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ABSTRACT

Qualitative Spatial and Temporal Reasoning (QSTR) provides a human-friendly

abstract way to describe and to interpret spatial and temporal information. To

describe the qualitative information, QSTR makes use of qualitative relations

between entities and usually stores them in a qualitative constraint network

(QCN). The QCNs are then used as the basis to process qualitative spatial and

temporal information, including qualitative reasoning and query answering.

Time efficiency of reasoning techniques in QSTR is critical for applica-

tions to deal with qualitative spatial and temporal information in large-scale

datasets. In this thesis, we present a special family of tractable subclasses of

relations, called distributive subalgebras. We show that several efficient al-

gorithms are applicable to the QCNs over distributive subalgebras for solving

important reasoning problems. We also identify maximal distributive subalge-

bras for popular relation models in QSTR and point out their connections with

several previously identified important subclasses.

Regarding the network representation in QSTR, there are two important

problems, which in turn affect the time efficiency of other applications.

First, the network representation can have redundant relations, which will

significantly increase the efforts needed for tasks whose efficiency is strongly

related to the number of relations in a network. Fortunately, for any QCN over

distributive subalgebras of qualitative calculi PA, RCC5, and RCC8, we show

that essentially it has a unique subset consisting of non-redundant relations,

xxiii
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which expresses the same qualitative information as the original QCN. We also

devise an efficient algorithm to construct such subsets.

Second, the network representation sometimes requires a large storage

space when encoding large-scale data. This could severely limit the ability

of relation retrieval for any two given spatial entities. In fact, when the size of

a QCN becomes large, it might be too costly or even infeasible to fit the QCN

into fast accessible storage and relation retrieval will become inefficient. We

propose two alternative representation techniques to compactly encode qual-

itative spatial relations between regions. For this purpose, the first technique

uses minimum bounding rectangles (MBRs) to encode both topological rela-

tions and directional relations, while the second technique focuses on encoding

topological relations by generating axis-aligned rectangles for spatial entities.

We show that for large real-world datasets of regions, these two techniques

can significantly reduce the storage size of qualitative spatial information and

in the meantime the relations between regions can be efficiently inferred from

those simple geometric shapes.



Chapter 1

Introduction

Space and time are two of the most important aspects of the universe. In

macroscopic scale, space corresponds to our physical world, including the

Earth, continents, countries, cities, and so on; time measures our dynamic

world, including the past, the present, and the future, as well as the duration

of events. In particular, human beings are concerned with these two aspects of

the universe in daily life.

In ancient times, understanding space and time has a great impact on sur-

vival. For example, it is critical for tribes, towns, and countries to find more

fertile lands or more fruitful woods, to know when flood would come, and to

identify a better habitat to live. Mastering these requires proficiency in spatial

and temporal information. Such information involves various entities such as

habitats of plants and animals, water bodies, and surrounding environments

of different places.

In modern world, with the development of information technology and

artificial intelligence, spatial and temporal information has become even more

important. It is rooted in our daily activities such as navigation and planning.

Currently, there are two main approaches for handling spatial and temporal

1
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information. The first one deals with the information in a quantitative way,

by making use of precise numeric models and calculations. The other one

processes the information qualitatively, by representing and making inferences

with non-metric languages.

1.1 Qualitative Spatial and Temporal Information

The quantitative approach of processing spatial and temporal information plays

a predominant role in areas such as geographical information science [130],

computational geometry [35] and computer vision [27]. Nevertheless, the

qualitative approach is still desirable and has promising potential to improve

the current technologies concerning spatial and temporal information. For in-

stance, the qualitative approach can improve user experience of the intelligent

personal assistants (IPAs), such as Apple Siri, Google Now and Microsoft Cor-

tana. These IPAs have attracted more and more attention recently. It is very

common that someone asks a question about a place and expects to get a re-

sponse from the IPA that contains a qualitative description about the place.

For example, when the user asks “where is Darling Harbour”, the following

description about Darling Harbour from Wikipedia1 would be a desirable re-

sponse.

Darling Harbour is a harbour adjacent to the city centre of Syd-

ney, New South Wales, Australia. It is also a large recreational

and pedestrian precinct that is situated on western outskirts of the

Sydney central business district. Originally Long Cove, the locality

extends northwards from Chinatown, along both sides of Cockle

Bay to Darling Harbour wharf on the east, and to the suburb of

1https://en.wikipedia.org/wiki/Darling_Harbour
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Pyrmont on the west.

The qualitative relations (bold texts) in the description, such as “adjacent to”

and “on the west”, help people to easily understand the connections between

spatial entities. Such a description about the spatial information improves the

user experience of applications by making the user feel like talking with a hu-

man being rather than with a machine. Unfortunately, currently applications

such as IPAs have a poor support for qualitative information. For example,

instead of a response in the above form, an IPA might only return a map con-

taining Darling Harbour as a point (see Figure 1.1), which barely conveys any

useful spatial information for the user.2

Figure 1.1: Illustration of Darling Harbour on Google Map.

Similar problems also appear in many other applications due to the absence

of qualitative information. The following example identifies such a problem in

our daily life.

2To our knowledge, the IPA Google Now sometimes also returns qualitative descriptions
retrieved from Wikipedia, which in turn reflects the importance of integrating qualitative in-
formation in such applications.
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Example 1.1 (School Catchment Areas). Usually, each public school has a

catchment area3. Students can register at a school if their neighbourhoods are

contained in the catchment area of the school. Parents would be interested

in whether their children can register at a specific school when they live in a

certain neighbourhood. Usually, this information is not explicitly available. In

fact, the school catchment areas might be scattered on websites of schools in

the form of text descriptions or regions on a map which could be ambiguous,

and sometimes the areas are not specified at all. As a result, currently people

need to take much effort to find out the containment relation between their

neighbourhoods and school catchment areas. It will be much more convenient

if we have the qualitative relations explicitly available as a complement of a

conventional map, so that people can directly ask if their neighbourhood is

contained in a school catchment area.

Therefore, a natural question is how we can make applications to better

handle qualitative spatial and temporal information. One promising solution

is to build a comprehensive knowledge base that contains tools to process such

qualitative information. The knowledge base can then act as an interface to

make it much easier for applications to handle qualitative information, which

however have several challenges. One challenge is about which qualitative

model to use for the knowledge base to better capture human cognition, i.e.

the way people use to understand the physical world. Currently this is not

clear, although some researches (e.g. [67, 68, 88, 103]) have shown evidence

to that qualitative models could be akin to human cognition. In this thesis, we

focus on the challenge of how to handle qualitative information abstracted by

using existing models, rather than cognition. For example, to build a knowl-

edge base, we need to organise qualitative spatial and temporal information

3http://www.schoolcatchment.com.au/?cat=2
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in a feasible and accessible way; such a knowledge base requires techniques

that serve as an interface for applications to infer and query about the qual-

itative spatial and temporal information. The field of Qualitative Spatial and

Temporal Reasoning (QSTR) provides techniques for dealing with these issues.

QSTR has various models to encode different aspects of spatial or tempo-

ral information with qualitative relations. For example, the well-known Re-

gion Connection Calculus [97] captures the topological information between

regions, such as the containment information (e.g. “Darling Harbour is in Syd-

ney”) and the neighbouring information (e.g. “Darling Harbour is adjacent to

the city centre”). Directional information including “Pyrmont is to the west of

Darling Harbour” can also be encoded with corresponding models, e.g., the

Cardinal Direction Calculus [56] and the Cardinal Relation Algebra [45, 82].

Some applications including the Wikipedia “infobox” have already begun to

illustrate such kind of information (see Figure 1.2 for example4). For temporal

information, models such as the Interval Algebra [2] have been widely used

for encoding relations between events, e.g. an event happens during another.

Figure 1.2: Wikipedia infobox for illustrating the directional relations between
Ultimo and suburbs around it in Sydney, Australia.

For a set of spatial or temporal entities, QSTR uses qualitative constraint

network (QCN) to represent the qualitative relations between them. Basically,

the QCN representation consists of a set of variables for the spatial or tem-

poral entities and a set of relations between these variables. QCNs enable a

4Retrieved from https://en.wikipedia.org/wiki/Ultimo,_New_South_Wales
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knowledge base to have functions that meet various needs. For example, one

fundamental function needed for many applications is to retrieve the relation

between any two entities. With QCNs, a knowledge base is able to answer

the questions of the users about the relations between spatial entities, such as

“Does my address belong to the catchment area of X?”, and “What direction

is Darling Harbour to Chinatown?”. By using qualitative relations in QCNs, a

knowledge base can also automatically construct a qualitative description of a

spatial or temporal scene such as the previous one for Darling Harbour.

Besides, with QCNs, a knowledge base can serve as an interface between

qualitative information and other applications. For example, geographical

databases sometimes need to adjust the geometric data of spatial objects to

maintain integrity, according to some spatial constraints between these objects

(see e.g. [127, 128]). Such constraints might not be explicitly available in

the first place, e.g. they could be specified in documents in the form of natu-

ral language or on drawings where the relations are implicitly induced by the

geometric representation. By extracting and storing the information in QCNs,

the knowledge base provides geographical databases with such information in

a normalized and abstract form. Another example is matching spatial scenes,

where the user provides an image (e.g. the ones with a train station adjacent to

a park and a lake inside the park) and wants to find other images that contain

similar qualitative spatial information. By encoding the qualitative information

of images in QCNs, a knowledge base can measure the similarity by comparing

the qualitative relations in the QCNs (see e.g. [53]).

On the other hand, the qualitative relations in a knowledge base might have

several problems. In particular, they could have conflicts, especially when the

information is from human sources. The capability of detecting conflicts, or

checking consistency, can help a knowledge base to maintain data integrity
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and to detect security issues. A simple example is that the email account log-

in record shows that the user is in Sydney while the phone reports to the

knowledge base that the user is in London. With the additional information

that Sydney and London are disjoint, the knowledge base can detect the con-

flict and warn the user of the potential security issue of the account. How to

check consistency efficiently has been a focus of QSTR for a long time, and

researchers have proposed various algorithms for this task.

Another problem of information in a knowledge base is that the spatial or

temporal information at hand might be incomplete or indeterminate. For exam-

ple, although the description of Darling Harbour mentions Pyrmont and Syd-

ney central business district (CBD), we do not have explicit information about

the relation between Pyrmont and Sydney CBD. QSTR provides techniques to

make inferences based on partial information. The composition on relations is

one of the common techniques. It can infer the possible relation between A

and C if given the relation between A and B and that between B and C. In the

example here, from “Pyrmont is to the west of Darling Harbour” and “Darling

Harbour is to the west of Sydney CBD”, it concludes that Pyrmont is also to the

west of Sydney CBD.

1.2 Motivation

In the previous section, we have seen the usefulness of QSTR in building a

comprehensive knowledge base for handling qualitative spatial and temporal

information. However, there are important issues to resolve before we can

apply QSTR to this task in practice.

In particular, a knowledge base needs to deal with large amounts of infor-

mation. Therefore, the size of QCNs, i.e. the number of spatial or temporal
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entities (and sometimes also the number of relations), is usually very large. For

example, in order to be useful for real-world applications, a knowledge base

might involve all of the points of interest in the country or even in the world,

rather than just Darling Harbour. This brings about two main concerns.

The first concern is the time efficiency of reasoning techniques in QSTR to

process qualitative spatial and temporal information. As mentioned before, in

order to check consistency or to obtain implicit information, a knowledge base

needs to perform some inferences through qualitative reasoning on the rela-

tions in QCNs. Researchers have devised several efficient algorithms to solve

important qualitative reasoning problems, such as consistency checking and

inferring strongest qualitative relations from incomplete information. These

algorithms exploit specific properties of qualitative relations or structures of

QCNs, or both. For these efficient algorithms to be applicable, researchers

have identified several subsets of relations (e.g. convex relations discussed in

the next chapter) and also useful structures of QCNs (e.g. sparse graph and

chordal graph structure discussed in the next chapter). Then it is interesting

to see what general properties of qualitative relations are sufficient for such

algorithms to be applicable. This leads to the following question.

Question 1. Is there a more general characterisation of subclasses of qualita-

tive calculi, for which important reasoning problems can be solved efficiently

with algorithms exploiting the properties of the relations and structures of

QCNs?

The second concern lies in the feasibility and the economy of the QCN rep-

resentation, which affects the time and space efficiency of other applications.

There are two circumstances.

The first circumstance is that the time efficiency of many applications is

sensitive to the number of relations in the QCN representation. For instance,
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in the previous examples of adjusting geometric data and matching spatial

scenes, the efforts needed for is strongly related to the number of relations in

the QCN. In such applications, the less relations are to be processed, the more

efficient will these applications be. In fact, many QCNs contain unnecessary

or redundant relations in the sense that removing such a relation from a QCN

will not change the essential meaning, i.e. the solution set, of the QCN. Re-

moving redundant relations could significantly improve the efficiency of the

applications, especially when a large portion of the relations can be removed.

Therefore, the following question is very important.

Question 2. How to identify redundant relations and a minimal subset of non-

redundant relations that has the same solution set as the original QCN?

The second circumstance is that the QCN representation might require too

much storage which makes other tasks inefficient. Here we specifically con-

sider the task of retrieving the relation between any two spatial entities, as it

is one of the fundamental functions of a knowledge base. The ideal way is to

store all the relations in the QCN for the most efficient performance. How-

ever, the size of the QCN could be too large. For example, there are more than

54,000 regions in the level one statistical areas of Australia and the QCN has

3 billion directional relations. The large number of relations might make the

QCN too costly or even infeasible to fit into fast accessible storage (e.g. RAM),

and will in turn significantly decrease the performance of retrieving relations.

Therefore, we need more compact representation of qualitative relations for

the task.

One compromise used by the current Geographical Information Systems

(GISs) is to store the geometric representation (e.g. complex polygons) of the

spatial entities and to calculate the relation directly by geometric algorithms.

However, it has several drawbacks. For example, the online computation of the
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spatial relations between polygons can be computationally expensive, because

it requires computation time that is proportional to the number of vertices,

which can be quite large (e.g. some polygons representing the country subdi-

visions of the USA have more than 30,000 vertices). Moreover, sometimes, we

may not have such geometric representation but only know how the entities

are qualitatively related. The question below arises naturally.

Question 3. How to represent qualitative relations more compactly, while we

can retrieve the relation between two given entities more efficiently than direct

computation from geometric representation?

1.3 Contributions and Outline of the Thesis

In this thesis, we give answers to the three questions raised in the previous

section. The main contributions of this thesis are summarised below. Most of

the contributions have appeared in conference and journal publications.

1. For Question 1, in Chapter 3, we give a characterisation of subclasses of

qualitative relations, called distributive subalgebra, and show that several

efficient algorithms exploiting sparse structure of QCNs are applicable to

solve several important qualitative reasoning problems. We also identify

maximal distributive subalgebras for a number of widely used qualitative

calculi, and demonstrate that some of these maximal distributive subal-

gebras coincide with previously identified useful subclasses in QSTR.

Related publications:

• Zhiguo Long and Sanjiang Li: On Distributive Subalgebras of Quali-

tative Spatial and Temporal, COSIT, 2015, pp. 354–374.
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• Zhiguo Long, Michael Sioutis, and Sanjiang Li: Efficient Path Con-

sistency Algorithm for Large Qualitative Constraint Networks, IJCAI,

2016, pp. 1202–1208.

• Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan

Both: On Redundant Topological Constraints, Artificial Intelligence,

2015, vol. 225, pp. 51–76.

2. For Question 2, in Chapter 4, we propose the notion of redundant con-

straints in a QCN and the concept of prime subnetwork, which is a subset

of a QCN without redundant constraints and has the same set of solu-

tions as the superior QCN. Moreover, for each QCN defined over specific

distributive subalgebras, we show that its prime subnetwork is unique

and is exactly the set of all the non-redundant constraints in the QCN.

We also devise an efficient algorithm to construct the unique prime sub-

network for such a QCN. On the other hand, we give counter examples

to show that the conclusion generally does not hold for relations of other

distributive subalgebras or outside a distributive subalgebra.

Related publication:

• Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan

Both: On Redundant Topological Constraints, Artificial Intelligence,

2015, vol. 225, pp. 51–76.

3. For Question 3, in Chapter 5 and Chapter 6, we propose two complemen-

tary techniques to compactly represent qualitative spatial relations, and

demonstrate that retrieving the relation between two entities is much

more efficient than direct geometric computation. In many cases, the

first approach is effective to reduce the storage of both topological and

directional relations, while the second approach is a useful complement
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of the first approach on cases of topological relations where the portion

of non-disjoint relations is large.

Related publications:

• Zhiguo Long, Matt Duckham, Sanjiang Li, and Steven Schockaert:

Indexing Large Geographic Datasets with Compact Qualitative Rep-

resentation, International Journal of Geographical Information Sci-

ence, 2016, vol. 30, no. 6, pp. 1072–1094.

