

University of Technology, Sydney

A study of the dynamic response of wind turbine gearboxes

This thesis is submitted for the degree of

Doctor of Philosophy

Mingming Zhao
July 2016

This page intentionally left blank

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:
Date:

Acknowledgment

I would like to thank my supervisor A/Prof Dr. Jinchen Ji for guiding me throughout this research. Dr. Jinchen Ji has been very generous, his profession and enthusiasm always encourage me through the good and bad phases during my research.

I would also like to thank Dr. Jinchen Ji for giving me the opportunity to participate in lecturing and tutoring during the period of my research, which has been a great experience to me, and I believe such experience would help my early academic career in many ways.

Nomenclature

Symbols	Definitions
α	pressure angle
$lpha_{pL}$	pressure angle of the planet gear at the first planetary gear stage
$lpha_{sL}$	pressure angle of the sun pinion at the first planetary gear stage
$lpha_{pH}$	pressure angle of the planet gear at the second planetary stage
$lpha_{sH}$	pressure angle of the sun pinion at the second planetary stage
$lpha_{GL}$	pressure angle of the low-speed gear at the parallel gear stage
$lpha_{GH}$	pressure angle of the high-speed pinion at the parallel gear stage
a_g	addendum of the gear
a_p	addendum of the pinion
β	helix angle
eta_s	helix angle of sun pinion
b	dedendum
b_i	gear backlash
С	damping matrix
С	radial clearance
С	the subscript representing the planet carrier arm
Cd	center distance of gear pairs
CR	contact ratio
C_p	wind power utilization
c_{rp_L}	damping coefficient of the ring-planet gear pair at the first planetary gear
	stage

c_{sp_L}	damping coefficient of the sun-planet gear pair at the first planetary gear
	stage
c_{rp_H}	damping coefficient of the ring-planet gear pair at the second planetary
	gear stage
c_{sp_H}	damping coefficient of the sun-planet gear pair at the second planetary
	gear stage
c_{GHGL}	damping coefficient of the parallel gears at the parallel gear stage
c_{cH_sL}	damping coefficients of the shaft that links the sun pinion in the first
	planetary gear stage and the planet carrier arm of the second planetary
	gear stage
c_{GL_sH}	damping coefficient of the shaft that links the sun pinion in the second
	planetary gear stage and the low-speed gear of the parallel gear stage
E	modulus of elasticity
e_i	static transmission error
e_{ai}	alternating term of the static transmission error
F_{ai}	fluctuating meshing force caused by the static transmission error e_i
F_{me}	constant external loading
$f(X_i)$	non-linear gear mesh displacement function
$f(q_i)$	nonlinear gear mesh displacement function, with the consideration of
	gear backlash
F_L	load on rolling bearings
F_a	axial load
F_r	radial load
F_{r_max}	maximum load on rolling element

subscript representing the gear at the parallel gear stage

subscript representing the pinion at the parallel gear stage

Gr gearbox gear ratio

h tooth thickness

I area moment of inertia

i the number of the rows of rollers

K gear mesh stiffness matrix

 k_r radial stiffness

 k_{rp} gear mesh stiffness of the ring-planet gear pair at the first planetary gear

stage

 $k_{sp L}$ gear mesh stiffness of the sun-planet gear pair at the first planetary gear

stage

 k_{GHGL} gear mesh stiffness of the gears in the parallel gear stage

 $K_{cH \ sL}$ torsional stiffness of the shaft that connects the sun pinion in the first

planetary gear stage and the planet carrier arm of the second planetary

stage

 $K_{GL\ sH}$ torsional stiffness of the shaft that links the sun pinion in the second

planetary gear stage and the low-speed gear of the parallel gear stage

 $k_{ij}(t)$ time-varying mesh stiffness function

 k_{mii} mean term of the time-varying mesh stiffness function

 k_{aij} alternating term of the time-varying mesh stiffness function

L depth of gear tooth

LA distance along the line of action between meshing points

 L_{we} effective contact length of roller bearings

 m_{gear} mass of the gear

 m_{pinion} mass of the pinion

 M_{cL} equivalent mass of the planet carrier arm at the first planetary gear stage

