Qualitative Spatial and Temporal

Representation and Reasoning:

Efficiency in Time and Space

by
Zhiguo Long
supervised by
Prof. Sanjiang Li
for the degree of
Doctor of Philosophy

Centre for Quantum Software and Information
Faculty of Engineering and Information Technology
University of Technology Sydney (UTS)
January, 2017

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.
I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

ACKNOWLEDGEMENT

First of all, I would like to gratefully thank my supervisor, Prof. Sanjiang Li, for his patient guidance, inspiring discussions, and firm support in financial and research matters, during my four years' PhD candidature. His insistence on mathematical accuracy and emphasis on independence of research have influenced me very much.

I would also like to thank Dr. Steven Schockaert, who has given me many invaluable suggestions and inspirations on research. He is also a great friend in life who is always there to listen and to help. I have learned a lot from his enthusiasm for finding solutions to problems.

Prof. Matt Duckham is another person to whom I would like to express my sincere special thank. He always did his best to help me, without any complaint.

I would like to thank Prof. Jean-François Condotta from Artois University, France, for his kind and diligent review of an early version of this thesis.

In the early stage of my PhD candidature, Dr. Weiming Liu and Dr. Hua Meng provided me with the most patient help in research and life. From them, I learned how to think mathematically, not just to calculate mathematically.

My special thanks also belong to Michael Sioutis and Dr. Jae Hee Lee, for being great collaborators in research and friends in life. Every time I talk with them I will learn interesting things.

I am very grateful to have my family, especially my parents and my wife
supporting me all these years. They are always the source of joy, understanding, and comfort.

I also want to thank Prof. Hui Kou, who recommended me to study under the supervision of Prof. Sanjiang Li at the University of Technology Sydney.

Finally, I want to thank all my friends in Australia, China, and the UK, and colleagues at QCIS, UTS. The friendship with them is one of the most valuable things in my life. With them, I had wonderful memory of playing soccer, tasting delicious food, travelling around, and many more. Among them, I would like to specially thank Dr. Shoaib Jameel for his intriguing introduction of Linux to me and Prof. Xueying Zhang for her advice on life.

TABLE OF CONTENTS

ACKNOWLEDGEMENT i
LIST OF TERMS vii
LIST OF NOTATIONS xi
LIST OF FIGURES XV
LIST OF TABLES xix
LIST OF ALGORITHMS xxi
ABSTRACT xxiii
1 Introduction 1
1.1 Qualitative Spatial and Temporal Information 2
1.2 Motivation 7
1.3 Contributions and Outline of the Thesis 10
2 Preliminaries and Backgrounds 15
2.1 Introduction 15
2.2 Qualitative Calculi 16
2.3 Qualitative Constraint Network 25
2.4 Important Techniques in QSTR 30
2.4.1 Weak Composition 30
2.4.2 Path Consistency and Partial Path Consistency 32
2.5 Tasks and Problems in QSTR 36
2.5.1 The Consistency Problem 37
2.5.2 The Minimal Labelling Problem 41
2.5.3 The (Weakly) Global Consistency Problem 44
2.5.4 The Redundancy Problem 46
2.5.5 The Compact Representation Problem 51
2.6 Summary 53
3 Distributive Subalgebras 55
3.1 Introduction 55
3.2 Basic Properties of Qualitative Calculi 58
3.3 Distributive Subalgebra and Helly Property 60
3.3.1 Helly Property 61
3.4 Maximal Distributive Subalgebras 64
3.4.1 Maximal Distributive Subalgebras of PA, IA, and RCC5/8 65
3.4.2 Maximal Distributive Subalgebras of CRA 67
3.4.3 Maximal Distributive Subalgebras of RA 68
3.5 Path Consistency for QCNs over Distributive Subalgebras 69
3.6 The Applicability of Algorithms Improving PC 76
3.6.1 Variable Elimination 76
3.6.2 Partial Path Consistency 83
3.6.3 A More Efficient Algorithm to Achieve PPC and PC 85
3.7 Further Discussion 93
3.7.1 Conceptual Neighbourhood Graph 94
3.7.2 Connection with Classical CSPs 96
3.8 Summary 97
4 Redundancy in QCNs 99
4.1 Introduction 99
4.2 Redundant Constraints 100
4.3 Unique Prime Subnetworks 104
4.4 An Efficient Algorithm for Computing the Core 113
4.5 Summary and Discussion 115
5 Compact Representation: Encoding with MBRs 119
5.1 Introduction 119
5.2 Spatial Clustering Index 122
5.3 The MBR-Based Approach 127
5.3.1 Correctness 129
5.3.2 Effectiveness 132
5.3.3 Empirical Evaluation 135
5.4 Query Support 140
5.4.1 Empirical Evaluation 144
5.5 Derivatives of the MBR-Based Approach 149
5.6 Summary and Discussion 154
6 Compact Representation: Encoding with Rectangles 157
6.1 Introduction 157
6.2 Pseudo-Solutions 158
6.2.1 Constructing Pseudo-Solutions 161
6.2.2 Clustering 170
6.2.3 Answering Queries 171
6.2.4 The Non-DC Method 173
6.3 Implementation 175
6.3.1 Optimisations 176
6.3.2 Comparison of Optimisations 183
6.4 Empirical Evaluation 185
6.4.1 Comparison With Baseline Methods 186
6.4.2 Answering Queries 191
6.5 Summary and Discussion 194
7 Conclusion 199
7.1 Thesis Contributions 200
7.2 Future Perspectives 203
7.2.1 Extension of Efficient Algorithms 204
7.2.2 Extension of Compact Representation 205
A Maximal Distributive Subalgebras 207
A. 1 Maximal Distributive Subalgebras of PA 207
A. 2 Maximal Distributive Subalgebras of IA 207
A. 3 Maximal Distributive Subalgebras of RCC5 208
A. 4 Maximal Distributive Subalgebras of RCC8 210
B Supplementary Proofs 213
B. 1 Proofs for Chapter 3 213
B. 2 Proofs for Chapter 4 221
B. 3 Proofs for Chapter 5 223
C List of Publications 225
Bibliography 227