• Zhiguo Long, Steven Schockaert, and Sanjiang Li: Encoding Large

RCC8 Scenarios Using Rectangular Pseudo-Solutions, KR, 2016, pp.

463–472.

Answering these questions is an important step forward for constructing a

comprehensive knowledge base, which enables applications to better handle

qualitative spatial and temporal information.

To elaborate on the contributions, the remainder of the thesis is organised

as follows.

• Chapter 2 introduces necessary background and basic terminology, in-

cluding different models (calculi) and techniques in QSTR, and the for-

mulation of several related problems in the language of QSTR.

• Chapter 3 discusses the properties of distributive subalgebras, and presents

several efficient algorithms based on these properties. In this chapter, we

will also identify the maximal distributive subalgebras of several widely

used qualitative calculi in QSTR.

• Chapter 4 deals with redundancy in QCNs. We analyse the uniqueness of

prime subnetworks. We devise an algorithm for constructing the unique

prime subnetwork of QCNs over specific distributive subalgebras.
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• Chapter 5 presents the first one of the two approaches for compactly

representing qualitative spatial relations, and shows the effectiveness of

this approach both in theory and in experiments on real-world datasets.

• Chapter 6 focuses on the second approach for compact representation,

and demonstrates that this approach can significantly reduce the storage

of topological relations and retrieve the relation efficiently by empirical

evaluations on real-world datasets.

• Chapter 7 concludes the thesis and outlines promising future directions.

• Appendix A lists the maximal distributive subalgebras of PA, IA, RCC5

and RCC8.

• Appendix B gives supplementary proofs for some results in the thesis.

• Appendix C lists the publications of the author during the PhD candida-

ture.





Chapter 2

Preliminaries and Backgrounds

2.1 Introduction

As an important subfield of Artificial Intelligence, Qualitative Spatial and Tem-

poral Reasoning (QSTR) has been under extensive development for decades.

QSTR provides various models to represent the spatial and temporal relations

(e.g., adjacent to, to the north of, part of, before, and during) between en-

tities such as indoor furniture, buildings, geographical regions, actions, and

events. It also provides techniques to help extract the information from spatial

or temporal scenarios. A simple example is that, given that Sydney is part of

Australia and Australia is not adjacent to the UK, then with reasoning tech-

niques in QSTR, we can immediately conclude that Sydney also is not adjacent

to the UK. Moreover, from the examples in the previous chapter, we have also

seen the power and the potential of QSTR in dealing with real-world problems.

More discussions of the applications can be found in [24].

One major aim of QSTR is to design formal methods which could be used

by non-experts to understand the physical world conveniently and efficiently.

To achieve this, it needs economical representation to store the data and effi-

15
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cient algorithms to automatically process the data, which are our two major

concerns in this thesis.

In Section 2.2 and Section 2.3, we recall several well-known qualitative

calculi and the concept of qualitative constraint network. Section 2.4 discusses

important techniques in QSTR. Section 2.5 reviews the related work in the

literature on the tasks and problems in QSTR that will be discussed in this

thesis.

2.2 Qualitative Calculi

Relation is one of the most fundamental concepts in QSTR. For instance, in the

examples of the previous chapter, the most frequent and essential qualitative

spatial and temporal information is the qualitative relations such as “adjacent

to”, “to the east of”, “during”, and so on. Relations are used to encode the

spatial or temporal information between n-tuples of entities such as regions

and time intervals. An n-tuple is an ordered list of entities, and it is called an

(ordered) pair when n = 2.

Definition 2.1 (Relation). Let D = (D1, . . . , Dn) be a tuple of sets of entities,

an n-ary relation R on D is a set of n-tuples over D, which is a subset of

D1 × . . .×Dn. Specifically, a binary relation R′ on D′ = (D1, D2) is a subset of

(ordered) pairs over D′.

In this thesis, we assume that the relations are all binary and that D1 =

D2 = U 	= ∅ for D = (D1, D2). The converse of a binary relation R is defined as

R−1 = {(a2, a1) ∈ U×U : (a1, a2) ∈ R}. The identity relation idU on U is defined

as idU = {(a, a) : a ∈ U}. The universal relation, denoted by �, is U × U . When

we say that a pair of entities (a1, a2) satisfies a relation R, it means (a1, a2) ∈ R,

and for convenience we sometimes write it as a1Ra2.
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The models of QSTR specify different relations between entities to en-

code various aspects of spatial and temporal information. The relations in

a model along with some operations form a specific mathematical structure

called Boolean algebra. A Boolean algebra is a tuple (A,∨,∧,¬,⊥,
), where A

is a set, ∨ and ∧ are two binary operations on A (called “or” and “and”), ¬ is a

unary operation on A (called “not”), and ⊥ and 
 are two distinct elements in

A (called the “least” and “greatest” elements), such that the axioms of associa-

tivity, commutativity, absorption, identity, distributivity, and complements are

satisfied for any elements in A. We refer the reader to [89] for more details.

Write Rel(U) for the power set of U × U , i.e. the set of all binary relations

on U . Then (Rel(U),∪,∩,¬,∅,U ×U) is a Boolean algebra, where ∪, ∩, and ¬
are interpreted as the union, intersection, and complement operations of sets

and ∅ is the empty set. An atom in this Boolean algebra is a minimal element

that is not ∅, i.e. α ∈ Rel(U) is an atom iff α 	= ∅ and for every β ∈ Rel(U),
either β ∩ α = α or β ∩ α = ∅. Suppose S is a subset of Rel(U), then there

is a minimal subset Ŝ of Rel(U) that contains S ∪ {∅,U × U} and is closed

under the operations ∪,∩,¬. It can be seen that (Ŝ,∪,∩,¬,∅,U × U) is also

a Boolean algebra, called the Boolean subalgebra of (Rel(U),∪,∩,¬,∅,U × U)
generated by S.

Definition 2.2 (Qualitative Calculus;[83]). A qualitative calculus M on U is

defined as a finite Boolean subalgebra of (Rel(U),∪,∩,¬,∅,U ×U). The atoms

in M are called the basic relations, and we denote the set of basic relations by

BM.

Note that for a qualitative calculus M, we have that BM is a set of Jointly

Exhaustive and Pairwise Disjoint (JEPD) relations, i.e. any pair (a, b) ∈ U × U
satisfies exactly one of the relations in BM , and the union of all the relations

in BM is the universal relation �. Given a set of JEPD relations BM, then there
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is a Boolean algebra that is generated by BM. This Boolean subalgebra is a

qualitative calculus. Therefore, a set of JEPD relations defines a qualitative

calculus and vice versa.

A (qualitative) relation R in a qualitative calculus is a union of basic rela-

tions in BM, i.e. R = αi1 ∪ . . . ∪ αik for some αi1, . . . , αik ∈ BM. Note that for

convenience we will sometimes write R as the set {αi1 , . . . , αik}, while it still

means R = αi1 ∪ . . . ∪ αik . The notation α ∈ R will be used specifically for the

case α ∈ BM and α ⊆ R. A subset of the relations S in a qualitative calculus

M is called a subclass of M.

In the following, we will introduce several of the most widely used quali-

tative calculi by specifying the set of basic relations BM for them. For a more

comprehensive survey of qualitative calculi, we refer the readers to [33].

Definition 2.3 (Point Algebra [125]). Let U be the set of real numbers. The

Point Algebra (PA) is the Boolean subalgebra generated by the JEPD set of re-

lations {<,>,=}, where <,> and = are the natural orderings of real numbers.

PA contains eight relations, viz. the three basic relations <,>, and =, the

empty relation, the universal relation �, and three non-basic relations {<,=},

{>,=}, and {<,>} (i.e. ≤,≥, 	=). It can be used to characterise temporal

relations between actions. For example, in the definition of “offside offence”

in association football (i.e. soccer) from Wikipedia1, it says that if the action

A (“the player is in an offside position and is actively involved in the play”)

and the action B (“the ball is touched by a team mate”) happen at the same

moment, then it is an offside offence. The condition in the definition can be

modelled by PA as A = B.

1https://en.wikipedia.org/wiki/Offside_(association_football)#Offside_

offence
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Table 2.1: IA basic relations between intervals x and y.

Relation Symbol Converse Definition
before b bi x+ < y−

meets m mi x+ = y−

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di y− < x− < x+ < y+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

Definition 2.4 (Interval Algebra [2]). Let U be the set of closed intervals on

the real line. Thirteen binary relations between two intervals x = [x−, x+] and

y = [y−, y+] are defined by the order of the four endpoints of x and y (see

Table 2.1). The Interval Algebra (IA) is generated by these JEPD relations.

IA is much more expressive than PA. It contains 213 = 8192 relations in

total, which can be used to express the relations between time intervals (e.g.

events), such as the relation “while” or during (d) between the events A (“the

victim was crying”) and B (“the suspect was smashing down the door”).

Definition 2.5 (Cardinal Relation Algebra [45, 82]). Let U be the real plane.

Define relations nw, n, ne,w, eq, e, sw, s and se between two points x and y as

in Fig. 2.1a. The Cardinal Relation Algebra (CRA) is generated by these nine

JEPD relations.

CRA can be viewed as an extension of PA to the points in the plane and

is able to express the directional relations between points, such as “the bus

station is to the north-east (ne) of the hotel”. Each of the basic relations of CRA

is actually a pair of the PA relations between the x-coordinates and between the

y-coordinates. In other words, any basic CRA relation r is the Cartesian product

of some basic relations of PA, i.e. r = {(a, b) : a = (x, y)∧ b = (x′, y′)∧ (x, x′) ∈
α∧(y, y′) ∈ β}. For convenience, we use α⊗ β to denote the Cartesian product
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of two basic relations α, β in PA or IA, i.e. α ⊗ β = {(a, b) : a = (x, y) ∧ b =

(x′, y′) ∧ (x, x′) ∈ α ∧ (y, y′) ∈ β}, where each of x, y, x′, y′ can be a point or an

interval on the x/y-axis..

Relation Definition
nw x < x′, y > y′

n x = x′, y > y′

ne x > x′, y > y′

w x < x′, y = y′

eq x = x′, y = y′

e x > x′, y = y′

sw x < x′, y < y′

s x = x′, y < y′

se x > x′, y < y′

(a) Basic relations of CRA.

n

nenw

sw

Q

se

w e
P1

s

P2

(b) Examples: P1 nw Q and P2 e Q.

Figure 2.1: Definition of basic CRA relations and example of CRA relations.

More generally, for two arbitrary relations R and S in PA or IA, we will

write R ⊗ S for the relation
⋃{α ⊗ β : α ∈ R, β ∈ S, α, β ∈ B}. Note that the

converse of a relation R⊗S is exactly the same as R−1 ⊗S−1. Analogously, for

two subclasses of relations R and S in M, we will write R⊗ S for the set of

relations {R⊗ S : R ∈ R, S ∈ S}.

mbr( )b
( )yI b

( )xI b( )x b ( )x b

( )y b

( )y b
b

(a) The MBR mbr(b) of a region b.

b

mbr( )a

a

mbr( )b

(b) The RA relation of the MBRs is m ⊗ o.

Figure 2.2: Illustration of MBR and RA relation.
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Similarly, IA can be extended to deal with relations between the regions

in the plane. A region a in the real plane is a bounded non-empty regular

closed set of points, where a point set is regular closed if it is identical to the

closure of its interior, i.e. a = (a◦), where ·◦ is the interior operator and · is

the closure operator in the Euclidean plane topological space. Let us assume

that an orthogonal basis is given in the plane. For a region a, let x−
a (or y−a )

denote inf{x : (∃y)(x, y) ∈ a} (or inf{y : (∃x)(x, y) ∈ a}) and x+
a (or y+a )

denote sup{x : (∃y)(x, y) ∈ a} (or sup{y : (∃x)(x, y) ∈ a}). Then the minimum

bounding rectangle (MBR) of a, denoted by mbr(a), is the point set {(x, y) : x−
a ≤

x ≤ x+
a and y−a ≤ y ≤ y+a }. In other words, mbr(a) is the smallest axis-aligned

rectangle that contains a. A rectangle is axis-aligned if its sides are parallel

to the axes of a given Cartesian coordinate system in the plane. Figure 2.2

illustrates this. We write Ix(a) = [x−
a , x

+
a ] and Iy(a) = [y−a , y

+
a ] as the x- and

y-projections of mbr(a) respectively. Then mbr(a) can also be represented as

(Ix(a), Iy(a)).

Definition 2.6 (Rectangle Algebra [6]). Given two regions a and b, the basic

rectangle relation between them is α⊗β iff (Ix(a), Ix(b)) ∈ α and (Iy(a), Iy(b)) ∈
β, where α, β ∈ BIA. We write BRA for the set of basic rectangle relations, i.e.,

BRA = {α⊗ β : α, β ∈ BIA}. (2.1)

The Rectangle Algebra (RA) is defined on the set of the MBRs of the regions in

the plane and is generated by the relations in BRA.

There are 169 different basic RA relations in BRA. As it uses the MBRs of

regions to define the relation, RA can be used to approximate the relations be-

tween regions such as the following topological relations and directional rela-

tions. By extending RA into domains of higher dimensions, Balbiani et al. [7]
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also proposed the Block Algebra (BA) to characterize the relations between

hyper-rectangles.

The Region Connection Calculus (RCC) was first proposed by Randell et

al. in [97] as a first order theory, and there is an equivalent definition which

uses the Boolean connection algebra [118]. The latter uses the connection

relation C to define the other relations. The same set of relations has also been

identified for regions in geographic information science [38, 39, 117].

In this thesis, we are only concerned with the standard interpretation for

RCC, that is, the universe U is the set of regions in the plane, and the con-

nection relation C is defined as C = {(a, b) ∈ U × U : a ∩ b 	= ∅}. The other

relations can be defined in a similar way accordingly. Table 2.2 gives the mean-

ing of these relations under this interpretation. See [84] for more details.

Table 2.2: Topological interpretation of basic RCC8 relations in the plane,
where a, b are two regions, and a◦ and b◦ are the interiors of a and b, respec-
tively.

Relation Meaning Relation Meaning
DC a ∩ b = ∅ TPP a ⊂ b, a 	⊂ b◦

EC a ∩ b 	= ∅, a◦ ∩ b◦ = ∅ NTPP a ⊂ b◦

PO a � b, b � a, a◦ ∩ b◦ 	= ∅ EQ a = b

Definition 2.7 (RCC5 and RCC8). Let U be the set of regions in the real plane.

The calculus RCC8 is generated by the eight relations of topological informa-

tion

DC,EC,PO,EQ,TPP,NTPP,TPP−1,NTPP−1.

RCC5 is the sub-algebra of RCC8 generated by the five part-whole relations

DR,PO,EQ,PP,PP−1,

where DR = DC ∪ EC, PP = TPP ∪ NTPP, and PP−1 = TPP−1 ∪ NTPP−1. See
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Figure 2.3 for the illustration of these relations.

a b
a

b
a a aa
b b b b

EQ DC EC PO TPP NTPP

DR PP

Figure 2.3: Illustration for basic relations in RCC5 / RCC8

We should note that all of the above qualitative calculi PA, IA, CRA, RA, and

RCC5/8 contain the identity relation idU and are closed under converse.

The following calculus for directional relations was first proposed by Goyal

and Egenhofer [56] in the context of geographical information science (GIS)

for connected regions. A region is connected if it is not the union of two regions

which are disjoint with each other. Later, the extension of this calculus was

proposed by Skiadopoulos and Koubarakis in [116] for possibly disconnected

regions.

Definition 2.8 (Cardinal Directional Calculus). The Cardinal Directional Cal-

culus (CDC) makes use of the MBR of b to encode the directional information

of a target region a to a reference region b. By extending the four edges of

mbr(b), it decomposes the plane into nine tiles, named as NW, N, NE, W, O, E,

SW, S, and SE (see Figure 2.4), and represents the relation δ(a, b) from a to b

as a subset of T = {NW,N,NE,W,O,E, SW, S, SE}, where a tile name, say NW,

is in δ(a, b) if and only if an interior point of a is in tile NW (see Figure 2.4 for

illustration). The set of basic relations in CDC consists of all of the possible

relations between (connected or arbitrary) regions that is a subset of T .

We call δ(a, b) a k-tile relation if it contains k tile names, and specifically we

call a 1-tile relation a single tile relation. For convenience, we also use the tile
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NW N NE

E

SESSW

W O
b

a

Figure 2.4: The 9 tiles of b and illustration of CDC relation δ(a, b) =
{W,NW,N}.

name in the single tile relation δ(a, b) to represent this CDC relation, e.g., NW

for the relation {NW}.

Note that unlike the other calculi before, CDC is not closed under converse.

If only connected regions are considered, then there are 218 basic relations

in CDC; if arbitrary bounded regions are considered, then there are 511 basic

relations in CDC. See [86, 131] and [56] for more information about CDC.

