A,A1, ..., An) ∈ Nn+1

1 (n ≥ 2),

we introduce new nonterminals D−→
A,1

, ..., D−→
A,|−→A |−2

, where |−→A | = n+ 1. Let

N = N1 ∪
⋃
−→
A

{D−→
A,1

, ..., D−→
A,|−→A |−2

}.

We also define
P−→
A

(A→ A1D−→A,1) = P (A→ A1...An),

P−→
A

(D−→
A,j
→ AjD−→A,j+1

) = P−→
A

(D−→
A,n−1

→ An−1An) = 1 (j = 1, ..., n− 2)

and P−→
A

(p) = 0 for other p ∈ Rule(G). Put

P =
⋃
−→
A

P−→
A
∪ P∗

where

P∗ =

{
P1(p), if p is of the form A→ a with A ∈ N1 and a ∈ Σ,

0, otherwise.

By an argument similar to the above claims we are able to show that L[D](G) =
L[D](G1) and thus complete the proof. �

Theorem 4.7. For any `−valued language A over Σ, it holds that

|=` CFL
[D]
Σ (A)→ (∃GNF G)(L[D](G) ≡ A− {ε}.

Proof. We first observe the following two technical facts:

Fact 1. Let G = 〈N,P, S〉 ∈ CFG(Σ, `), and let A,B ∈ N and α1, α2 ∈ (N∪Σ)∗.
We put

P1(p) =

{
P (p), if p ∈ Rule(G)− {A→ α1Bα2},
0, if p = A→ α1Bα2,

106

P2(p) =

{
P (A→ α1Bα2) ∧ P (B → γ), if p = A→ α1γα2 for some γ ∈ (N ∪ Σ)∗,

0, otherwise

and G′ = 〈N,P1 ∪ P2, S〉. Then G′ ∈ CFG(Σ, `) and L[D](G′) = L[D](G).

Note that the production A→ α1Bα2 is deleted and it is no longer in supp(B1∪
B2).

Fact 2. Let G = 〈N,P, S〉 ∈ CFG(Σ, `) and A ∈ N . We introduce a new
nonterminal B /∈ N and set G′ = 〈N ∪ {B}, P1 ∪ P2 ∪ P2 ∪ P4, S〉, where for each
p ∈ Rule(G′), Pi(p) (1 ≤ i ≤ 4) are defined as follows:

P1(p) =

{
0, if p /∈ Rule(G) or p = A→ Aα for some α ∈ (N ∪ Σ)∗,

P (p), otherwise,

P2(p) =


P (A→ β), if p = A→ βB for some β ∈ (N ∪ Σ)∗

with the leftmost symbol of β 6= A,

0, otherwise,

P3(p) =

{
P (A→ Aα), if p = B → α for some α ∈ (N ∪ Σ)∗,

0, otherwise

and

P4(p) =

{
P (A→ Aα), if p = B → αB for some α ∈ (N ∪ Σ)∗,

0, otherwise.

Then G′ ∈ CFG(Σ, `) and L[D](G′) = L[D](G). Note that all productions of the
form A→ Aα do not appear in supp(P1 ∪ P2 ∪ P3 ∪ P4).

The proofs of the above two facts follows the intuition behind Lemmas 4.3 and
4.4 in [37], with the technique used in the proofs of Lemma 4.4 and Theorem 4.6. The
details are omitted here. We only point out that commutativity and associativity of
∧ in ` are needed, but distributivity of ∧ over ∨ is not required in the proofs.

Now we are ready to prove the conclusion of this theorem. It is required to
show that for each G ∈ CFG(Σ, `), there exists a GNF G′ with dL[D](G) ≡ Ae ≤
dL[D](G′) ≡ A− {ε}e. Using Theorem 4.6, it suffices to show that for each CNF G
we can find a GNF G′ with L[D](G′) = L[D](G). The above two facts allows us to
construct G′ from G according to the procedure outlined in the proof of Theorem
4.6 in [37]. Since the construction is almost the same as that given in [37], here we
are not going to describe such a procedure in detail. �

It is worth noting that the generalizations of Chomsky normal form theorem
and Greibach normal form theorem in quantum logic are straightforward when we
comply with the depth-first principle.

We now turn to consider the second way of defining the language generated by an
`−valued CFG, namely, the width-first way. For any G = 〈N,P, S〉 ∈ CFG(Σ, `),

107

the direct derivation relation ⇒
G

is defined to be an `−valued binary relation on

(N ∪ Σ)∗, and for any α, β ∈ (N ∪ Σ)∗,

α⇒
G
β
def
= (∃A,α1, α2, γ)(α = α1Aα2 ∧ β = α1γα2 ∧A→ γ ∈ P).

Furthermore, we define
0⇒
G

= Id(N∪Σ)∗ ,

n+1⇒
G

=
n⇒
G
◦ ⇒
G

for any n ≥ 0

and
∗⇒
G

=
∞⋃
n=0

n⇒
G
.

Definition 4.8. Let G be an `−valued CFG over Σ. Then the `−valued lan-
guage L[W](G) ∈ LΣ∗ generated by G in the width-first way is defined by

w ∈ L[W](G)
def
= S

∗⇒
G
w

for each w ∈ Σ∗.

The following lemma clarifies the relationship between the languages generated
by an orthomodular lattice-valued context-free grammar in the depth-first way and
the width-first way.

Lemma 4.9. Let Σ 6= ∅ be a finite alphabet.

(1) For any G ∈ CFG(Σ, `) and w ∈ Σ∗, we have:

`

|= w ∈ L[D](G)→ w ∈ L[W](G).

(2) The following two statements are equivalent:

(2.1) ` is a Boolean algebra;

(2.2) for any G ∈ CFG(Σ, `) and w ∈ Σ∗,

`

|= w ∈ L[D](G)↔ w ∈ L[W](G).

(3) For any G = 〈N,P, S〉 ∈ CFG(Σ, `) and w ∈ Σ∗, we have:

`

|= γ(atom(G)) ∧ w ∈ L[W](G)→ w ∈ L[D](G),

and in particular if → = →3 then it holds that

`

|= γ(atom(G))→ (w ∈ L[D](G)↔ w ∈ L[W](G))

108

where atom(G) is the set of atomic propositions about G, that is, atom(G) = {A→
α ∈ P : A→ α ∈ suppP}.

Proof. (1) Let G = 〈N,P, S〉. We first prove the following:

Claim 1. For any d = ((α0, α1, ..., αn), (p1, .., pn)) ∈ QDerG(d), dDerG(d)e ≤
dα0

n⇒
G
αne.

We proceed by induction on n. For the case of n = 1, since p1 is compatible
with α0 ⇒ α1, it holds that α0 = β1Aβ2, α2 = β1γβ2 and p1 = A → γ for some

A, β1, β2 and γ. This leads to dDerG(d)e = P (p1) ≤ dα0
1⇒
G
α1e. In general, we may

assume that αn−1 = β1Aβ2, αn = β1γβ2, pn = A→ γ for some A, β1, β2, γ because
pn is compatible with αn−1 ⇒ αn. This yields P (pn) ≤ dαn−1 ⇒

G
αne. On the other

hand, by the induction hypothesis we assert that

n−1∧
i=1

P (pi) = dDerG((α0, α1, ..., αn−1), (p1, ..., pn−1))e ≤ dα0
n−1⇒
G

αn−1e.

Therefore, we have

dDerG(d)e =
n∧
i=1

P (pi) ≤ dα0
n−1⇒
G

αn−1e ∧ dαn−1 ⇒
G
αne ≤ dα0

n⇒
G
αne.

Now using the above claim we obtain dDerG(d)e ≤ dS ∗⇒
G
we = L[W](G)(w)

for any d ∈ QDerG with I(d) = S and L(d) = w. This implies L[D](G)(w) ≤
L[W](G)(w) for every w ∈ Σ∗.

(2) The implication from (2.1) to (2.2) is a direct corollary of (3). So here
we only prove that (2.2) implies (2.1). Assume that (2.2) is valid. We are going
to show that λ ∧ (µ1 ∨ µ2) = (λ ∧ µ1) ∨ (λ ∧ µ2) for all λ, µ1, µ2 ∈ L. Suppose
that a ∈ Σ. Let G = 〈{S,A,B}, P, S〉 where P (S → A) = λ, P (A → B) = µ1,
P (A → C) = µ2, P (B → a) = P (C → a) = 1, and P (p) = 0 for other productions
p ∈ Rule(G). A simple calculation yields L[D](G)(a) = (λ ∧ µ1) ∨ (λ ∧ µ2) and
L[W](G)(a) = λ∧(µ1∨µ2). Then we know from (2.2) that L[D](G)(a) = L[W](G)(a),
and it is done.

(3) We first prove the following:

Claim 2. For any α, β ∈ (N ∪ Σ)∗, and for any n ≥ 0,

dγ(atom(G))e ∧ dα n⇒
G
βe ≤

∨
{dDerG(d)e : d ∈ QDerG, I(d) = α and L(d) = β}.

We use induction on n. First, for any A,α1, α2 and γ with α = α1Aα2 and β =
α1γα2, we set p = A → γ. It is clear that p is compatible with α ⇒ β. Put
dA,α1,α2,γ = ((α, β), p). Then dA,α1,α2,γ ∈ QDerG, I(dA,α1,α2,γ) = α, L(dA,α1,α2,γ) =

109

β, and dDerG(dA,α1,α2,γ)e = P (p) = P (A→ γ). Thus,

dγ(atom(G))e ∧ dα 1⇒
G
βe ≤ dα 1⇒

G
βe =

∨
α=α1Aα2,β=α1γα2

P (A→ γ)

=
∨

α=α1Aα2,β=α1γα2

dDerG(dA,α1,α2,γ)e

≤
∨
{dDerG(d)e : d ∈ QDerG, I(d) = α and L(d) = β}.

The conclusion is valid for the case of n = 1. In general, it follows from Lemmas 2.6
and 2.7 that

dγ(atom(G))e ∧ dα n⇒
G
βe = dγ(atom(G))e ∧

∨
δ

(dα n−1⇒
G

δe ∧ dδ ⇒
G
βe)

= dγ(atom(G))e ∧ dγ(atom(G))e ∧
∨
δ

(dα n−1⇒
G

δe ∧ dδ ⇒
G
βe)

≤
∨
δ

(dγ(atom(G))e ∧ dα n−1⇒
G

δe ∧ dδ ⇒
G
βe).

Therefore, we only need to show that

dγ(atom(G))e∧dα n−1⇒
G

δe∧dδ ⇒
G
βe ≤

∨
{dDerG(d)e : d ∈ QDerG, I(d) = α and L(d) = β}

for each δ ∈ (N ∪ Σ)∗. By the induction hypothesis we obtain:

dγ(atom(G))e ∧ dα n−1⇒
G

δe ∧ dδ ⇒
G
βe ≤ dγ(atom(G))e ∧

∨
{dDerG(d′)e : d′ ∈ QDerG,

I(d′) = α and L(d′) = δ} ∧ dδ ⇒
G
βe

= dγ(atom(G))e ∧
∨
{dDerG(d′)e : d′ ∈ QDerG, I(d′) = α and L(d′) = δ}

∧
∨
{P (A→ γ) : δ = α1Aα2 and β = α1γα2}

≤
∨
{dDerG(d′)e ∧ P (A→ γ) : d′ ∈ QDerG, I(d′) = α,L(d′) = δ = α1Aα2 and β = α1γα2}.

Then it suffices to show that for any d′, A, α1, α2 and γ with d′ ∈ QDerG, I(d′) =
α,L(d′) = δ = α1Aα2 and β = α1γα2,

dDerG(d′)e ∧ P (A→ γ) ≤
∨
{dDerG(d)e : d ∈ QDerG, I(d) = α and L(d) = β}.

To this end, suppose d′ = ((θ0, θ1, ..., θk), (q1, ..., qk)). Let d0 = ((θ0, θ1, ..., θk =
δ, β), (q1, ..., qk, A → γ)). Clearly, d0 ∈ QDerG, I(d0) = θ0 = I(d′) = α, L(d0) = β
and dDerG(d0)e = dDerG(d′)e ∧ P (A → γ). This concludes the proof of the above
claim.