LIST OF TERMS

a-closure 34
all-different 72
atom 17
basic network 26
Block Algebra, BA 22
Boolean algebra 17
Boolean subalgebra 17
Cardinal Directional Calculus, CDC 23
Cardinal Relation Algebra, CRA 19
Cartesian product 19
chordal graph, triangulated graph 28
closure 32
clustering relation 122
Complete 144
Complete 144
complete network 26
composition, composition table 30
conceptual neighbourhood graph, CNG 94
connected regions 23
consistency, consistent, satisfiable 37
constraint 25
constraint graph 27
converse 16
convex IA relation 94
core 103
cycle 28
cycle path 70
directionally path consistent algorithm, DPC 80
directionally path consistent, DPC 79
DPC subnetwork of \mathcal{N} 80
DPC+ 86
distributive subalgebra 60
entail, entailment 46
equivalent 37
feasible relation 41
global consistency, globally consistent 44
grid clustering index 123
Helly, Helly Property 61
Horn representable, Horn representation 165
identity relation 16
index tile 122
intelligent personal assistant, IPA 2
Intersection Measurement Index, IMI 173
Interval Algebra, IA 19
JEPD 17
k-tile relation 23
leaf or non-leaf index tile 126
Label 178
MA 127
maximal distributive subalgebra 64
maximal tractable subclass, tractable subclass 39
maximum cardinality search 29
MC, MD, MM 149
minimal network, minimal subnetwork 41
minimum bounding rectangle, MBR 21
Naive 176
Non-DC 155
PA representable, PA representation, pointisable 162
partial path consistency algorithm, PPC 36
partial scenario 27
partial solution array 172
partially path consistent subnetwork 35
partially path consistent, PPC 35
path 69
path consistency algorithm, PC 34
path consistency, path consistent, PC 33
Peircean Law 59
perfect elimination ordering, PEO 29
Point Algebra, PA 18
preconvex IA relation 94
preferential attachment 89
prime, prime subnetwork 47
pseudo-solution array 172
pseudo-solution, rectangular pseudo-solution 160
QSTR 5
qualified size 132
qualitative calculus/calculi 17
qualitative constraint network, QCN 25
R-tree, R*-tree, R-tree clustering index 123
Rectangle Algebra 21
redundant, redundancy 47
refine, refinement 27
region 21
Region Connection Calculus, RCC 22
regular closed 21
relation 16
relation algebra 58
restriction of \mathcal{N} on $V_{0} \subseteq V$ 27
satisfy 16
scenario 26
simplicial 28
single tile relation 23
solution, partial solution 37
spatial clustering index 122
subalgebras 31
subclass 18
triangle 33
trivially inconsistent 26
Type 182
universal relation 16
variable elimination 76
weak composition 31
weakened network 159
weakly global consistency, weakly globally consistent 45
Weight 180

