

UNIVERSITY OF TECHNOLOGY SYDNEY

SCHOOL OF LIFE SCIENCES

PLANTS AND ENVIRONMENTAL QUALITY RESEARCH GROUP

INVESTIGATIONS INTO AIR POLLUTANT CONCENTRATIONS ACROSS INNER SYDNEY AND THEIR RELATIONSHIPS WITH URBAN FORESTRY

A thesis submitted by Peter J Irga to the School of Life Sciences, University of Technology Sydney, in partial fulfilment of the requirements of the degree of Doctor of Philosophy

July 2016

Statement of Original Authorship

I certify that this thesis has not already been submitted for any other degree and is not being submitted as part of the candidature for any other degree.

I also certify that the thesis has been written by me, and that any help I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

I certify that the word count is: 55,887

Student signature:

Date: 17th July 2016

Cover photo: SMH Photography Twitter: @photosSMH

Abstract

It is widely understood that the activities of plants can influence the concentration of ambient air pollutants. The research presented here assessed urban air pollution across Sydney, and examined whether higher concentrations of urban forests were associated with quantifiable effects on ambient air pollutant levels. The findings indicate that areas with higher concentrations of urban forests may lead to better air quality with respect to reduced ambient particulate matter, however, if the greenspace was composed of grass, increased fungal concentrations were observed. A further investigation was made, aimed at assessing the potential contribution of senescent leaves to the diversity of airborne fungal propagules during autumn. The fungi aerosolized from autumn leaf samples were commonly found in the autumn air samples, thus it is likely that phyllospheric fungi present on deciduating leaves contribute to the aeromycota of these urban areas. An additional investigation studied the diversity of aeromycota associated with forty urban bird roosts. Associations were established between Rhodotorula and Pacific black ducks, wood ducks, myna birds and miner birds. Further associations were established between Penicillium, Scopulariopsis and Cunninghamella and pigeons, sparrows and swallows. Indoor air quality in buildings located within the same sampling sites as used in the first study, were used to make a comparison across building ventilation types. Generalising, it was found that the indoor air quality of a typical Australian office building does not pose a health issue to occupants. As the air in naturally ventilated buildings largely resembles that of the proximal outdoor air, urban forests will influence the composition of air pollutants within these buildings, both positively and negatively. The results combined, demonstrate that urban forests does influence air pollutants substantially, either through the reduction of ambient particulate matter, or the facilitation of bioaerosols either directly or indirectly. In light of these results, I propose that the research methods developed here can be used for other field studies related to air pollutants, and that the data here not only contributes new valuable data on the distribution and behaviour of air pollutants but also identifies possible sources and preventative mechanisms.

Keywords

Aeromycota Airborne fungi Allergy Asthma Avian droppings Bioaerosols Environmental sources Guano I/O ratios Leaf surface fungi Mechanical ventilation Occupational health Offices Particulate matter Phylloplane Public health Rhodotorula Risk assessment Seasonal Sydney Street trees Urban ecology Workplace safety Zoonosis

Acknowledgements

To my supervisors, from the bottom of my heart, thank you for being the best supervisors a student could possibly have had. Words cannot express the gratitude and admiration I have for you both. From the blind faith you had in me when you brought me to the UTS Plants and Indoor Environmental Quality research group, to the continued guidance and direction you provided me. No matter how busy you were in your professional and personal lives, I always felt that you went over and beyond the amount of effort any other supervisor gave their students.

In addition to my supervisors, many thanks goes to my fellow UTS colleagues who assisted me along the way, Marea Martlew, Russell Trenerry, Gemma Armstrong, Sue Fenech, Brigette Armstrong, Gabe O'Reilly, William King, Sarah Meoli, Ashley Douglas, Iain Berry and Jess Braun. I will remember this time fondly for all of your persistent acts of kindness and assistance.

Thank you also to the laboratory assistants who kindly assisted me, and all those who helped with sampling or took interest in my research.

Special and sincere thanks go to my partner Angela Dacunto. You were very patient and understanding of the sacrifices I had to make for this thesis to become a reality, for which I am very grateful.

