INVESTIGATIONS INTO AIR POLLUTANT CONCENTRATIONS ACROSS INNER SYDNEY AND THEIR RELATIONSHIPS WITH URBAN FORESTRY

A thesis submitted by Peter J Irga to the School of Life Sciences, University of Technology Sydney, in partial fulfilment of the requirements of the degree of Doctor of Philosophy

July 2016
Statement of Original Authorship

I certify that this thesis has not already been submitted for any other degree and is not being submitted as part of the candidature for any other degree.
I also certify that the thesis has been written by me, and that any help I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

I certify that the word count is: 55,887

Student signature:

Date: 17th July 2016

Cover photo: SMH Photography Twitter: @photosSMH
Abstract

It is widely understood that the activities of plants can influence the concentration of ambient air pollutants. The research presented here assessed urban air pollution across Sydney, and examined whether higher concentrations of urban forests were associated with quantifiable effects on ambient air pollutant levels. The findings indicate that areas with higher concentrations of urban forests may lead to better air quality with respect to reduced ambient particulate matter, however, if the greenspace was composed of grass, increased fungal concentrations were observed. A further investigation was made, aimed at assessing the potential contribution of senescent leaves to the diversity of airborne fungal propagules during autumn. The fungi aerosolized from autumn leaf samples were commonly found in the autumn air samples, thus it is likely that phyllospheric fungi present on deciduating leaves contribute to the aeromycota of these urban areas. An additional investigation studied the diversity of aeromycota associated with forty urban bird roosts. Associations were established between *Rhodotorula* and Pacific black ducks, wood ducks, myna birds and miner birds. Further associations were established between *Penicillium*, *Scopulariopsis* and *Cunninghamella* and pigeons, sparrows and swallows. Indoor air quality in buildings located within the same sampling sites as used in the first study, were used to make a comparison across building ventilation types. Generalising, it was found that the indoor air quality of a typical Australian office building does not pose a health issue to occupants. As the air in naturally ventilated buildings largely resembles that of the proximal outdoor air, urban forests will influence the composition of air pollutants within these buildings, both positively and negatively. The results combined, demonstrate that urban forests does influence air pollutants substantially, either through the reduction of ambient particulate matter, or the facilitation of bioaerosols either directly or indirectly. In light of these results, I propose that the research methods developed here can be used for other field studies related to air pollutants, and that the data here not only contributes new valuable data on the distribution and behaviour of air pollutants but also identifies possible sources and preventative mechanisms.
Keywords

Aeromycota
Airborne fungi
Allergy
Asthma
Avian droppings
Bioaerosols
Environmental sources
Guano
I/O ratios
Leaf surface fungi
Mechanical ventilation
Occupational health
Offices
Particulate matter
Phylloplane
Public health
Rhodotorula
Risk assessment
Seasonal
Sydney
Street trees
Urban ecology
Workplace safety
Zoonosis
Acknowledgements

To my supervisors, from the bottom of my heart, thank you for being the best supervisors a student could possibly have had. Words cannot express the gratitude and admiration I have for you both. From the blind faith you had in me when you brought me to the UTS Plants and Indoor Environmental Quality research group, to the continued guidance and direction you provided me. No matter how busy you were in your professional and personal lives, I always felt that you went over and beyond the amount of effort any other supervisor gave their students.

In addition to my supervisors, many thanks goes to my fellow UTS colleagues who assisted me along the way, Marea Martlew, Russell Trenerre, Gemma Armstrong, Sue Fenech, Brigette Armstrong, Gabe O’Reilly, William King, Sarah Meoli, Ashley Douglas, Iain Berry and Jess Braun. I will remember this time fondly for all of your persistent acts of kindness and assistance.

Thank you also to the laboratory assistants who kindly assisted me, and all those who helped with sampling or took interest in my research.

Special and sincere thanks go to my partner Angela Dacunto. You were very patient and understanding of the sacrifices I had to make for this thesis to become a reality, for which I am very grateful.

I acknowledge the financial support received via the Australian Postgraduate Award and the City of Sydney Environmental Grant Scheme.

Thank you to all my family and friends who continually gave me support throughout the year.

Finally, the biggest thank you goes to my parents, who have instilled in me the work ethic and values required for success in academia.
Preface

This thesis consists of nine chapters. Chapters two to six are derived from journal articles that have been peer reviewed and published, presented in logical order. I have presented them similar to their published form; consequently, some repetition occurs in regards to themes and background, and formatting and referencing may differ slightly across chapters. To prevent unnecessary duplication, a single reference list has been provided at the end of the thesis.