LIST OF NOTATIONS

a°	Interior of a point set a	21
\bar{a}	Closure of a point set a	21
$a_{1} R a_{2}$,		
$\left(a_{1}, a_{2}\right) \in R$	$\left(a_{1}, a_{2}\right)$ satisfies the relation R	
$\operatorname{adj}(v)$	Adjacency set of vertex v in a graph	16
$\alpha, \alpha_{i}, \beta, \beta_{j}$	some basic relations	28
$\alpha_{i_{1}} \cup \ldots \cup \alpha_{i_{k}}$	A relation that is the union of some basic relations	18
$\alpha \diamond \beta, R \diamond S$	Weak composition of two relations	18
$\alpha \otimes \beta, R \otimes S$	Cartesian product of two relations	
$\mathcal{R} \otimes \mathcal{S}$	Cartesian product of two subclasses	31
$\alpha \in R$	A basic relation α is contained in a relation R	19
$S \subseteq R$	A relation S is contained in a relation R	20
$\mathrm{BA}(n, m)$	Barabási-Albert model with preferential	18
idtachment value m and n vertices	18	
$\mathrm{~B}_{\mathcal{M}}$	Identity relation	89
\mathcal{C}	The set of basic relation in a qualitative	16
c_{i}	calculus \mathcal{M}	17
\bar{d}	A set of constraint	A constraint
$\delta(a, b)$	Average intersection degree	25
	A CDC relation	69

F_{k}	$\left\{v_{j} \in \operatorname{adj}\left(v_{k}\right): j>k\right\}$	29
$G=(V, E)$	An undirected graph, with vertices V and edges E	27
$G_{\mathcal{N}}$	Constraint graph	27
\mathcal{M}	A qualitative calculus	17
$\mathrm{mbr}(a)$	The MBR of a	21
$\mathcal{N}, \mathcal{N}^{\prime}$	Qualitative constraint network	25
$\mathcal{N}_{\text {c }}$	Core of \mathcal{N}	103
$\mathcal{N}_{\text {m }}$	Minimal subnetwork of \mathcal{N}	42
$\mathcal{N}_{\text {p }}$	A-closure of \mathcal{N}	70
$\mathcal{N}_{\mathrm{p}}^{G}$	partially path consistent subnetwork of \mathcal{N} w.r.t. G	35
$\left.\mathcal{N}\right\|_{V_{0}}$	The restriction of \mathcal{N} on $V_{0} \subseteq V$	27
$\mathcal{N} \models(u R v)$	\mathcal{N} entails ($u R v$)	47
o_{i}	Spatial object or region	122
$\mathbf{O}_{5}, \mathbf{O}_{8}$	Specific sets of relations in RCC5/8	73
$\pi,\left(c_{1}, \ldots, c_{s}\right)$	A path in a QCN	69
$\pi_{<i}, \pi_{>i}$	$\left(c_{1}, \ldots, c_{i-1}\right)$ and $\left(c_{i+1}, \ldots, c_{s}\right)$	69
$\mathrm{CT}(\pi)$	The composition of a path π in a QCN	70
$\|\pi\|$	The length of a path π in a QCN	69
$\mathcal{P}_{x y}^{\mathcal{N}}$	The set of all paths from x to y in a QCN \mathcal{N}	70
R, S, T	A relation	16
$R_{i j}, S_{i j}, T_{i j}$	A relation between v_{i} and v_{j}	16
R^{-1}, S^{-1}, T^{-1}	Converse of a relation	16
$\mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{X}$	Subclass of relations or subalgebra	18
$\widehat{\mathcal{R}}, \widehat{\mathcal{S}}, \widehat{\mathcal{T}}, \widehat{\mathcal{X}}$	Closure of a subclass of relations	60

