

The Use of Bioassays to Detect Designer Androgens in Sports Supplements

Elliot Russell Cooper

Bachelor of Biotechnology (UTS)

Master of Science in Medical Biotechnology (UTS)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

at the University of Technology, Sydney

Supervisor: Dr Kristine C. Y. McGrath

Co-supervisors: Professor Alison K. Heather and Dr David van Reyk

Submitted June 2016

Certificate of Original Authorship

This thesis is the result of a research candidature undertaken at the University of Technology, Sydney as part of a doctoral degree. I certify that the work in this thesis has not previously been submitted for a degree.

I also certify that the work in this thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Elliot R. Cooper

30th June 2016

Acknowledgements

I would like to dedicate this thesis to my late brother, Harrison John Cooper. I wish you could be here to see me finish this PhD. I know you would be proud of me. We all miss you.

First and foremost, I must thank the endless love and support that my parents have given me throughout this PhD. Mum and Dad, thank you for always being there for me, through thick and thin.

To Alison Heather, thank you for all that you have taught me, and the opportunities you have given to me. You gave me a Masters project, this PhD project and my first job in science. I would definitely not be starting a career in science if it wasn't for you. Thank you for all the help and guidance you have given me over the years, and of course, the patience of dealing with me during times of stress! You are an amazing supervisor and mentor and your work ethic is remarkable.

To Kristine McGrath, you too have also been an amazing supervisor. Thank you for everything you have taught me in the lab, and for helping me all the times I needed help. You have had an extraordinary amount of patience with me, and for that I thank you. Your constant cheerfulness made it a pleasure to work with you in the lab.

There are also several other people I would like to thank for helping me throughout this PhD. I would like to thank Dr Rymantas Kazlauskas of the National Measurement Institute for providing the steroids and relevant information about them. The majority of work in this thesis would not be possible without your expertise. I would like to thank Dr David van Reyk for becoming my co-supervisor during my PhD. Your input during group meetings was always valued and I thank you for reading over my thesis. I also want to thank some of the friends I have made throughout this PhD. Rob, Sam, Pat, Peter, Martin, Rosaline, Pamela, you have all been great friends. I have definitely enjoyed the last few years through the ups and downs of this PhD with you guys. Thanks for all your advice throughout the PhD and helping me switch off from work and relax.

I also want to thank other members of UTS. Dr George Herok, your attitude towards prodoping (instead of anti) is an amusing one and it definitely helped make presenting my work more enjoyable, and your input was always appreciated. Dr Matt Padula and other members of the proteomics group for advice on the solid-phase extraction technique, which was crucial for a large part of my work. Dr Michael Johnson for your help on the IN-Cell Analyzer, which helped me get a lot of data. Dr Lani Li for your help and advice in the lab. You were the first person to teach me the yeast androgen bioassay five years ago, and I have been doing this assay ever since! I would also like to thank the members of the HUB group, for their advice during my presentations.

Lastly, I would like to thank UTS for allowing me to undertake a PhD and for providing me with financial support throughout the course of this PhD.

Table of Contents

List of Figuresiv
List of Tables
Abstract
Publications and Presentationsix
List of Abbreviations xi
Chapter 1 – Literature Review
Chapter 2 – General Methods
Chapter 3 – Evaluation of The Intrinsic Androgenic Bioactivity of Sports Supplement-Derived Designer Steroids Using The Yeast Androgen Bioassay73
Chapter 4 – Evaluation of The Androgenic Bioactivity of Sports Supplement-Derived Designer Steroids Using the HuH7 Androgen Bioassay112
Chapter 5 – Determination of the Anabolic Potential of Designer Androgens in an In Vitro Mouse Skeletal Muscle Myoblast Cell Model
Chapter 6 – Evaluation of the Australian Sports Supplement Market For The Presence of Undeclared Androgenic Substances Using Yeast and Mammalian Cell Androgen Bioassays
Chapter 7 – Conclusions
Chapter 8 – References