This thesis is a compilation of my own work with guidance from my supervisors and additional assistance from others. I conceptualized the research, designed the experiments including choice of methods, and instrumentation, conducted all data collection and analysis, and wrote the manuscripts. My supervisors and co-authors proof-read and edited the final manuscript versions. Publication details are listed below and contributions of co-authors are detailed at the start of each chapter.
List of peer reviewed publications

The publications presented here form chapters 2-6.

Irga, P. J., M. D. Burchett and F. R. Torpy (2015). Does urban forestry have a quantitative effect on ambient air quality in an urban environment? *Atmospheric Environment* **120**: 173-181. https://dx.doi.org/10.1016/j.atmosenv.2015.08.050

Irga, P. J., and F. R. Torpy (2016). A survey of the aeromycota of Sydney and its correspondence with environmental conditions: grass as a component of urban forestry could be a major determinant. *Aerobiologia*. **32**: 171-186. https://dx.doi.org/10.1007/s10453-015-9388-0

Other peer reviewed publications
The publications presented here were published during the candidature but do not form part of this thesis

List of conference presentations
The presentations presented here resulted from this work, however have not otherwise been included in this thesis

Table of Contents

Statement of Original Authorship.. ii

Abstract... iii

Keywords.. iv

Acknowledgements... v

Preface .. vi

List of peer reviewed publications... vii

Other peer reviewed publications ... viii

List of conference presentations ... viii

Table of Contents.. ix

List of Figures... xvi

List of Tables.. xviii

List of Abbreviations ... xx

Chapter 1 INTRODUCTION... 1

1.1 Scope and Gaps in knowledge ... 1

1.2 Literature review .. 3

1.2.1 Air quality ... 3

1.2.3 Gaseous pollutants .. 3

1.2.3.1 Volatile Organic Compounds... 3

1.2.3.2 Inorganic gases... 4

1.3 Particulate aerosols... 5

1.3.1 Effects of meteorology and physical environment on particulate air pollution... 6
Chapter 2 DOES URBAN FORESTRY HAVE A QUANTITATIVE EFFECT ON AMBIENT AIR QUALITY IN AN URBAN ENVIRONMENT? ... 27

2.1 Abstract .. 28

2.2 Introduction .. 28

2.3 Methods .. 30

2.3.1 Study area .. 30

2.3.2 Sample Sites .. 31

2.3.3 Traffic density and Greenspace assessment .. 32

2.3.3 Air quality sampling .. 36

2.3.4 Quality assurance .. 37

2.3.5 Data analysis ... 37

2.4 Results .. 38

2.4.1 Relationships with Environmental variables ... 41

2.5 Discussion .. 43

2.6 Conclusion .. 47

2.7 Acknowledgments .. 48

Chapter 3 A SURVEY OF THE AEROMYCOTA OF SYDNEY AND ITS CORRESPONDENCE WITH ENVIRONMENTAL CONDITIONS: GRASS AS A COMPONENT OF URBAN FORESTRY COULD BE A MAJOR DETERMINANT. 49

3.1 Abstract .. 50

3.2 Introduction .. 50

3.3 Methods and Materials ... 52
4.3.5 Air samples from decaying leaf matter ... 78
4.3.6 Data analysis ... 79
4.4 Results .. 79
4.5 Discussion .. 87
4.6 Conclusions .. 89
4.7 Acknowledgements ... 89

Chapter 5 CORRESPONDENCE BETWEEN URBAN BIRD ROOSTS AND THE
PRESENCE OF AEROSOLISED FUNGAL PATHOGENS ... 90
5.1 Abstract .. 91
5.2 Introduction .. 91
5.3 Methods .. 92
5.3.1 Sample Sites .. 92
5.3.2 Collection and Analysis of Samples ... 93
5.3.3 Statistical Analysis .. 96
5.4 Results and Discussion ... 99
5.5 Conclusion .. 103
5.6 Acknowledgments ... 104

Chapter 6 INDOOR AIR POLLUTANTS IN OCCUPATIONAL BUILDINGS IN A
SUB-TROPICAL CLIMATE: COMPARISON AMONG VENTILATION TYPES .. 105
6.1 Abstract .. 106
6.2 Introduction .. 106
6.3 Methods .. 110
8.5 The application of biotechnology to urban forestry to enhance air pollution mitigation ... 141