$\operatorname{Rel}(\mathcal{U})$	The power set of $\mathcal{U} \times \mathcal{U}$	17
σ	A solution of a network	37
t, t_{j}	Spatial clustering index tile	122
U	Universe, domain	16
(uRv)	A constraint	25
\star	Universal relation	16
V	A set of variables or vertices	25
v, w, u	Variable, vertex	25
W	The intersection of the weak compositions of all paths from x to y in $\mathcal{N} \backslash\{(x R y)\}$	74
$x_{a}^{-}, y_{a}^{-}, x_{a}^{+}, y_{a}^{+}$	Lower (upper) bound of the projection of point set a on x / y-axis	21
$\begin{aligned} & I_{x}(a),\left[x_{a}^{-}, x_{a}^{+}\right], \\ & I_{y}(a),\left[y_{a}^{-}, y_{a}^{+}\right] \end{aligned}$	The projection of point set a on x / y-axis	21
$\mathcal{C}_{\text {PA }}, \mathcal{S}_{\text {PA }}$	Maximal distributive subalgebras of PA	207
$\mathcal{C}_{\text {IA }}, \mathcal{S}_{\text {IA }}$	Maximal distributive subalgebras of IA	208
$\mathcal{D}_{14}^{5}, \mathcal{D}_{20}^{5}$	Maximal distributive subalgebras of RCC5	210
$\mathcal{D}_{41}^{8}, \mathcal{D}_{64}^{8}$	Maximal distributive subalgebras of RCC8	210

LIST OF FIGURES

1.1 Illustration of Darling Harbour on Google Map. 3
1.2 Wikipedia infobox for illustrating the directional relations be- tween Ultimo and suburbs around it in Sydney, Australia. 5
2.1 Definition of basic CRA relations and example of CRA relations. 20
2.2 Illustration of MBR and RA relation. 20
2.3 Illustration for basic relations in RCC5 / RCC8 23
2.4 The 9 tiles of b and illustration of CDC relation $\delta(a, b)=\{\mathrm{W}, \mathrm{NW}, \mathrm{N}\}$. 24
2.5 Illustrations of the graph structures related to a QCN. 28
2.6 A PA QCN \mathcal{N}, its a-closure \mathcal{N}_{p}, and its partially path consistent network $\mathcal{N}_{\mathrm{p}}^{G}$ 33
2.7 A PA QCN \mathcal{N} and its minimal subnetwork \mathcal{N}_{m} 42
2.8 An RCC5 QCN where $\left(v_{1} \mathbf{P P} v_{2}\right)$ is redundant. 47
3.1 Illustration of the Peircean Law. 59
3.2 Illustration of path in a QCN. 70
3.3 An example showing that Proposition 3.12 does not generally hold for non-distributive subalgebras. 72
3.4 Illustration of all-different QCN 73
3.5 Illustration for the proof of Lemma 3.14. 74
3.6 Illustration of the three types of paths, where solid lines rep- resent constraints or paths contained in π and the dashed line represents the constraint $(x R y)$ in \mathcal{N}. 75
3.7 Illustration of the proof of Lemma 3.16. 77
3.8 Illustration of the proof of Theorem 3.17. 79
3.9 Illustration of directional path consistency, where \mathcal{N} is not DPC and \mathcal{N}^{\prime} is the DPC subnetwork of \mathcal{N} w.r.t. the ordering $\alpha=$ $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$, which is not the same as \mathcal{N}_{p}, the a-closure of \mathcal{N}. 80
3.10 Illustration of updating relations by the for loop starting from Line 5 in the algorithm DPC + , where $v_{k}=v_{2}$ and $\alpha=\left(v_{1}, \ldots, v_{5}\right)$.85
3.11 Comparison of DPC+ and PPC for increasing number of variables. 91
3.12 Comparison of DPC+ and PPC for increasing m in $\operatorname{BA}(n=$ $5000, m$). 93
3.13 Conceptual Neighbourhood Graphs. 95
4.1 An example showing that the core is not necessarily equivalent to the original QCN. 103
4.2 An example showing Lemma 4.7 generally does not hold for non-distributive subalgebras, where $\mathcal{N}=\mathcal{N}_{\mathrm{p}}$ is a path-consistent QCN over \mathcal{H}_{5}. 106
4.3 An example showing Proposition 4.11 generally does not hold for non-distributive subalgebras. 109
4.4 An example showing Proposition 4.11 does not necessarily hold for IA QCN over $\widehat{\mathrm{B}}_{\mathrm{IA}}$, where $x\{\mathrm{f}, \mathrm{fi}, \mathrm{eq}\} y$ is not redundant in the original QCN but redundant in the a-closure. 110
4.5 An example showing Proposition 4.11 does not necessarily hold for CRA QCN over $\widehat{\mathrm{B}}_{\mathrm{CRA}}$, where $\left(v_{1}(<, *) v_{2}\right)$ is not redundant in the original QCN but $\left(v_{1}(<,<) v_{2}\right)$ is redundant in the a-closure. 111
4.6 An example showing the core of a IA QCN over B_{IA} is not equiv- alent to the QCN. 112
4.7 An example showing the core of a CRA QCN over $\mathrm{B}_{\text {CRA }}$ is not equivalent to the QCN. 113
5.1 Illustration of grids in the plane and grid index tiles t_{i} 124
5.2 Illustration of an R-tree. 125
5.3 Illustration of the proof of Proposition 5.2. 130
5.4 The CDC relation from $\operatorname{mbr}(a)$ to $\operatorname{mbr}(b)$ is $\{\mathrm{NW}, \mathrm{N}, \mathrm{NE}\}$, while the CDC relation from a to b is \{NW, NE\}. 131
5.5 Distribution of intersection degree of the administrative areas of Australia. 134
5.6 Qualified size variation with respect to the number of regions and the average intersection degree, on real-world dataset. 138
5.7 Qualified size comparison on large real-world datasets 139
5.8 (a) Query times on the dataset USA-adm2 in Real-1. (b) Query times on the dataset with highest average intersection degree in Real-2 (i.e. Real-2.5). Note that 'o' represents values that lie more than 1.5 box lengths from the hinge of the box. 146
5.9 Illustration of cases where MC or MD will not store the relation while MA will. 150
5.10 Comparison of the performance of query answering with MC, MD, MM and other methods on the datasets SC and HMS. 153
6.1 A set of regions $V=\left\{o_{1}, \ldots, o_{6}\right\}$ and the corresponding RCC8 QCN \mathcal{N}. 159
6.2 An illustration of a pseudo-solution of the spatial scenario in Figure 6.1 160
6.3 Two rectangles a and b in DC relation, where the corresponding PA representation of b is to the "right" of that of a 163
6.4 Illustration of the dilemma of the order of choosing Horn repre- sentations 177
6.5 Illustration of the growth rate of Label with and without cluster- ing when IMI increases. 189
6.6 The number of rectangles generated by Label and Weight on datasets with different dominant relations 190
6.7 (a) Query times on SEU dataset. (b) Query times on CS +SC dataset. 193
6.8 Query times on datasets of increasing storage size. 194
B. 1 Illustration of $\left.\mathcal{N}\right|_{V_{k}}$ and $\Delta_{V_{k}}$ in the proof. 215
B. 2 Illustration of $\Delta_{W_{t}^{k+1}}$ and $\Delta_{W_{t+1}^{k+1}}$ in the proof. 216
B. 3 Illustration for the proof of Proposition 3.21 218
B. 4 Illustration for the proof of Theorem 3.23. 219