Finally, with the above claim we assert that

dγ(atom(G))e∧dS n⇒
G
we ≤

∨
{dDerG(d)e : d ∈ QDerG, I(d) = S and L(d) = w} = L(D)(G)(w)

110

for all w ∈ Σ∗ and n ≥ 1. Note that dS n⇒
G
we = 0. This together with Lemmas 2.6

and 2.7 yields:

dγ(atom(G))e ∧ L[W](G)(w) = dγ(atom(G))e ∧ dS ∗⇒
G
we

= dγ(atom(G))e ∧
∞∨
n=0

dS n⇒
G
we

= dγ(atom(G))e ∧ dγ(atom(G))e ∧
∞∨
n=0

dS n⇒
G
we

=

∞∨
n=0

(dγ(atom(G))e ∧ dS n⇒
G
we) ≤ L[D](G)(w). �

The notion of `−valued language generated in the width-first way allows us to
introduce a new definition of `−valued context-freeness of languages. Notice that in
evaluating the language generated by an `−valued CFG according to Definition 4.8, a
join operation appear at the outermost stratum, some meet operations then appear
at the second stratum, and so on. The meet and join operations are entangled
heavily. Thus, distributivity is highly anticipated, and a commutative version of
context-freeness should be much more convenient when we comply with the width-
first principle.

Definition 4.10. Let Σ be a finite alphabet. Then `−valued (unary) predicate

CCFL
[W]
Σ on `−valued languages over Σ is defined by

CCFL
[W]
Σ (A)

def
= (∃G ∈ CFG(Σ, `)(γ(atom(G) ∪ r(A)) ∧A ≡ L[W](G))

for eachA ∈ LΣ∗ , where atom(G) is as in Lemma 4.9, r(A) = {a : a = A(s) for some s ∈
Σ∗}, and a is the nullary predicate corresponding to element a in L. The intuitive

interpretation of CCFL
[W]
Σ is “commutative context-freeness in the width-first way.”

Combining Lemma 4.9 with Theorems 4.6 and 4.7, we are able to establish
Chomsky normal form theorem and Greibach normal form theorem in the sense of
preserving the language generated by an `−valued CFG in the width-first way.

Theorem 4.11. For any `−valued language A over Σ, we have:

(1) |=` CCFL
[W]
Σ (A)→ (∃CNF G)(L[W](G) ≡ A− {ε};

(2) |=` CCFL
[W]
Σ (A)→ (∃GNF G)(L[W](G) ≡ A− {ε}.

Proof. (1) For any G′ ∈ CFG(Σ, `), with Lemma 4.9 we have

dγ(atom(G′))e ≤ dL[W](G′) ≡ L[D](G′)e.

111

Consequently, we obtain:

dγ(atom(G′) ∪ r(A))e ∧ dA ≡ L[W](G′)e ≤ dγ(atom(G′) ∪ r(A))e∧
dA ≡ L[W](G′)e ∧ dL[W](G′) ≡ L[D](G′)e

≤ dA ≡ L[D](G′)e

by using Lemma 2.12(3). On the other hand, we know from the proofs of Lemma
4.4 and Theorem 4.6 that there is a CNF G with L[D](G) = L[D](G′) − {ε}. This
implies dL[D](G) ≡ L[D](G′)−{ε}e = 1. Furthermore, from the construction of such
an `−valued grammar G given in the proofs of Lemma 4.4 and Theorem 4.6 we
assert that

dγ(atom(G′) ∪ r(A))e ≤ dγ(atom(G′) ∪ atom(G) ∪ r(A))e

by Lemma 2.7. By combining the above conclusions and using Lemma 2.12(3) we
obtain:

dγ(atom(G′) ∪ r(A))e ∧ dA ≡ L[W](G′)e ≤ dγ(atom(G′) ∪ atom(G) ∪ r(A))e∧
dA ≡ L[D](G′)e ∧ dL[D](G) ≡ L[D](G′)− {ε}e

≤ dγ(atom(G′) ∪ atom(G) ∪ r(A))e ∧ dA− {ε}
≡ L[D](G′)− {ε}e ∧ dL[D](G′)− {ε} ≡ L[D](G)e

≤ dγ(atom(G) ∪ r(A))e ∧ dL[D](G) ≡ A− {ε}e.

Finally, using Lemma 4.9 once again we have:

dγ(atom(G))e ≤ dL[W](G) ≡ L[D](G)e.

Then it follows from Lemma 2.12(3) that

dγ(atom(G′) ∪ r(A))e ∧ dA ≡ L[W](G′)e ≤ dγ(atom(G) ∪ r(A))e ∧ dL[D](G) ≡ A− {ε}e∧
dL[W](G) ≡ L[D](G)e

≤ dL[W](G) ≡ A− {ε}e.

(2) is similar to (1). �

4.2. Basic Definitions of Orthomodular Lattice-Valued Pushdown Au-
tomata

The construction of pushdown automata is similar to that of finite automata,
with a control of both input tape and a stack at the top of which symbols may be
entered or removed. Here for convenience of the reader we briefly recall the formal
definition of pushdown automata. For more detailed exposition we refer to [37, 41].

112

Let Σ be a finite input alphabet. A (nondeterministic) pushdown automaton over
Σ is a 6−tuple < = 〈Q,Γ, δ, q0, Z0, F 〉, where

(i) Q is a finite set of states;

(ii) Γ is a finite set of stack symbols, called the stack alphabet;

(iii) q0 ∈ Q is the initial state;

(iv) Z0 ∈ Γ is the start stack symbol;

(v) F ⊆ Q is the set of final states; and

(vi) δ is a finite subset of [Q × (Σ ∪ {ε}) × Γ] × (Q × Γ∗), called the transition
relation. Intuitively, if p, q ∈ Q, a ∈ Σ, Z ∈ Γ and γ ∈ Γ∗, then ((p, a, Z), (q, γ)) ∈ δ
means that whenever the automaton is in state p, reading input symbol a on the
input tape and Z on the top of the stack, it can enter state q, replace stack symbol
Z by string γ of stack symbols, and advance its input head one symbol. For the case
of a = ε, the same happens except that the input head is not advanced.

For a given pushdown automaton < = 〈Q,Γ, δ, q0, Z0, F 〉 over input alphabet Σ,
each element (q, w, γ) ∈ Q× Σ∗ × Γ∗ is called a configuration of <, where q, w and
γ are used to record the current state, the port of the input yet unread, and the
current stack content. The next configuration relation `< between configurations is
defined as follows: for any p, q ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Σ∗, Z ∈ Γ and α, β ∈ Γ∗, if
((q, a, Z), (p, β)) ∈ δ then we have

(q, aw, Zα) `< (p, w, βα).

The reflexive and transitive closure of `< is denoted by `∗<. Then the language
accepted by < with final states is defined to be

LFS(<) = {w ∈ Σ∗ : (q0, w, Z0) `∗< (p, ε, γ) for some p ∈ F and γ ∈ Γ∗},

and the language accepted by < with empty stack is defined to be

LES(<) = {w ∈ Σ∗ : (q0, w, Z0) `∗< (p, ε, ε) for some p ∈ Q}.

We now can introduce the orthomodular lattice-valued generalization of push-
down automaton. Let ` = 〈L,≤,∧,∨,⊥, 0, 1〉 be an orthomodular lattice, and Σ a
finite input alphabet. An `−valued pushdown automaton (PDA for short) over Σ is
defined to be a 6−tuple < = 〈Q,Γ, δ, q0, Z0, F 〉, where

(i) Q, Γ, q0 and Z0 are the same as in an ordinary pushdown automaton;

(ii) F is an `−valued subset of Q, and intuitively for each q ∈ Q, T (q) is the
truth value of the proposition that q is a final state; and

(iii) δ is an `−valued subset of

Rule(<)
def
= [Q× (Σ ∪ {ε})× Γ]× (Q× Γ∗),

whose elements are called rules of <, such that suppδ = {r ∈ Rule(<) : δ(r) > 0}
is a finite set. If r = ((q, a, Z), (p, γ)) ∈ Rule(<), then intuitively δ(r) is the truth

113

value of the proposition that whenever the PDA is in state q, reading a on the input
tape and Z on the top of the stack, it can enter state p, replace Z by string γ of
stack symbols, and advance one symbol if a 6= ε.

We write PDA(Σ, `) for the (proper) class of `−valued PDAs over Σ.

There are also two nonequivalent ways of defining the language accepted by an
`−valued PDA, the depth-first one and the width-first one, due to the fact that `
does not enjoy distributivity of ∧ over ∨. We first propose the definition in the
depth-first way. Suppose that < = 〈Q,Γ, δ, q0, Z0, F 〉 is an `−valued PDA over Σ.

We write Con(<) for the set of configurations of <, that is, Con(<)
def
= Q×Σ∗×Γ∗.

For any r = ((q, a, Z), (p, γ)) ∈ Rule(<), and C1 = (q′, w, γ1), C2 = (p′, u, γ2) ∈
Con(<), we say that r is compatible with the next configuration relation C1 ` C2 if
q′ = q, p′ = p, γ1 = Zγ′ and γ2 = γγ′ for some γ′ ∈ Γ∗, and

(a) a = ε and u = w; or

(b) a ∈ Σ and w = au.

A quasi-path (of length n ≥ 0) is an element

c = ((C0, C1, ..., Cn), (r1, ..., rn)) ∈ Con(<)n+1 ×Rule(<)n

such that ri is compatible with Ci−1 ` Ci for each i ≤ n. The set of quasi-paths in <
is denoted by QPath<. Then the `−valued (unary) predicate “to be a computational
path in <”is defined to be Path< ∈ LQPath< with

Path<((C0, C1, ..., Cn), (r1, ..., rn))
def
=

n∧
i=1

(ri ∈ δ)

for any c = ((C0, C1, ..., Cn), (r1, ..., rn)) ∈ QPath<, and n ≥ 0.

Definition 4.12. Let < ∈ PDA(Σ, `). Then the recognizability rec
[D,FS]
< of <

by final stats in the depth-first way is defined to be an `−valued (unary) predicate

on Σ∗, that is, rec
[D,FS]
< ∈ LΣ∗ :

rec
[D,FS]
< (w)

def
= (∃c ∈ QPath<)(Path<(c)∧I(c) = (q0, w, Z0)∧Li(c) = ε∧Lq(c) ∈ F)

for every w ∈ Σ∗, where I(c) stands for the first configuration in c, and Li(c) and
Lq(c) are respectively the unread content on the input tape and the state of the

last configuration in c. Similarly, the recognizability rec
[D,ES]
< ∈ LΣ∗ of < by empty

stack in the depth-first way is defined by

rec
[D,ES]
< (w)

def
= (∃c ∈ QPath<)(Path< ∧ I(c) = (q0, w, Z0) ∧ Li(c) = ε ∧ Ls(c) = ε)

for every w ∈ Σ∗, where Ls(c) is the stack content of the last configuration in c.

The following theorem shows that the in the depth-first way the two notions of
recognizability by final states and empty stack are indeed equivalent.

114

Theorem 4.13. For any <1 ∈ PDA(Σ, `), there is <2 ∈ PDA(Σ, `) such that
for any w ∈ Σ∗,

|=` rec
[D,FS]
<1

(w)↔ rec
[D,ES]
<2

(w);

and conversely for any <1 ∈ PDA(Σ, `), there is <2 ∈ PDA(Σ, `) such that for any
w ∈ Σ∗,

|=` rec
[D,ES]
<1

(w)↔ rec
[D,FS]
<2

(w).

Proof. We only prove the first part, and the second part is similar. The idea of
the proof is the same as in the case of ordinary pushdown automata (see [37], pages
114-115). Suppose that <1 = 〈Q,Γ, δ, q0, Z0, F 〉. Then we set <2 = 〈Q∪{q′0, qe},Γ∪
{Z ′0}, δ′, q′0, Z ′0, ∅〉, where

δ′(r) =


δ(r), if r ∈ Rule(<1),

1, if r = ((q′0, ε, Z
′
0), (q0, Z0Z

′
0)) or r = ((qe, ε, Z), (qe, ε)) for some Z ∈ Γ ∪ {ε},

F (q), if r = ((q, ε, Z), (qe, Z)) for some q ∈ Q and Z ∈ Γ ∪ {ε},
0, otherwise

for any r ∈ Rule(<2).

Now for each c = ((C0, C1, ..., Cn), (r1, ..., rn)) ∈ QPath<1 with I(c) = C0 =
(q0, w, Z0) and Li(c) = ε, we assume that Ci = (qi, wi, γi) for every 1 ≤ i ≤ n, and
write C ′−1 = (q′0, w, Z

′
0), C ′0 = (q0, w, Z0Z

′
0), C ′i = (qi, wi, γiZ

′
0) for any 1 ≤ i ≤ n,

C ′n+k = (qe, ε, γ
′
k) for any 1 ≤ k ≤ |γn| + 1, where γ′k is the string consisting of the

last |γn| − k + 1 symbols of γn. Furthermore, we put

ext(c) = ((C ′−1, C
′
0, C

′
1, ..., C

′
n, C

′
n+1, ..., C

′
n+|γn|+1), (r0, r1, ..., rn, rn+1, ..., rn+|γn|+1)),

where r0 = ((q′0, ε, Z
′
0), (q0, Z0Z

′
0)), rn+1 = ((qn, ε, Zn), (qe, Zn)), Zn is the first sym-

bol of γn, rn+k = ((qe, ε, Z
′
k), (qe, ε)), and Z ′k is the first symbol of γ′k−1 for all

2 ≤ k ≤ |γn|+ 1. Then it is easy to see that ext(c) ∈ QPath<2 and

dPath<2(ext(c))e = dPath<1(c)e ∧ F (Lq(c)).