I acknowledge the financial support received via the Australian Postgraduate Award and the City of Sydney Environmental Grant Scheme.

Thank you to all my family and friends who continually gave me support throughout the year.

Finally, the biggest thank you goes to my parents, who have instilled in me the work ethic and values required for success in academia.

Preface

This thesis consists of nine chapters. Chapters two to six are derived from journal articles that have been peer reviewed and published, presented in logical order. I have presented them similar to their published form; consequently, some repetition occurs in regards to themes and background, and formatting and referencing may differ slightly across chapters. To prevent unnecessary duplication, a single reference list has been provided at the end of the thesis.

This thesis is a compilation of my own work with guidance from my supervisors and additional assistance from others. I conceptualized the research, designed the experiments including choice of methods, and instrumentation, conducted all data collection and analysis, and wrote the manuscripts. My supervisors and co-authors proof-read and edited the final manuscript versions. Publication details are listed below and contributions of co-authors are detailed at the start of each chapter.

List of peer reviewed publications

The publications presented here form chapters 2-6.

Irga, P. J., M. D. Burchett and F. R. Torpy (2015). Does urban forestry have a quantitative effect on ambient air quality in an urban environment? <u>Atmospheric</u> <u>Environment</u> **120**: 173-181. <u>https://dx.doi.org/10.1016/j.atmosenv.2015.08.050</u>

Irga, P. J., and F. R. Torpy (2016). A survey of the aeromycota of Sydney and its correspondence with environmental conditions: grass as a component of urban forestry could be a major determinant. <u>Aerobiologia</u>. **32**: 171-186. <u>https://dx.doi.org/10.1007/s10453-015-9388-0</u>

Irga, P. J., M. D. Burchett, G. O'Reilly and F. R. Torpy (2015). Assessing the contribution of fallen autumn leaves to airborne fungi in an urban environment. <u>Urban</u> <u>Ecosystems</u> **19**(2): 885–898. <u>https://dx.doi.org/10.1007/s11252-015-0514-0</u>

Irga, P. J., B. Armstrong, W. L King, M. D. Burchett and F. R. Torpy (2016) Correspondence between urban bird roosts and the presence of aerosolised fungal pathogens. Article not yet assigned to an issue. pp1-11 <u>Mycopathologia</u>. <u>https://dx.doi.org/10.1007/s11046-016-0013-8</u>

Irga, P. J., and F. R. Torpy (2016). Indoor air pollutants in occupational buildings in a sub-tropical climate: Comparison among ventilation types. <u>Building and Environment</u> **98**:190-199. <u>https://dx.doi.org/10.1016/j.buildenv.2016.01.012</u>

Other peer reviewed publications

The publications presented here were published during the candidature but do not form

part of this thesis

Torpy, F. R., **Irga, P. J** and Burchett M. D (2015): Reducing Indoor Air Pollutants Through Biotechnology. <u>In</u> Biotechnologies and Biomimetics for Civil Engineering (Pacheco Torgal F, Labrincha JA, Diamanti MV, Yu CP & Lee HK eds.). Springer International Publishing, pp. 181-210.

Torpy, F. R., **Irga, P. J** and Burchett M. D (2014): Profiling indoor plants for the amelioration of high CO₂ concentrations. <u>Urban Forestry & Urban Greening</u>. **13**, 227-233.

Irga, P. J, Braun JT, Douglas ANJ, Pettit T, Fujiwara S, Burchett MD and Torpy FR (2016) The distribution of green walls and green roofs throughout Australia: Do policy instruments influence the frequency of projects. <u>Landscape and Urban Planning</u>. *In Review*.

List of conference presentations

The presentations presented here resulted from this work, however have not otherwise been included in this thesis

Irga, P. J., and F. R. Torpy (2016). A survey of aeromycota for urban Sydney and their relationships with environmental parameters. In *Proceedings of the* Australasian Mycological Society & Fungal Network of New Zealand Joint Meeting Conference. Queenstown, New Zealand.