Up to now, we have introduced the qualitative calculi used in this thesis for

representing the spatial or temporal information. These calculi are among the

most popular ones in the context of literature and applications. There are many

other calculi that are also useful. For example, for directional information,

the orientation of the object can be important, and the calculi LR [80, 108]

and OPRAm [91] are suitable for representing this kind of information. The

discussion of these calculi, however, will not be covered in this thesis. We refer

the interested readers to, e.g., [24].

Next, we will have a look at how QSTR formally captures the information

of a spatial or temporal scene and how to extract implicit information by rea-

soning techniques. Here, a spatial or temporal scene could be a set of regions

in a map or some text descriptions of the relations between places or events.
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2.3 Qualitative Constraint Network

The previously introduced qualitative calculi define qualitative relations for

encoding the information between two spatial or temporal entities. For two

variables representing spatial or temporal entities, a constraint specifies a rela-

tion between them. A variable represents spatial or temporal entities.

Definition 2.9 (Constraint). A constraint C is a pair (V,R), where V = (u, v)

is a pair of variables and R is a relation defined on the domain of the variables.

In this case, V is called the scope of the constraint C and we say that C (or the

corresponding relation R) relates u to v. For ease of representation, we use

(uRv) to denote the constraint ((u, v), R).

For a spatial or temporal scene, usually there are several variables and con-

straints. Qualitative constraint networks are used to capture the information

in a structured way.

Definition 2.10 (Qualitative Constraint Network). Given a subclass S of rela-

tions in a qualitative calculus M, a qualitative constraint network (QCN) over

S is a tuple (V, C), where V = {v1, . . . , vn} is a non-empty finite set of spatial

or temporal variables and C is a finite set of constraints in the form (viRijvj)

with Rij ∈ S and vi, vj ∈ V .

In this thesis, for a QCN N over a subclass S of M, we require that for each

pair (vi, vj) of variables

• there exists at most one constraint in N that relates vi to vj;

• if the relation for (vi, vj) with vi 	= vj is unspecified, i.e. there is no

constraint in N that relates vi to vj, then the universal relation � in M
relates vi to vj;
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• when vi is the same as vj, the constraint in N that relates vi to itself is

the identity relation idU for PA, IA, CRA, RA, RCC5 or RCC8 (e.g., EQ in

RCC5/8), or O for CDC.

Also, unless specified otherwise, we assume that N is not trivially inconsis-

tent, i.e. ∀vi 	= vj, (vi∅vj) /∈ N .2 For a QCN N = (V, C), if V is clear in the

context, the notation N and the notation C for the set of constraints will be

interchangeably used. Note that for some calculi, the relation in N that relates

vi to vj might not be the converse of the relation that relates vj to vi. This is

the case for CDC, as CDC is not closed under converse [86, 131]. For a QCN

N over PA, IA, CRA, RA, or RCC5/8 with variables V , we always assume that

Rij = R−1
ji for any vi, vj ∈ V , and when specifying a QCN N we only include

one of the constraints Cij and Cji.

Example 2.1. N = (V, C), where V = {v1, v2, v3, v4} and C = {(v1{DC,PO}v2),
(v2{EC}v3), (v3{NTPP}v4), (v1{TPP−1}v4)}, is a QCN over RCC8 relations.

A QCN N = (V, C) is called a complete network if ∀vi, vj ∈ V (vi 	= vj) the

constraint relating vi to vj is specified in C. Furthermore, N is called a scenario

if it is a complete network and ∀vi, vj ∈ V (vi 	= vj) and (viRijvj) ∈ C we have

Rij ∈ BM. For N = (V, C), a certain scenario N ′ = (V, C ′), which satisfies that

∀(viRijvj) ∈ C we have δij ∈ Rij where (viδijvj) ∈ C ′, is called a scenario of N .

For instance, the QCN in the above example is not a complete network, and

is not a scenario, because the constraints (v1R13v3) and (v2R24v4) are not in C
and the relation {DC,PO} relating v1 and v2 is not basic. In this thesis, we use

the term basic network to refer to a possibly incomplete network in which the

relation of every constraint is either a basic relation or the universal relation �.

Next, we introduce some derivatives of a QCN.

2In literature, this is also known as 2-consistency. See [47] for more details.
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Definition 2.11 (Restriction). Given a QCN N over a qualitative calculus M
for variables V = {v1, v2, ..., vn}, the restriction of N on V0 ⊆ V is N|V0 =

{(uRv) ∈ N : u, v ∈ V0}.

A partial scenario of a QCN N = (V, C) for variables V0 ⊆ V is a sce-

nario of the restriction of N on V0. For the QCN in Example 2.1, N|V0 =

{(v2{EC}v3), (v3{NTPP}v4), (v2{TPP−1}v4)}, where V0 = {v2, v3}, is a partial

scenario of N . Note that the relation between v2 and v4 becomes TPP−1, while

previously it is not specified in N (i.e. it is �).

Sometimes, we would like to refine the original QCN for extracting useful

information.

Definition 2.12 (Refinement). Let N = (V, C) and N ′ = (V, C ′) be QCNs. We

say N ′ refines N if ∀(viRijvj) ∈ C we have R′
ij ⊆ Rij where (viR

′
ijvj) ∈ C ′. In

this case, N ′ is called a refinement of N .

The QCN N ′ = {(v1{DC}v2), (v2{EC}v3), (v3{NTPP}v4), (v2{EC,TPP−1}v4),
(v1{TPP−1}v4)} is a refinement of N in Example 2.1. Here, the relation be-

tween v1 and v2 has been refined to DC and that between v2 and v4 becomes

{EC,TPP−1}.

The word “network” in the name of QCN already indicates that there is a

graph structure associated with a QCN.

Definition 2.13 (Constraint Graph). The (underlying) constraint graph of a

QCN N = (V, C), denoted by GN = (V,E), is a graph that has the variables

of N as its set of vertices, and a set of edges E = {{vi, vj} : (viRijvj) ∈
C where Rij 	= � and vi 	= vj}.

For the QCN N in Example 2.1, the constraint graph of N is the one shown

in Figure 2.5(a). The complete graph shown in Figure 2.5(b) is the completion
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of the constraint graph of N , where the relations between the vertices of added

edges are the universal relation �.

1v

2v

4v

3v

(a) Constraint Graph

1v

2v

4v

3v

(b) Complete Graph

1v

2v

4v

3v

(c) Chordal Graph

Figure 2.5: Illustrations of the graph structures related to a QCN.

Instead of completing a constraint graph, we can transform it into a trian-

gulated or chordal graph. The concept of cycle is important for a chordal graph.

A cycle in an undirected graph is a sequence of vertices (vi1 , vi2 , . . . , vik) where

vi1 = vik and vir 	= vis for any 1 ≤ r 	= s ≤ k ({r, s} 	= {1, k}), and {vir , vir+1}
(1 ≤ r ≤ k, ik+1 = i1) is an edge in the graph. The length of a cycle is the num-

ber of unique vertices, e.g., k − 1 for the previously mentioned cycle. A chord

in a cycle is an edge connecting two non-consecutive vertices of the cycle. For

example, in the graph in Figure 2.5(b), (v1, v2, v3, v4, v1) is a cycle of length 4

and {v2, v4} is a chord.

Definition 2.14 (Chordal Graph; [12]). An undirected graph G = (V,E) is

chordal if every cycle of length greater than three has a chord.

The graph in Figure 2.5(c) is a chordal graph that is transformed from the

constraint graph in Figure 2.5(a).

Given a graph G = (V,E), for each v ∈ V , the adjacency set adj(v) is defined

as {w ∈ V : {v, w} ∈ E}. For the graph in Figure 2.5(c), adj(v2) = {v1, v3, v4}.

A vertex v is simplicial if adj(v) induces a complete graph. In Figure 2.5(c),

the vertices v2 and v4 are not simplicial, while v1 and v4 are simplicial. Every

chordal graph has a simplicial vertex (cf. [12]). Moreover, after removing
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a simplicial vertex and its incident edges from a chordal graph, the resulting

subgraph remains chordal. The order in which simplicial vertices of sequential

subgraphs are successively removed is called a perfect elimination ordering.

Formally, suppose that (v1, . . . , vn−1, vn) is an ordering to remove the vertices

in G, and denote by Fk the set {vj ∈ adj(vk) : j > k}. The ordering is a perfect

elimination ordering if Fk induces a complete subgraph of G for every k. For

example, (v1, v2, v3, v4) is a perfect elimination ordering for the chordal graph

in Figure 2.5(c). This is because, v1 is simplicial in the initial chordal graph

and F1 = {v2, v4} induces a complete subgraph; v2 is simplicial in the resulting

chordal graph by removing v1 and the associated edges in the initial chordal

graph, and F2 = {v3, v4} is a complete subgraph of G; the cases for v3 and

v4 are similar. Each chordal graph has a perfect elimination ordering and a

graph having a perfect elimination ordering is a chordal graph (cf. [12]). Note

that a complete graph of any order is also a chordal graph, e.g. the one in

Figure 2.5(b). A non-chordal graph can be made chordal or triangulated by,

following a variable elimination ordering, adding the missing edges in Fk to

the graph s.t. Fk becomes a complete subgraph of G for every k. For a graph

G = (V,E), the maximum cardinality search algorithm [119] can be used to

find a variable elimination ordering for triangulating G by adding f edges in

time O(|V | + |E| + f), and if the graph is already chordal then the algorithm

will return a perfect elimination ordering without adding any new edges. Take

the constraint graph in Figure 2.5(a) as a running example. The algorithm

first arbitrarily selects a vertex, say v1. Then it selects a vertex in the rest with

the largest number of neighbours in the set of previously selected vertices (i.e.

{v1}). v2 and v4 are such vertices and here we select v2. For v3 and v4, note

that v3 has one neighbour (v1) in the set of previously selected vertices, and v4

also has one neighbour (v2). Thus we can choose v3, and then v4, and obtain
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an elimination ordering (v1, v2, v3, v4). The triangulated graph corresponding

to this ordering is the one in Figure 2.5(c).

2.4 Important Techniques in QSTR

2.4.1 Weak Composition

After introducing the basic models and the QCN representation in QSTR, now

we are able to discuss in more detail about the techniques and problems in

QSTR. They are useful for answering the questions raised in the previous chap-

ter.

The composition operation for two relations is a well-known basic inference

rule. It is usually used to infer the relation between A and C when the relation

between A and B and that between B and C are given. For two relations R and

S, the composition R ◦ S is defined as {(x, y) : ∃z s.t. (x, z) ∈ R ∧ (z, y) ∈ S}.

In QSTR, for each calculus, there is a so-called composition table which spec-

ifies the results of the “compositions” of relations in the calculus. However,

researchers (e.g., [99]) have long been aware that the composition table for a

qualitative calculus sometimes does not correspond to the usual definition of

composition. In fact, the usual composition of two relations in a qualitative

calculus M might not be a relation in M any more. The “composition” used

in several qualitative calculi is actually a weaker notion, that is, the weak com-

position. For example, Li and Ying [78] have shown that the “composition” is

always weak composition under any interpretation of RCC8, e.g., although PO

is contained in the weak composition of EC and TPP, PO is not contained in

the composition of EC and TPP. A simple example [78] for this is as follows.

Given that a, b and c are three pairwise disjoint rectangles, let x = a ∪ b and

y = b ∪ c ((x, y) ∈ PO). Then there does not exist a region z s.t. (x, z) ∈ EC
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and (z, y) ∈ TPP.

Table 2.3: Composition table for PA relations.

� < > =
< < <,>,= <
> <,>,= > >
= < > =

Formally, the weak composition of two basic relations α and β in BM of a

qualitative calculus, denoted by α � β, is defined as
⋃{γ ∈ BM : γ ∩ (α ◦ β) 	=

∅}. When the relations (say R and S) are not basic, the weak composition

of them is defined as R � S =
⋃{α � β : α ∈ R, β ∈ S}. For PA, IA, CRA, and

RA, the weak composition operation in these calculi is exactly the same as

the composition operation (see e.g. [99]). Note that for CRA and RA, the

(weak) composition of two basic relations (α ⊗ β) ◦ (γ ⊗ δ) is the same as

(α◦γ)⊗ (γ ◦δ), where α, β, γ, δ are basic relations of PA or IA. The composition

table of PA, RCC5, and RCC8 are given in Tables 2.3, 2.4, and 2.5. The items

(e.g. “<,>,=”) in the composition tables represent the union of the relations

in the corresponding item. For IA, we refer to [2]. For CRA and RA, each of

their composition tables can be obtained from the composition tables of PA and

IA respectively. For CDC, Liu et al. [86] has designed an algorithm to generate

its composition table.

Table 2.4: Composition table for RCC5 relations.

� DR PO PP PP−1 EQ
DR DR,PO,PP,PP−1,EQ DR,PO,PP DR,PO,PP DR DR
PO DR,PO,PP−1 DR,PO,PP,PP−1,EQ PO,PP DR,PO,PP−1 PO
PP DR DR,PO,PP PP DR,PO,PP,PP−1,EQ PP

PP−1 DR,PO,PP−1 PO,PP−1 PO,PP,PP−1,EQ PP−1 PP−1

EQ DR PO PP PP−1 EQ

With weak composition, converse, and intersection of relations, we can de-

fine subalgebras of a qualitative calculus M. A subalgebra S of M contains all
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Table 2.5: Composition table for RCC8 relations.

� DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

DC,EC,PO DC,EC DC,EC DC,EC DC,EC
DC TPP,NTPP PO PO PO PO DC DC DC

TPP−1,EQ TPP TPP TPP TPP
NTPP−1 NTPP NTPP NTPP NTPP

DC,EC,PO DC,EC,PO DC,EC,PO EC,PO PO DC
EC TPP−1 EQ,TPP TPP TPP TPP EC DC EC

NTPP−1 TPP−1 NTPP NTPP NTPP
DC,EC,PO DC,EC,PO DC,EC,PO PO PO DC,EC,PO DC,EC,PO

PO TPP−1 TPP−1 TPP,TPP−1,EQ TPP TPP TPP−1 TPP−1 PO
NTPP−1 NTPP−1 NTPP,NTPP−1 NTPP NTPP NTPP−1 NTPP−1

DC DC,EC TPP DC,EC,PO DC,EC,PO
TPP DC EC PO,TPP NTPP NTPP EQ,TPP TPP−1 TPP

NTPP TPP−1 NTPP−1

DC,EC DC,EC DC,EC,PO
NTPP DC DC PO NTPP NTPP PO TPP,TPP−1 NTPP

TPP TPP NTPP,EQ
NTPP NTPP NTPP−1

DC,EC,PO EC,PO PO PO,EQ PO TPP−1

TPP−1 TPP−1 TPP−1 TPP−1 TPP TPP NTPP−1 TPP−1

NTPP−1 NTPP−1 NTPP−1 TPP−1 NTPP NTPP−1

DC,EC,PO PO PO PO PO,TPP,EQ
NTPP−1 TPP−1 TPP−1 TPP−1 TPP−1 NTPP,TPP−1 NTPP−1 NTPP−1 NTPP−1

NTPP−1 NTPP−1 NTPP−1 NTPP−1 NTPP−1

EQ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

the basic relations and a subset of non-basic relations in M, and is closed under

weak composition, converse, and intersection. Note that a set of relations is

closed under converse (weak composition or intersection) if the converse of

any relation (the weak composition or the intersection of any two relations) in

the set is still in it. The minimal subalgebra under set inclusion that contains

BM is called the closure of the basic relations. The ORD-Horn subclass H of IA

is a subalgebra of IA, Ĥ5 and Ĥ8 are subalgebras of RCC5 and RCC8 respec-

tively, and H⊗H and the strongly-preconvex subclass [6] are two subalgebras

of RA and the latter strictly contains the former.

2.4.2 Path Consistency and Partial Path Consistency

The weak composition operation provides a basic inference rule, which how-

ever is not enough for more sophisticated inferencing tasks. Therefore, re-
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searchers proposed more advanced techniques for such tasks, such as path

consistency.

Definition 2.15 (Path Consistency). A QCN N = (V, C) is path consistent (PC)

iff ∀vi, vk, vj ∈ V , we have that ∅ 	= Rij ⊆ Rik �Rkj, where Rij, Rik, and Rkj

are the relations that relates (vi, vj), (vi, vk), and (vk, vj) in N .

For example, Figure 2.6(a) shows a PA QCN N which is not path consistent,

while Figure 2.6(b) shows a path consistent QCN.
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Figure 2.6: A PA QCN N , its a-closure Np, and its partially path consistent
network NG

p .

Note that path consistency was originally defined by Montanari [90] for

“paths” in the constraint graph of a constraint network, rather than for trian-

gles (e.g. {vi, vk, vj}) as defined here. For CSPs (and similarly for qualitative

calculi), Montanari [90] has shown that the definition for “triangles” is equiv-

alent to the original definition by Montanari. For QCNs, similar conclusion

holds, as Renz and Ligozat [99] have proved that using weak composition in-

stead of composition in the definition of path consistency does not change the

essence for the calculi discussed here.