Therefore, it follows that

drec[D,FS]
<1

(w)e =
∨
{dPath<1(c)e ∧ F (Lq(c)) : c ∈ QPath<1 , I(c) = (q0, w, Z0) and Li(c) = ε}

=
∨
{dPath<2(ext(c))e : c ∈ QPath<1 , I(c) = (q0, w, Z0) and Li(c) = ε}

≤
∨
{dPath<2(c′)e : c′ ∈ QPath<2 , I(c′) = (q′0, w, Z

′
0) and Li(c′) = Ls(c′) = ε}

= drec[D,ES]
<2

(w)e.

Likewise, we are able to show that drec[D,ES]
<2

(w)e ≤ drec[D,FS]
<1

(w)e. �

115

We now turn to present the definition of language accepted by an `−valued PDA
according to the width-first principle and compare it with that given according to
the depth-first principle. To this end, we first introduce an auxiliary notation. For
any α, β ∈ Γ∗, if there exists γ ∈ Γ∗ such that α = γβ, then β is called a tail of α
and we write β ≤ α. In this case, γ is unique and we define γ = α − β. Then the
next configuration relation `< is defined to be an `−valued binary relation between
configurations:

(p, v, α) `< (q, w, β)
def
= [w = t(v) ∧ t(α) ≤ β ∧ ((p, h(v), h(α)), (q, β − t(α))) ∈ δ]

∨[w = v ∧ t(α) ≤ β ∧ ((p, ε, h(α)), (q, β − t(α))) ∈ δ]
for all p, q ∈ Q, v, w ∈ Σ∗, and α, β ∈ Γ∗, where for each string x of symbols,
h(x) and t(x) stand for the head and tail of x, respectively, that is, h(x) = X1

and t(x) = X2...Xn if x = X1X2...Xn. Furthermore, let `∗< be the reflexive and
transitive closure of `<, that is,

`∗< =

∞⋃
n=0

`n<,

where
`0
< = IdCon(<)

and
`n+1
< = `< ◦ `n< for any n ≥ 0.

With this notation we can present the definition of language accepted by an
`−valued PDA according to the width-first principle in a way similar to the classical
case.

Definition 4.14. Let < ∈ PDA(Σ, `). Then the recognizability of < by final

states in the width-first way is an `−valued (unary) predicate rec
[W,FS]
< ∈ LΣ∗ , and

it is defined by

rec
[W,FS]
< (w)

def
= (∃q ∈ Q, γ ∈ Γ∗)((q0, w, Z0) `∗< (q, ε, γ) ∧ q ∈ F)

for each w ∈ Σ∗, and the recognizability rec
[W,ES]
< ∈ LΣ∗ of < by empty stack in the

width-first way is defined by

rec
[W,FS]
< (w)

def
= (∃q ∈ Q)(q0, w, Z0) `∗< (q, ε, ε)

for all w ∈ Σ∗.

The following lemma carefully compare recognizability of an orthomodular lattice-
valued pushdown automaton in the depth-first way with that in the width-first way.

116

Lemma 4.15. Let Σ be a nonempty finite alphabet.

(1) For any < ∈ PDA(Σ, `) and for any w ∈ Σ∗, we have:

|=` rec
[D,FS]
< (w)→ rec

[W,FS]
< (w) and |=` rec

[D,ES]
< (w)→ rec

[W,ES]
< (w).

(2) The following three statements are equivalent:

(2.1) ` is a Boolean algebra;

(2.2) for any < ∈ PDA(Σ, `) and w ∈ Σ∗,

|=` rec
[D,FS]
< (w)↔ rec

[W,FS]
< (w);

(2.3) for any < ∈ PDA(Σ, `) and w ∈ Σ∗,

|=` rec
[D,ES]
< (w)↔ rec

[W,ES]
< (w).

(3) For any < ∈ PDA(Σ, `) and for any w ∈ Σ∗, we have:

|=` γ(atom(<)) ∧ rec[W,FS]
< (w)→ rec

[D,FS]
< (w),

|=` γ(atom(<)) ∧ rec[W,ES]
< (w)→ rec

[D,ES]
< (w).

In particular, if → = →3 then it holds that

|=` γ(atom(<))→ (rec
[D,FS]
< (w)↔ rec

[W,FS]
< (w)),

|=` γ(atom(<))→ (rec
[D,ES]
< (w)↔ rec

[W,ES]
< (w)),

where atom(<) is the set of atomic propositions concerning pushdown automaton
<, that is, atom(<) = {q ∈ F : q ∈ Q} ∪ {rule r ∈ δ : r ∈ suppδ}.

Proof. This is similar to the proof of Lemma 4.9. We only give an outline instead
of the details.

(1) The key step is to prove that dPath<(c)e ≤ dI(c) `∗< L(c)e for every c ∈
QPath<. This can be done by induction on the length |c| of c.

(2) It is immediate from (3) that (2.1) implies both (2.2) and (2.3). Conversely,
for any λ, µ1, µ2 ∈ L, let Q = {q0, q1, q2, q3, q4}, a ∈ Σ 6= ∅, Γ = {Z0, Z1, Z2, Z4} and
< = 〈Q,Γ, δ, q0, Z0, {q4}〉, where δ((q0, a, Z0), (q1, Z1)) = λ, δ((q1, a, Z1), (q2, Z2)) =
µ2, δ((q1, a, Z1), (q3, Z3)) = µ2, δ((q2, a, Z2), (q4, ε)) = δ((q3, a, Z3), (q4, ε)) = 1, and
δ(r) = 0 for all other rules r ∈ Rule(<). Then we have:

drec[D,FS]
< (a3)e = drec[D,ES]

< (a3)e = (λ ∧ µ1) ∨ (λ ∧ µ2)

and
drec[W,FS]

< (a3)e = drec[W,ES]
< (a3)e = λ ∧ (µ1 ∨ µ2),

117

and λ ∧ (µ1 ∨ µ2) = (λ ∧ µ1) ∨ (λ ∧ µ2) follows from either (2.2) or (2.3).

(3) We can prove that

dγ(atom(<))e∧dC1 `n< C2e ≤
∨
{dPath<(c)e : c ∈ QPath<, I(c) = C1 and L(c) = C2}

for any C1, C2 ∈ Con(<) by induction on n. Then

dγ(atom(<))e ∧ drec[W,FS]
< (w)e ≤ drec[D,FS]

< (w)e

and
dγ(atom(<))e ∧ drec[W,ES]

< (w)e ≤ drec[D,ES]
< (w)e

follow from repeated applications of Lemmas 2.6 and 2.7. �

By applying Lemma 4.15 and Theorem 4.13 we are able to show that recog-
nizability by final states is also equivalent to recognizability by empty stack in the
width-first way provided a certain commutativity on the pushdown automata under
consideration is imposed.

Corollary 4.16. For any < ∈ PDA(Σ, `), if → = →3 then we have:

|=` γ(atom(<))→ (∃<′ ∈ PDA(Σ, `))(∀w ∈ Σ∗)(rec[W,FS]
< (w)↔ rec

[W,ES]
< (w)).

Proof. We may observe from the proof of Theorem 4.13 that there exists an
`−valued PDA <′ over Σ satisfying the following two conditions:

(i) atom(<) = atom(<′), and

(ii) drec[D,FS]
< (w)e = drec[D,FS]

<′ (w)e for any w ∈ Σ∗.

Now for each w ∈ Σ∗, using Lemmas 2.7, 2.12(3) and 4.15(3) we obtain:

drec[W,FS]
< (w)↔ rec

[W,ES]
<′ (w)e ≥ dγ(atom(<) ∪ atom(<′))e ∧ drec[W,FS]

< (w)↔ rec
[D,FS]
< (w)e

∧ drec[D,FS]
< (w)↔ rec

[D,ES]
<′ (w)e

∧ drec[D,ES]
<′ (w)↔ rec

[W,ES]
<′ (w)e

≥ dγ(atom(<) ∪ atom(<′))e = dγ(atom(<))e. �

4.3. Equivalence of Orthomodular Lattice-Valued Context Free Gram-
mars and Pushdown Automata

We first establish equivalence of `−valued CFGs and `−valued PDAs in the
depth-first way: each `−valued CFG can be simulated by an `−valued PDA, and
vise versa, whenever the depth-first principle is applied. It should be noticed that

118

distributivity of ∧ over ∨ is not required in this case. Thus, no commutators occur
in the following two theorem.

Theorem 4.17. For any `−valued language A over Σ, it holds that

|=` CFL
[D]
Σ (A)→ (∃< ∈ PDA(Σ, `))(A ≡ rec[D,ES]

<),

and consequently

|=` CFL
[D]
Σ (A)→ (∃< ∈ PDA(Σ, `))(A ≡ rec[D,FS]

<).

Proof. The second part is a simple corollary of the first one and Theorem 4.13.
For the first part, using Theorem 4.7 we only need to show that for each GNF G =

〈N,P, S〉 in CFG(Σ, `), there is < ∈ PDA(Σ, `) with rec
[D,ES]
< (w) = L[D](G)(w)

for any w ∈ Σ∗. Let < = 〈{q}, N, δ, S, ∅〉, where δ((q, a,B), (q, γ)) = P (B → aγ) for
all a ∈ Σ, B ∈ N and γ ∈ N∗, and δ(r) = 0 for other rules r in Rule(<). This is a
simple `−valued modification of the construction given in the proof of Theorem 5.3
in [37]. Then by induction on the length |c| of c we can prove the following:

Claim 1. For any c ∈ QPath< with I(c) = (q, x, S) and L(c) = (q, ε, α), where
x ∈ Σ∗, α ∈ N∗, and L(c) stands for the last configuration of c, there exists d ∈
QDerG such that I(d) = S, L(d) = xα and dPath<(c)e ≤ dDerG(d)e.

Also, by induction on the length |d| of d we are able to prove the following:

Claim 2. For any d ∈ QDerG with I(d) = S and L(d) = xα, where x ∈ Σ∗, and
α ∈ N∗, there exists c ∈ QPath< such that I(c) = (q, x, S), L(c) = (q, ε, α) is the
last configuration of c, and dDerG(d)e ≤ dpath<(c)e.

This indeed completes the proof. �

Theorem 4.18. For any < ∈ PDA(Σ, `), there exists G ∈ CFG(Σ, `) such that

|=` w ∈ L[D](G)↔ rec
[D,ES]
< (w)

for every w ∈ Σ∗. Consequently, for any < ∈ PDA(Σ, `), there exists G ∈
CFG(Σ, `) such that

|=` w ∈ L[D](G)↔ rec
[D,FS]
< (w)

for every w ∈ Σ∗.

Proof. We only need to prove the first part. The second part follows from the
first one and Theorem 4.13.

Suppose that < = 〈Q,Γ, δ, q0, Z0, F 〉. The grammar G is again an `−valued
modification of the corresponding classical construction presented in the proof of
Theorem 5.4 in [37]. Let G = 〈N,P, S〉, where

N = {S} ∪ {[q, A, q′] : q, q′ ∈ Q and A ∈ Γ},

119

P ([q, A, qm+1]→ a[q1, B1, q2][q2, B2, q3]...[qm, Bm, qm+1]) = δ((q, a, A), (q1, B1B2...Bm))

for all q, q1, q2, ..., qm, qm+1 ∈ Q, a ∈ Σ ∪ {ε} and A,B1, B2, ..., Bm ∈ Σ,

P (S → [q0, Z0, q]) = 1

for all q ∈ Q, and P (p) = 0 for other productions p ∈ Prod(G). Then for any
q, q′ ∈ Q, A ∈ Γ and w ∈ Σ∗, we have:

Claim 1. For any d ∈ QDerG with I(d) = [q′, A, q] and L(d) = w, there exists c ∈
QPath< such that I(C) = (q′, w,A), L(c) = (q, ε, ε) and dDerG(d)e ≤ dPath<(c)e.

Claim 2. For any c ∈ QPath< with I(c) = (q′, w,A) and L(c) = (q, ε, ε),
there exists d ∈ QDerG such that I(d) = [q′, A, q], L(d) = w and dPath<(c)e ≤
dDerG(d)e.