 M_{pL_n} equivalent mass of the planet gear at the first planetary gear stage

 M_{sL} equivalent mass of the sun pinion arm at the first planetary gear stage

 M_{cH} equivalent mass of the planet carrier arm at the second planetary gear

stage

 M_{pH_n} equivalent mass of the planet gear at the second planetary gear stage

 M_{SH} equivalent mass of the sun pinion arm at the second planetary gear stage

 M_{GL} equivalent mass of the gear at the parallel gear stage

 M_{GH} equivalent mass of the pinion at the parallel gear stage

M equivalent mass matrix

 M_{ν} aerodynamic bending moment

 N_q gear teeth number, or the teeth number of the ring gear for the planetary

gear stage

P applied load at the tooth tip

 P_b base pitch

 P_d diameteral pitch

subscript representing the planet gear

 $p_i(t)$ excitation term

 ρ_{air} air density

 r_{blade} radius of blades

subscript representing the ring gear

 r_{bp_L} base radius of the planet gear at the first planetary gear stage

r_{bs_L}	base radius of the sun pinion at the first planetary gear stage
r_{br_L}	base radius of the ring gear at the first planetary gear stage
r_{bp_H}	base radius of the planet gear at the second planetary gear stage
r_{bs_H}	base radius of the sun pinion at the second planetary gear stage
r_{br_H}	base radius of the ring gear at the second planetary gear stage
r_{bG_L}	base radius of the low-speed gears at the parallel gear stage
r_{bG_H}	base radius of the high-speed gears at the parallel gear stage
r_{pL}	pitch radius of the planet gear at the first planetary gear stage
r_{sL}	pitch radius of the sun pinion at the first planetary gear stage
r_p	pitch radius of planet gears
r_{pH}	pitch radius of the planet gear at the second planetary gear stage
r_{sH}	pitch radius of the sun pinion at the second planetary gear stage
r_{GL}	pitch radius of the low-speed gears at the parallel gear stage
r_{GH}	pitch radius of the high-speed gears at the parallel gear stage
S	subscript representing the sun pinion
T_{in}	driving torque
T_{out}	output torque
V_{wind}	average wind speed
ω_{g}	rotational speed of the gear, or the rotational speed of the planet carrier
	arm for the planetary gear stage
ω_i	meshing frequency
ω_e	external excitation frequency

rotational speed of blades

 ω_{blade}

x_{cL}	equivalent transverse displacements of the planet carrier arm at the first
	planetary gear stage
x_{pL_n}	equivalent transverse displacements of the planet gear at the first
	planetary gear stage
x_{sL}	equivalent transverse displacements of the sun pinion at the first
	planetary gear stage
x_{cH}	equivalent transverse displacements of the planet carrier arm at the
	second planetary gear stage
x_{pH_n}	equivalent transverse displacements of the planet gear at the second
	planetary gear stage
x_{sH}	equivalent transverse displacements of the sun pinion at the second
	planetary gear stage
x_{GL}	equivalent transverse displacements of the low-speed gear at the parallel
	gear stage
x_{GH}	equivalent transverse displacements of the high-speed pinion at the
	parallel gear stage
X_i	relative meshing displacements on the direction of action
X_k	translational displacements
$y_{ ext{max_gear}}$	maximum deflection of the gear tooth
$y_{ ext{max_}pinion}$	maximum deflection of the pinion tooth
Z	number of rollers per bearing row
θ	rotational displacements
$ heta_{xj}$	rotational displacements of gearbox components on x-axis
$ heta_{yj}$	rotational displacements of gearbox components on y-axis

$ heta_{zj}$	rotational displacements of gearbox components on z-axis
δ_a	axial deformation of the cylindrical roller bearing
δ_r	elastic displacement of the cylindrical roller bearing
ξ	damping ratio
γ	contact angle

Table of contents

Certificate of original authorship	i
Acknowledgment	ii
Nomenclature	iii
Table of contents	x
List of figures	xiv
List of tables	xxiii
Abstract	xxiv
Chapter 1 Introduction	1
1.1 Background of wind energy	1
1.1.1 Sustainability	1
1.1.2 Economic benefits	2
1.1.3 Noise	4
1.1.4 Health issues	4
1.2 Current challenges	5
1.2.1 Turbine size	5
1.2.2 Gearbox reliability	6
1.2.3 Communication and data sharing	7
1.3 Research objectives	8
1.4 Thesis outline	9
Chapter 2 Literature review	11
2.1 Wind turbine drivetrain	11
2.1.1 Finite element model	11