LIST OF TABLES

2.1 IA basic relations between intervals x and y. 19
2.2 Topological interpretation of basic RCC8 relations in the plane, where a, b are two regions, and a° and b° are the interiors of a and b, respectively. 22
2.3 Composition table for PA relations. 31
2.4 Composition table for RCC5 relations. 31
2.5 Composition table for RCC8 relations. 32
3.1 An example showing that CRC relations are not always distribu- tive. 96
5.1 Strategies to associate r_{i} (or t^{\prime}) with t, where t and t^{\prime} are index tiles, t° is the interior of t, and r_{i} is a region. 126
5.2 Reduction rates of the qualified size for CDC relations of MC over MA. 151
5.3 Reduction rates of the qualified size for RCC8 relations of the derivatives of MA over MA. 152
6.1 Correspondence of basic RCC8 relations and RA relations. 161
6.2 Correspondence of basic RCC8 relations and PA representations. 164
6.3 Correspondence of basic RCC8 relations and Horn Representa- tions. 166
6.4 Minimum average numbers of rectangles generated by Label with different permutations for synthetic datasets 179
6.5 Average numbers of rectangles generated by Label with the per- mutation (NTPP(i), TPP(i), PO, EC, DC) for synthetic datasets. 180
6.6 Minimum average numbers of rectangles generated by Weight with different values for $w_{i}(i=1, \ldots, 5)$ on synthetic datasets. 181
6.7 Average numbers of rectangles generated by Weight with the values $(10,5,2,1,0)$ on synthetic datasets. 182
6.8 Minimum average numbers of rectangles generated by Type with different values of k and average numbers of rectangles gener- ated by Type with $k=2$ for synthetic datasets. 183
6.9 Comparison of the average number of rectangles needed for dif- ferent implementations on the datasets of 100 convex polygons. 184
6.10 Comparison of the average number of rectangles generated by different implementations for the RCC8 scenarios of 100 vari- ables extracted from the BA model. 184
6.11 Comparison on small real-world datasets of the average number of rectangles needed for different implementations. 185
6.12 Comparison of storage sizes of Label, Non-DC, MC, and MD for large real-world datasets. 188
6.13 Summary of approaches to representing and retrieving RCC8 relations. 197
6.14 Summary of approaches to representing and retrieving CDC re- lations 198
A. 1 The closure of basic IA relations, $\widehat{\mathrm{B}}_{\mathrm{IA}}$, contains 29 non-empty relations. 208
A. 2 Additional relations contained in $\mathcal{C}_{\text {IA }}$ 208
A. 3 Additional relations contained in $\mathcal{S}_{\text {IA }}$ 209
A. 4 Relations contained in $\widehat{\mathrm{B}}_{5}$ 209
A. 5 Additional relations contained in \mathcal{D}_{20}^{5} 210
A. 6 Relations contained in \widehat{B}_{8}. 210
A. 7 Additional relations contained in \mathcal{D}_{64}^{8}. 211