Irga, P. J., M. D. Burchett and F. R. Torpy (2014) Ecological determinants of the aeromycota in urban Sydney. In *Proceedings of the* 10th International Congress of Aerobiology. Campbelltown, Australia

Table of Contents

Statement of Original Authorship	ii
Abstract	iii
Keywords	iv
Acknowledgements	v
Preface	vi
List of peer reviewed publications	vii
Other peer reviewed publications	viii
List of conference presentations	viii
Table of Contents	ix
List of Figures	xvi
List of Tables	xviii
List of Abbreviations	XX
Chapter 1 INTRODUCTION	1
1.1 Scope and Gaps in knowledge	1
1.2 Literature review	
1.2.1 Air quality	
1.2.3 Gaseous pollutants	
1.2.3.1 Volatile Organic Compounds	
1.2.3.2 Inorganic gases	4
1.3 Particulate aerosols	5
1.3.1 Effects of meteorology and physical environment on	particulate air pollution 6

1.4 Measurement and Monitoring of particles	7
1.5 Urban forests and its ability to mitigate air pollutants	8
1.6 Indoor air quality	9
1.6.1 Workplace legislation in regards to air pollutants	. 10
1.7 Indoor/outdoor ratios	. 10
1.7.1 Ventilation in the built environment	. 11
1.8 Bioaerosols	. 12
1.8.1 Fungal bioaerosols	. 12
1.8.2 Ascomycota	. 13
1.8.3 Zygomycota	. 14
1.8.4 Basidiomycota	. 14
1.8.5 The health effects and immunological response to aerosolized fungal spores	. 14
1.8.6 Immunocompromised opportunistic infections	. 16
1.8.7 Factors that influence fungal growth and reproductive propagule release	. 16
1.8.8 Fungal bioaerosols found indoors	. 16
1.8.9 Workplace exposure limits of fungal bioaerosols	. 17
1.8.10 Studies on the aeromycota conducted in Australia	. 18
1.8.11 Fungal modelling	. 19
1.8.12 Urban forests and the aeromycota	. 21
1.9 Urban forests and zoonotic pathogens	. 21
1.10 Study Sites	. 23
1.11 Objectives and Experimental Aims	. 23

Chapter 2 DOES URBAN FORESTRY HAVE A QUANTITATIVE EFFECT ON	
AMBIENT AIR QUALITY IN AN URBAN ENVIRONMENT?	. 27
2.1 Abstract	. 28
2.2 Introduction	. 28
2.3 Methods	. 30
2.3.1 Study area	. 30
2.3.2 Sample Sites	. 31
2.3.3 Traffic density and Greenspace assessment	. 32
2.3.3 Air quality sampling	. 36
2.3.4 Quality assurance	. 37
2.3.5 Data analysis	. 37
2.4 Results	. 38
2.4.1 Relationships with Environmental variables	.41
2.5 Discussion	. 43
2.6 Conclusion	. 47
2.7 Acknowledgments	. 48
Chapter 3 A SURVEY OF THE AEROMYCOTA OF SYDNEY AND ITS	
CORRESPONDENCE WITH ENVIRONMENTAL CONDITIONS: GRASS AS A	
COMPONENT OF URBAN FORESTRY COULD BE A MAJOR DETERMINANT	. 49
3.1 Abstract	. 50
3.2 Introduction	. 50
3.3 Methods and Materials	. 52

3.31 Study area	
3.3.2 Sample sites	
3.3.3 Environmental conditions	
3.3.4 Fungal air samples	
3.3.5 Data analysis	
3.4 Results	
3.4.1 Seasonal patterns of airborne fungi	
3.4.2 Spatial patterns of airborne fungi	
3.4.3 Identification of pathogens	
3.4.4 Environmental predictors of aerosolized fungi	64
3.5 Discussion	
3.6 Conclusions	71
3.7 Acknowledgements	71
Chapter 4 ASSESSING THE CONTRIBUTION OF FALLEN AUTUMN	LEAVES TO
AIRBORNE FUNGI IN AN URBAN ENVIRONMENT	72
4.1 Abstract	
4.2. Introduction	
4.3 Materials and Methods	
4.3.1 Study area	
4.3.2 Plant material	76
4.3.3 Treatments	76
4.3.4 Direct phylloplane assessment	77