2.2.2 Mathematical model	24
2.2 Gear dynamics	26
2.2.1 Spur gears	26
2.2.2 Helical gears	29
2.2.3 Planetary gears	31
Chapter 3 Wind turbine drivetrain structures	37
3.1 Drivetrain configurations	37
3.1.1 Modular drivetrain.	39
3.1.2 Integrated drivetrain	40
3.1.3 Partially integrated drivetrain	40
3.2 Gearbox suspension layouts	41
3.2.1 Three-point mounting configuration	41
3.2.2 Two-bearing configuration	42
3.2.3 Hydraulic suspension	42
3.3 Parallel-shaft and planetary gearboxes	43
3.4 Spur and helical gears	46
3.5 Bearings	48
Chapter 4 Torsional vibrations of wind turbine gearboxes	51
4.1 Mathematical modelling	51
4.2 Derivation of equations	56
4.3 Specifications	65
4.3.1 General information	65
4.3.2 Excitation conditions	67

4.3.3 Time-varying mesh stiffness	69
4.3.4 Damping	72
4.4 Results	72
4.4.1 Effect of the static transmission error <i>E</i>	74
4.4.2 Effect of the mesh stiffness <i>K</i>	80
4.4.3 Mean-to-alternating force ratio Fm/Fa	87
4.5 Discussions	92
Chapter 5 Dynamic response of a 4DOF wind turbine gearbox	95
5.1 Modelling	95
5.2 Derivation of equations	97
5.3 Specifications	105
5.4 Results	107
5.4.1 External excitation only	107
5.4.2 Constant external excitation	110
5.4.3 Mean-to-alternating force ratio Fm/Fa	113
5.5 Discussions	118
Chapter 6 Effect of bending moment on a 6DOF wind turbine planetary gearbox.	121
6.1 Modelling	121
6.2 Derivation of equations	122
6.3 Simulation and results	132
6.3.1 Constant external excitations	132
6.3.2 Wind fluctuation and bending moment with $My/Tin = 0.5$	136
6.3.3 Wind fluctuation and bending moment with $My/Tin = 1$	140

6.3.4 Wind fluctuation and bending moment with $My/Tin = 5$	144
6.3.5 Increased driving torque and bending moment with $My/Tin = 1$	148
6.3.6 Effects of the bearing clearances	152
6.4 Discussions	153
Chapter 7 Conclusions and future research	157
Chapter 8 Appendices	161
8.1 Gear	161
8.2 Wind fluctuation and bending moment with $My/Tin = 0.5$	163
8.2.1 Mean-to-alternating force ratio $Fm/Fa = 10$	163
8.2.2 Mean-to-alternating force ratio $Fm/Fa = 2$	166
8.3 Wind fluctuation and bending moment with $My/Tin = 1$	168
8.3.1 Mean-to-alternating force ratio $Fm/Fa = 10$	168
8.3.2 Mean-to-alternating force ratio $Fm/Fa = 2$	171
8.4 Wind fluctuation and bending moment with $My/Tin = 5$	173
8.4.1 Mean-to-alternating force ratio $Fm/Fa = 10$	173
8.4.2 Mean-to-alternating force ratio $Fm/Fa = 2$	176
8.5 Increased wind fluctuation and bending moment with $My/Tin = 1$	178
8.5.1 Mean-to-alternating force ratio $Fm/Fa = 10$	178
8.5.2 Mean-to-alternating force ratio $Fm/Fa = 2$	181
References	183
Dublications	204