List of Figures

Figure 1.1 Percentage of androgens detected	14
Figure 1.2 The 19 carbon cyclopentanophenanthrene 4-ring structure of androgens	18
Figure 1.3 A-ring phase I metabolism	19
Figure 1.4 D-ring phase I metabolism	20
Figure 1.5 Phase II conjugation of androgens	21
Figure 1.6 The HPG axis of men and women	31
Figure 1.7 The androgen receptor	33
Figure 1.8 Canonical pathway of genomic androgen receptor action	35
Figure 1.9 Skeletal muscle myotube formation	37
Figure 1.10 The IGF-Akt-mTOR pathway	39
Figure 1.11 Pathway of skeletal muscle degradation	42
Figure 1.12 The fate of skeletal muscle satellite daughter cells	45
Figure 1.13 Multiple lineages of pluripotent stem cells	46
Figure 3.1 EC ₅₀ values of DHT-derived steroids	81
Figure 3.2 Relative potency of DHT-derived steroids	83
Figure 3.3 Molecular structures of DHT-derived steroids	85
Figure 3.4 EC ₅₀ values of T-derived steroids	87
Figure 3.5 Relative potency of T-derived steroids	89
Figure 3.6 Molecular structures of T-derived steroids	91
Figure 3.7 EC ₅₀ values of androstenedione-derived steroids	93
Figure 3.8 Relative potency of androstenedione-derived steroids	95
Figure 3.9 Molecular structure of androstenedione-derived steroids	97
Figure 3.10 EC ₅₀ values of remaining steroids	99
Figure 3.11 Relative potency of remaining steroids	101
Figure 3.12 Molecular structures of remaining steroids	103
Figure 4.1 EC ₅₀ values of DHT-derived steroids	119
Figure 4.2 Relative potency of DHT-derived steroids	121
Figure 4.3 Metabolism in the HuH7 androgen bioassay altered the bioactivity of DHT-derived steroids	123
Figure 4.4 EC ₅₀ values of T-derived steroids	126
Figure 4.5 Relative potency of T-derived steroids	128

List of Figures Continued

Figure 4.6 Metabolism in the HuH7 androgen bioassay altered the bioactivity of T-deriver	d steroids
Figure 4.7 EC ₅₀ values of androstenedione-derived steroids	
Figure 4.8 Relative potency of androstenedione-derived steroids	
Figure 4.9 Metabolism in the HuH7 androgen bioassay altered the bioactivity of androste	enedione-
derived steroids	
Figure 4.10 EC ₅₀ values of remaining steroids	
Figure 4.11 Relative potency of remaining steroids	
Figure 4.12 Metabolism in the HuH7 androgen bioassay altered the bioactivity of remain	ing steroids 137
Figure 5.1 Immunocytochemistry control reactions to verify efficacy and specificity of pri secondary antibodies	mary and 150
Figure 5.2 Designer androgens increase myotube area	
Figure 5.3 Representative images of myotube formation in C2C12 cells	
Figure 5.4 Designer androgens had no effect on myotube number	
Figure 5.5 Designer androgens increased total MHC expression	
Figure 5.6 Myotubes grouped into number of myonuclei	
Figure 5.7 Nuclear accretion in C2C12 myotubes was increased by DHT	
Figure 5.8 Nuclear accretion in C2C12 myotubes was increased by designer androgens	
Figure 5.9 Nuclear accretion in C2C12 myotubes was not increased by Ultradrol	
Figure 6.1 Determining the efficacy of the SPE extraction procedure used in this study	
Figure 6.2 Bioactivity of sports supplement extracts as measured in the yeast androgen b	ioassay. 187
Figure 6.3 Viability growth curves of supplement extracts 49, 62 and 91	
Figure 6.4 Bioactivity of sports supplement extracts as measured in the HuH7 and rogen b	bioassay 190
Figure 6.5 Progesterone dose-response curve	
Figure 6.6 Bioactivity of sports supplement extracts as measured in the yeast progestoge	n bioassay 193

List of Tables

Table 1.1 The prohibited list	12
Table 1.2 Commonly abused androgens and their routes of administration	17
Table 1.3 Sensitivities of various androgen bioassays	54
Table 2.1 Antibodies and optimised conditions used in immunocytochemistry	72
Table 3.1 List of steroids used in this study	79
Table 4.1 Steroid metabolising enzymes expressed by HuH7 cells	115
Table 6.1 The types of sports supplements screened in this study	176
Table 6.2 Details of sports supplements screened in this study	178
Table 6.3 Yeast and HuH7 androgen bioassay decision and detection limits	185