4.3.5 Air samples from decaying leaf matter	78
4.3.6 Data analysis	79
4.4 Results	79
4.5 Discussion	87
4.6 Conclusions	89
4.7Acknowledgements	89
Chapter 5 CORRESPONDENCE BETWEEN URBAN BIRD ROOSTS AND THE	3
PRESENCE OF AEROSOLISED FUNGAL PATHOGENS	90
5.1 Abstract	91
5.2 Introduction	91
5.3 Methods	92
5.3.1 Sample Sites	92
5.3.2 Collection and Analysis of Samples	93
5.3.3 Statistical Analysis	96
5.4 Results and Discussion	99
5.5 Conclusion	103
5.6 Acknowledgments	104
Chapter 6 INDOOR AIR POLLUTANTS IN OCCUPATIONAL BUILDINGS IN .	A
SUB-TROPICAL CLIMATE: COMPARISON AMONG VENTILATION TYPES	105
6.1 Abstract	106
6.2 Introduction	106
6.3 Methods	110

6.3.1 Study area	110
6.3.2 Buildings and Ventilation type requirements	110
6.3.3 Physicochemical air quality samples	113
6.3.5 Quality assurance	114
6.3.6 Data analysis	115
6.4 Results	115
6.5 Discussion	122
6.6 Conclusion	126
6.7Acknowledgements	127
Supplementary data	128
Chapter 7 GENERAL DISCUSSION	129
7.1 Spatiotemporal periodicity trends of air pollutants across urban Sydney	129
7. 2 Sydney's urban forests ability to improve air quality	131
7.3 Sydney's urban forests ability to compromise air quality	132
7.4 The indoor environment	136
Chapter 8 RECOMMENDATIONS FOR FURTHER RESEARCH.	138
8.1 Greater temporal and spatial replication.	138
8.2 Quantification and valuation of Sydney's urban forests' air pollutant abatemer	nt
services – limitations and caveats	139
8.3 Further characterisation of the dynamics of urban forests' ability to reduce air	
pollutants	140
8.4 Green infrastructure as a means of increasing urban forests	. 141

	8.5 The application of biotechnology to urban forestry to enhance air pollution	
	mitigation	141
	8.6 Alternative methodologies for determining particulate air pollutants.	142
	8.6.1 Gravimetric Analysis	142
	8.6.2 Tapered Element Oscillating Microbalance	142
	8.6.3 Geographical information systems	142
	8.6.4 Computational fluid dynamic modelling	143
	8.7 Alternative methodologies for the assessment of aeromycota	144
	8.7.1 Quantification of bioaerosols	144
	8.7.2 Impactors and inertial sampling	144
	8.7.3 Filtration samplers	145
	8.7.4 Electrostatic precipitation	145
	8.7.5 Direct microscopic methods	145
	8.7.6 Detection of β -N-acetylhexosaminidase (NAHA)	146
	8.7.7 Ergosterol	146
	8.7.8 MVOCs	146
	8.7.9 β glucan	147
	8.7.10 Immunoassays	147
	8.7.11 Molecular genetic assays	147
9	CONCLUSIONS	149
R	eferences	152