List of figures

Figure 1.1. Australia's wind resources
Figure 3.1. Horizontal-axis wind turbines
Figure 3.2. Wind turbine drivetrain with gearbox
Figure 3.3. Drivetrain of a 750 kW wind turbine
Figure 3.4. Three point mounting configuration
Figure 3.5. Two-point mounting configuration
Figure 3.6. Hydraulic suspension system
Figure 3.7. Hydraulic suspension system
Figure 3.8. Wind turbine gearboxes with (a) one-planetary-two-parallel gear stages (b)
two-planetary-one-parallel gear stages
Figure 3.9. Involute tooth nomenclature
Figure 3.10. Nomenclature of a gear tooth
Figure 3.11. Geometry of a helical gear
Figure 3.12. Bearing nomenclature and locations
Figure 4.1. Torsional model of a wind turbine gearbox
Figure 4.2: Side view of the proposed gearbox
Figure 4.3: A gear pair in planetary gear stage
Figure 4.4. Simplified model of a gear tooth
Figure 4.5. The vibrational responses of Qrp_H caused by $e=10~\mu m$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map75
Figure 4.6. The vibrational responses of <i>QGHGL</i> caused by $e=10~\mu m$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map75

Figure 4.7. The vibrational responses of Qrp_H caused by $e = 100 \mu m$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map77
Figure 4.8. The vibrational responses of <i>QGHGL</i> caused by $e = 100 \mu m$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map77
Figure 4.9. The vibrational responses of Qrp_H caused by $e=300~\mu m$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map79
Figure 4.10. The vibrational responses of <i>QGHGL</i> caused by $e=300\mu m$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map79
Figure 4.11. The vibrational responses of Qrp_H caused by $KmKa = 10$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map81
Figure 4.12. The vibrational responses of $QGHGL$ caused by $KmKa = 10$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map82
Figure 4.13. The vibrational responses of Qrp_H caused by $KmKa = 3.33$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map83
Figure 4.14. The vibrational responses of <i>QGHGL</i> caused by $KmK\alpha = 3.33$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map84
Figure 4.15. The vibrational responses of Qrp_H caused by $KmKa = 2$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map86
Figure 4.16. The vibrational responses of $QGHGL$ caused by $KmKa = 2$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map86
Figure 4.17. The vibrational responses of Qrp_H caused by $FmFa = 100$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map88
Figure 4.18. The vibrational responses of $QGHGL$ caused by $FmFa = 100$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map

Figure 4.19. The vibrational responses of Qrp_H caused by $FmFa = 10$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map
Figure 4.20. The vibrational responses of <i>QGHGL</i> caused by $FmFa = 10$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map90
Figure 4.21. The vibrational responses of Qrp_H caused by $FmFa = 1.67$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map91
Figure 4.22. The vibrational responses of $QGHGL$ caused by $FmFa=1.67$ (a) Time
histories (b) FFT spectrum (c) Phase Portrait (d) Poincare map92
Figure 5.1. Sketch of the proposed wind turbine gearbox
Figure 5.2. The vibrational responses of $Qrp1$ (a) Time histories (b) FFT spectrum. 108
Figure 5.3. The vibrational responses of $Qsp1$ (a) Time histories (b) FFT spectrum 109
Figure 5.4. The vibrational responses of $Qg1g2$ (a) Time histories (b) FFT spectrum109
Figure 5.5. The axial vibrational responses $Xg1a$ (a) Time histories (b) FFT spectrum
Figure 5.6. The axial vibrational responses $Xg4a$ (a) Time histories (b) FFT spectrum
Figure 5.7. The vibrational responses of $Qrp1$ (a) Time histories (b) FFT spectrum. 111
Figure 5.8. The vibrational responses of $Qsp1(a)$ Time histories (b) FFT spectrum 111
Figure 5.9. The vibrational responses of $Qg1g2$ (a) Time histories (b) FFT spectrum112
Figure 5.10. The axial vibrational responses $Xg1a$ (a) Time histories (b) FFT spectrum
Figure 5.11. The vibrational responses $Xg4a$ (a) Time histories (b) FFT spectrum 112
Figure 5.12. The vibrational responses of $Qrp1$ with the mean-to-fluctuating external
force ratio Fm/Fa of 5 (a) Time histories (b) FFT spectrum