The first claim can be proved by induction on the length |d| of d, and the sec-
ond by induction on the length |c| of c. The details are omitted here. Putting

q′ = q0 and A = Z0 in these claims, we obtain L[D](G)(w) ≤ drec[D,ES]
< (w)e and

drec[D,ES]
< (w)e ≤ L[D](G)(w), respectively, and thus complete the proof. �

A combination of the above two theorems and Lemmas 4.9 and 4.15 enables us
to establish equivalence of `−valued CFGs and `−valued PDAs in the width-first
way. Note that some commutators are needed in the following two corollaries.

Corollary 4.19. If→ =→3 then for any `−valued language A over Σ, we have:

|=` CCFL
[W]
Σ (A)→ (∃< ∈ PDA(Σ, `))(A ≡ rec[W,ES]

<)

and the same for recognizability with final states.

Proof. From the proof of Theorem 4.17 we notice that for each `−valued CFG G
over Σ, we can find an `−valued PDA < over Σ satisfying the following conditions:

(i) atom(<) ⊆ atom(G); and (ii) L(D)(G) = rec
(D,ES)
< . Then using Lemmas 2.7,

2.12, 4.9(3) and 4.15(3) we obtain:

dA ≡ rec[W,ES]
< e ≥ dA ≡ L[W](G)e ∧ dL[W](G) ≡ L[D](G)e ∧ dL[D](G) ≡ rec[D,ES]

< e
∧ drec[D,ES]

< ≡ rec[W,ES]
< e ∧ dγ(atom(G) ∪ r(A))e

≥ dA ≡ L[W](G)e ∧ dγ(atom(G) ∪ r(A))e

and this completes the proof. �

Corollary 4.20. Suppose that → = →3. For any `−valued PDA < over Σ,
there is `−valued CFG G over Σ such that

|=` γ(atom(<))→ (w ∈ L[W](G)↔ rec
[W,ES]
< (w))

120

for each w ∈ Σ∗. The same holds for recognizability with final states.

Proof. Similar to Corollary 4.19. �

4.4. Closure properties of orthomodular lattice-valued context-freeness

We first consider the union of orthomodular lattice-valued context-free gram-
mars. Let G1 = 〈N1, P1, S1〉, G2 = 〈N2, P2, S2〉 ∈ CFG(Σ, `). Then their union is
defined to be

G1 ∪G2 = 〈N1 ∪N2 ∪ {S}, P1 ∪ P2 ∪ {S → S1, S → S2}, S〉,

where it is assumed that N1 ∩N2 = ∅ and S /∈ N1 ∪N2.

The following proposition gives a representation of the language generated by
the union of two `−valued CFGs in terms of their respective languages.

Proposition 4.21. For any `−valued CFGs over Σ,

(i) L[D](G1 ∪G2) = L[D](G1) ∪ L[D](G2);

(ii) L[W](G1 ∪G2) = L[W](G1) ∪ L[W](G2).

Proof. (i) is immediate from Definition 4.1. For (ii), it is obvious that L[W](G1)(w),
L[W](G2)(w) ≤ L[W](G1∪G2)(w) for any w ∈ Σ∗. Conversely, note that N1∩N2 = ∅.
We can show that for any n ≥ 0 and w ∈ Σ∗, dS1

n⇒
G1∪G2

we = dS1
n⇒
G1

we and

dS2
n⇒

G1∪G2

we = dS2
n⇒
G2

we by induction on n. Then for each n ≥ 1,

dS n⇒
G1∪G2

we =
∨
α

(dS ⇒
G1∪G2

αe ∧ dα n−1⇒
G1∪G2

we)

= dS1
n−1⇒

G1∪G2

we ∨ dS2
n−1⇒

G1∪G2

we

= dS1
n−1⇒
G1

we ∨ dS2
n−1⇒
G2

we

≤ L[W](G1)(w) ∨ L[W](G2)(w)

because dS ⇒
G1∪G2

αe = 0 if α 6= S1, S2. On the other hand, dS 0⇒
G1∪G2

we = 0.

Consequently, we have:

L[W](G1 ∪G2)(w) = dS ∗⇒
G1∪G2

we

=

∞∨
n=0

dS n⇒
G1∪G2

we

≤ L[W](G1)(w) ∨ L[W](G2)(w). �

121

A direct corollary of the above proposition is that context-freeness is preserved
by the union operation of orthomodular lattice-valued languages. To present such a
preservation property we have to propose the notion of conformal and commutative
context-freeness.

Definition 4.22. Let Σ be a nonempty finite alphabet. The conformal and com-
mutative context-freeness of depth-first is defined to be a binary `−valued predicate

on LΣ∗ , ConCCFL
[D]
Σ ∈ LLΣ∗×LΣ∗

, and for any A1, A2 ∈ LΣ∗ ,

ConCCFL
[D]
Σ

def
= (∃G1, G2 ∈ CFG(Σ, `))(γ(atom(G1) ∪ atom(G2)

∪ r(A1) ∪ r(A2)) ∧ (A1 ≡ L[D](G1)) ∧ (A2 ≡ L[D](G2))).

The conformal and commutative context-freeness of width-first, ConCCFL
[W]
Σ ∈

LL
Σ∗×LΣ∗

, may be defined by replacing the superscript [D] with [W] in the above
equation.

Corollary 4.23. For any `−valued languages A1 and A2 over Σ,

|=` ConCCFL
[D]
Σ (A1, A2)→ CCFL[D](A1 ∪A2),

|=` ConCCFL
[W]
Σ (A1, A2)→ CCFL[W](A1 ∪A2).

Proof. Similar to Corollary 3.21. �

Second, we introduce the concatenation operation of two orthomodular lattice-
valued context-free grammars. The concatenation of G1 = 〈N1, P1, S1〉, G2 =
〈N2, P2, S2〉 ∈ CFG(Σ, `) is defined to be

G1 ·G2 = 〈N1 ∪N2 ∪ {S}, P1 ∪ P2 ∪ {S → S1S2}, S〉,

where it is assumed that N1 ∩N2 = ∅, and S is chosen so that S /∈ N1 ∪N2.

The relation between the language generated by the concatenation of two `−valued
CFGs G1 and G2 and the languages generated by G1 and G2 is quite complicated,
and it is clearly exposed by the following proposition and Example 4.25 below.

Proposition 4.24. Let Σ be a nonempty finite alphabet.

(1) For any `−valued CFGs G1 and G2 over Σ, and for any w ∈ Σ∗,

|=` w ∈ L[D](G1 ·G2)→ w ∈ L[D](G1) · L[D](G2).

(2) The following two statements are equivalent:

122

(2.1) ` is a Boolean algebra;

(2.2) for any `−valued CFGs G1 and G2 over Σ, and for any w ∈ Σ∗,

|=` w ∈ L[D](G1 ·G2)↔ w ∈ L[D](G1) · L[D](G2).

(3) For any `−valued CFGs G1 and G2 over Σ, and for any w ∈ Σ∗, we have:

|=` γ(atom(G1) ∪ atom(G2)) ∧ w ∈ L[D](G1) · L[D](G2)→ w ∈ L[D](G1 ·G2),

|=` γ(atom(G1) ∪ atom(G2)) ∧ w ∈ L[W](G1) · L[W](G2)→ w ∈ L[W](G1 ·G2),

|=` γ(atom(G1) ∪ atom(G2)) ∧ w ∈ L[W](G1) · L[W](G2)→ w ∈ L[W](G1 ·G2).

In particular, if → = →3 then

|=` γ(atom(G1) ∪ atom(G2))→ (w ∈ L[D](G1 ·G2)↔ w ∈ L[D](G1) · L[D](G2)),

|=` γ(atom(G1) ∪ atom(G2))→ (w ∈ L[W](G1 ·G2)↔ w ∈ L[W](G1) · L[W](G2)).

Proof. We only prove that (2.2) implies (2.1) because the other conclusions may
be proved by employing the technique frequently used in the previous proofs (say,
the proof of Lemma 4.9). To do this, for any λ, µ1, µ2 ∈ L, let G = 〈{S1}, P1, S1〉
and G2 = 〈{S2, A1, A2}, P2, S2〉, where P1(S1 → a) = λ, P2(S2 → A1) = µ1,
P2(S2 → A2) = µ2, P2(A1 → a2) = P2(A2 → a2) = 1, P1 and P2 take value 0 for all
other productions, and a ∈ Σ 6= ∅. Then L[D](G1)(a) = λ, L[D](G2)(a2) = µ1 ∨ µ2,
(L[D](G1) ·L[D](G2))(a3) = λ∧ (µ1∨µ2), and L[D](G1 ·G2)(a3) = (λ∧µ1)∨ (λ∧m2).
Therefore, (L[D](G1) · L[D](G2))(a3) = L[D](G1 · G2)(a3) implies λ ∧ (µ1 ∨ µ2) =
(λ ∧ µ1) ∨ (λ ∧m2). �

The following example illustrates that both

|=` w ∈ L[W](G1 ·G2)→ w ∈ L[W](G1) · L[W](G2)

does not hold generally. We also have examples showing that

|=` w ∈ L(W)(G1) · L(W)(G2)→ w ∈ L(W)(G1 ·G2)

is not valid.

Example 4.25. Consider a complete orthomodular lattice ` in which there are
two infinite sequences {λn}∞n=0 and {µn}∞n=0 of elements such that

∞∨
n=0

λn =
∞∨
n=0

µn = θ < 1,

123

...
...
...
...
...
...
....................

1

λ0

λ1

λ2

µ0

µ1

θ

0

µ2

Figure 11: Two sequences

and their ordering is visualized by Figure 11. Let G1 = 〈{S1, A1, A2, ...}, P1, S1〉 and
G2 = 〈{S2, B1, B2, ...}, P2, S2〉, where P1(S1 → a) = λ0, P1(S1 → A1) = P1(Ai →
Ai+1) = 1 and P1(Ai → ai) = λi for each i ≥ 1, P2(S2 → a2) = µ0, and P2(S2 →
B1) = P2(Bi → Bi+1) = 1 and P2(Bi → a2) = µi for each i ≥ 1 (see Figures 12 and
13). Then it is clear that

L[W](G1)(a) =
∞∨
i=0

λi = θ,

L[W](G2)(a2) =

∞∨
i=0

µi = θ

and
(L[W](G1) · L[W](G2))(a3) = θ.

On the other hand, by induction on n it is easy to prove that dS1S2
n⇒

G1·G2

a3e ≤
λn ∧ µn = 0. This yields

L[W](G1 ·G2))(a3) =
∞∨
n=0

dS1S2
n⇒

G1·G2

a3e = 0.

Therefore, L[W](G1 ·G2))(a3) < (L[W](G1) · L[W](G2))(a3).

A direct corollary of Proposition 4.25 indicates that context-freeness is preserved
by concatenation of `−valued languages whether the depth-first principle or the
width-first principle is applied.

124

S1

✇

✇

✇

✲

✲

✲

A1

µ0

A2

µ1

µ2

a

a

a

......

Figure 12: Grammar G1

S2

✇

✇

✇

✲

✲

λ2

B1

a2

a2

a2B2

λ0

λ1

......

✲

Figure 13: Grammar G2

125

Corollary 4.26. For any `−valued languages A1 and A2 over Σ,

|= ConCCFL
[D]
Σ (A1, A2)→ CCFL

[D]
Σ (A1 ·A2),

|= ConCCFL
[W]
Σ (A1, A2)→ CCFL

[W]
Σ (A1 ·A2).

Proof. Similar to Corollary 3.21. �

For any `−valued CFG G = 〈N,P, S〉 over alphabet Σ, its Kleene closure is
defined to be G∗ = 〈N ∪ {S∗}, P ∗, S∗〉, where P ∗ = P ∪ {S∗ → ε, S∗ → SS∗}.

The language generated by the Kleene closure of an orthomodular lattice-valued
context-free grammar is related in the following proposition to the Kleene closure of
the language generated by this grammar.

Proposition 4.27. Let Σ be a nonempty finite alphabet.

(1) For any G ∈ CFG(Σ, `), and for any w ∈ Σ∗, we have:

|=` w ∈ L[D](G∗)→ w ∈ (L[D](G))∗[D].

(2) The following two statements are equivalent:

(2.1) ` is a Boolean algebra;

(2.2) for any G ∈ CFG(Σ, `), and for any w ∈ Σ∗, we have:

|=` w ∈ L[D](G∗)↔ w ∈ (L[D](G))∗[D].