LIST OF ALGORITHMS

$1 \quad \mathrm{PC}(\mathcal{N})$, a path consistency algorithm. 34
$2 \operatorname{PPC}(\mathcal{N}, G)$, a partial path consistency algorithm. 36
$3 \operatorname{MDS}(\mathcal{M})$, an algorithm for finding maximal distributive subalge- bras. 65
$4 \operatorname{DPC}(\mathcal{N}, \alpha)$, a directional path consistency algorithm. 81
$5 \mathrm{DPC}+(\mathcal{N}, \alpha)$, a more efficient partial path consistency and path consistency algorithm 86
$6 \operatorname{Core}(\mathcal{N})$, an algorithm for finding prime subnetworks. 114
7 MA(D), an algorithm for the MBR-based approach to construct compact representation. 128
$8 \operatorname{RefH}(R)$, an algorithm for refining a Horn IA relation into a PA representable IA relation. 166
$9 \operatorname{EPS}(\mathcal{N})$, an algorithm for constructing a pseudo-solution of an RCC8 scenario. 167
$10 \operatorname{CPS}(\mathcal{N})$, an algorithm for constructing a rectangular partial so- lution. 168
$11 \operatorname{QPS}\left(v_{i}, v_{j}\right)$, an algorithm for retrieving an RCC8 relation from a pseudo-solution. 171

ABSTRACT

Qualitative Spatial and Temporal Reasoning (QSTR) provides a human-friendly abstract way to describe and to interpret spatial and temporal information. To describe the qualitative information, QSTR makes use of qualitative relations between entities and usually stores them in a qualitative constraint network (QCN). The QCNs are then used as the basis to process qualitative spatial and temporal information, including qualitative reasoning and query answering.

Time efficiency of reasoning techniques in QSTR is critical for applications to deal with qualitative spatial and temporal information in large-scale datasets. In this thesis, we present a special family of tractable subclasses of relations, called distributive subalgebras. We show that several efficient algorithms are applicable to the QCNs over distributive subalgebras for solving important reasoning problems. We also identify maximal distributive subalgebras for popular relation models in QSTR and point out their connections with several previously identified important subclasses.

Regarding the network representation in QSTR, there are two important problems, which in turn affect the time efficiency of other applications.

First, the network representation can have redundant relations, which will significantly increase the efforts needed for tasks whose efficiency is strongly related to the number of relations in a network. Fortunately, for any QCN over distributive subalgebras of qualitative calculi PA, RCC5, and RCC8, we show that essentially it has a unique subset consisting of non-redundant relations,
which expresses the same qualitative information as the original QCN. We also devise an efficient algorithm to construct such subsets.

Second, the network representation sometimes requires a large storage space when encoding large-scale data. This could severely limit the ability of relation retrieval for any two given spatial entities. In fact, when the size of a QCN becomes large, it might be too costly or even infeasible to fit the QCN into fast accessible storage and relation retrieval will become inefficient. We propose two alternative representation techniques to compactly encode qualitative spatial relations between regions. For this purpose, the first technique uses minimum bounding rectangles (MBRs) to encode both topological relations and directional relations, while the second technique focuses on encoding topological relations by generating axis-aligned rectangles for spatial entities. We show that for large real-world datasets of regions, these two techniques can significantly reduce the storage size of qualitative spatial information and in the meantime the relations between regions can be efficiently inferred from those simple geometric shapes.