Figure 5.13. The vibrational responses of $Qsp1$ with the mean-to-fluctuating external
force ratio Fm/Fa of 5 (a) Time histories (b) FFT spectrum
Figure 5.14. The vibrational responses of $Qg1g2$ with the mean-to-fluctuating external
force ratio Fm/Fa of 5 (a) Time histories (b) FFT spectrum
Figure 5.15. The axial vibrational responses $Xg1a$ with the mean-to-fluctuating external
force ratio Fm/Fa of 5 (a) Time histories (b) FFT spectrum
Figure 5.16. The vibrational responses of $Xg4a$ with the mean-to-fluctuating external
force ratio Fm/Fa of 5 (a) Time histories (b) FFT spectrum
Figure 5.17. The vibrational responses of $Qrp1$ with the mean-to-fluctuating external
force ratio Fm/Fa of 2 (a) Time histories (b) FFT spectrum
Figure 5.18. The vibrational responses of <i>Qsp</i> 1 with the mean-to-fluctuating external
force ratio Fm/Fa of 2 (a) Time histories (b) FFT spectrum
Figure 5.19. The vibrational responses of $Qg1g2$ with the mean-to-fluctuating external
force ratio Fm/Fa of 2 (a) Time histories (b) FFT spectrum
Figure 5.20. The axial vibrational responses $Xg1a$ with the mean-to-fluctuating external
force ratio Fm/Fa of 2 (a) Time histories (b) FFT spectrum
Figure 5.21. The axial vibrational responses $Xg4a$ with the mean-to-fluctuating external
force ratio Fm/Fa of 2 (a) Time histories (b) FFT spectrum
Figure 6.1. A wind turbine planetary gearbox
Figure 6.2. A sun-planet gear pair
Figure 6.3. A sun-planet gear pair (a) with $\phi 1 = 0^{\circ}$ (b) with $\phi 2 = 120^{\circ}$ (c) with
$\phi 3 = 240^{\circ}$
Figure 6.4. Bearing stiffness function with clearance [55]

Figure 6.5. The vibrational responses of $Qrp1$ (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 6.6. The vibrational responses of $Qsp1$ (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 6.7. Load share ratio (LSR)
Figure 6.8. The radial vibrational responses of planet gear Xp (a) Time histories (b) FFT
spectrum
Figure 6.9. The axial vibrational responses of planet gear <i>Xpa</i> (a) Time histories (b)
FFT spectrum
Figure 6.10. The vibrational responses of $Qrp1$ (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 6.11. The vibrational responses of $Qsp1$ (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 6.12. Load share ratio (LSR)
Figure 6.13. The radial vibrational responses of planet gears Xp (a) Time histories (b)
FFT spectrum
Figure 6.14. The axial vibrational responses of planet gears Xpa (a) Time histories (b)
FFT spectrum
Figure 6.15. The vibrational responses of $Qrp1$ (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 6.16. The vibrational responses of $Qsp1$ (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 6.17. Load share ratio (LSR)
Figure 6.18. The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
1/12

Figure 6.19.	The axial vibrational responses Xpa (a) Time histories (b) FFT spectrum 144
Figure 6.20.	The vibrational responses of $Qrp1$ (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 6.21.	The vibrational responses of $Qsp1$ (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 6.22.	Load share ratio (LSR)
Figure 6.23.	The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
E. (24	147
Figure 6.24.	The axial vibrational responses <i>Xpa</i> (a) Time histories (b) FFT spectrum 148
Figure 6.25.	The vibrational responses of $Qrp1$ (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 6.26.	The vibrational responses of $Qsp1$ (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 6.27.	Load share ratio (LSR)
Figure 6.28.	The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
Figure 6.29.	The axial vibrational responses Xpa (a) Time histories (b) FFT spectrum
Figure 6.30	. Comparison between the vibrational responses $Qrp1$ with and without
	bearing clearances. (a) Driving torque only; (b) $MyTin = 0.5$; (c)
	MyTin = 1; (d) with increased Tin at $MyTin = 0.5$
Figure 8.1. N	Nomenclature of a gear tooth [182]161
Figure 8.2. C	Gear tooth nomenclature

Figure 8.3. The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.4. The vibrational responses of Qsp (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.5. Load share ratio (LSR)
Figure 8.6. The radial vibrational responses of planet gears Xp (a) Time histories (b)
FFT spectrum 165
Figure 8.7. The axial vibrational responses of planet gears Xpa (a) Time histories (b)
FFT spectrum 165
Figure 8.8. The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.9. The vibrational responses of Qsp (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.10. Load share ratio (LSR)
Figure 8.11. The radial vibrational responses of Xp (a) Time histories (b) FFT spectrum
Figure 8.12. The axial vibrational responses of Xpa (a) Time histories (b) FFT spectrum
Figure 8.13. The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.14. The vibrational responses of <i>Qsp</i> (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.15. Load share ratio (LSR)
Figure 8.16. The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
170