List of Figures

Figure 2.1	Map of central Sydney, showing the locations of the eleven sampling	Page 32
	sites. Figure made using the packages ggplot2 and ggmaps for the	
	program R (The R foundation, 2015), and static maps from Google	
E	Maps.	D 41
Figure 2.2	Average levels of atmospheric particulate matter fractions for each	Page 41
	sampling site, over a 12-month period (Means \pm Standard error of the mean $n = 12$)	
Figure 2.3	$\frac{1110}{12}$	Dage /1
Figure 2.5	across sites over the 12-month sampling period (Means + Standard	rage 41
	error of the mean $n = 11$)	
Figure 2.4	Temporal concentrations of ambient atmospheric CO ₂ and NO ₂	Page 42
0	averaged across sites, over the 12-month sampling period (Means \pm	
	Standard error of the mean, $n = 11$).	
Figure 2.5	Average concentrations of atmospheric CO ₂ and NO ₂ for each	Page 42
	sampling site, averaged over the 12-month period (Means ± Standard	-
	error of the mean, $n = 12$).	
Figure 3.1	Map of central Sydney, showing the locations of the eleven sampling	Page 56
	sites. Figure made using the packages ggplot2 and ggmaps for the	
	program R (The R foundation, 2015), and static maps from Google	
E. 20	Maps.	D (2
Figure 3.2	Average total number of fungal colony forming units/m ^o encountered	Page 63
Eiguro 2 2	Tomporal relative abundances of funcel concrete anacuntered in	Daga 62
Figure 5.5	Sydney Australia averaged across sites	Page 03
Figure 3.4	Average total number of fungal colony forming units/m ³ encountered	Page 64
1.800.0000	and average number of genera encountered across sampling sites.	I uge of
Figure 3.5	Spatial relative abundances of fungal genera encountered in Sydney	Page 65
C	Australia, averaged across months.	- U
Figure 4.1	Map of Sydney, Australia depicting the geographical locations of the	Page 77
	sampling region and the sites of the five deciduous tree species that	
	were sampled. Figure made with the R packages ggplot2 and ggmaps,	
	utilising static maps from Google Maps.	
Figure 5.1	Map depicting the geographical locations of the sampling region and	Page 95
	the sites sampled areas. Figure made with the R packages ggplot2 and	
Eigung 5.2	ggmaps, utilising static maps from Google Maps.	
Figure 5.2	Map depicting the geographical locations of the central sampling	Page 96
	agalet2 and agmans, utilising static mans from Google Mans	
Figure 5.3	Canonical correspondence analysis higher showing multivariate	Page 10/
1 iguie 5.5	correspondence between bird abundance scores environmental	1 age 104
	variables and the airborne fungal community	
Figure 6.1	Map showing the locations of the eleven sampling sites in Central	Page 113
	Sydney	
Figure 6.2	Average concentrations of atmospheric particulate matter fractions	Page 118
	(TSP) for the three building ventilation types, over a 12-month period	-
	(Means \pm Standard error of the mean). MVS = mechanical ventilation	
	system; NV = natural ventilation; CVS = combined or mixed model	

	ventilation system.	
Figure 6.3	Average concentrations of $<10 \ \mu m$ atmospheric particulate matter (PM ₁₀) for the three building ventilation types, over a 12-month period (Means \pm Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 118
Figure 6.4	Average concentrations of $<2.5 \ \mu m$ particulate matter (PM _{2.5}) for the three building ventilation types, over a 12-month period (Means ± Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 119
Figure 6.5	Average concentrations of atmospheric CO_2 for the three building ventilation types, over a 12-month period (Means \pm Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 119
Figure 6.6	Average concentrations of atmospheric NO_2 for the three building ventilation types, over a 12-month period (Means ± Standard error of the mean). MVS = mechanical ventilation system; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 120
Figure 6.7	Average total number of fungal colony forming units/ m^3 encountered across the three building ventilation types over a 12-month period (Means \pm Standard error of the mean).	Page 120