There were several algorithms in the literature to achieve PC (e.g. [90,

121, 122]). In this thesis, we adopt the one used in [121] which runs in O(n3)

time to decide if a QCN is path consistent, where n is the number of variables

in the QCN. The algorithm (i.e. PC) is shown in Algorithm 1. It is worth
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noting that, in the algorithm, we only consider triples of distinct variables

(Lines 1 and 11). Nevertheless, the algorithm will still achieve PC, under the

assumption that any input QCN N = ({v1, v2}, C) with only two variables is

not trivially inconsistent, i.e. (v1∅v2), (v2∅v1) /∈ C. In Section 2.3, we have

assumed that any of the considered QCNs is not trivially inconsistent unless

specified otherwise. Therefore in the rest of the thesis, we will regard PC as a

fully functioning algorithm for achieving PC. If the algorithm did not return

inconsistency after enforcing PC on a QCN N , then the resulting PC QCN Np is

called the a-closure of N . For example, in Figure 2.6, Np is the a-closure of N .

Algorithm 1: PC(N ), a path consistency algorithm.

Input: N , a QCN with constraints C = {(viRijvj) : 1 ≤ i, j ≤ n}.
Output: Np, the a-closure of N , or inconsistency.

1 Q ← ⋃
1≤i<j≤n{(i, j, k), (k, i, j) : 1 ≤ k ≤ n, k 	= i, k 	= j};

2 while Q 	= ∅ do
3 select and delete a path (i, k, j) from Q;
4 tempR ← Rij ∩ (Rik �Rkj);
5 if tempR = ∅ then
6 return inconsistency;
7 end
8 if tempR ⊂ Rij then
9 Rij ← tempR;

10 Rji ← tempR−1;
11 Q ← Q ∪ {(i, j, k), (k, i, j) : 1 ≤ k ≤ n, k 	= i, k 	= j};
12 end
13 end
14 Np ← N ;
15 return Np.

The fundamental idea of PC is to call the following rule until the QCN

becomes stable or a relation becomes the empty relation.

Rij ← (Rik �Rkj) ∩Rij. (2.2)



2. Preliminaries and Backgrounds 35

For dynamic information, there are also incremental versions of PC. In

[48], Gerevini devised such algorithms for PA and IA, while for RCC8 Sioutis

and Condotta [110] proposed a vertex incremental one. PC has significantly

improved our ability to solve the reasoning problems in QSTR. However, some-

times enforcing PC is an overkill, especially for QCNs that are in a sparse struc-

ture.

Bliek and Sam-Haroud [13] first proposed the so-called partial path con-

sistency to solve CSPs by exploiting the sparse structure. Chmeiss and Con-

dotta [18], as well as Sioutis and Koubarakis [112], adopted this notion for

QSTR.

Definition 2.16 (Partial Path Consistency). Let N = (V, C) be a QCN and G =

(V,E) be a chordal graph such that GN ⊆ G, where GN is the constraint

graph of N . N is partially path consistent (PPC) w.r.t. G iff ∀{vi, vj}, {vi, vk},

{vk, vj} ∈ E, we have that ∅ 	= Rij ⊆ Rik �Rkj, where Rij, Rik, and Rkj are the

relations that relates (vi, vj), (vi, vk), and (vk, vj) in N .

As an example, the QCN NG
p in Figure 2.6(c) is PPC w.r.t. the chordal

graph in the figure, and it is not PC.

Similar to the case of PC, PPC was originally defined for “paths” in an

arbitrary graph G by Bliek and Sam-Haroud [13] rather than for the “triangles”

in a chordal graph. Nevertheless, as shown in [13] when the G is a chordal

graph, this definition will be equivalent to the original one. For a QCN N , the

algorithm PPC in Algorithm 2 decides PPC on N , and the resulting QCN NG
p

is called the partially path consistent subnetwork of N w.r.t. G. For example,

the QCN NG
p in Figure 2.6(c) is the partially path consistent subnetwork of N

w.r.t. the graph shown in the figure. Note that when the chordal graph G is

a complete graph on V , establishing PPC is exactly the same as establishing

PC, and the two algorithms PPC and PC are identical in this case. In the next
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chapter, we will present a more efficient algorithm to establish PPC as well as

PC.

In the following, we will see that establishing PC or PPC on a QCN can

solve several major problems in QSTR.

Algorithm 2: PPC(N , G), a partial path consistency algorithm.

Input: N , a QCN with constraints C = {(viRijvj) : 1 ≤ i, j ≤ n}; G, a
chordal graph s.t. GN ⊆ G.

Output: NG
p , the partially path consistent subnetwork of N , or

inconsistency.

1 Q ← {{i, j, k} : {vi, vj}, {vi, vk}, {vj, vk} ∈ E(G)};
2 while Q 	= ∅ do
3 select and delete a triangle {i, k, j} from Q;
4 for each permutation of (vi, vk, vj) do
5 tempR ← Rij ∩ (Rik �Rkj);
6 if tempR = ∅ then
7 return inconsistency;
8 end
9 if tempR ⊂ Rij then

10 Rij ← tempR;
11 Rji ← tempR−1;
12 Q ← Q ∪ {{i, k, j} : {vi, vk}, {vj, vk} ∈ E(GN )};
13 end
14 end
15 end
16 NG

p ← N ;
17 return NG

p .

2.5 Tasks and Problems in QSTR

In the following, we will take a look at some sophisticated tasks in QSTR that

are important for an application to handle qualitative spatial or temporal in-

formation.
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2.5.1 The Consistency Problem

The first important reasoning task is to check the consistency of a QCN. This

task originates from Constraint Satisfaction Problems (CSPs). A QCN can be

considered as a special instance of CSP and the consistency problem naturally

arises for qualitative calculi. Moreover, as we have seen in the introduction

of this thesis, checking consistency is an important function in applications

as well, e.g. to check if there are conflicts in the data or to detect abnormal

activities.

Before formally introducing the task of consistency checking, we first define

what is a solution of a QCN.

Definition 2.17 (Solution, Consistency, Equivalence). Given a QCN N over a

qualitative calculus M on U for variables V = {v1, v2, ..., vn} and an assignment

σ : V → U , we say that σ is a solution of N if for any 1 ≤ i, j ≤ n (σ(vi), σ(vj)) ∈
Rij, where (viRijvj) is a constraint in N that relates vi to vj. For simplicity, we

usually refer to a solution σ as the sequence of values (σ(v1), . . . , σ(vn)). We

say N is consistent or satisfiable if it has a solution. A QCN N1 is equivalent

to another QCN N2 over the same set of variables if they have the same set of

solutions.

Intuitively, a solution is an illustration of the qualitative relations at hand.

For example, when the QCN is about the topological relations between school

catchment areas and neighbourhoods, then the regions in the map for these

areas form a solution of the QCN.

Rather than assigning values to all the variables in a QCN, sometimes a

partial assignment for a subset of variables is also useful.

Definition 2.18 (Partial Solution). Given a QCN N over a qualitative calculus

M on U for variables V = {v1, v2, ..., vn}, a partial solution on V0 ⊆ V of N is



38 2. Preliminaries and Backgrounds

a solution of the QCN that is the restriction of N on V0, i.e. N|V0 = {(uRv) ∈
N : u, v ∈ V0}.

Formally, the task of checking the consistency of QCNs, also known as the

consistency problem, can be defined as follows.

Problem 1 (The Consistency Problem). Let S be a subclass of a qualitative

calculus M. The consistency problem for S is defined as:

Instance: A QCN N = (V, C), where V is a finite set of variables, and C is

a finite set of constraints (viRijvj) that relate variables in V s.t. Rij ∈ S.

Question: Decide the consistency of N .

The consistency problem for many calculi turns out to be quite hard in gen-

eral. For example, for each of IA, CRA, RA, RCC5/8 and CDC, the consistency

problem for the whole calculus is NP-complete [6, 82, 86, 98, 100, 125]. For

these calculi, there are different branches of research that aim to identify ap-

propriate conditions such that the consistency problem becomes tractable, i.e.

polynomial algorithms exist to solve it. One of the branches is to restrict the

structure of the QCN, such as requiring it to be of bounded treewidth [15, 64]

or to be in a chordal graph structure [18, 112]. Another branch is to limit

the allowed relations in the QCN, i.e. the subclass S. These two branches

can be combined together to identify tractable problems. There is a similar

phenomenon in the research of CSPs (cf. [22]).

In particular, for restricting the structure of the QCN, in [14], Bodirsky and

Dalmau showed that QCNs in IA that have bounded treewidth can be solved in

polynomial time. Later in [15], Bodirsky and Wölfl demonstrated that the con-

clusion also applies to the RCC8 calculus. Huang et al. [64] proposed another

sufficient condition (i.e. aNAP) for the tractability of the consistency problem



2. Preliminaries and Backgrounds 39

of bounded treewidth QCNs and showed that several important calculi (in-

cluding IA, RA and RCC8) satisfy this condition. The research in [18, 112] on

the consistency problem of chordal graph structured QCNs has proposed sev-

eral efficient backtracking algorithms to decide the consistency of such QCNs

for calculi including IA and RCC8. Sioutis et al. [114] also proposed an effi-

cient algorithm for the consistency problem of chordal structured QCNs over

distributive subalgebras.

For many qualitative calculi, people have identified several large tractable

subclasses, where polynomial algorithms exist to solve the consistency prob-

lem. Some of these subclasses are maximal, in the sense that adding any other

relation in the calculus to the subclass will result in it being intractable. In

particular, for IA, there are exactly eighteen maximal tractable subclasses [71],

while only one of them (i.e. the ORD-Horn subclass, denoted as H) contains all

the basic relations of IA, as shown in [93]; for RCC8, Renz and Nebel [98, 100]

have identified all the three maximal tractable subclasses containing all the

basic relations (including a horn subclass denoted by Ĥ8); for RCC5, Jonsson

and Drakengren [65] provided a complete classification of the approximately

four billion subclasses into tractable and NP-complete ones, and identified all

the four maximal tractable subclasses, among which only the horn subclass

Ĥ5 contains all the basic relations; for CDC, Liu et al. [86] showed that it is

polynomial for the consistency problem of complete basic networks, while it

remains an open question what would be the maximal tractable subclasses for

CDC; for CRA, Ligozat [82] has shown that the preconvex subclass is a max-

imal tractable subclass; the subclass H ⊗ H of RA is tractable following from

the tractability of H, and Balbiani et al. [6] found a maximal tractable subclass

of RA, called the strongly-preconvex subclass. Similar results also apply to the

generalized rectangle algebra, i.e. the Block Algebra (BA; [7]). On the other
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hand, the whole calculus of PA is tractable [72, 122], and the researchers also

identified a pointisable subclasses of IA (denoted as SA) contained in H, in

which each relation can be transformed into a conjunction of several PA rela-

tions. The above tractable subclasses will be repeatedly mentioned later, and

we assume that the term tractable subclasses henceforth specifically refers to

these ones.

For these tractable subclasses, people proposed various efficient algorithms

to solve the consistency problem. For example, for PA and SA (i.e. pointis-

able IA), van Beek [121] developed an O(n2) time algorithm (n = |V | is the

number of variables in a QCN), by making use of topological sort [69]. For

CDC, Liu et al. [86] gave an O(n3) time algorithm (n = |V |) that constructs a

canonical solution that only uses integers for complete basic CDC QCNs. These

algorithms only work for specific calculi. More often, local consistencies play

an important role in solving the consistency problem, especially PC and PPC

defined previously.

On one hand, PC is a necessary condition for consistency. The algorithm

PC returns inconsistency only if the QCN is not consistent. On the other hand,

PC is not always able to solve the consistency problem of general calculi, e.g.,

the whole calculi IA, RCC5/8, and RA. Nevertheless, for some subclasses of

the calculi, it is a sufficient condition. In fact, establishing PC is sufficient

to decide the consistency problem of the tractable subclass H for IA [93], the

three maximal tractable subclasses (including Ĥ8) for RCC8 and Ĥ5 for RCC5

[100], the preconvex subclass of CRA [82], the strongly-preconvex subclass of

RA [6], and the whole calculus PA [72, 121]. The algorithm PC has also been

applied for solving the consistency problem of the whole calculi, as the forward

checking technique in a backtracking algorithm (cf. [92]).

As PC, PPC is also a necessary but not always sufficient condition for
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consistency, and the algorithm PPC returns inconsistency only if the QCN is not

consistent. Interestingly, there are also subclasses that PPC is enough to solve

the consistency problem. For IA and RCC5/8, Chmeiss and Condotta [18], as

well as Sioutis and Koubarakis [111, 112], showed that establishing PPC is

sufficient and more efficient than establishing PC to decide the consistency of

QCNs over the subclasses H, Ĥ5 and Ĥ8. Also, these authors have used PPC

to help solve the consistency algorithm of the whole calculi more efficiently

with a backtracking algorithm. Sioutis and Condotta [109, 110] devised an

incremental version of PPC for IA and RCC8 to solve the consistency problem

for dynamic information. Later in Chapter 3, we will see that there is more

efficient algorithm than PC and PPC to solve the consistency problem of QCNs

over distributive subalgebras.

2.5.2 The Minimal Labelling Problem

When extracting the relation between two entities from a spatial or temporal

scene configuration, we might be interested in the best knowledge that can be

inferred from the given information. For example, given that “the city centre

of Sydney is not equal to the Sydney central business district”, we might ask

whether the latter is contained in the former, especially when we have other

qualitative spatial information about these two regions.

In terms of QSTR, given a QCN, we would like to find out the feasible basic

relations between any two variables.

Definition 2.19 (Feasibility and Minimality). Let N = (V, C) be a QCN. For a

constraint (viRijvj) in N and a basic relation α in Rij, we say α is feasible if

there exists a solution (a1, a2, . . . , an) of N such that (ai, aj) ∈ α. We say that N
is minimal if every basic relation α in Rij is feasible for every pair of variables

(vi, vj), and in this case Rij is called the minimal label of (vi, vj).
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Generally, for a QCN N , some of the relations might not be minimal la-

bels. Removing all the infeasible basic relations results in a refinement of N ,

called the minimal subnetwork of N , denoted by Nm. Formally, a minimal QCN

that refines N and is equivalent to N is the minimal subnetwork of N . Fig-

ure 2.7(a) shows a PA QCN N which is not minimal, because the basic relation

= between v1 and v3 is not feasible (i.e. no solution of N satisfies it). The QCN

Nm in Figure 2.7(b) is the minimal subnetwork of N .
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Figure 2.7: A PA QCN N and its minimal subnetwork Nm.

One of the fundamental tasks in QSTR is to find the minimal subnetwork

of a given QCN.

Problem 2 (The Minimal Labelling Problem). Let S be a subalgebra of a qual-

itative calculus M. The minimal labelling problem for S is defined as:

Instance: A QCN N = (V, C), where V is a finite set of variables, and C
is a finite set of constraints (viRijvj) relating variables in V s.t. Rij ∈ S.

Task: Compute the minimal subnetwork of N .

For general calculus, this problem is NP-hard [85]. For tractable subclasses,

the minimal labelling problem is also tractable, because we can check the fea-

sibility of each basic relation in each of the constraints in polynomial time and

there are only finite many constraints in a QCN. However, such method to

compute the minimal subnetwork is not efficient, i.e. O(n5) for previously dis-

cussed tractable subclasses. Note that in general, the previous algorithms PC
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and PPC cannot transform a QCN over those tractable subclasses to a minimal

one. There are some examples for that in [100, 121, 122].

Researchers tried to develop more efficient algorithms than the naive one

of time complexity O(n5). van Beek [121] devised an O(n3) time algorithm

to compute the minimal network of a general QCN over PA, and Gerevini and

Schubert [50] fixed a faulty in the proof of van Beek. Gerevini also proposed

efficient algorithms to incrementally solve the minimal labelling problem of PA

and IA in less than O(n5) time in most cases. Later, for sparsely structured QCN

over the convex subclass of PA relations that do not contain the relation {	=},

Gerevini and Saetti [49] devised a more efficient algorithm that makes use of

time graphs and meta-graphs and runs in O(n2) time. Amaneddine et al. [4, 5]

proposed backtracking algorithms for general IA and RCC8 QCNs, with the

help of smaller tractable subclasses which have the so-called patchwork prop-

erty [63] and the property that PPC implies the consistency of a QCN.