Abstract

Androgens are the most widely abused prohibited substances in sports. Detection of androgen abuse in sports relies on using sensitive gas chromatography tandem mass spectrometry-based techniques. These techniques require knowing the structure of the test compound in order to detect it. The last 15 years has seen the emergence of steroids with novel structures, termed designer steroids, which can bypass detection. In recent years, many of these designer steroids have appeared in sports supplements.

There is limited data on the safety and efficacy of designer steroids. Numerous studies report that consumption of sports supplements containing designer androgens are associated with a number of adverse health effects, including cholestatic jaundice. Furthermore, it is often not known if these designer androgens have beneficial anabolic activity.

The overall hypothesis of this thesis was that designer steroids contained within sports supplements are potent androgens. The main aim of this thesis was to assess the androgenic and anabolic activity of sports supplement-derived designer steroids using reporter gene androgen bioassays and a C2C12 myoblast cell model. Additionally, the Australian sports supplement market was screened for undeclared androgenic substances.

Chapters 3 and 4 investigated the androgenic bioactivity of 22 designer steroids utilising *in vitro* androgen bioassays. Chapter 3 aimed to assess the intrinsic androgenic bioactivity of the designer steroids using the *Saccharomyces cerevisiae*-based yeast androgen bioassay. It was determined that 45% of the sports supplements had strong androgenic activity. Chapter 4 tested these designer steroids in the HuH7 cell line to mimic hepatic metabolism. This chapter showed that several of these strong androgens remained potent or were activated into more

potent androgens after metabolism. Further, several intrinsically strong androgens were deactivated.

Chapter 5 assessed the anabolic potential of several potent designer androgens in a C2C12 myoblast cell line. This study demonstrated that five androgens which had strong AR bioactivity, also demonstrated a high anabolic potential, with significant increases in myotube hypertrophy, nuclei accretion and MHC expression.

Finally, Chapter 6 investigated the presence of undeclared androgenic substances in sports supplements available to the Australian market. Using the yeast and HuH7 androgen bioassays, it was shown that 5.3% (6/112) of the supplements had androgenic activity.

In conclusion, this thesis demonstrates that sports supplements contain potent androgens, and should be of concern to the general Australian population and athletes, due to the potential health risks associated with androgen abuse, and the potential for testing positive in a doping test.

Publications and Presentations

Publications

The use of tandem yeast and mammalian cell *in vitro* androgen bioassays to detect androgens in internet-sourced sports supplements

<u>Elliot R. Cooper</u>, Kristine C. Y. McGrath, Xiaohong Li, Omar Akram, Robert Kasz, Rymantas Kazlauskas, Malcolm D. McLeod, David J. Handelsman, Alison K. Heather

Drug Testing and Analysis, 2016, doi: 10.1002/dta.2000.

Steroid extracts from nutritional sports supplements test positive for androgenic activity

Elliot R. Cooper, Xiaohong Li, Kristine C. Y. McGrath, Alison K. Heather

In preparation

In vitro androgen bioassays as a detection method for designer androgens

Elliot R. Cooper, Kristine C. Y. McGrath, Alison K. Heather

Sensors, 2013, vol. 13: 2148-2163

Steroidal extracts from nutritional sports supplements sold in Australia test positive for androgenic activity

Elliot R. Cooper, Xiaohong Li, Kristine C. Y. McGrath, Alison K Heather

International Congress of Endocrinology/Endocrinology Society, 2014, Chicago, USA.

Poster Presentation

Nutritional sports supplements sold in Australia contain undeclared hormonal adulterants

Elliot R. Cooper, Xiaohong Li, Kristine C. Y. McGrath, Alison K Heather

New Horizons Conference, 2013, Royal North Shore Hospital, NSW, Australia.