(3) For any G ∈ CFG(Σ, `), and for any w ∈ Σ∗, it holds that

|=` γ(atom(G)) ∧ w ∈ (L[D](G))∗[D] → w ∈ L[D](G∗),

|=` γ(atom(G)) ∧ w ∈ L[W](G∗)→ w ∈ (L[W](G))∗[W],

|=` γ(atom(G)) ∧ w ∈ (L[W](G))∗[W] → w ∈ L[W](G∗).

Especially, we have:

|=` γ(atom(G))→ (w ∈ L[D](G∗)→ w ∈ (L[D](G))∗[D]),

|=` γ(atom(G))→ (w ∈ L[W](G∗)→ w ∈ (L[W](G))∗[W])

whenever → = →3.

Proof. (1) and (3) can be proved by the technique used before, and the impli-
cation from (2.1) to (2.2) follows immediately from (3). For the implication from
(2.2) to (2.1), let λ, µ1, µ2 ∈ L. We set G = 〈{S,A,B}, P, S〉, where P (S → a) = λ,
P (S → A) = µ1, P (S → B) = µ2, P (A → a2) = P (B → a2) = 1, and P

126

takes value 0 for other productions. Then L[D](G∗)(a3) = (λ ∧ µ1) ∨ (λ ∧ µ2) and
(L[D](G))∗[D])(a3) = λ∧ (µ1∨µ2). So, (2.2) yields λ∧ (µ1∨µ2) = (λ∧µ1)∨ (λ∧µ2).
This completes the proof. �

As shown by the following corollary, context-freeness of orthomodular lattice-
valued languages is also preserved by the Kleene closure operation.

Corollary 4.28. For each `−valued language A over Σ, we have:

|=` CCFL
[D]
Σ (A)→ CCFL

[D]
Σ (A∗[D]),

|=` CCFL
[W]
Σ (A)→ CCFL

[W]
Σ (A∗[W]).

Proof. We prove this corollary in the width-first way, and similarly it can be
proved in the depth-first way. For any `−valued CFG G over Σ, Lemma 2.12(1)
enables us to assert that

dγ(atom(G) ∪ r(A)) ∧A ≡ L[W](G)e ≤ dA∗[W] ≡ (L[W](G))∗[W]e.

On the other hand, we obtain

dγ(atom(G))e ≤ d(L[W](G))∗[W] ≡ L[W](G∗)e

from Proposition 4.27(3). Therefore, it follows that

dγ(atom(G) ∪ r(A)) ∧A ≡ L[W](G)e ≤ dγ(atom(G) ∪ r(A))e ∧ dA∗[W] ≡ (L[W](G))∗[W]e
∧ d(L[W](G))∗[W] ≡ L[W](G∗)e

≤ dγ(atom(G) ∪ r(A))e ∧ dA∗[W] ≡ L[W](G∗)e

by using Lemma 2.12(3). Note that atom(G∗) = atom(G) ∪ {1}. With Lemma 2.7
we have

dγ(atom(G) ∪ r(A))e ≤ dγ(atom(G∗) ∪ r(A∗[W]))e.
Thus,

dCCFL[W]
Σ (A)e =

∨
G∈CFG(Σ,`)

dγ(atom(G) ∪ r(A)) ∧A ≡ L[W](G)e

≤
∨

G∈CFG(Σ,`)

dγ(atom(G∗) ∪ r(A∗[W])) ∧A∗[W] ≡ L[W](G∗)e

≤ dCCFL[W]
Σ (A∗[W]). �

Let Σ and Γ be two finite alphabets, and h : Σ→ Γ∗ a mapping. Suppose N is
a finite set of nonterminal symbols. Then for any α = X1...Xn ∈ (N ∪ Σ)∗, we put

127

h(α) = h(X1)...h(Xn), where h(Xi) = Xi whenever Xi ∈ N . Furthermore, h can be
extended to a mapping h : Prod(G) → {A → β : A ∈ N and β ∈ (N ∪ Γ)∗} with
h(A→ α) = A→ h(α) for all A ∈ N and α ∈ (N ∪Σ)∗. Now for any `−valued CFG
G = 〈N,P, S〉 over Σ, we define the image of G under h to be the `−valued CFG
h(G) = 〈N,h(P), S〉 over Γ, where h(P) is a finite `−valued subset of Rule(h(G)),
and it is the image of P under h, that is,

h(P)(A→ β) =
∨
{h(A→ α) : α ∈ (N ∪ Σ)∗ and h(α) = β}

for all A ∈ N and β ∈ (N ∪ Γ)∗.

The fact that context-freeness of orthomodular lattice-valued languages is pre-
served by homomorphism is then presented by the following proposition.

Proposition 4.29. Let Σ and Γ be two nonempty finite alphabets, and h : Σ→
Γ∗ a mapping.

(1) For any `−valued CFG G over Σ, and for any w ∈ Γ∗,

|=` w ∈ h(L[D](G))→ w ∈ L[D](h(G)).

(2) If |Σ| ≥ 2, then the following two statements are equivalent:

(2.1) ` is a Boolean algebra;

(2.2) for any `−valued CFG G over Σ, and for any w ∈ Γ∗,

|=` w ∈ L[D](h(G))↔ w ∈ h(L[D](G)).

(3) For any `−valued CFG G over Σ, and for any w ∈ Γ∗, we have:

|=` γ(atom(G)) ∧ w ∈ L[D](h(G))→ w ∈ h(L[D](G)).

In particular, if → = →3 then

|=` γ(atom(G))→ (w ∈ L[D](h(G))↔ w ∈ h(L[D](G))).

The same conclusion is valid for L[W](·).

Proof. We only prove that (2.2) implies (2.1), and the proof of the other items is
left for the reader. Suppose that a, b ∈ Σ, a 6= b, and c ∈ Γ, and let f(a) = f(b) = c.
For any λ, µ1, µ2 ∈ L, we set G = 〈{S,A}, P, S〉, where P (A → A) = λ, P (A →
a) = µ1, P (A → b) = µ2, and P takes value 0 for the other productions. Then
L[D](G)(a) = λ ∧ µ1, L[D](G)(b) = λ ∧ µ2, and h(L[D](G))(c) = (λ ∧ µ1) ∨ (λ ∧ µ2).
On the other hand, h(P)(S → A) = λ, h(P)(A→ c) = µ1∨µ2, and L[D](h(G))(c) =
λ∧ (µ1 ∨µ2). Therefore, we obtain λ∧ (µ1 ∨µ2) = (λ∧µ1)∨ (λ∧µ2) from (2.2). �

128

To show that orthomodular lattice-valued context-freeness is preserved by the
pre-image of a homomorphism, we need to introduce the notion of pre-image of an
orthomodular lattice-valued pushdown automaton under a homomorphism. If Σ ia
an alphabet, then for each x ∈ Σ∗, we write suff(x) for the set of suffixes of x, that
is, suff(x) = {y ∈ Σ∗ : x = zy for some z ∈ Σ∗}. Let < = 〈Q,Γ, δ, q0, Z0, F 〉 be an
`−valued PDA over alphabet Σ, and let ∆ be a finite alphabet and h : ∆→ Σ∗ be a
mapping. Then the pre-image of < under h is defined to be the following `−valued
PDA over ∆:

h−1(<) = 〈Q×
⋃
a∈∆

suff(h(a)),Γ, h−1(δ), (q0, ε), Z0, F × {ε}

where h−1(δ)(((q, x), a,X), ((p, y), γ)), for p, q ∈ Q, a ∈ ∆∪{ε}, x, y ∈ ⋃
a∈∆ suff(h(a)),

X ∈ Γ and γ ∈ Γ∗, is given as follows:

h−1(δ)(((q, ε), a,X), ((p, y), γ)) =

{
1, if p = q, y = h(a) and γ = x,

0, otherwise,

h−1(δ)(((q, x), ε,X), ((p, y), γ)) =

{
δ((q, head(x), X), (p, γ)), if y = tail(x),

0, otherwise,

and h−1(δ) takes value 0 for all the other arguments.

The next proposition shows that the language accepted by the pre-image of
an orthomodular lattice-valued pushdown automaton under a homomorphism is
exactly the pre-image of the language accepted by the automaton under the same
homomorphism.

Proposition 4.30. For any < ∈ PDA(Σ, `), for any mapping h : ∆→ Σ∗, and
for any w ∈ ∆∗,

|=` rec
[D,FS]
h−1(<)

(w)↔ rec
[D,FS]
< (h(w)),

|=` rec
[W,FS]
h−1(<)

(w)↔ rec
[W,FS]
< (h(w)).

Proof. By a routine calculation and an easy induction. The details are omitted
here. �

Corollary 4.31. Let h : ∆ → Σ∗ be a mapping. Then for any `−valued
language A over Σ,

|=` CFL
[D]
Σ (A)→ CFL

[D]
∆ (h−1(A));

and if → = →3 then we have:

|=` CCFL
[W]
Σ (A)→ CCFL

[W]
∆ (h−1(A)).

129

Proof. We only prove the second part. The first part is similar and much easier.
First, using Corollary 4.19 and observing the construction in the proof of Theorem
4.17 we obtain:

dCCFL[W]
Σ (A)e ≤

∨
<∈PDA(Σ,`)

(dA ≡ rec[W,FS]
< e ∧ dγ(atom(<) ∪ r(A))e).

Second, it is easy to see that dA ≡ rec
[W,FS]
< e ≤ dh−1(A) ≡ rec

[W,FS]
h−1(<)

e from

Proposition 4.30. Consequently,

dCCFL[W]
Σ (A)e ≤

∨
<∈PDA(Σ,`)

(dh−1(A) ≡ rec[W,FS]
h−1(<)

e ∧ dγ(atom(h−1(<)) ∪ r(A))e)

≤
∨

℘∈PDA(∆,`)

(dh−1(A) ≡ rec[W,FS]
℘ e ∧ dγ(atom(℘) ∪ r(A))e)

because atom(h−1(<)) ⊆ atom(<).

Now for each ℘ ∈ PDA(∆, `), from Corollary 4.20 we know that there must be
H ∈ CFG(∆, `) with

dγ(atom(℘))e ≤ drec[W,FS]
℘ ≡ L[W](H)e.

Then we have:

dh−1(A) ≡ L[W)](H)e ≥ dh−1(A) ≡ rec[W,FS]
℘ e ∧ drec[W,FS]

℘ ≡ L[W](H)e
∧ dγ(atom(℘) ∪ atom(H) ∪ r(A))e

≥ dh−1(A) ≡ rec[W,FS]
℘ e ∧ dγ(atom(℘) ∪ atom(H) ∪ r(A))e

and

dh−1(A) ≡ rec[W,FS]
℘ e ∧ dγ(atom(℘) ∪ r(A))e ≤ dh−1(A) ≡ L[W](H)e ∧ dγ(atom(℘) ∪ r(A))e

≤ dh−1(A) ≡ L[W](H)e ∧ dγ(atom(H) ∪ r(A))e

since we can see atom(H) ⊆ atom(℘) from the proof of Theorem 4.18. Therefore, it
follows that

dCCFL[W]
Σ (A)e ≤

∨
H∈CFG(∆,`)

(dh−1(A) ≡ L[W](H)e ∧ dγ(atom(H) ∪ r(A))e)

= dCCFL[W]
∆ (h−1(A)). �

Finally, we give a quantum logical generalization of the fact that the intersection
of a regular language and a context-free language is context-free. To this end,
we first introduce the product of orthomodular lattice-valued finite automaton and
pushdown automaton. Let < = 〈QA, δA, p0, FA〉 be an `−valued (nondeterministic)
finite automaton over alphabet Σ, and let ℘ = 〈QB,Γ, δB, q0, Z0, FB〉 be an `−valued

130

PDA over the same alphabet. Then their product is defined to be the following
`−valued PDA over Σ:

<× ℘ = 〈QA ×QB,Γ, δ, (p0, q0), Z0, FA × FB〉,

where δ is a finite `−valued subset of [(QA×QB)×(Σ∪{ε})×Γ]× [(QA×QB)×Γ∗],
and it is given as follows: for any p, p′ ∈ QA, q, q′ ∈ QB, a ∈ Σ, Z ∈ Γ, and γ ∈ Γ∗,

δ(((p, q), a, Z), ((p′, q′), γ)) = δA(p, a, p′) ∧ δB((q, a, Z), (q′, γ)),

δ(((p, q), ε, Z), ((p′, q′), γ)) =

{
δB((q, ε, Z), (q′, γ)), if p′ = p,

0, otherwise,

Proposition 4.32. Let Σ be a nonempty alphabet.

(1) For any `−valued finite automaton < and `−valued PDA ℘ over Σ, and for
any w ∈ Σ∗,

|=` rec
[D,FS]
<×℘ (w)→ rec

[D,FS]
< (w) ∧ rec[D,FS]

℘ (w).