Some research also focused on identifying subclasses of relations where a

QCN that is PC is also minimal. In the context of CSPs, Montanari [90] gave a

specific characterization of relations (i.e. monotone relations) that fall in these

subclasses, which however do not cover all the qualitative relations discussed

here. Valdés-Pérez [120] proved that complete and basic QCNs over IA have

the property that PC implies minimality. van Beek [122] showed that QCNs

over convex PA relations also have this property. Ligozat [81] identified the

subclass CIA of convex relations in IA that possesses such property. Later, Chan-

dra and Pujari [17] identified a similar subclass of RCC8 which also has the

property. Recently, Amaneddine and Condotta [3] identified two subclasses of

IA with such property. Later in this thesis, we will present our work on dis-

tributive subalgebras which unifies such subclasses of all the calculi discussed

here (except CDC).
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2.5.3 The (Weakly) Global Consistency Problem

In addition to having a QCN representing the relations between entities, people

sometimes would like to have a solution or a consistent scenario for the QCN.

For example, in real-world applications, after specifying the relations between

objects, people might be interested in seeing a sketch map (i.e. a solution) il-

lustrating these relations [66]. Also, when the given QCN contains incomplete

or indeterminate information, people might want to have a refinement of the

QCN that only contains complete and determinate information (i.e. a consis-

tent scenario). However, to construct a solution of a consistent QCN or even

of a minimal QCN might still be very hard. In fact, Liu and Li [85] showed

that for CRA, IA and RCC8, it is NP-hard to compute even a single solution of

a minimal QCN over these calculi. This is also the case for constructing a con-

sistent scenario of a minimal QCN, because for these calculi, once a consistent

scenario is given, constructing a solution takes polynomial time [82, 85, 121].

On the other hand, with (weakly) global consistency, we can construct a solu-

tion (or a consistent scenario) for a QCN in polynomial time in an incremental

and backtrack-free manner. As a result, (weakly) global consistency becomes

quite important for making the task easier for specific QCNs.

Definition 2.20 (Global Consistency). We say a QCN N = (V, C) is globally

consistent if any partial solution of N on any non-empty subset V ′ of V can be

extended to a solution of N .

For example, the QCN Nm in Figure 2.7(b) is globally consistent. This is

because, with any partial solution of it, say (a1, a2) for v1 and v2 where a1 < a2,

we can always extend it to a solution, e.g., (a1, a2, a3) with a3 > a1 and a3 = a2.

Note that the “composition” for RCC5/8 is weak composition (cf. the ex-

ample in Section 2.4.1), then it immediately follows that some partial solution
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of a QCN over RCC5/8 cannot be extended to a solution of the whole QCN.

Therefore, to deal with this circumstance, we proposed the concept of weakly

global consistency.

Definition 2.21 (Weakly Global Consistency). We say a QCN N = (V, C) is

weakly globally consistent if any partial consistent scenario of N on any V ′ ⊆ V

can be extended to a consistent scenario of N .

Note that weakly global consistency is about extending a partial scenario,

while global consistency is about extending a partial solution. Nevertheless,

it is easy to see that they are equivalent for qualitative calculi where weak

composition is exactly composition. For example, the globally consistent QCN

Nm in Figure 2.7 is also weakly globally consistent. This is because we can

extend any partial scenario of Nm, say {(v1 < v2)}, to a consistent scenario of

Nm, e.g., {(v1 < v2), (v1 < v3), (v2 < v3)}.

The (weakly) globally consistent subnetwork of N is the refinement of N
that is equivalent to N and is (weakly) globally consistent. The corresponding

problem of computing the (weakly) globally consistent subnetwork of a QCN

is formulated as below.

Problem 3 (The (Weakly) Global Consistency Problem). Let S be a subalge-

bra of a qualitative calculus M. The (weakly) global consistency problem is

defined as:

Instance: A QCN N = (V, C), where V is a finite set of variables, and C
is a finite set of constraints (viRijvj) relating variables in V s.t. Rij ∈ S.

Task: Compute the (weakly) globally consistent subnetwork of N .

Note that by definition (weakly) global consistency implies minimality. It

has been noted by researchers that sometimes PC will achieve globally con-

sistency of a QCN. Bessière et al. [11] and Ligozat [81] showed that CIA, the



46 2. Preliminaries and Backgrounds

previously mentioned subclass of convex IA relations, indeed has the stronger

property that QCNs over CIA that are PC are also globally consistent. That is,

establishing PC on such QCNs solves the global consistency problem for them.

For each of the calculi IA and PA, Amaneddine and Condotta [3] found that

there are exactly two maximal subclasses that have this property, i.e. estab-

lishing PC on QCNs over such subclass decides the global consistency. There

are also some special subclasses in the context of CSP (e.g., row-convex re-

lations [123] and tree-convex relations [132]) possess this property. For the

convex subclass of RCC8 relations identified in [17], establishing PC on the

QCNs over that subclass cannot ensure the global consistency. However, we

will present in the next chapter that establishing PC on these QCNs ensures

the weakly global consistency. More generally, we will show that PC can solve

the (weakly) global consistency problem for QCNs over distributive subalge-

bras of the calculi discussed in this thesis.

One may have noticed that the previous literature had a strong empha-

sis on the time efficiency aspect of QSTR, while paying little attention to the

problem of representing the information economically. The efficient reasoning

techniques developed so far are all based on the QCN representation which

encodes the relations between variables or entities with constraints. However,

the QCN representations have at least two problems: 1. A QCN might contain

constraints that are unnecessary or redundant; 2. The representation can cost a

large storage space, as a complete QCN contains Θ(n2) number of constraints.

In the following, we discuss these two problems of QCN in more detail.

2.5.4 The Redundancy Problem

For the first problem of the QCN representation, we introduce the concept of

redundancy w.r.t. entailment. Let N = (V, C) be a QCN. We say N entails
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a constraint (uRv), denoted by N |= (uRv), if every solution σ of N satisfies

(uRv), i.e. (σ(u), σ(v)) ∈ R. A constraint (uRv) in N is redundant if the

network (V, C\{(uRv)}) entails (uRv). N is prime if it does not have redundant

constraints. Suppose N ′ = (V, C ′) is a QCN where C ′ ⊆ C. If N ′ is prime and

equivalent to N , then we say N ′ is a prime subnetwork of N .

By the definition, each universal constraint (vi�vj) in N is redundant in N ,

and hence we call it a trivial redundant constraint. The following shows an

example of non-trivial redundant constraint.

Example 2.2. Suppose

N = {v1 PP v2, v1 PP v5, v3 PP v1, v4 PP v2, v5{DR,PP}v2, v3POv4},

as illustrated in Figure 2.8.

PP PP
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3v 4v
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Figure 2.8: An RCC5 QCN where (v1 PP v2) is redundant.

Then (v1 PP v2) is redundant. It is because, after establishing PC to N \
{(v1 PP v2)}, we have (v5 PP v2) and hence (v1 PP v2). This shows that N \
{(v1 PP v2)} entails (v1 PP v2). Moreover, (v1 PP v2) is the only non-trivial re-

dundant constraint in N and N \ {(v1 PP v2)} is the unique prime subnetwork

of N .

Removing redundant constraints in QCNs can result in a sparser QCN and

accelerate other tasks. For example, in geospatial databases, some geometri-

cal objects were misplaced or in wrong shape and we need to adjust them so
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that the spatial constraints between objects are satisfied. Wallgrün [127] gave

a solution to this problem by transforming the problem into an optimisation

problem with constraints encoded as numeric inequations. The cost of solv-

ing the optimisation problem is strongly correlated to the number of explicit

topological constraints. By using prime subnetworks, redundant constraints

are removed so that the number of inequations is reduced to a relatively small

number. In fact, Wallgrün used two approximate algorithms to remove redun-

dant constraints, which however are not guaranteed to result in a network with

no redundant constraints.

Prime subnetworks might also be able to reduce the complexity of the com-

parison between different spatial or temporal scenes. In applications such as

image search, the spatial relations between components in the image serve as

the semantic representation of a image. To match similar images or patterns,

one heuristic is based on the spatial relations between the components (see,

e.g., [53, 94]). For example, a matching query of images could be to find im-

ages in which a park contains a lake and some boats, and the boats are on

the lake. The entities are “park” (P ), “lake” (L) and “boats” (B). Encoded by

the RCC5 model, the spatial constraints between them are LPPP , BPPP , and

BPPL. The matching process would be to find the images that have a similar

set of constraints as the specified ones. The similarity of two set of constraints

(i.e. QCNs) N and N ′ is measured by computing the distance between the

two QCNs. A natural definition of the distance is given as follows (see, e.g.,

[25, 75, 129]):

dist(N ,N ′) =
∑

{dist(R,R′) : (xRy) ∈ N and (xR′y) ∈ N ′},

where dist(R,R′) is defined as the number of changes needed to transform R to

R′ in the conceptual neighbourhood graph (see [46] and Section 3.7.1). The
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number of comparisons of relations would be Θ(n2) if N and N ′ are complete

QCNs. However, note that there might be some redundant constraints in N
and N ′, that is, the constraints that can be inferred from the other constraints

in the QCN. For instance, in the previous example, the constraint BPPP is

actually redundant because we can infer this constraint by using LPPP and

BPPL. If we first remove these redundant constraints, and obtain two prime

subnetworks of N and N ′ (denoted by Npr and N ′
pr), then the distance becomes

distpr(N ,N ′)

=
∑

{dist(R,R′) : (xRy) ∈ N , (xRy) ∈ N ′, ((xRy) ∈ Npr or (xR′y) ∈ N ′
pr)}.

If N and N ′ contain many redundant constraints, then the new distance will

significantly reduce the number of comparisons.

By reducing the density of the constraint graph, the prime subnetwork tech-

nique could also serve as a preprocessing technique for QCNs to gain trade-off

in future computation time. One possible application is for reasoning with

dynamic information. Suppose that we have a QCN which is rather dense.

We need to update the QCN with new information frequently and to perform

qualitative reasoning on the updated QCN. Propagating the information in the

original QCN requires reasoning on a dense graph, which could be slow. By

contrast, after removing redundant constraints in the original QCN, the result-

ing prime subnetwork could be sparsely structured, and will need less efforts,

as there are many algorithms (e.g. PPC) for reasoning more efficiently on

sparser QCNs.

To obtain a prime subnetwork, the fundamental problem is the redundancy

problem, formulated as follows.

Problem 4 (The Redundancy Problem). Let S be a subalgebra of a qualitative



50 2. Preliminaries and Backgrounds

calculus M. The redundancy problem is defined as:

Instance: A QCN N = (V, C), where V is a finite set of variables, and C
is a finite set of constraints (viRijvj) relating variables in V s.t. Rij ∈ S;

a constraint (uRv) ∈ C.

Task: Decide if (uRv) is redundant in N .

The redundancy problem has already been noticed in other research, es-

pecially the ones outside QSTR. Years ago, Ginsberg [52], and later Schmolze

and Snyder [106], proposed algorithms to deal with redundancy in knowledge

bases. Gottlob and Fermuller [55] considered removing redundancy from logi-

cal clause and Liberatore [79] analysed the problem for CNF formulae. Grimm

and Wissmann [58] addressed redundancy checking of ontologies. Chmeiss

et al. [19] studied redundancy in CSPs w.r.t. a given local consistency. Egen-

hofer and Sharma [40] first considered the redundancy problem for QSTR,

and gave a lower bound and upper bound of the size of a prime subnetwork,

while they did not provide any efficient algorithm for constructing a prime sub-

network. Rodríguez et al. [105] considered this problem for query processing

with respect to complete basic RCC8 QCNs. Recently, Wallgrün [127] devised

two approximate algorithms to identify and remove redundant constraints in

a QCN, which however cannot guarantee to simplify the QCN optimally. In

fact, as shown in Chapter 4, to efficiently identify a prime subnetwork with the

minimum number of constraints is also a challenge. Similar to the case of CNF

formulae [79], some QCNs might have many prime subnetworks. Neverthe-

less, later in Chapter 4 we will show that for RCC5/8 and PA, the prime sub-

network of a QCN over a distributive subalgebra would be unique and can be

found in O(n3) time. Sioutis et al. [113] have extended the results to sparsely

structured QCNs.
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2.5.5 The Compact Representation Problem

The task of retrieving the relation between two given entities is a fundamental

problem for both QSTR and geographical information systems (GISs), as well

as many real-world applications. There is a growing need for integrating qual-

itative spatial (and temporal) information into databases [43, 57, 105] and

modern technologies like digital maps and recommendation systems [16, 37,

73], such that the information can be efficiently retrieved.

In QSTR, reasoning techniques rely on the availability of the relation be-

tween any variables. In GISs, query answering is a central function. Queries

about qualitative spatial information include checking the relation between

objects and finding instances of regions that satisfy a given spatial constraint

(see [43] for a summary of different types of queries). We focus on the type of

queries about checking the relation between regions, which can be regarded

as the most fundamental one among the other types. For example, the type of

queries about finding all regions that satisfy a relation with a given region, the

essence is to obtain the actual relation between any two regions, which is the

query type we focus on.

The QCN representation could be too large to be suitable for retrieving the

relation between any two entities. For example, as mentioned in Chapter 1,

there are more than 54, 000 regions in the statistical areas of Australia (Level

1) and the QCN for CDC information would have 3 billion relations. The large

number of relations might make the QCN too costly or even infeasible to fit

into fast accessible storage (e.g. RAM), and will in turn significantly decrease

the performance of the QCN for the task of retrieving the relation.

The comprise in GISs is to use the geometric representation (e.g. complex

polygons that might have holes and/or multiple connected components). This

geometric representation scales linearly with the number of regions while the
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relation is calculated at query time. Clementini et al. [20, 21] studied using

the 9-intersection model developed by Egenhofer et al. [38, 39] to determine

the topological relation between two regions, which have been adopted by the

current GISs. The computation of spatial relation between two regions can be

very expensive. In fact, in many cases we need to check if two polygons inter-

sect, which requires a computation time that is proportional to the number of

vertices, e.g. O(m logm) for simple polygons [104] where m is the number of

vertices and m can be quite large (e.g. some polygons representing the coun-

try subdivisions of the USA have more than 30,000 vertices). Also, for some

regions, we may only know how they are qualitatively related to other regions,

without having access to precise boundaries. This is often the case with vernac-

ular places [124, 126], as well as in applications that rely on extracting spatial

information from natural language [107]. For example, the school catchment

areas sometimes are specified by text descriptions of the relations between the

areas and the neighbourhoods in the form like “the catchment area of School

A contains the neighbourhoods to the west of the train station”.

Considering the above, the following problem arises.

Problem 5 (The Compact Representation Problem).

Instance: A set of regions or a set of qualitative constraints, or a mixture

of them representing a spatial scene of a set of objects V .

Task: Find a representation such that ∀vi, vj ∈ V , the qualitative relation

(e.g. topological or directional relation) Rij for vi, vj can be derived from

the representation more efficiently than by direct geometric computation,

while the storage space of the representation is much smaller than the

QCN representation.

Several researches have considered the problem to reduce the storage of
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qualitative relations. Fogliaroni [43] proposed a framework, called the spatial

clustering index, to reduce the calculation and storage of qualitative relations,

such that a qualitative information layer can be feasibly integrated into the

current geographical databases. Al-Salman [1] studied a variant of the spatial

clustering index that uses the clustering strategy DBSCAN [41] to better cluster

the objects and uses the concave hull to approximate the shape of the objects

in a cluster. In Chapters 5 and 6, we will discuss two different techniques

for solving the compact representation problem, by making use of the existing

minimum bounding boxes (MBRs) and the generated axis-aligned rectangles

for spatial entities.

2.6 Summary

In this chapter, along with introduction to necessary concepts and notations,

we have summarised several important tasks in the field of QSTR, including

the consistency problem, the minimal labelling problem, the (weakly) global

consistency problem, the redundancy problem, and the compact representa-

tion problem. We have also briefly reviewed the research on these problems

and some of the most useful techniques in the field for solving them, including

the two classical algorithms PC and PPC. The next chapters will present in

detail how our research can help to better solve these problems.

Hopefully, with effective techniques for encoding and efficient techniques

for reasoning on the information, in the future we will be able to build a com-

prehensive knowledge base containing both geometric and qualitative repre-

sentation of spatio-temporal information. The knowledge base will become a

useful interface for applications to handle qualitative information, and intro-

duce a new and reliable user experience to explore our world.





Chapter 3

Distributive Subalgebras

3.1 Introduction

In the era of internet and smart electronic devices, the methods in QSTR need

to deal with much larger datasets. In [70], Koubarakis et al. identified the

demand of scalable algorithms in QSTR for large number of variables, to adapt

for the data from Semantic Web. Researchers have devised more efficient al-

gorithms that either make use of the property of specific subclasses of relations

or exploit sparse structure of the constraint graphs.

By making use of sparse structure of constraint graphs, in recent years,

Chmeiss and Condotta [18], as well as Sioutis and Koubarakis [112], ob-

served that checking the consistency of IA and RCC8 QCNs can be accom-

plished more efficiently through the partial path consistency algorithm PPC.

Amaneddine et al. [5] also devised a more efficient algorithm than PC to solve

the minimal labelling problem of IA and RCC8 with the help of PPC on sparsely

structured constraint graphs.