Figure 8.17.	The axial vibrational responses (a) Time histories (b) FFT spectrum 170
Figure 8.18.	The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 8.19.	The vibrational responses of Qsp (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 8.20.	Load share ratio (LSR)
Figure 8.21.	The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
Figure 8.22.	The axial vibrational responses Xpa (a) Time histories (b) FFT spectrum
Figure 8.23.	The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 8.24.	The vibrational responses of <i>Qsp</i> (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 8.25.	Load share ratio (LSR)
Figure 8.26.	The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
Figure 8.27.	The axial vibrational responses Xpa (a) Time histories (b) FFT spectrum
	175
Figure 8.28.	The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 8.29.	The vibrational responses of Qsp (a) Time histories (b) FFT spectrum (c)
	Phase Portrait (d) Poincare map
Figure 8 30	Load share ratio (LSR)

Figure 8.31. The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
Figure 8.32. The axial vibrational responses Xpa (a) Time histories (b) FFT spectrum
177
Figure 8.33. The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.34. The vibrational responses of <i>Qsp</i> (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.35. Load share ratio (LSR)
Figure 8.36. The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
Figure 8.37. The axial vibrational responses Xpa (a) Time histories (b) FFT spectrum
Figure 8.38. The vibrational responses of Qrp (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.39. The vibrational responses of <i>Qsp</i> (a) Time histories (b) FFT spectrum (c)
Phase Portrait (d) Poincare map
Figure 8.40. Load share ratio (LSR)
Figure 8.41. The radial vibrational responses Xp (a) Time histories (b) FFT spectrum
Figure 8.42. The axial vibrational responses Xpa (a) Time histories (b) FFT spectrum

List of tables

Table 1. Mass moment of inertia, radius and pressure angle of each gear of	gearbox 66
Table 2. AGMA full-depth gear tooth specifications	71
Table 3. List of gears and specifications	106

Abstract

Gearbox is an important component for large modern wind turbines incorporated either by a squirrel cage induction generator or a doubly fed induction generator. Wind turbine gearboxes have distinct features from standard gearboxes. They are used to increase the rotor speed to a speed suitable for the electricity generation and operate under varying load conditions, while standard gearboxes are designed to step down from high speed to low speed and operate under full load conditions. The modern wind energy industry has been experiencing high gearbox failure rates since its inception. However, the fundamental mechanisms of gearbox failures have not been fully understood yet. Thus, this thesis studies the dynamic response of wind turbine gearbox components in order to provide useful information to the wind energy industry to reduce the possibility of the gearbox failures at an early stage.

The torsional vibrations of wind turbine gearbox are firstly investigated in this thesis. The nonlinear dynamic model developed considers the factors such as time-varying mesh stiffness, damping, static transmission error and gear backlash. Both the external excitation due to wind gust and the internal excitation due to static transmission error are included. With the help of time history, FFT spectrum, phase portrait, Poincare map and the effects of the static transmission error, mean-to-alternating force ratio and time-varying mesh stiffness on the dynamic behaviour of wind turbine gearbox components are investigated by using the numerical integration method. It is found that the external excitation has the most influence on the torsional vibrations of the wind turbine gearbox components. The gear mesh stiffness has more influence than the static transmission error, and the static transmission error has the least influence.

Secondly, the dynamic response of a proposed four-degree-of-freedom (4DOF) wind turbine gearbox dynamic model is studied. The effects of different excitation conditions are discussed. The results show that the external excitation fluctuation has large influence on the dynamic responses of both the gears and bearings, and explain under which conditions the fretting corrosion, as one of the wind turbine gearbox failure modes, may occur.

Thirdly, the effects of bending moments on the dynamic responses of a wind turbine planetary gearbox are analysed. The proposed six-degree-of-freedom (6DOF) dynamic model takes into account the key factors such as the time-varying mesh stiffness, bearing stiffness, damping, static transmission error, gear backlash and bearing clearances. It is found that the bending moments can affect the gear meshes. What is more, the driving torque may have the effect on the bending moments. Furthermore, the bearing clearance has negligible effect in the planetary gear stage.

This page intentionally left blank