(2) The following two statements are equivalent:

(2.1) ` is a Boolean algebra;

(2.2) for any `−valued finite automaton < and `−valued PDA ℘ over Σ, and for
any w ∈ Σ∗,

|=` rec
[D,FS]
<×℘ (w)↔ rec

[D,FS]
< (w) ∧ rec[D,FS]

℘ (w);

(3) For any `−valued finite automaton < and `−valued PDA ℘ over Σ, and for
any w ∈ Σ∗,

|=` γ(atom(<) ∪ atom(℘)) ∧ rec[D,FS]
< (w) ∧ rec[D,FS]

℘ (w)→ rec
[D,FS]
<×℘ (w).

In particular, if → = →3 then we have:

|=` γ(atom(<) ∪ atom(℘))→ (rec
[D,FS]
<×℘ (w)↔ rec

[D,FS]
< (w) ∧ rec[D,FS]

℘ (w)).

The same conclusion holds for recognizability in the width-first way.

Proof. We first show that (2.2) implies (2.1). For any λ, µ1, µ2 ∈ L, assume that
a ∈ Σ, and put < = 〈{p0, p1}, δA, p0, {p1}〉 and ℘ = 〈{q0, q1, q2}, {Z0}, δB, q0, Z0, {q1, q2}〉,
where δA(p0, a, p1) = λ, δB((q0, a, Z0), (q1, ε)) = µ1, δB((q0, a, Z0), (q2, ε)) = µ2, and
they take value 0 for the other cases. Then

λ ∧ (µ1 ∨ µ2) = drec[D]
< (a)e ∧ drec[D,FS]

℘ (a)e = drec[D,FS]
<×℘ (a)e = (λ ∧ µ1) ∨ (λ ∧ µ2).

By a similar construction of `−valued automata, we can also show that (2.3)
implies (2.1). The other conclusions may be proved by the technique that we used
before. �

131

Definition 4.33. Let Σ be a finite alphabet. Then `−valued binary predicate

ConCRegCFFL
(W)
Σ ∈ LLΣ∗×LΣ∗

on `−valued languages over Σ is defined by

ConCRegCCFL
(W)
Σ (A,B)

def
= (∃< ∈ NFA(Σ, `), G ∈ CFG(Σ, `))(γ(atom(<)

∪atom(G) ∪ r(A) ∪ r(B)) ∧A ≡ rec[W]
< ∧B ≡ L[W](G))

for all A,B ∈ LΣ∗ . Intuitively, ConCRegCCFL
[W]
Σ (A,B) is interpreted as the

proposition that in a conformal way, A is commutatively regular and B is commu-
tatively context-free according to the width-first principle.

Corollary 4.34. For any `−valued languages A and B over Σ,

|=` ConCRegCCFL
[W]
Σ (A,B)→ CCFL

[W]
Σ (A ∩B).

Proof. Similar to Corollary 3.21. �

4.5. The Pumping Lemma for Orthomodular Lattice-Valued Context
Free Languages

The aim of this subsection is to establish a quantum logical generalization of the
pumping lemma for context-free languages. The idea and proof technique used here
are similar to that in Subsection 3.7.

Theorem 4.35. Let Σ be a finite alphabet, and let → = →3. Then for each
`−valued language A over Σ, we have:

|=` CCFL
[W]
Σ (A)→ (∃n ≥ 0)(∀z ∈ Σ∗(z ∈ A ∧ |z| ≥ n→ (∃u, v, w, x, y ∈ Σ∗)

(z = uvwxy ∧ |vx| ≥ 1 ∧ |vwx| ≤ n ∧ (∀i ≥ 0)(uviwxiy ∈ A))).

Proof. For simplicity, we writeX(z, u, v, w, x, y, n) for the condition that u, v, w, x, y ∈
Σ∗, z = uvwxy, |vx| ≥ 1 and |vwx| ≤ n. Since

dCCFL[W]
Σ (A)e =

∨
G∈CFG(Σ,`)

(dγ(atom(G) ∪ r(A))e ∧ dA ≡ L[W](G)e),

we only need to show that for any G = 〈N,P, S〉 ∈ CFG(Σ, `),

dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(W)(G)e ≤
∨
n≥0

∧
z∈Σ∗ s.t. |z|≥n

(A(z)→

∨
X(z,u,v,w,x,y,n)

∧
i≥0

A(uviwxiy)).

132

From Lemma 4.10(3) we know that dγ(atom(G))e ≤ dL(W)(G) ≡ L(D)(G)e. This
together with Lemma 2.11(3) leads to

dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(W)(G)e ≤ dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(W)(G)e
∧ dL(W)(G) ≡ L(D)(G)e

≤ dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(D)(G)e.

We write k = |N | and l = max{|α| : α ∈ (N ∪Σ)∗ and P (A→ α) > 0 for some A ∈
N}. Let n0 = lk. Then it suffices to show that for all z ∈ Σ∗ with |z| ≥ n0,

dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(D)(G)e ≤ A(z)→
∨

X(z,u,v,w,x,y,n)

∧
i≥0

A(uviwxiy)).

Note that

dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(D)(G)e ∧ (A(z)→
∨

X(z,u,v,w,x,y,n)

∧
i≥0

L(D)(G)(uviwxiy))

≤ dγ(atom(G) ∪ r(A))e ∧ (
∨

X(z,u,v,w,x,y,n)

∧
i≥0

L(D)(G)(uviwxiy)→
∨

X(z,u,v,w,x,y,n)

∧
i≥0

A(uviwxiy))

∧ (A(z)→
∨

X(z,u,v,w,x,y,n)

∧
i≥0

L(D)(G)(uviwxiy))

≤ A(z)→
∨

X(z,u,v,w,x,y,n)

∧
i≥0

A(uviwxiy)

follows from Lemmas 2.6 and 2.11(1) and (3). We now only need to prove that

dγ(atom(G)∪r(A))e∧dA ≡ L(D)(G)e ≤ (A(z)→
∨

X(z,u,v,w,x,y,n)

∧
i≥0

L(D)(G)(uviwxiy)),

which can be derived from

dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(D)(G)e ∧A(z) ≤
∨

X(z,u,v,w,x,y,n)

∧
i≥0

L(D)(G)(uviwxiy)

by using Lemma 2.10 and observing dγ(atom(G)∪r(A))eCA(z). On the other hand,
we see that

dγ(atom(G) ∪ r(A))e ∧ dA ≡ L(D)(G)e ∧A(z) ≤ L(D)(G)(z)

by Lemma 2.11(5). Therefore, it suffices to show that

L(D)(G)(z) ≤
∨

X(z,u,v,w,x,y,n)

∧
i≥0

L(D)(G)(uviwxiy),

that is,

dDerG(d)e ≤
∨

X(z,u,v,w,x,y,n)

∧
i≥0

L(D)(G)(uviwxiy)

133

for each d ∈ QDerG with I(d) = S and L(d) = z. With Lemma 4.4 it may be
assumed that P (p) = 0 for all ε−productions or unit productions p. The quasi-
derivation d can be represented as a derivation tree in a way similar to that we
used for classical context-free grammars. Each of the interior vertex of its derivation
tree is labelled with a symbol from N together with an element of L, and each
leaf vertex is labelled with a symbol from Σ. If an interior vertex is labelled with
A ∈ N and λ ∈ L, and its sons are labelled with X1, X2,...,Xk from the left, then
P (A → X1X2...Xn) = λ > 0. Finally, we can prove the last inequality and thus
complete the proof by following the procedure of the proof of Lemma 6.1 in [37]
(note that there l is taken to be 2 because a Chomsky normal form is applied). �

134

5. Conclusion

It is argued that a theory of computation based on quantum logic has to be
established as a logical foundation of quantum computation. Finite automata and
pushdown automata are among the simplest abstract mathematical models of com-
puting machines, and automata theory is an essential part of computation theory.
In recent years, the author and his colleagues have tried to establish automata the-
ory based on quantum logic. This Chapter is a systematic exposition of such a new
theory. In this theory, quantum logic is treated as an orthomodular lattice-valued
logic. The approach employed in developing this theory is the semantical analysis
suggested by the author in his previous work on topology based on nonclassical logics
[80, 81, 82]. The notions of orthomodular lattice-valued finite automaton and push-
down automata and their various variants are introduced. The classes of languages
accepted by them are defined, namely orthomodular lattice-valued regular languages
and context-free languages. Various properties of automata are reexamined in the
framework of quantum logic, including the closure properties of regular languages
and context-free languages under various operations, the Kleene theorem concerning
equivalence between finite automata and regular expressions, equivalence between
pushdown automata and context-free grammars, and the pumping lemma both for
regular languages and for context-free languages.

To complete the picture of computing theory based on quantum logic, we shall
develop a theory of orthomodular lattice-valued Turing machines in a forthcoming
paper.

In the development of automata theory based on quantum logic, some essen-
tial differences between the computation theory established by using the classical
Boolean logic as the underlying logical tool and that whose meta-logic is quantum
logic have been observed. The most interesting thing is, in the author’s opinion,
the discovery that the universal validity of many fundamental properties (for ex-
ample, the Kleene theorem) of automata depend heavily upon the distributivity of
the underlying logic. It is shown that the universal validity of these properties is
equivalent to the requirement that the set of truth values of the meta-logic underly-
ing our theory of automata is a Boolean algebra. This implies that these properties
does not universally hold in the realm of quantum logic, and it is in fact a negative
conclusion in our theory of automata based on quantum logic. These differences
have some significant implications, among which the following are two of the most
direct:

(1) In 1959, M. O. Rabin and D. S. Scott [56] introduced the idea of nonde-
terministic machines and showed that each nondeterministic finite automaton can
be simulated by a deterministic one by the subset construction. Now the notion of
nondeterminism has proved to be extremely valuable in computing theory, and it
has been a continuous source of inspiration for subsequent researches. Theorem 3.11
in this Chapter shows that Rabin and Scott’s equivalence of nondeterministic and
deterministic finite automata may be directly generalized into quantum logic if we

135

comply with the width-first principle when treating interactions between conjunc-
tion and disjunction. However, if the depth-first principle is adopted then Theorem
3.10 indicates that each nondeterministic finite automaton is equivalent to its subset
construction if and only if the underlying logic is distributive. This exposes a close
link between logical distributivity and nondeterminism in computation. Clearly,
such an observation could not be made if we only worked within a logical system
that enjoys distributivity.

(2) In this Chapter we merely see that the proofs of some even very basic prop-
erties of finite and pushdown automata appeal an essential application of the dis-
tributivity for the lattice of truth values of the underlying logic. But we believe that
there are also many fundamental properties of Turing machines whose universal va-
lidity requires the distributivity of meta-logic, and so they hold only in Boolean
logic but not in quantum logic. This will provides us with some new negative results
in the theory of computation based on quantum logic. Since quantum logic is a
logical mechanism that governs the behaviors of quantum systems, these negative
results might hint some limitations of quantum computation. More explicitly, some
techniques based on certain properties of classical automata maybe have been suc-
cessfully used in the implementation of classical computing systems, but they do
not apply to quantum computers, or at least they are only conditionally effective
for quantum computers.

These negative conclusions may have influence even in a wider area. Although at
this moment we have merely found several negative results in the computing theory
based on quantum logic, it seems that some negative results of similar nature exist in
other mathematical theories based on nonclassical logics without distributivity. This
stimulates us to consider the problem of a further logical revisit to mathematics.
Various classical mathematical results have been established based upon classical
logic, and sometimes, their universal validity can only be established by exploiting
the full power of classical logic. Mathematicians usually use logic implicitly in their
reasoning, and they do not seriously care which logical laws they have employed.
But from a logician’s point of view, it is very interesting to determine how strong a
logic we need to validate a given mathematical theorem, and which logic guarantees
this theorem and which does not among the large population of nonclassical logics.
To be more explicit and also for a comparison, let us present a short excerpt once
again from A. Heyting [32] (see page 3):

“It may happen that for the proof of a theorem we do not need all the axioms, but
only some of them. Such a theorem is true not only for models of the whole system,
but also for those of the smaller system which contains only the axioms used in the
proof. Thus it is important in an axiomatic theory to prove every theorem from the
least possible set of axioms.”

We now are in a similar situation. The difference between our case and A. Heyt-
ing’s one is that we are concerned with the limitation or redundance of power of the
logic underlying an axiomatic theory, whereas he considered that of axioms them-
selves. It seems that the semantical analysis approach provides a nice framework for

136

solving this kind of problems, much more suitable than a proof-theoretical approach.