List of Tables

Table 2.1	Attributes of the sample sites	Page 34
Table 2.2	Greenspace cover composition (area %) at the sample sites within 100 m, 250 m and 500 m radii. 'Canopy' cover was comprised of tree and shrub species. 'Combined' cover is the sum of canopy and grass cover.	Page 35
Table 2.3	Cumulative traffic movements per minute at the sample sites, within 100 m, 250 m and 500 m radii.	Page 36
Table 3.1	Sampling dates	Page 55
Table 3.2	Greenspace cover composition (area %) at the sample sites within 100 m, 250 m and 500 m radii. Canopy cover is comprised of tree and shrub species. Combined cover is the sum of canopy and grass cover.	Page 56
Table 3.3	Total frequency (% incidence in samples), mean and range (colony forming units/m ³), for genera identified in outdoor air samples across Sydney, Australia.	Page 60
Table 3.4	Total frequency (% incidence in samples), mean and range (expressed as colony forming units/m ³), for Aspergillus species identified in outdoor air samples across Sydney, Australia	Page 64
Table 3.5	Multiple linear regression model results with corresponding Pearson correlation coefficients for total airborne fungal colony forming units/m ³ and number of taxa encountered.	Page 65
Table 4.1	Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% RH and 45% RH treatments of <i>Celtis australis</i> deciduating leaves.	Page 82
Table 4.2	Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% humidity and 45% humidity treatments of <i>Platanus</i> x <i>acerifolia</i> deciduating leaves.	Page 83
Table 4.3	Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% RH and 45% RH treatments of <i>Populus nigra</i> deciduating leaves	Page 84
Table 4.4	Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% RH and 45% RH treatments of <i>Triadica sebiferum</i> deciduating leaves.	Page 85
Table 4.5	Mean proportion and Standard error of the mean of observations for fungal genera encountered on both leaf and air samples from both 100% humidity and 45% humidity treatments of <i>Robinia</i> <i>pseudoacacia</i> var. 'Frisia' deciduating leaves.	Page 86
Table 5.1	Bird species found at sample sites across the experiment	Page 95
Table 5.2	Site locations, avian species present and substrate composition of the areas sampled	Page 97
Table 5.3	Substrates that were encountered in the survey	Page 98

Table 5.4	Total frequency (%), mean and maximum (colony forming units/m ³) of airborne fungal genera identified	Page 99
Table 5.5	Canonical correspondence analysis biplot showing multivariate correspondence between bird abundance scores, environmental variables and the airborne fungal community.	Page 102
Table 6.1	Attributes of the sampled buildings. MVS = mechanical ventilation; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 112
Table 6.2	Total frequency (% incidence in samples), mean and max (colony forming units/m ³), for airborne fungal genera identified in indoor air samples across ventilation types. MVS = mechanical ventilation; NV = natural ventilation; CVS = combined or mixed model ventilation system.	Page 119
Table 6.3	Time-averaged Indoor/Outdoor ratios throughout the year of all data variables measured in the sampled buildings.	Page 128

List of Abbreviations

Analysis of Similarity	ANOSIM
Analysis of Variance	ANOVA
Antigen-presenting cells	APCs
Canonical correspondence Analysis	CCA
Carbon dioxide	CO_2
Carbon monoxide	СО
Central Business District	CBD
Colony Forming Units	CFU
Constant air volume	CAV
Mixed model ventilation systems methods	CVS
General Linear Model	GLM
Heating, Ventilating and Air Conditioning systems	HVAC
Indoor/outdoor	I/O
Local Government Area	LGA
Major histocompatibility complex II	МНС
Natural ventilation	NV
New South Wales Environmental Protection Agency	NSW EPA
Centralised mechanical ventilation systems	MVS
New South Wales Office of Environment and Heritage	OEH
Nitric oxide	NO
Nitrogen dioxide	NO ₂
Oxides of nitrogen	NOx
Non-metric multidimensional scaling	nMDS
Nota Bene	NB
Oxides of sulfur	SOx
Particulate matter	PM
Particulates less than 10 micrometres in size	PM_{10}
Particulates less than 2.5 micrometres	PM _{2.5}
Pathogen-associated molecular patterns	PAMPs
Polycyclic aromatic hydrocarbons	РАН
Repeated Measures General Linear Model Analysis of Variance	RM GLM ANOVA
Reuter Centrifugal air sampler	RCS

Sabouraud Dextrose Agar	SDX
Sick Building Syndrome	SBS
Standard Error of the Mean	\pm SE or \pm SEM
Statistical Package for the Social Sciences	SPSS
Sulfur dioxide	SO_2
Tapered Element Oscillating Microbalance	TEOM
The National Environment Protection Ambient Air quality Measure	Air - NEPM
Toll-like receptors	TLR
Total Suspended Particulate Matter	TSP
United States of America	USA
Urban Air Pollution	UAP
Urban Forest Effects Model	UFORE
Volatile Organic Compounds	VOCs
World Health Organization	WHO