8.6 Alternative methodologies for determining particulate air pollutants. 142

8.6.1 Gravimetric Analysis ... 142

8.6.2 Tapered Element Oscillating Microbalance ... 142

8.6.3 Geographical information systems ... 142

8.6.4 Computational fluid dynamic modelling ... 143

8.7 Alternative methodologies for the assessment of aeromycota 144

8.7.1 Quantification of bioaerosols ... 144

8.7.2 Impactors and inertial sampling .. 144

8.7.3 Filtration samplers .. 145

8.7.4 Electrostatic precipitation .. 145

8.7.5 Direct microscopic methods .. 145

8.7.6 Detection of β-N-acetylhexosaminidase (NAHA) ... 146

8.7.7 Ergosterol ... 146

8.7.8 MVOCs .. 146

8.7.9 β glucan ... 147

8.7.10 Immunoassays ... 147

8.7.11 Molecular genetic assays .. 147

9 CONCLUSIONS .. 149

References .. 152
List of Figures

Figure 2.1	Map of central Sydney, showing the locations of the eleven sampling sites. Figure made using the packages ggplot2 and ggmaps for the program R (The R foundation, 2015), and static maps from Google Maps.	Page 32
Figure 2.2	Average levels of atmospheric particulate matter fractions for each sampling site, over a 12-month period (Means ± Standard error of the mean, n =12).	Page 41
Figure 2.3	Average levels of atmospheric particulate matter fractions averaged across sites, over the 12-month sampling period (Means ± Standard error of the mean, n = 11).	Page 41
Figure 2.4	Temporal concentrations of ambient atmospheric CO\textsubscript{2} and NO\textsubscript{2} averaged across sites, over the 12-month sampling period (Means ± Standard error of the mean, n = 11).	Page 42
Figure 2.5	Average concentrations of atmospheric CO\textsubscript{2} and NO\textsubscript{2} for each sampling site, averaged over the 12-month period (Means ± Standard error of the mean, n = 12).	Page 42
Figure 3.1	Map of central Sydney, showing the locations of the eleven sampling sites. Figure made using the packages ggplot2 and ggmaps for the program R (The R foundation, 2015), and static maps from Google Maps.	Page 56
Figure 3.2	Average total number of fungal colony forming units/m3 encountered and average number of genera encountered during the year.	Page 63
Figure 3.3	Temporal relative abundances of fungal genera encountered in Sydney Australia, averaged across sites.	Page 63
Figure 3.4	Average total number of fungal colony forming units/m3 encountered and average number of genera encountered across sampling sites.	Page 64
Figure 3.5	Spatial relative abundances of fungal genera encountered in Sydney Australia, averaged across months.	Page 65
Figure 4.1	Map of Sydney, Australia depicting the geographical locations of the sampling region and the sites of the five deciduous tree species that were sampled. Figure made with the R packages ggplot2 and ggmaps, utilising static maps from Google Maps.	Page 77
Figure 5.1	Map depicting the geographical locations of the sampling region and the sites sampled areas. Figure made with the R packages ggplot2 and ggmaps, utilising static maps from Google Maps.	Page 95
Figure 5.2	Map depicting the geographical locations of the central sampling region and the sites sampled areas. Figure made with the R packages ggplot2 and ggmaps, utilising static maps from Google Maps.	Page 96
Figure 5.3	Canonical correspondence analysis biplot showing multivariate correspondence between bird abundance scores, environmental variables and the airborne fungal community.	Page 104
Figure 6.1	Map showing the locations of the eleven sampling sites in Central Sydney.	Page 113
Figure 6.2	Average concentrations of atmospheric particulate matter fractions (TSP) for the three building ventilation types, over a 12-month period (Means ± Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model.	Page 118
Figure 6.3	Average concentrations of <10 μm atmospheric particulate matter (PM$_{10}$) for the three building ventilation types, over a 12-month period (Means ± Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 118
Figure 6.4	Average concentrations of <2.5 μm particulate matter (PM$_{2.5}$) for the three building ventilation types, over a 12-month period (Means ± Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 119
Figure 6.5	Average concentrations of atmospheric CO$_2$ for the three building ventilation types, over a 12-month period (Means ± Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 119
Figure 6.6	Average concentrations of atmospheric NO$_2$ for the three building ventilation types, over a 12-month period (Means ± Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 120
Figure 6.7	Average total number of fungal colony forming units/m3 encountered across the three building ventilation types over a 12-month period (Means ± Standard error of the mean).	Page 120
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Attributes of the sample sites</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Greenspace cover composition (area %) at the sample sites within 100 m, 250 m and 500 m radii. ‘Canopy’ cover was comprised of tree and shrub species. ‘Combined’ cover is the sum of canopy and grass cover.</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Cumulative traffic movements per minute at the sample sites, within 100 m, 250 m and 500 m radii.</td>
<td>36</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Sampling dates</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Greenspace cover composition (area %) at the sample sites within 100 m, 250 m and 500 m radii. Canopy cover is comprised of tree and shrub species. Combined cover is the sum of canopy and grass cover.</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Total frequency (% incidence in samples), mean and range (colony forming units/m³), for genera identified in outdoor air samples across Sydney, Australia.</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Total frequency (% incidence in samples), mean and range (expressed as colony forming units/m³), for Aspergillus species identified in outdoor air samples across Sydney, Australia</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Multiple linear regression model results with corresponding Pearson correlation coefficients for total airborne fungal colony forming units/m³ and number of taxa encountered.</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% RH and 45% RH treatments of Celtis australis deciduating leaves.</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% humidity and 45% humidity treatments of Platanus x acerifolia deciduating leaves.</td>
<td>83</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% RH and 45% RH treatments of Populus nigra deciduating leaves.</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% RH and 45% RH treatments of Triadica sebiferum deciduating leaves.</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% humidity and 45% humidity treatments of Robinia pseudoacacia var. ‘Frisia’ deciduating leaves.</td>
<td>86</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Bird species found at sample sites across the experiment</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Site locations, avian species present and substrate composition of the areas sampled</td>
<td>97</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Substrates that were encountered in the survey</td>
<td>98</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Total frequency (%), mean and maximum (colony forming units/m³) of airborne fungal genera identified</td>
<td>Page 99</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Canonical correspondence analysis biplot showing multivariate correspondence between bird abundance scores, environmental variables and the airborne fungal community.</td>
<td>Page 102</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Attributes of the sampled buildings. MVS = mechanical ventilation; NV = natural ventilation; CVS = combined or mixed model ventilation system.</td>
<td>Page 112</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Total frequency (% incidence in samples), mean and max (colony forming units/m³), for airborne fungal genera identified in indoor air samples across ventilation types. MVS = mechanical ventilation; NV = natural ventilation; CVS = combined or mixed model ventilation system.</td>
<td>Page 119</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Time-averaged Indoor/Outdoor ratios throughout the year of all data variables measured in the sampled buildings.</td>
<td>Page 128</td>
</tr>
</tbody>
</table>
List of Abbreviations