Besides, researchers have identified special subclasses where PC can be

powerful enough to solve the minimal labelling problem or the global con-

55
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sistency problem. For PA, van Beek [122] has shown that PC can solve the

minimal labelling problem for QCNs over the subclass of convex PA relations

(i.e. the relations in PA except 	=). For IA, Valdés-Pérez [120] showed that PC

can solve the minimal labelling problem of complete and basic QCNs. Later,

Bessière et al. [11] and Ligozat [81] identified the subclass CIA of convex rela-

tions in IA that possesses this property. Amaneddine and Condotta [3] identi-

fied maximal and unique subclasses of IA such that PC can be used to directly

solve both the minimal labelling problem and the global consistency problem,

and later they [4] exploited these subclasses to solve the minimal labelling

problem of the whole IA more efficiently. For RCC8, Chandra and Pujari [17]

identified the subclass of convex RCC8 relations for which PC solves the mini-

mal labelling problem.

However, these results are scattered and leave several important questions

unanswered. For example, for specific subclasses of IA, PC was shown to be

able to solve the global consistency problem. Do other calculi have subclasses

with this property? Although PPC is more efficient than PC by exploiting the

structure of QCNs, can it be further improved for relations with specific proper-

ties? In this chapter, we introduce the concept of distributive subalgebras, and

show how it can help to answer these questions and improve the traditional

techniques to solve the problems in QSTR.

The remainder of this chapter is organised as follows. In Section 3.2, we

discuss some basic properties of qualitative calculi. In Section 3.3, we intro-

duce the family of distributive subalgebras and give an interesting characterisa-

tion of it. Then we identify maximal distributive subalgebras of several widely

used qualitative calculi in Section 3.4. After that, in Section 3.5, we show

the reasoning power of path consistency on QCNs over distributive subalge-

bras and present some interesting properties of path consistent subnetworks
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(i.e. a-closures) of such QCNs. In Section 3.6, we discuss the applicability of

several more efficient algorithms than PC for QCNs over distributive subalge-

bras. In Section 3.7, we also give a further discussion about the connection

of distributive subalgebras with conceptual neighbourhood graphs and finite

domain CSPs. The last section concludes this chapter.

Bibliographic Note. The work reported in this chapter is based on the joint

work with Sanjiang Li, Weiming Liu, and Michael Sioutis, which was first pre-

sented in the following publications.

• Zhiguo Long and Sanjiang Li: On Distributive Subalgebras of Qualitative

Spatial and Temporal, COSIT, 2015, pp. 354–374.

• Zhiguo Long, Michael Sioutis, and Sanjiang Li: Efficient Path Consistency

Algorithm for Large Qualitative Constraint Networks, IJCAI, 2016, pp

1202–1208.

• Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan Both:

On Redundant Topological Constraints, Artificial Intelligence, 2015, vol.

225, pp. 51–76.

The results about the properties of distributive subalgebras are based on collab-

oration with Weiming Liu and Sanjiang Li. Weiming Liu first identified distribu-

tivity on the closure of basic RCC5 relations. I proved most of the properties

of distributive subalgebras in general cases, while Sanjiang Li identified the

connection to Helly’s theorem and gave the proof for the sufficiency of Helly

property for a subalgebra to be distributive (Theorem 3.8). With the algorithm

(i.e. DPC) proposed by Sioutis et al. in [114] and the properties of distribu-

tive subalgebras, Michael Sioutis, Sanjiang Li, and I devised the algorithm (i.e.

DPC+) which is more efficient than PPC. I proved its correctness, and anal-

ysed its performance in theory. Michael Sioutis performed the experiments in
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the corresponding publication while the experiments in this thesis concerning

the algorithm are conducted by myself.

3.2 Basic Properties of Qualitative Calculi

In the previous chapter, we have mentioned that while PA, IA, CRA and RA

are all closed under the usual composition, the composition of two RCC5/8

relations is not necessarily a relation in RCC5/8 (cf. Section 2.4.1; [32, 78]).

Therefore people introduced the concept of weak composition (cf. Section 2.4).

We have the following relation between the usual composition and weak com-

position.

Proposition 3.1 ([84, 99]). For M being PA, IA, CRA, or RA, weak composition

is the same as composition, i.e. for any relations R and S in M, we have R ◦S =

R � S.

With the operations weak composition and converse −1, and the identity

relation idU as a basic relation (i.e. an atom), PA, IA, CRA, RA, and RCC5/8

are relation algebras [31, 34]. Then the weak composition and the converse of

the relations in each of these calculi satisfy the following axioms.

• � -associativity: r � (s � t) = (r � s) � t;

• � -distributivity w.r.t. ∪: (r ∪ s) � t = (r � t) ∪ (s � t);

• −1-distributivity: (r ∪ s)−1 = (r−1 ∪ s−1);

• −1-involutive distributivity: (r � s)−1 = (s−1 � r−1).

More importantly, the calculi also satisfy the following Peircean Law.
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(R � S) ∩ T 	= ∅ ⇔ (R−1 � T ) ∩ S 	= ∅ ⇔ (T � S−1) ∩R 	= ∅.

Figure 3.1: Illustration of the Peircean Law.

Proposition 3.2 (See [31]). For relations R, S, T in PA, IA, CRA, RA, and RCC5/8,

we have the following Peircean Law

(R � S) ∩ T 	= ∅ ⇔ (R−1 � T ) ∩ S 	= ∅ ⇔ (T � S−1) ∩R 	= ∅. (3.1)

Figure 3.1 gives an illustration of the configurations of relations in the

Peircean Law. It can be considered as follows. Given a 3-variable QCN with

constraints (v1Rv3), (v3Sv2), and (v1Tv2), if, for example, for the tuple (v1, v3, v2)

we have (R � S) ∩ T 	= ∅, then for tuples (v3, v1, v2) and (v1, v2, v3) the cor-

responding intersections are also non-empty, i.e. (R−1 � T ) ∩ S 	= ∅ and

(T � S−1) ∩R 	= ∅.

In the literature, path consistency (PC; cf. Definition 2.15) is a very useful

local consistency of a QCN. The algorithm PC in the previous chapter (Al-

gorithm 1) decides and establishes PC of a QCN. Although PC is just an

approximation of the consistency, we have the following conclusion showing

the reasoning power of PC.

Proposition 3.3 ([6, 72, 82, 93, 100]). For PA, IA, CRA, RA, and RCC5/8, PC

is able to decide the consistency of scenarios (i.e. complete basic QCNs) and the

consistency of QCNs over tractable subclasses containing all the basic relations.

In later discussions, we assume that the qualitative calculus M have the
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following properties:

M is a relation algebra with � , −1 and idU ; (3.2)

Every path consistent scenario over M is consistent. (3.3)

In particular, the calculi PA, IA, CRA, RA and RCC5/8 satisfy these properties.

3.3 Distributive Subalgebra and Helly Property

The converse (−1), weak composition ( � ), and intersection (∩) are three basic

operations used in reasoning techniques of QSTR such as PC and PPC. These

operations transform a QCN into another QCN, by changing the relations in

the QCN. Some of the relations in the former QCN might no longer be in the

same subclass as before, violating some useful properties (e.g. PC decides

consistency) that are previously satisfied. Thus it would be more convenient

to have a subclass of relations that are stable under these operations. A sub-

algebra is such a subclass. Note that a subclass S of a qualitative calculus M
is called a subalgebra if S contains all the basic relations in M and is closed

under converse, weak composition, and intersection.

Given a subclass of relations X of a qualitative calculus M, we can generate

a minimal subalgebra that contains X , by calculating the closure of X under

intersection, weak composition, and converse. Denote this subalgebra by X̂ ,

and in particular, B̂M denotes the closure of BM in M.

Some subalgebras are distributive in the following sense.

Definition 3.4 (Distributive Subalgebra). A subalgebra S is distributive if R �
(S ∩ T ) = (R � S) ∩ (R � T ) and (S ∩ T ) �R = (S �R) ∩ (T �R) for any R, S,

T ∈ S with S ∩ T 	= ∅.
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As noted before, for M being one of PA, IA, CRA, RA, and RCC5/8, the

closure of the basic relations in M is a distributive subalgebra, and every dis-

tributive subalgebra of M contains B̂M as a subclass.

In the following, we will give an useful characterisation of distributive sub-

algebras, i.e. the Helly Property.

3.3.1 Helly Property

Helly’s theorem [26] is a very useful result in discrete geometry. For a collec-

tion of n intervals of R, it says that if the intersection of any two of them is

non-empty, then the intersection of the whole collection is also non-empty. As

we will see later, relations in a distributive subalgebra have a similar property

as the intervals of R, i.e. the convex sets in the real line. Moreover, a subalge-

bra in which the relations have such property is a distributive subalgebra.

Definition 3.5. A subclass S of a qualitative calculus is called Helly if, for any

finite n relations R1, . . . , Rn ∈ S, we have

n⋂
i=1

Ri 	= ∅ iff (∀1 ≤ i 	= j ≤ n) Ri ∩Rj 	= ∅. (3.4)

This means that a subclass is Helly if, given that every two of n relations in

the subclass have non-empty intersection, the n relations also have non-empty

intersection.

The definition of a Helly subclass can be simplified from n relations to three

relations, as the following proposition states. That is to say, a subclass is Helly

if and only if, given that every two of three relations in the subclass have non-

empty intersection, the three relations also have non-empty intersection.

Proposition 3.6. A subclass S is Helly if and only if for any relations R, S, T
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∈ S, we have

R ∩ S ∩ T 	= ∅ iff R ∩ S 	= ∅, R ∩ T 	= ∅, S ∩ T 	= ∅. (3.5)

Proof. The “only if” part is straightforward. In the following we prove the “if”

part.

Given any set of n relations R = {Ri : 1 ≤ i ≤ n} (n ≥ 1), assume that

for any 1 ≤ k ≤ n − 1 and any subset of k relations {Rij ∈ R : 1 ≤ j ≤ k, },

Rir ∩Ris 	= ∅ (Rir , Ris ∈ R) iff
⋂k

j=1 Rij 	= ∅. We want to show this also holds

for R. Now suppose that Ri∩Rj 	= ∅ (∀1 ≤ i 	= j ≤ n), then by assumption we

have
⋂n−1

i=1 Ri 	= ∅ and
⋂n

i=2 Ri 	= ∅. Let R = R1, S =
⋂n−1

i=2 Ri 	= ∅, T = Rn,

then we know R∩S =
⋂n−1

i=1 Ri 	= ∅ and S ∩T =
⋂n

i=2Ri 	= ∅, and R∩T 	= ∅.

Because by the “if” condition for any R, S, T ∈ S if R ∩ S 	= ∅, R ∩ T 	= ∅,

and S ∩ T 	= ∅, then R ∩ S ∩ T 	= ∅, we know that
⋂n

i=1Ri 	= ∅. Note that

n is arbitrary, therefore S satisfies part of the definition of a Helly subclass, i.e.

for any finite n relations R1, . . . , Rn ∈ S, we have
⋂n

i=1 Ri 	= ∅ if Ri ∩ Rj 	= ∅

(∀1 ≤ i 	= j ≤ n). It is straightforward forward to show that
⋂n

i=1 Ri 	= ∅ only

if Ri ∩Rj 	= ∅ (∀1 ≤ i 	= j ≤ n). Hence, the “if” part is also proven.

The result below shows that a distributive subalgebra is Helly, and such

property is called the Helly Property.

Lemma 3.7 (Helly Property). Suppose M is a qualitative calculus that satisfies

(3.2), i.e. M, with the weak composition, the converse operation, and the identity

relation, is a relation algebra. Then every distributive subalgebra of M is Helly.

Proof. To show a distributive subalgebra is Helly, by Proposition 3.6, we only

need to consider the intersections of three arbitrary relations.

If R ∩ S ∩ T 	= ∅, then it is easy to see that R ∩ S 	= ∅, R ∩ T 	= ∅, and

S ∩ T 	= ∅. Next we show that if R ∩ S 	= ∅, R ∩ T 	= ∅, and S ∩ T 	= ∅, then
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R ∩ S ∩ T 	= ∅.

For two relations P and Q, we first note that P ∩ Q 	= ∅ iff idU ∈ Q−1 � P .

In fact, from P ∩ Q 	= ∅, we know there exist two entities a, b ∈ U such that

(a, b) ∈ P ∩Q. This implies that (b, b) ∈ Q−1 ◦ P as (b, a) ∈ Q−1 and (a, b) ∈ P .

Hence idU ∩ Q−1 ◦ P 	= ∅. Note that idU is a basic relation in M, then by the

definition of weak composition, we have idU ∈ Q−1 � P . On the other hand, if

idU ∈ Q−1 � P , then idU ∩Q−1 ◦P 	= ∅. This implies that there exist two entities

a, b ∈ U such that (b, a) ∈ Q−1 and (a, b) ∈ P . Then (a, b) ∈ P ∩Q and, hence,

P ∩Q 	= ∅.

Assume on the contrary that R ∩ S ∩ T = ∅ and R ∩ S,R ∩ T and S ∩ T

are all non-empty. By the above observation, we have idU ∈ T−1 �R and idU ∈
T−1 � S. Because R, S, T are relations in the distributive subalgebra S and

R ∩ S 	= ∅, we know

idU ∈ (T−1 �R) ∩ (T−1 � S) = T−1 � (R ∩ S).

Thus (T−1 � (R∩S))∩{idU} 	= ∅ and, by the Peircean Law, R∩S∩T 	= ∅, which

is a contradiction. Therefore, every distributive subalgebra of M is Helly.

Interestingly, the above condition is also sufficient.

Theorem 3.8. Suppose M is a qualitative calculus that satisfies (3.2). Let S be

a subalgebra of M. Then S is distributive if and only if it is Helly.

Proof. Since Lemma 3.7 has already shown the “only if” part, we only need to

prove the “if” part. Suppose R, S, T are three relations in S and S ∩ T 	= ∅.

First, it is easy to see that R � (S ∩ T ) ⊆ (R � S) ∩ (R � T ). In fact, by the

definition of weak composition, we have R � (S ∩ T ) =
⋃{r � s : r ∈ R, s ∈

S ∩ T, r, s ∈ BM}. Note that s ∈ S ∩ T implies s ∈ S and s ∈ T . Then

for any r � s ⊆ R � (S ∩ T ) with r, s ∈ BM, r ∈ R and s ∈ S ∩ T , we have
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r � s ⊆ (R � S) ∩ (R � T ). That is to say, R � (S ∩ T ) ⊆ (R � S) ∩ (R � T ). Next

we show R � (S ∩ T ) ⊇ (R � S) ∩ (R � T ).

For any basic relation γ, by applying the Peircean Law twice, we have

γ 	∈ R � (S ∩ T ) ⇔ {γ} ∩ (R � (S ∩ T )) = ∅

(Peircean Law) ⇔ (R−1 � γ) ∩ S ∩ T = ∅

(Helly) ⇔ (R−1 � γ) ∩ S = ∅ or (R−1 � γ) ∩ T = ∅

(Peircean Law) ⇔ {γ} ∩ (R � S) = ∅ or {γ} ∩ (R � T ) = ∅

(Weak Composition) ⇔ γ 	∈ R � S or γ 	∈ R � T.

This shows that R � (S∩T ) ⊇ (R � S)∩(R � T ) and thus R � (S∩T ) = (R � S)∩
(R � T ). Similarly we can prove that (S∩T ) �R = (S �R)∩(T �R). Therefore,

S is Helly only if it is distributive.

The Helly Property of distributive subalgebras is very useful and will be

repeatedly used in later discussions.

3.4 Maximal Distributive Subalgebras

It would be interesting to see what a distributive subalgebra looks like for pop-

ular qualitative calculi. In this section, we will identify the maximal distributive

subalgebras for PA, IA, RCC5/8, CRA, and RA. A distributive subalgebra S of

a qualitative calculus M is maximal if there is no other distributive subalgebra

of M that properly contains S. It turns out that there are only a very limited

number of maximal distributive subalgebras for each calculus and they have

connections with subclasses defined in some other ways.
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3.4.1 Maximal Distributive Subalgebras of PA, IA, and RCC5/8

Let M be PA, IA, RCC5, or RCC8 and S a subclass of M. Recall that we

write Ŝ for the subalgebra of M generated by S and write B for the set of

basic relations in M. To compute the maximal distributive subalgebras of M,

the general idea is to first compute B̂, and then check by a program if ̂̂
B ∪ Z

is distributive for some subset Z of M. Algorithm 3 gives a more detailed

procedure. The algorithm is practical for the task. In fact, for the hardest case,

i.e. when M is IA, the execution on MATLAB1 can finish in less than one hour.

Algorithm 3: MDS(M), an algorithm for finding maximal distributive
subalgebras.

Input: A qualitative calculus M which can be PA, IA, RCC5 or RCC8,
and M is considered as the set of relations in the calculus.