Poster Presentation

List of Abbreviations

AAF	Adverse Analytical Findings	
AAS	Anabolic Androgenic Steroid	
АСТН	Adrenocorticotrophic Hormone	
AF	Activation Function	
AI	Aromatase Inhibitor	
AR	Androgen Receptor	
ARE	Androgen Response Element	
BALCO	Bay Area Laboratory Co-Operative	
СНО	Chinese Hamster Ovary	
DBD	DNA Binding Domain	
DHCMT	Dehydrochloromethyltestosterone	
DHEA	Dehydroepiandrosterone	
DHT	Dihydrotestosterone	
DMEM	Dulbecco's Modified Eagle Medium	
DMSO	Dimethyl Sulfoxide	
DMT	Desoxymethyltestosterone	
DNA	Deoxyribonucleic Acid	
DSHEA	Dietary Supplement and Health Education Act	
E	Epitestosterone	
EC ₅₀	Effective Concentration, 50%	
EDC	Endocrine Disrupting Chemical	
eIF3-f	Eukaryotic Translation Initiaion Factor 3 Subunit F	
EPO	Erythropoietin	
ER	Oestrogen Receptor	
ESA	Erythropoiesis-Stimulating Agent	
FCS	Fetal Calf Serum	
FDA	Food and Drug Administration	
FITC	Fluoroscein-Isothiocyanate	
FoxO	Forkhead Box O	

List of Abbreviations Continued

FSANZ	Food Standards Australia New Zealand
FSH	Follicle-Stimulating Hormone
GC-MS	Gas Chromatography-Mass Spectrometry
GDF-8	Growth and Differentiation Factor-8
GDR	German Democratic Republic
GMP	Good Manufacturing Practice
GnRH	Gonadotropin Releasing Hormone
GR	Glucocorticoid Receptor
НВОС	Haemoglobin-Based Oxygen Carrier
hCG	Human Chorionic Gonadotropin
hGH	Human Growth Hormone
HPG	Hypothalamic Pituitary Gonadal Axis
HSD	Hydroxysteroid Dehydrogenase
HSP	Heat Shock Protein
HuH7	Human Hepatocarcinoma
IGF-I	Insulin-Like Growth Factor-I
IOC	International Olympic Committee
IOC-MC	International Olympic Committee – Medical Commission
IRMS	Isotope Radio Mass Spectrometry
LBD	Ligand Binding Domain
LH	Luteinizing Hormone
LOH	Late Onset Hypogonadism
МАРК	Mitogen-Activated Protein Kinase
МНС	Myosin Heavy Chain
MR	Mineralocorticoid Receptor
mTOR	Mammalian (or Mechanistic) Target of Rapamycin
MuRF1	Muscle RING Finger 1
NTD	N-Terminal Domain

List of Abbreviations Continued

OD	Optical Density	
ONPG	o-Nitrophenol-β-galactosidase	
PBS	Phosphate Buffered Saline	
PCNA	Proliferating Cell Nuclear Antigen	
PDGF	Platelet-Derived Growth Factor	
PFC	Perfluorocarbon	
PI3K	Phosphatidylinositol 3-Kinase	
PIC	Pre-Initiation Complex	
РКА	Protein Kinase A	
РКС	Protein Kinase C	
PR	Progestogen Receptor	
PSA	Prostate Specific Antigen	
RBC	Red Blood Cell	
RIA	Radio-Immunoassay	
RNA	Ribonucleic Acid	
RP	Relative Potency	
SARM	Selective Androgen Receptor Modulator	
SEAP	Secreted Embryonic Alkaline Phosphatase	
SERM	Selective Oestrogen Receptor Modulator	
SHBG	Sex Hormone Binding Globulin	
SPE	Solid Phase Extraction	
т	Testosterone	
T/E	Testosterone/Epitestosterone ratio	
TGA	Therapeutic Goods Administration	
TGF-β	Transforming Growth Factor β	
THG	Tetrahydrogestrinone	
TUE	Therapeutic Use Exemption	
yEGFP	Yeast Enhanced Green Fluorescent Protein	

List of Abbreviations Continued

YPD	Yeast Peptone Dextrose
WADA	World Anti-Doping Agency
WADC	World Anti-Doping Code