Observing that some important properties of automata cannot be built within
quantum logic, one may naturally ask the question whether they may be partially
recast without appealing to distributivity of the underlying logic. Fortunately, we
are able to show that a local validity of these properties of automata can be re-
covered by imposing a certain commutativity to the truth values of the (atomic)
statements about the automata under consideration. Very surprisingly, almost all
results in classical automata theory that are not valid in a non-distributive logic can
be revived by a certain commutativity in quantum logic. A typical example is the
equivalence of deterministic and nondeterministic finite automata with respect to
acceptance defined in the depth-first way. Another interesting example is the pump-
ing lemma for regular languages which is not valid for the notion of noncommutative
regularity but survives for commutative regularity. This is in fact a partial reason
for introducing two different versions of regularity in Section 3.

The successful applications of commutativity in the development of our automata
theory based on quantum logic further lead us to a new question: why commutativity
plays such a key role for quantum automata, and is there any physical interpretation
for it? To answer this question, let us first note that all truth values in quantum logic
are taken from an orthomodular lattice. The prototype of orthomodular lattice is the
set of linear (closed) subspaces of a Hilbert space with the set inclusion as its ordering
relation. Suppose that X and Y are two subspaces of a Hilbert space H. Moreover,
we use PX and PY to denote the projections on X and Y respectively. Then PX
and PY are Hermitian operators on H, and they may be seen as two (physical)
observables A and B in a quantum system whose state space is H, according to the
Hilbert space formalism of quantum mechanics. If we write ∆(A) and ∆(B) for the
respective standard deviations of measurement on A and B, then the Heisenberg
uncertainty principle gives the following inequality (see [50], page 89):

∆(A) ·∆(B) ≥ 1

2
|〈ψ|[A,B]|ψ〉|

for all quantum state |ψ〉 in H, where [A,B] = AB − BA is the commutator be-
tween A and B. We now turn back to the orthomodular lattice of the linear sub-
spaces of H. The commutativity of X and X is defined by the following condition:
X = (X ∧ Y) ∨ (X ∧ Y ⊥), where ∧, ∨ and ⊥ are respectively the meet, union and
orthocomplement. It may be seen that the commutativity between X and Y is
equivalent to exactly the fact that A and B commutate, i.e., AB = BA. In this
case, |〈ψ|[A,B]|ψ〉| = 0, and ∆(A) ·∆(B) may vanish; or in other words, ∆(A) and
∆(B) can simultaneously become arbitrarily small. Remember that in our theory of
automata based on quantum logic the commutativity is attached to the basic state-
ments describing the considered automata. On the other hand, the basic statements
are indeed corresponding to some actions in these automata. Therefore, a potential
physical interpretation for the need of commutativity is that some nice properties
of automata require the standard deviations of the observables concerning the basic
actions in these automata being able to reach simultaneously very small values.

137

The results gained in our approach may offer some new insights on the theory
of computation. As an example, let us consider the Church-Turing thesis, one of
the most fundamental hypotheses in the whole field of computer science. The re-
alization that the intuitive notion of “effective computation”can be identified with
the mathematical concept of “computation by the Turing machine”is based on the
fact that the Turing machine is computationally equivalent to some vastly dissimi-
lar formalisms for the same purpose, such as Post systems, µ−recursive functions,
λ−calculus and combinatory logic. As pointed out by J. E. Hopcroft and J. D.
Ullman [37], another reason for the acceptance of the Turing machine as a general
model of computation is that the Turing machine is equivalent to its many modified
versions that would seem off-hand to have increased computing power. We should
note that the equivalence between the Turing machine and its various generalizations
as well as other formalisms of computation has been reached in classical Boolean
logic. In addition, quantum logic is known to be strictly weaker than Boolean logic.
Thus, it is reasonable to doubt that the same equivalence can be achieved when our
underlying meta-logic is replaced by quantum logic, and the Church-Turing thesis
needs to be reexamined in the realm of quantum logic. Indeed, in a forthcoming
paper we are going to establish a theory of Turing machines based on quantum logic.
The details of such a theory is still to be exploited, but the conclusion concerning the
equivalence between deterministic and nondeterministic finite automata presented
in this Chapter suggests us to believe that the equivalence between deterministic
and nondeterministic Turing machines also depends upon the distributivity of the
underlying logic, and a certainty commutativity for the basic actions in Turing ma-
chines will guarantee such an equivalence. Keeping this belief in mind, we may
assert that a certain commutativity of the observables for some basic actions in the
Turing machine is a physical support of the Church-Turing thesis in the framework
of quantum logic. Furthermore, with the above physical interpretation for commu-
tativity, this hints that there might be a deep connection between the Heisenberg
uncertainty principle and the Church-Turing thesis. It is notable that such a connec-
tion could be observed via an argument in a nonclassical logic, but it is impossible to
be found if we always work within the classical logic in which distributivity is auto-
matically valid. As early as in 1985, it was argued by D. Deutsch [?] that underlying
the Church-Turing thesis there is an implicit physical assertion. There is certainly
no doubt about the existence of such a physical assertion. The true problem here
is: what is it? The answer given by D. Deutsch himself is the following physical
principle: “every finitely realizable physical system can be perfectly simulated by a
universal model computing machine operating by finite means”. Our above analysis
on the role of commutativity in computation theory based on quantum logic perhaps
indicates that in order to be simulated by a universal computing machine some ob-
servables of the physical system are required to possess a certain commutativity. So,
it is fair to say that the observation on commutativity presented above provides a
complement to D. Deutsch’s argument from a logical point of view. Furthermore, if
such a physical interpretation to the role of commutativity based on the Heisenberg
uncertainty principle is reasonable, and the conjecture that a certain connection may

138

reside between the Heisenberg uncertainty principle and the Church-Turing thesis,
two of the greatest scientific discoveries in the twentieth century, is true, then it will
give once again an evidence to the unity of the whole science and to the fact that
science is not only a simple union of various subjects.

As to the further development of computation theory based on quantum logic, we
are of course concerned with the behavior of other models of computation, such Tur-
ing machines, in the framework of quantum logic. As mentioned above, the theory
of orthomodular lattice-valued Turing machines will be developed in a forthcoming
paper by the author.

One of the most interesting things, according to the author’s opinion, is to exploit
its connection to other mathematical models of quantum computation. Roughly
speaking, quantum automata (including quantum finite automata, quantum push-
down automata and quantum Turing machines) in the previous literature may be
seen as quantum counterparts of probabilistic automata. In a probabilistic automa-
ton, each transition is equipped with a number in the unit interval to indicate the
probability of the occurrence of the transition; by contrast in a quantum automaton
we associate with each transition a vector in a Hilbert space, which is interpreted
as the probability amplitude of the transition. Furthermore, according to the basic
postulates of quantum mechanism, the evolution of quantum automata is described
in terms of unitary operators [4, 11, 17, 18, 29]. Thus, a potential way of estab-
lishing link between these quantum automata and our orthomodular lattice-valued
automata is to use Takeuti, Titani and Kozawa’s representation of observables and
unitary operators by real and complex numbers in the universe V P (H) of quantum
set theory, where P (H) is the orthomodular lattice of closed linear subspaces of a
Hilbert space H [71, 74]. It is also possible to find a link between orthomodular
lattice-valued automata and probabilistic automata via the Gleason theorm (see
[21] for a detailed exposition), which completely characterizes probability measures,
called states, on the orthomodular lattice P (H) for a separable real or complex
Hilbert space H.

In this paper, as we have seen, quantum logic is considered as orthomodular
lattice-valued logic, and our theory of computation based on quantum logic is devel-
oped with the algebraic semantics. Another interesting problem for further studies
would be to establish a theory of computation with the Kripke semantics of quan-
tum logic [13] and to compare it with the theory of the current paper. Moreover,
some quantum logics essentially different the orthomodular lattice-valued quantum
logic have been proposed in the literature: one recent example is P. Mateus and
A. Sernadas’s exogenous quantum logic [47], and another is G. Domenech and H.
Freytes’s contextual quantum logic [20]. It is also interesting to develop computing
theory based on these new quantum logics.

139

6. Bibliographical Notes

The basic idea of establishing a theory of computation based on quantum logic
was first proposed by the author in [83], where among other things, equivalence
between distributivity of the underlying logic and some simple properties of finite
automata was already observed. A systematic development of the theory of finite
automata based on quantum logic was presented in [84]. Indeed, the first part of this
Chapter is a slightly revised version of [84]. The main change is that regularity in
the width-first way is introduced (and thus regularity presented in [84] is renamed as
regularity in the depth-first way), and an orthomodular lattice-valued generalization
of the Myhill-Nerode theorem is given. The new material of the Chapter is the
second part in which the theory of pushdown automata and context-free grammars
is thoroughly developed.

After [83], several other authors have also contributed to automata theory based
on quantum logic. In [44], R. Q. Lu and H. Zheng introduced a new recognizability
for lattice-valued finite automata. It is different from both that given in [83, 84],
recognizability in the depth-first way, and recognizability in the width-first way (see
Definition 3.2), and indeed it is stronger than the former but weaker than the latter.
They also carefully examined recognizability of various lattice-theoretic operations
of lattice-valued finite automata. In [45], R. Q. Lu and H. Zheng further proved
some interesting variants of pumping lemma for lattice-valued finite automata. A
straightforward generalization of pumping lemma to lattice-valued automata was
also obtained by D. W. Qiu in [54]. Note that the pumping lemmas given in [45, 54]
are concerned directly with lattice-valued automata, whereas the pumping lemmas
presented in [83, 84] is stated for orthomodular lattice-valued regular languages.
From [54] we can see that distributivity of the underlying logic is not necessary in
establishing a pumping lemma directly for finite automata. However, it may be
noticed from [84] that certain distributivity of the underlying logic (represented by
the commutator) is required when a pumping lemma is given for regular languages.
This indicates that logical distributivity is used to fill in the gap between finite au-
tomata and regular languages. In this Chapter, the version of pumping lemma in
[84] is adopted because we believe that adding commutator into a pumping lemma
grasps something essential in quantum logic. Some further observations on equiv-
alence between logical distributivity and automata-theoretic properties, including
some topological characterizations of finite automata, were made by D. W. Qiu [55].
In [9], W. Cheng and J. Wang proposed the notion of lattice-valued regular grammar
and proved the equivalence of lattice-valued regular grammars and finite automata.

The methodology that we used to establish our automata theory based on quan-
tum logic is semantical analysis developed in [80, 81]. Indeed, a similar approach
have been widely applied by G. Takeuti’s school in Boolean-valued and Heyting-
valued analysis and algebra; see for example [71, 73, 51, 52]. We should note that
the mathematical theories developed there are still based on Boolean logic or intu-
itionistic logic. However, the idea and proof techniques were extended by the same

140

group of authors to build some mathematical theories based on quantum logic. For
example, as already stated in the introduction, G. Takeuti [72] proposed orthomod-
ular lattice-valued set theory. Indeed, the commutator introduced in [72] has played
an important role in our automata theory based on quantum logic presented in this
Chapter. Takeuti’s quantum set theory was further developed by S. Titani and H.
Kozawa [74] with a strong implication corresponding to the order in the lattice of
truth values. In [75], K. Tokuo presented quantum number theory based a typed
version of quantum logic.

The aim of this Chapter is to establish automata theory in the framework of
quantum logic. Another approach of connecting automata theory to quantum logic
was proposed by K. Svozil et al. In a series of paper [62, 63, 64, 22], they found
some interesting connections of Moore and Mealy-type automata with some ortho-
algebraic structures. The link between the theory presented in this Chapter and the
approach of K. Svozil et al. is still to be exploited.

There are quite a few logical approaches to quantum computation in the litera-
ture, essentially different from that presented in this Chapter. J. P. Rawling and S.
A. Selesnick [57] proposed a quantization scheme of gates in classical circuits using
Kripke models of quantum logic, and then gave a logical interpretation of the notion
of quantum parallelism. S. A. Selesnick [66] tried to provide a logical foundation for
quantum computing. He introduced a Gentzen sequent calculus for handling quan-
tum resources which can be interpreted in the category of finite-dimensional Hilbert
spaces with the aid of Grassmannian quantum set theory. Then various quantum
phenomena such as qubits, quantum storage, quantum copying and quantum en-
tanglement may be specified in this calculus. M. L. Dalla Chiara, R. Giuntini and
R. Leporini [15] proposed so-called quantum computational logic whose semantics is
given in terms of quantum gates and circuits (see also [16], Chapter 17). This logic
is then generalized by S. Gudder [30] in order to deal with mixed states. O. Brunet
and P. Jorrand [7] presented a dynamic quantum logic in which both unitary opera-
tors and quantum measurements may be handled. Thus, it can be used to describe
quantum programs.