Analysis of Similarity
Analysis of Variance
Antigen-presenting cells
Canonical correspondence Analysis
Carbon dioxide
Carbon monoxide
Central Business District
Colony Forming Units
Constant air volume
Mixed model ventilation systems methods
General Linear Model
Heating, Ventilating and Air Conditioning systems
Indoor/outdoor
Local Government Area
Major histocompatibility complex II
Natural ventilation
New South Wales Environmental Protection Agency
Centralised mechanical ventilation systems
New South Wales Office of Environment and Heritage
Nitric oxide
Nitrogen dioxide
Oxides of nitrogen
Non-metric multidimensional scaling
Nota Bene
Oxides of sulfur
Particulate matter
Particulates less than 10 micrometres in size
Particulates less than 2.5 micrometres
Pathogen-associated molecular patterns
Polycyclic aromatic hydrocarbons
Repeated Measures General Linear Model Analysis of Variance
Reuter Centrifugal air sampler

ANOSIM
ANOVA
APCs
CCA
CO2
CO
CBD
CFU
CAV
CVS
GLM
HVAC
I/O
LGA
MHC
NV
NSW EPA
MVS
OEH
NO
NO2
NOx
nMDS
NB
SOx
PM
PM10
PM2.5
PAMPS
PAH
RM GLM ANOVA
RCS
Sabouraud Dextrose Agar (SDX)
Sick Building Syndrome (SBS)
Standard Error of the Mean (± SE or ± SEM)
Statistical Package for the Social Sciences (SPSS)
Sulfur dioxide (SO₂)
Tapered Element Oscillating Microbalance (TEOM)
The National Environment Protection Ambient Air quality Measure (Air - NEPM)
Toll-like receptors (TLR)
Total Suspended Particulate Matter (TSP)
United States of America (USA)
Urban Air Pollution (UAP)
Urban Forest Effects Model (UFORE)
Volatile Organic Compounds (VOCs)
World Health Organization (WHO)