Output: The two maximal distributive subalgebras of M.

1 R ← ∅;
2 foreach R ∈ M \ B̂ do

3 S0 ← ̂
B̂ ∪ {R};

4 if S0 is distributive then
5 R ← R∪ {R};
6 end
7 end
8 d ← an empty matrix to store d-relation information;
9 for each R ∈ R and each S ∈ R do

10 if ̂
B̂ ∪ {R, S} is distributive then

11 d(R, S) ← true;
12 end
13 end
14 Find R0, S0 ∈ R s.t. d(R0, S0) 	= true;
15 S1 ← {R : d(R0, R) = true};
16 S2 ← {S : d(S0, S) = true};

17 return ̂̂
B ∪ S1 and ̂̂

B ∪ S2;

1https://www.mathworks.com/products/matlab.html
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In the algorithm, we first compute R, the set of relations of R in M \ B̂

such that ̂
B̂ ∪ {R} is a distributive subalgebra. We then check for every pair of

relations R, S in R if ̂
B̂ ∪ {R, S} is a distributive subalgebra. If this is the case,

then we say that R is in d-relation with S and vice versa. Fortunately, the result

shows that for PA, IA, and RCC5/8, there are precisely two subsets S1 and S2

s.t. S1 ∩ S2 = ∅ and S1 ∪ S2 = R, which satisfy that each relation R in S1 (S2,

respectively) is in d-relation with every other relation in S1 (S2, respectively),

but is not in d-relation with any relation in S2 (S1, respectively). Moreover,
̂̂
B ∪ S1 and ̂̂

B ∪ S2 are both distributive subalgebras of M. It can be seen that

these are the only maximal distributive subalgebras of M as indicated by the

following proposition.

Proposition 3.9. Let R, S1, S2 be as defined in Algorithm 3. Then ̂̂
B ∪ S1 and

̂̂
B ∪ S2 are the two unique maximal distributive subalgebras of PA, IA or RCC5/8.

Proof. According to the verification, we know that ̂̂
B ∪ S1 and ̂̂

B ∪ S2 are dis-

tributive. Note that for any relation R in M that is not in R, ̂
B̂ ∪ {R} is not

distributive. Also, from each relation R in S1 is not in d-relation with any rela-

tion S in S2, we know that ̂
B̂ ∪ {R, S} is not distributive. Therefore, ̂

B̂ ∪ {R, S}
is not a distributive subalgebra if {R, S} 	⊆ ̂̂

B ∪ S1 or {R, S} 	⊆ ̂̂
B ∪ S2. By this

fact, adding any relation T that is not in ̂̂
B ∪ S1 to it will make the resulting

subalgebra become non-distributive. This is also the case for ̂̂
B ∪ S2. Then

these two are maximal distributive subalgebras. The uniqueness can also be

easily seen from the fact.

In Appendix A, we list the maximal distributive subalgebras of PA, IA, RCC5

and RCC8.
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3.4.2 Maximal Distributive Subalgebras of CRA

It should be noted that some CRA relations are not Cartesian products of some

basic PA relations. In other words, it was not known before if maximal dis-

tributive subalgebras only consist of relations that are Cartesian products of PA

relations or if they can be constructed from maximal distributive subalgebras

of PA. Therefore, in the following, we first describe a procedure to compute

maximal distributive subalgebras of CRA.

The procedure to compute the maximal distributive subalgebras of CRA is

similar to Algorithm 3 for PA, IA, RCC5 and RCC8, but with some differences.

In detail, we first find out R, the set of relations R in CRA such that ̂
B̂ ∪ {R}

is distributive. There are eight different subalgebras in the set of subalgebras

{ ̂
B̂ ∪ {R} : R ∈ D}. We call these eight distributive subalgebras the seed sub-

algebras. Among these, only 4 are not contained in any other ones. We call

these the candidate subalgebras. We then verify the following three facts:

1. For any pair of different candidate subalgebras Si and Sj, Ŝi ∪ Sj is not

distributive.

2. For any pair of non-candidate subalgebras Si and Sj, Ŝi ∪ Sj is either a

candidate subalgebra or not distributive.

3. For any pair of subalgebras Si and Sj s.t. Si is a candidate subalgebra, Sj

is a non-candidate subalgebra, and Sj 	⊆ Si, we have that Ŝi ∪ Sj is not

distributive.

Based upon the above facts, we show that the four candidate subalgebras are

the only maximal distributive subalgebras of CRA.

To show maximality, suppose that S is one of the four candidate subal-

gebras. Let R be a relation in CRA which is not in S. Then ̂S ∪ {R} is not
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distributive. The reason is as follows. ̂
B̂ ∪ {R} is either a candidate subalgebra

or a non-candidate subalgebra. For it is a candidate subalgebra, by the first

fact, we know that ̂S ∪ {R} is not distributive (note that B̂ ⊆ S). For it is a

non-candidate subalgebra, note that ̂
B̂ ∪ {R} 	⊆ S since R 	∈ S, then by the

third fact ̂S ∪ {R} is still not distributive.

To show uniqueness, i.e. there are no other maximal distributive subalge-

bras, suppose that S ′ is a distributive subalgebra that is not a subset of any of

the four candidate subalgebras. Then S ′ must contain at least two relations in

R, say R1 and R2. By the above facts, we know the closure of the union of
̂

B̂ ∪ {R1} and ̂
B̂ ∪ {R2} is either not distributive or one of the four candidate

subalgebra. If it is the latter case, then S ′ would be either not distributive or a

proper superset of one of the four candidate subalgebras. Note that the latter

situation cannot happen as it contradicts the maximality of the four candidate

subalgebras.

Interestingly, these four maximal distributive subalgebras of CRA exactly

correspond to the Cartesian products of the maximal distributive subalgebras

of PA, viz. CPA ⊗ CPA, CPA ⊗ SPA, SPA ⊗ CPA, SPA ⊗ SPA, where we interpret in

a natural way a CRA relation e.g. {nw, n} as {<,=} ⊗ {>}.

3.4.3 Maximal Distributive Subalgebras of RA

Unlike the other small calculi we have discussed, RA has a large number (169)

of basic relations, resulting in a total of 2169 relations in it. It becomes in-

feasible to exploit the former brute-force procedure to compute the maximal

distributive subalgebras of RA. However, noting that the maximal distributive

subalgebras of CRA are exactly the Cartesian products of the two maximal dis-

tributive subalgebras of PA, we conjectured that a similar situation happens to

RA. This is indeed true.
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Theorem 3.10. RA has exactly four maximal distributive subalgebras, which are

the Cartesian products of the two maximal distributive subalgebras of IA.

Proof. The proof is given in Appendix B.1.

In fact, the proof of the above theorem also applies to CRA and the extended

version of RA, i.e. the Block Algebra (BA; [7]).

3.5 Path Consistency for QCNs over Distributive

Subalgebras

Path consistency (PC) can be used to decide the consistency of QCNs. More-

over, if M is a relation algebra and satisfies (3.3), i.e. every path consistent

scenario is also consistent, then we can show that every path consistent QCN

over a distributive subalgebra S of M is also weakly globally consistent and

minimal. This specifically holds for distributive subalgebras of PA, IA, CRA,

RA, and RCC5/8.

Theorem 3.11. Let M be a qualitative calculus that satisfies (3.2) and (3.3).

Suppose S is a distributive subalgebra of M. Then every path consistent QCN

over S is weakly globally consistent and minimal.

Proof. We defer the proof in Appendix B.1.

Although the algorithm PC updates the relations in terms of “triangles”, it

in fact concerns about the restrictions made by the paths, when dealing with

distributive subalgebras. Given a QCN over a qualitative calculus M, a path π

from a variable x to another variable y is a sequence of constraints (c1, . . . , cs)

s.t. ci = (ui−1Riui), u0 = x, and us = y. In this thesis, we use π<i to represent
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the sub-path (c1, . . . , ci−1) and π>i to represent the sub-path (ci+1, . . . , cs). Fig-

ure 3.2 illustrates a path π = (c1, c2, . . . , c5) in a QCN, where π<3 = (c1, c2) and

π>3 = (c4, c5). Note that a path can contain repeated variables. For example,

the path (c1, c2, c3, c4, c
′) contains u1 as a repeated variable. Specifically, when

a path starts and ends at the same variable, e.g., the path (c2, c3, c4, c
′), we say

such a path is a cycle path.

0u

c'

2c

4c
5c

3c1c
1u

4u

5u
2u

3u

Figure 3.2: Illustration of path in a QCN.

The weak composition of a path π = (c1, . . . , cs), where ci = (ui−1Riui), is

the relation in M defined as

CT(π) ≡ R1 �R2 � · · · �Rs. (3.6)

Since weak composition is associative, CT(π) is well defined. The length of

a path π, denoted by |π|, is the number of constraints in it.

The following proposition shows some essence about why PC concerns

about the paths for distributive subalgebras. Henceforth, we will use PN
xy to

denote the set of all paths from x to y in a QCN N .

Proposition 3.12. Let M be one of PA, IA, CRA, RA, and RCC5/8, and S be

a distributive subalgebra of M. Suppose N is a consistent QCN over S and

Np its a-closure. Assume furthermore that (xSy) is a constraint in Np. Then

S =
⋂

π∈PN
xy
CT(π), i.e. S is the intersection of the weak compositions of all paths

from x to y in N .
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Proof. Suppose the QCN becomes stable in k steps of applying the update rule

in (2.2) when enforcing PC by using the algorithm PC. For l ≤ k, we write Rl
ij

for the relation between vi and vj in the l-th step. We prove by using induction

on l that every Rl
ij is the intersection of the weak compositions of several paths

from vi to vj in N .

When l = 0, this is clearly true. Suppose this is true for l ≤ s. We show

it also holds for l = s + 1. Suppose in this step the following updating rule is

called

Rl+1
ij = (Rl

ik �Rl
kj) ∩Rl

ij. (3.7)

By induction hypothesis, we know Rl
ij is the intersection of the weak compo-

sitions of several paths from vi to vj in N . Similar for Rl
ik and Rl

kj. Note that

when joining a path from vi to vk and a path from vk to vj, we obtain a path

from vi to vj. Because every constraint in N is taken from S, in which weak

composition distributes over non-empty intersections, it follows that Rl
ik �Rl

kj

is identical to the intersection of the weak compositions of all these paths from

vi to vj via vk. It is now clear that Rl+1
ij also satisfies the property.

So far, we have shown for every constraint (xSy) in Np that S is the intersec-

tion of the weak compositions of several paths from x to y in N . Because Np is

path-consistent, the weak composition of every path from x to y in Np contains

S. Therefore, S is also contained in the intersection of the weak compositions

of all paths from x to y in N . This shows that S is exactly the intersection of

the weak compositions of all paths from x to y in N .

The requirement of S being distributive is necessary in the above lemma.

Consider for example the consistent RCC5 QCN N over H5 shown in Fig-

ure 3.3. The intersection of the weak compositions of all paths from v1 to
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v2 in N is {DR,PP}, while the relation that relates v1 to v2 in Np is {DR},

which is strictly contained in {DR,PP}.

1v 2v

4v3v

PO

PP

DR,PP

DR

5v
PO

(a) A QCN N over H5.

1v 2v

4v3v

PO

PP

DR

DR

5v
PO

-1PO,PP

(b) The corresponding a-closure Np.

Figure 3.3: An example showing that Proposition 3.12 does not generally hold
for non-distributive subalgebras.

Some QCNs contain variables that are equal to some other variables. From

a theoretical point of view, these variables can be removed, and sometimes we

would only consider QCNs that do not have such variables. Formally, we call a

QCN satisfying the following condition an all-different QCN.

(∀i, j)[(i 	= j) → (N 	|= (vi idU vj))]. (3.8)

For example, the PA QCN N in Figure 3.4(a) is not an all-diffrent QCN, because

its minimal subnetwork Nm (and equivalently N itself) in Figure 3.4(b) entails,

say, (v1 = v2). On the other hand, N ′ in Figure 3.4(c) is all-different, because

its minimal subnetwork N ′
m does not entail any constraint (vi = vj).

By the proposition below, this restriction can be easily satisfied by distribu-

tive subalgebras as it is the same as requiring that the relation between two

variables in the a-closure of N is not idU (e.g. EQ for RCC8).

Proposition 3.13. Let M be one of PA, IA, CRA, RA, and RCC5/8, and S be a

distributive subalgebra of M. Suppose that N = {viRijvj : 1 ≤ i, j ≤ n} is a
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Figure 3.4: Illustration of all-different QCN.

consistent QCN over S and Np its a-closure. Then, for any i 	= j, N |= (viidUvj)

iff (viidUvj) is in Np.

Proof. The sufficiency part is clear. For the necessity par, let S be the relation

that relates vi and vj in Np. Assume that S 	= idU . By Theorem 3.11, S is the

minimal label for vi and vj. Then ∃α ∈ S and α 	= idU s.t. there is a solution of

Np that satisfies the constraint (viαvj) in Np. Note that Np is equivalent to N .

Therefore, there is a solution of N that satisfies the constraint (viαvj). This is

a contradiction to that N |= (viidUvj).

The observation below, which is about a special property of the weak com-

position of paths involving relations in one of PA, IA, CRA, RA, and RCC5/8,

turns out to be useful in later proofs.

Lemma 3.14. Suppose N is a consistent all-different QCN over M and π =

(c1, c2, ..., cs) (s ≥ 2) a path from x to itself (i.e. a cycle path) in N such that

ci = (ui−1Riui), u0 = us = x. Then CT(π) is the universal relation � if M is PA;

contains idU if M is IA, CRA or RA; contains O5 ≡ {PO,PP,PP−1,EQ} if M is

RCC5; contains O8 ≡ {PO,TPP,TPP−1,EQ} if M is RCC8.

Proof. Write y for u1. Let R = R1 and T = CT(π>1) = R2 �R3 � . . . �Rs

(see Figure 3.5). Note that y 	= x and π>1 is a path from y to x. Suppose

S is the relation from x to y in the a-closure of N . Because N is consistent,
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we know S is non-empty and S ⊆ R, S ⊆ T−1. Furthermore, since N is all-

different and hence satisfies (3.8), we know S 	= idU . As a consequence, we

know there is a basic relation α 	= idU s.t. α ∈ S ⊆ R ∩ T−1. Therefore,

CT(π) = R � T ⊇ α � α−1. By checking the composition tables of PA, IA, CRA,

RA, and RCC5/8, we can see that α � α−1 contains � for PA, contains idU for IA,

CRA or RA, contains O5 for RCC5, and contains O8 for RCC8.

x y

T

R

π>1

(a) R ∩ T−1 	= ∅

x y

α-1 T

α R

π>1

(b) α ∈ R ∩ T−1

Figure 3.5: Illustration for the proof of Lemma 3.14.

The following proposition gives a finer characterisation of a constraint (xSy)

in Np than Proposition 3.12, in terms of paths in N that do not contain the con-

straint (xRy). Let W be the intersection of the weak compositions of all paths

from x to y in N \ {(xRy)}, i.e.

W =
⋂

{CT(π) : π ∈ PN\{(xRy)}
xy }. (3.9)

Proposition 3.15. Let S be a distributive subalgebra of any one of the calculi PA,

IA, CRA, RA, and RCC5/8. Suppose N is a consistent all-different QCN over S
and Np its a-closure. Assume that (xRy) and (xSy) are the constraints from x to

y in N and Np respectively. Then S = R ∩W .

Proof. Because (xRy) is the only path with length 1 from x to y in N , Propo-

sition 3.12 in fact asserts that S is the intersection of R and
⋂{CT(π) : π ∈
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PN
xy, |π| ≥ 2}. Note that each path from x to y in N \ {(xRy)} is a path in N

and has length ≥ 2. We know S ⊆ R ∩W .

To show that S ⊇ R ∩W , we only need to show that CT(π) ⊇ R ∩W for

every path from x to y in N s.t. |π| ≥ 2. Suppose that π = (c1, c2, ..., cs) (s ≥ 2)

is such a path and ci = (ui−1Riui), u0 = x, us = y.

yRx
(a) Case 1

yRx
i ic

i

(b) Case 2

i

y
R

x

i

ic

(c) Case 3

Figure 3.6: Illustration of the three types of paths, where solid lines repre-
sent constraints or paths contained in π and the dashed line represents the
constraint (xRy) in N .

There are three types of paths (see Figure 3.6 for illustration).

Case 1. π contains neither (xRy) nor (yR−1x). Clearly π is a path from x to

y in N \ {(xRy)}. By the definition of W we have that CT(π) ⊇ W .

Case 2. If ci = (xRy) for some 1 ≤ i ≤ s, then CT(π) = CT(π<i) �R � CT(π>i).

Note that either π<i or π>i is a non-empty cycle path. By Lemma 3.14 we know

the weak composition of each cycle path contains idU . Therefore, we know

CT(π) ⊇ R.