141

References

[1] J. Barwise, Model-theoretic logics: background and aims, in: J. Barwise and
S. Feferman (eds.), Model Theoretic Logics, Springer-Verlag, Berlin, 1985, pp.
3-27.

[2] P. A. Benioff, The computer as a physical system: a microscopic quantum
mechanical Hamiltonian model of computer s as represented by Turing ma-
chines, Journal of Statistical Physics 22(1980)563-591.

[3] C. H. Bennet, Logical reversibility of computation, IBM Journal of Research
and Development 17(1973)525-532.

[4] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM Journal
on Computing 26(1997)1411-1473.

[5] S. Betteli, T. Calarco and L. Serafini, Toward an arichtechture for quantum
programming, arXiv:cs.PL/0103009 v2, 2001.

[6] G. Birkhoff and J. von Neumann, The logic of quantum mechanics Annals of
Mathematics 37(1936)823-843.

[7] O. Brunet and P. Jorrand, Dynamic quantum logic for quantum programs,
International Journal of Quantum Information 2(2004)45-54.

[8] G. Bruns and J. Harding, Algebraic aspects of orthomodular lattices, in:
B. Coecke, D. Moore and A. Wilce (eds.), Current Research in Operational
Quantum Logic: Algebras, Categories, Languages, Kluwer, Dordrecht, 2000,
pp. 37-65.

[9] W. Cheng and J. Wang, Grammar theory based on quantum logic, Interna-
tional Journal of Theoretical Physics 42(2003)1677-1691.

[10] J. I. Cirac and P. Zoller, Quantum computation with cold trapped ions,
Physical Review Letters 74(1995)4091-4094.

[11] J. P. Crutchfield and C. Moore, Quantum automata and quantum grammar,
Theoretical Computer Science 237(2000)275-306.

[12] M. L. Dalla Chiara, Some meta-logical pathologies of quantum logic, in: E.
Beltrametti and B. C. van Fraassen (eds.), Current Issues in Quantum Logics,
Plenum, New York, 1981, pp. 147-159.

[13] M. L. Dalla Chiara, Quantum logic, in: D. Gabbay and E. Guenthner (eds.),
Handbook of Philosophical Logic, volume III: Alternatives to Classical Logic,
D. Reidel Publishing Company, Dordrecht, 1986, pp. 427-469.

142

[14] M. L. Dalla Chiara and R. Giuntini, Quantum logic, in: D. Gabbay and
E. Guenthner (eds.), Handbook of Philosophical Logic, volume 6, Kluwer,
Dordrecht, 2002, pp. 129-228.

[15] M. L. Dalla Chiara, R. Giuntini and R. Leporini, Logics for quantum com-
putation, International Journal of Quantum Information 3(2005)293-337.

[16] M. L. Dalla Chiara, R. Giuntini and R. Greechie, Reasoning in Quantum
Theory: Sharp and Unsharp Quantum Logics, Kluwer, Dordrecht, 2004.

[17] D. Deutsch, Quantum theory, the Church-Turing principle and the universal
quantum computer, Proc. Roy. Soc. Lond. A400(1985)97-117.

[18] D. Deutsch, Quantum computational networks, Proceedings of The Royal
Society of London. A425(1989)73-90.

[19] J. Dieudonne, The current trend of pure mathematics, Advances in Mathe-
matics 27(1978)235-255.

[20] G. Domenech and H. Freytes, Contextual logic for quantum systems, Journal
of Mathematical Physics 46(2005) 012102.

[21] A. Dvurevcenskij, Gleason’s Theorem and Its Applications, Kluwer, Dor-
drecht, 1993.

[22] A. Dvurevcenskij, S. Pulmannova and K. Svozil, Partition logics, orthoalge-
bras and automata, Helvetica Physica Acta 68(1995)407–428.

[23] S. Eilenberg, Automata, Languages, and Machines, volume A, Academic
Press, New York, 1974.

[24] R. P. Feynman, Simulating physics with computers, International Journal
of Theoretical Physics 21(1982)467-488.

[25] R. P. Feynman, Quantum mechanical computers, Foundations of Physics
16(1986)507-531.

[26] P. D. Finch, Quantum logic as an implication algebra, Bulletin of Australian
Mathematical Society 2(1970)101-106.

[27] S. J. Gay and R. Nagarajan, Communicating quantum processes, in: P.
Selinger (ed.), Proceedings of the 2nd International Workshop on Quantum
Programming Languages, July 12-13, 2004, Turku, Finland, pp. 91-107.

[28] L. K. Grover, A fast quantum mechanical algorithm for database search, in:
Proceedings of the 28th ACM STOC, 1996, pp. 212-219.

[29] S. Gudder, Basic properties of quantum automata, Foundations of Physics
30(2000)301-319.

143

[30] S. Gudder, Quantum computational logic, International Journal of Theoret-
ical Physics 42(2003)39-47.

[31] W. Hatcher, The Logical Foundations of Mathematics, Pergamon, Oxford,
1982.

[32] A. Heyting, Axiomatic Projective Geometry, North-Holland, Amsterdam,
1963.

[33] H. Hodes, Three-valued logics - an introduction, a comparison of various
logical lexica, and some philosophical remarks, Annals of Pure and Applied
Logic 43(1989)99-145.

[34] K. Husimi, Studies on the foundations of quantum mechanics I, Proceedings
of the Physicomathematical Society of Japan 19(1937)766-789.

[35] L. Herman, E. Marsden and R. Piziak, Implication connectives in orthomod-
ular lattices, Notre Dame Journal of Formal Logic 16(1975)305-328.

[36] T. Hoare and R. Milner (eds.), Grand Challenges in Computing Research,
http://www.ukcrc.org.uk/gcresearch.pdf.

[37] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, 1979.

[38] G. Kalmbach, Orthomodular logic, Zeitschrift fűr Mathematische Logik und
Grundlagen der Mathematik 20(1974)395-406.

[39] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983.

[40] A. Kondacs and J. Watrous, On the power of quantum finite state automata,
in: Proc. of the 38th Annual Symposium on Foundations of Computer Sci-
ence, 1997, pp. 65-75.

[41] D. C. Kozen, Automata and Computability, Springer-Verlag, New York, 1997.

[42] M. Lalire and P. Jorrand, A process algebraic approach to concurrent and dis-
tributed quantum computation: operational semantics, in: P. Selinger (ed.),
Proceedings of the 2nd International Workshop on Quantum Programming
Languages, July 12-13, 2004, Turku, Finland, pp. 109-126.

[43] S. Lloyd, A potentially realizable quantum computer, Science
261(1993)1569-1571.

[44] R. Q. Lu and H. Zheng, Lattices of quantum automata, International Journal
of Theoretical Physics 42(2003)1425-1449.

[45] R. Q. Lu and H. Zheng, Pumping lemma for quantum automata, Interna-
tional Journal of Theoretical Physics 43(2004)1191-1217.

144

[46] J. Malinowski, The deduction theorem for quantum logic - some negative
results, Journal of Symbolic Logic 55(1990)615-625.

[47] P. Mateus and A. Sernadas, Exogenous quantum logic. In W. A. Carnielli,
F. M. Dionisio, and P. Mateus (eds.), Proceedings of CombLog’04, Workshop
on Combination of Logics: Theory and Applications, Lisboa, Portugal, 2004,
pp. 141–149.

[48] A. Mostowski, Thirty Years of Foundational Studies: Lectures on the Devel-
opment of Mathematical Logic and the Study of the Foundations of Mathe-
matics in 1930-1964, Acta Philosophica Fennica 17, Helsinki, 1965.

[49] J. von Neumann, Quantum logics (strict- and probability-logics), summarized
in: J. von Neumann, Collected Works, vol. IV, Macmillan, New York, 1962.

[50] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation, Cambridge University Press, Cambridge, 2000.

[51] H. Nishimura, Some connections between Heyting valued set theory and al-
gebraic geometry—prolegomena to intuitionistic algebraic geometry, Publi-
cations of Research Institute for Mathematical Sciences 23(1987)501-515.

[52] H. Nishimura, Heyting valued considerations on some fundamental existence
theorems in modern analysis, Publications of Research Institute for Mathe-
matical Sciences 24(1988)621–637.

[53] B. Őmer, A Procedural Formalism for Quantum Computing, Master’s thesis,
Department of Theoretical Physics, Technical University of Vienna, 1998.

[54] D. W. Qiu, Automata and grammars theory based on quantum logic, Journal
of Software 14(2003)23-27.

[55] D. W. Qiu, Automata theory based on quantum logic: some characteriza-
tions, Information and Computation 190(2004)179-195.

[56] M. O. Rabin and D. S. Scott, Finite automata and their decision problems,
IBM Journal of Research and Development 3(1959)115-125.

[57] J. P. Rawling and S. A. Selesnick, Orthologic and quantum logic: models and
computational elements, Journal of the ACM 47(2000)721-751.

[58] L. Román and B. Rumbos, Quantum logic revisited, Foundations of Physics
21(1991)727-734.

[59] L. Román and R. E. Zuazua, Quantum implication, International Journal
of Theoretical Physics 38(1999)793-797.

[60] J. B. Rosser and A. R. Turquette, Many-Valued Logics, North-Holland, Am-
sterdam, 1952.

145

[61] J. W. Sanders and P. Zuliani, Quantum programming, in: Mathematical of
Program Construction, LNCS 1837, 2000, pp. 80-99.

[62] M. Schaller and K. Svozil, Partition logics of automata, Nuovo Cimento B
109(1994)167–176.

[63] M. Schaller and K. Svozil, Automaton partition logic versus quantum logic,
International Journal of Theoretical Physics 34(1995)1741–1749.

[64] M. Schaller and K. Svozil, Automaton logic, International Journal of Theo-
retical Physics 35(1996)911–940.

[65] K. -G. Schlesinger, Toward quantum mathematics. I. From quantum set
theory to universal quantum mechanics, Journal of Mathematics Physics
40(1999)1344-1358.

[66] S. A. Selesnick, Foundation for quantum computing, International Journal
of Theoretical Physics 42(2003)383-426.

[67] P. Selinger, Towards a quantum programming language, Mathematical Struc-
tures in Computer Science 14(2004)527-586.

[68] P. W. Shor, Polynomial-time algorithm for prime factorization and discrete
logarithms on quantum computer, in: Proc. 35th Annual Symp. on Founda-
tions of Computer Science, Santa Fe, IEEE Computer Society Press, 1994.

[69] P. W. Shor, Why haven’t more quantum algorithms been found? Journal of
the ACM 50(2003)87-90.

[70] K. Svozil, Quantum Logic, Springer-Verlag, Berlin, 1998.

[71] G. Takeuti, Two Applications of Logic to Mathematics, Princeton University
Press, New Jersey, 1978.

[72] G. Takeuti, Quantum set theory, in: E. Beltrametti and B. C. van Fraassen
(eds.), Current Issues in Quantum Logics, Plenum, New York, 1981, pp. 303-
322.

[73] G. Takeuti, Boolean simple groups and Boolean simple rings, Journal of
Symbolic Logic 53(1988)160-173.

[74] S. Titani and H. Kozawa, Quantum set theory, International Journal of The-
oretical Physics 42(2003)2575-2602.

[75] K. Tokuo, Quantum number theory, International Journal of Theoretical
Physics 43(2004)2461-2481.

[76] A. V. Tonder, A lambda calculus for quantum computation, SIAM Journal
on Computing 33(2004)1109-1135.

146

[77] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An In-
troduction,, volume I, II, North-Holland, Amsterdam, 1988.

[78] V. Vedral and M. B. Plenio, Basics of quantum computation, Progress in
Quantum Electronics 22:1(1998).

[79] A. C. Yao, Quantum circuit complexity, Proc. of the 34th Ann. IEEE Symp.
on Foundations of Computer Science, 1993, pp. 352-361.

[80] M. S. Ying, A new approach for fuzzy topology (I), (II), (III), Fuzzy Sets and
Systems, 39(1991)303-321; 47 (1992)221-232; 55(1993)193-207.

[81] M. S. Ying, Fuzzifying topology based on complete residuated lattice-valued
logic (I), Fuzzy Sets and Systems 56(1993)337-373.

[82] M. S. Ying, Fuzzy tology based on residuated lattice-valued logic, Acta Math-
ematica Sinica (English Series) 17(2001)89-102.

[83] M. S. Ying, Automata theory based on quantum logic (I), (II), International
Journal of Theoretical Physics 39(2000)985-995; 2545-2557.

[84] M. S. Ying, A theory of computation based on quantum logic
(I), Theoretical Computer Science 344(2005)134-207 or see
http://arxiv.org/abs/cs.LO/0403041.

147