Case 3. If ci = (yR−1x) for some 1 ≤ i ≤ s, then CT(π) = CT(π<i) � CT(π≥i).

Without loss of generality, we assume ci is the first constraint in π such that

ci = (yR−1x). It is clear that π<i is a path of Case 1 and hence W ⊆ CT(π<i).

Note that π≥i is a path from y to itself. By Lemma 3.14 we know idU ∈ CT(π≥i)

hence CT(π) = CT(π<i) � CT(π≥i) ⊇ W � idU = W .

This shows that R ∩W is contained in the weak composition of every path

from x to y in N with length ≥ 2. Since S is the intersection of R and all paths
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from x to y in N with length ≥ 2, this shows that S ⊇ R ∩ W . Therefore we

have S = R ∩W .

As Proposition 3.12, the above result in general does not hold for non-

distributive subalgebras. Consider again the QCN shown in Figure 3.3 and the

constraint from v1 to v2. We have R = {DR,PP}, S = {DR}, but R ∩ W =

{DR,PP} 	= S.

3.6 The Applicability of Algorithms Improving PC

The algorithm PC sometimes would be an overkill to decide the consistency of

a QCN, especially when the QCN is sparsely structured. In the following, we

present two alternatives of PC. Moreover, with the properties of distributive

subalgebras discussed in the previous section, we will show their capability to

solve the reasoning tasks including the consistency, the minimal labelling, and

the (weakly) global consistency problems.

3.6.1 Variable Elimination

In [133], Zhang and Marisetti proposed a variable elimination method for solv-

ing the class of connected row convex (CRC) constraints [29, 123], which is a

classical subclass in finite domain CSPs. The idea is to eliminate the variables

from the constraint network one by one until a trivial problem is reached. De-

spite its simplicity, the algorithm is able to make use of the sparsity of the

problem instances and significantly improves the efficiency to check consis-

tency. One key property of CRC constraints is that any strong path consistent

CRC constraint network is globally consistent. Recall that a similar property

has been identified in Theorem 3.11 for QCNs over a distributive subalgebra.
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The following lemma and theorem show that a similar variable elimination

method applies to arbitrary QCN over any distributive subalgebra.

Lemma 3.16. Let M be a qualitative calculus that satisfies (3.2) and (3.3).

Suppose N = {viRijvj : 1 ≤ i, j ≤ n} is a QCN over a distributive subalgebra S
of M and V = {v1, ..., vn}. If Rij ⊆ Rin �Rnj for every 1 ≤ i, j < n, then N|V−n

is consistent only if N is consistent, where N|V−n = {viRijvj|1 ≤ i, j ≤ n − 1} is

the restriction of N on V−n = {v1, ..., vn−1}.

Proof. Suppose Δ−n = {δij : 1 ≤ i, j < n} (Figure 3.7(a)) is a consistent

scenario of N|V−n . We want to show Δ−n can be extended to a consistent

scenario of N . To this end, we construct a path consistent refinement of N
with the help of Δ−n.
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Figure 3.7: Illustration of the proof of Lemma 3.16.

Write Ti for Rn,i and let T̂i =
⋂n−1

j=1 Tj � δji. It is easy to see that by replacing

the constraints Rni with T̂i and the constraints Rij with δij (1 ≤ i, j < n), the

resulting QCN is a refinement of N (Figure 3.7(b)). To show this QCN is path

consistent, we only need to show T̂j ⊆ T̂i � δij and T̂i 	= ∅. The first statement
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is true by noting that

T̂i � δij = (
n−1⋂
j=1

Tj′ � δj′i) � δij =
n−1⋂
j′=1

(Tj′ � δj′i � δji) ⊇
n−1⋂
j′=1

Tj′ � δj′j = T̂j.

To show T̂i 	= ∅, because of the Helly Property of distributive subalgebras,

i.e. the relations satisfy (3.5), we only need to show that Tj � δji∩Tj′ � δj′i 	= ∅

for any j 	= j′. Applying the Peircean Law (see Proposition 3.2) twice, we have

Tj � δji ∩ Tj′ � δj′i 	= ∅ ⇔ Tj′ � δj′i � δij ∩ Tj 	= ∅

⇔ Tj′
−1 � Tj ∩ δj′i � δij 	= ∅

⇔ Rj′n �Rnj ∩ δj′i � δij 	= ∅.

Because δj′j ⊆ Rj′j ⊆ Rj′n �Rnj and δj′j ⊆ δj′i � δij (Δ−n is consistent and

hence path consistent), we have Rj′n �Rnj∩δj′i � δij 	= ∅ and Tj � δji∩Tj′ � δj′i 	=
∅.

From the above lemma, it will be easy to prove the following theorem.

Theorem 3.17. Let M be a qualitative calculus that satisfies (3.2) and (3.3).

Suppose N = {viRijvj : 1 ≤ i, j ≤ n} is a QCN over a distributive subalgebra

S of M and V = {v1, ..., vn}. Let N ∗
−n = {viR̂ijvj | R̂ij = Rij ∩ (Rin �Rnj), 1 ≤

i, j ≤ n − 1}, i.e. N ∗
−n is the QCN after eliminating vn and updating the corre-

sponding constraints of N (Figure 3.8(a)). Then N ∗
−n is consistent if and only if

N is consistent.

Proof. Let N ∗ = N ∗
−n ∪{viRinvn : 1 ≤ i, j ≤ n− 1} (Figure 3.8(b)). Then N ∗ is

a refinement of N and if N ∗ is consistent then N is also consistent. Moreover,

N ∗
−n is the restriction of N ∗ on {v1, . . . , vn−1}, and for every 1 ≤ i, j < n,

Rij ⊆ Rin �Rnj. Then, by Lemma 3.16, we know that if N ∗
−n is consistent
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Figure 3.8: Illustration of the proof of Theorem 3.17.

then N ∗ is also consistent. Therefore, N ∗
−n is consistent only if N is consistent.

Next, we show the “if” part.

Suppose Δ = {viδijvj : 1 ≤ i, j ≤ n} is a consistent scenario of N . We

want to show that Δ is also a consistent scenario of N ∗
−n when restricted to the

variables {v1, . . . , vn−1}. To this end, we only need to show that δij ⊆ R̂ij for

any 1 ≤ i, j ≤ n − 1. Note that δij ⊆ δin � δnj ⊆ Rin �Rnj and δij ⊆ Rij, then

δij ⊆ R̂ij. Thus, Δ is also a consistent scenario of N ∗
−n when restricted to the

variables {v1, . . . , vn−1}.

Sioutis et al. [114] adopted the notion of directional path consistency and

devised the algorithm DPC (Algorithm 4) that applies variable elimination to a

QCN. The concept of directional path consistency first appeared in the context

of CSPs from Dechter et al. [28].

Definition 3.18 (Directional Path Consistency; [114]). A QCN N = (V, C) is

directionally path consistent (DPC) with respect to an ordering of its variables

α = (v1, . . . , vn) iff for all vi, vk, vj ∈ V with i, j > k we have that Rij ⊆
Rik �Rkj.

Figure 3.9(a) shows a PA QCN N that is not DPC w.r.t. the ordering α =

(v1, v2, v3, v4), while N ′ in Figure 3.9(c) is DPC w.r.t. the ordering α. Note that
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Figure 3.9: Illustration of directional path consistency, where N is not DPC
and N ′ is the DPC subnetwork of N w.r.t. the ordering α = (v1, v2, v3, v4),
which is not the same as Np, the a-closure of N .

N ′ is different from the a-closure of N shown in Figure 3.9(b) in this case. In

fact, in N ′ we have R23 = {>} ⊆ R21 �R13 = {≥} � {>} = {>}, which satisfies

the DPC condition for v1, v2, and v3, while R12 = {≤} 	⊆ R13 �R32 = {<},

which means it is not PC.

The algorithm DPC applies variable elimination or, equivalently, achieves

directional path consistency on a QCN. Note that the graph GN is the con-

straint graph of N and when eliminating a variable, we do not need to con-

sider all the edges in the completion of GN . This is different from PC, where

all the edges in the complete graph will be considered. Also, DPC updates the

relations in an ordered way, which saves much efforts, as we will see later in

the analysis of its time complexity.

Based on the observation of variable elimination for QCNs over distributive

subalgebras, in Theorem 3.17, Sioutis et al. [114] showed that DPC is sound

and complete for deciding the consistency of QCNs over distributive subalge-

bras. Moreover, the resulting QCN Ne of DPC is directional path consistent,

which we will call the DPC subnetwork of N . This was first shown in [114].

Theorem 3.19 ([114]). Let N = (V, C) be a QCN that is defined over a distribu-

tive subalgebra of a qualitative calculus that satisfies (3.2) and (3.3), and α =

(v1, . . . , vn) an ordering of V . Then, if N is consistent, DPC returns (True, G,Ne)
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Algorithm 4: DPC(N ,α), a directional path consistency algorithm.
Input: A QCN N = (V, C) with n variables, and an ordering

α = (v1, . . . , vn).
Output: (True, G,N ) or False.

1 E ← E(GN );
2 G ← (V,E);
3 for vk from v1 to vn do
4 Fk ← {vs ∈ adj(vk) : s > k};
5 foreach vi, vj ∈ Fk with i < j do
6 if {vi, vj} 	∈ E then
7 E ← E ∪ {{vi, vj}};
8 end
9 temp ← Rij ∩ (Rik �Rkj);

10 if temp = ∅ then
11 return False;
12 end
13 if temp ⊂ Rij then
14 Rij ← temp;
15 Rji ← temp−1;
16 end
17 end
18 end
19 return (True,G,N );

where Ne is the resulting directional path consistent QCN and returns False oth-

erwise.

In fact, the resulting graph G in DPC is a chordal graph (cf. Definition 2.14),

as observed in [114].

Proposition 3.20 ([114]). Let N = (V, C) be a QCN that is defined over a

distributive subalgebra of a qualitative calculus that satisfies (3.2) and (3.3),

and α = (v1, . . . , vn) an ordering of V . If DPC returns (True, G,N ), then G is a

chordal graph such that GN ⊆ G and α is a perfect elimination ordering of G.

Let us consider the time complexity of DPC. With the resulting chordal



82 3. Distributive Subalgebras

graph G, the process of eliminating variables actually concerns the triangles in

G. Suppose the ordering used in DPC is α = (v1, . . . , vn−1, vn). Then by Propo-

sition 3.20, α is a perfect elimination ordering of the chordal graph G. Recall

that Fk = {vj ∈ adj(vk) : j > k}, and Fk induces a complete subgraph of G. For

eliminating vk, we have to update the relations between the variables in Fk.

Therefore, the total number of updating operations is
∑n

k=1 |Fk|(|Fk| − 1)/2.

Suppose the maximum vertex degree in G is d, then the total number of up-

dating operations is bounded by O(nd2), where n = |V |. Because, we need to

check each vertex and edge in G, the time complexity of DPC is O(nd2+n+m),

where m = |E|. This has been observed by Sioutis et al. [114].

In terms of the number of triangles in G, we have another characterisa-

tion of the time complexity of DPC. With the above analysis, we know that

each triangle in G is visited only once to update the relations. Thus, the time

complexity of DPC is O(t+ n+m), where t is the number of triangles in G.

When GN is sparsely structured, e.g., almost a tree, G will contain only a

relatively small number of triangles, i.e. t is much smaller than
(
n
3

)
= n(n −

1)(n−2)/6, the number of triangles in the complete graph. In this case, DPC is

significantly more efficient than PC, which needs to visit all the triangles in the

complete graph. Moreover, DPC will also have an advantage over the partial

path consistency algorithm PPC (see Algorithm 2), which only visits the edges

in the chordal graph rather than the complete graph. This is because PPC will

visit each triangles more than once (e.g., as many times as 3|BM|). For the

same reason, for cases where GN is a very dense or complete graph, DPC will

still have an advantage over PC.

In [114], Sioutis et al. have shown that both on randomly generated

datasets and on real-world datasets that DPC can indeed significant improve

the efficiency of checking consistency over both PPC and PC, and can scale to
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very large datasets with tens of thousands of variables.

3.6.2 Partial Path Consistency

Although DPC is a significant improvement of PC to check consistency, it does

not achieve PC on QCNs, and hence cannot solve the minimal labelling prob-

lem and the (weakly) globally consistency problem that require stronger rea-

soning power.

On the other hand, the algorithm PPC (Algorithm 2) achieves PC w.r.t.

chordal graphs. Actually, in the context of finite domain CSPs for connected

row convex constraint networks [29], Bliek and Sam-Haroud [13] demon-

strated that the reasoning power of PPC is the same as PC on the common

edges between a triangulation and the completion of the underlying constraint

graph. However, for QCNs over general qualitative calculi, the reasoning

power of PPC and PC on the common edges may not be identical (see e.g. [111]).

Fortunately, for QCNs over a distributive subalgebra the result is affirmative.

Sioutis et al. [113] first observed that.

Proposition 3.21 ([113]). Let M be a qualitative calculus that satisfies (3.2)

and (3.3). Suppose N = {viRijvj : 1 ≤ i, j ≤ n} is a QCN over a distributive

subalgebra S of M and V = {v1, ..., vn}. Assume in addition that G = (V,E)

is a chordal graph such that GN ⊆ G. Then achieving PPC on G decides the

consistency of N and results in the same relations on the edges of G as achieving

PC.

Proof. The proof is given in Appendix B.1.

By the above result, together with Theorem 3.11, we have the following

conclusion.
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Theorem 3.22. Let M be a qualitative calculus that satisfies (3.2) and (3.3).

Suppose N = {viRijvj | 1 ≤ i, j ≤ n} is a QCN over a distributive subalgebra

S of M and V = {v1, ..., vn}. Assume in addition that G = (V,E) is a chordal

graph such that GN ⊆ G and N is PPC w.r.t. G. Then for any {vi, vj} ∈ E, Rij

is the minimal label between vi and vj.

This observation means that PPC can be used as PC in some tasks that

require the power of PC on the edges of the constraint graph. For instance,

suppose we need to find out the minimal labels between several pairs of vari-

ables while the QCN is incomplete. If the QCN is over a distributive subalgebra,

then we do not need to apply PC on the complete QCN, but just to add an edge

between these pairs of variables, construct a corresponding chordal graph and

apply PPC.

Next, let us have a look at the time complexity of PPC. Given a constraint

network N and a chordal graph G = (V,E) s.t. GN ⊆ G, regarding the tri-

angles in G = (V,E), PPC will visit each triangle no more than a constant

times. Then PPC runs in time O(t + n +m), where n = |V |, m = |E|, and t is

the number of triangles in G. In terms of the maximum vertex degree d of G,

PPC runs in time O(n + md) where m is the number of edges in G (see, e.g.,

[13, 112]). When the graph G is a complete graph, PPC and PC are identical

and both runs in O(n3) time. When the graph G is sparse, d and m, as well as

t, will be much smaller than that of a complete graph, and hence in this case

PPC is more efficient than PC. In fact, as noted in, e.g. [111], many real-world

datasets induce sparsely structured (called scale-free) QCNs and PPC can be

much more efficient than PC on these QCNs. Furthermore, in the following

section, we will show that with the properties of distributive subalgebras, one

can achieve PPC and hence PC more efficiently than using PPC and PC.
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3.6.3 A More Efficient Algorithm to Achieve PPC and PC

In the previous two sections, we have seen that for distributive subalgebras

PPC is useful to obtain the reasoning power of PC, while it is not as efficient

as the weaker algorithm DPC, because it visits the triangles many more times

than DPC. It is then natural to ask if we can make use of the efficiency of

DPC while maintaining the reasoning power of PPC. In the context of Simple

Temporal Problems [28], the answer is affirmative. Based on DPC, Planken

et al. [96] proposed a new PPC enforcing algorithm, called P3C, which only

visits the triangles at most three times. Here, we propose a similar algorithm

for QCNs over distributive subalgebras that is more efficient than the algorithm

PPC.

Given a QCN N and an ordering α = (v1, . . . , vn) of its variables, we first

achieve DPC w.r.t. α on N using DPC. After this operation, we obtain a

chordal graph G = (V,E) with α as its perfect elimination ordering. Then,

we update relations by iterating the variables in reverse order. In particular,

for a variable vk (1 ≤ k ≤ n), we consider the set Fk of variables that are

adjacent to vk and preceded by vk in α, i.e. Fk = {vj ∈ adj(vk) : j > k}. The

relation between each vi ∈ Fk and vk is updated with
⋂

vj∈Fk
Rij �Rjk, where

Rij and Rjk are relations in the DPC subnetwork. For example, Figure 3.10

shows a QCN after achieving DPC w.r.t. the ordering α = (v1, . . . , v5). In

1v
2v

4v3v

5v

Figure 3.10: Illustration of updating relations by the for loop starting from
Line 5 in the algorithm DPC+, where vk = v2 and α = (v1, . . . , v5).
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the figure, the variables surrounded by solid circle (i.e. v5, v4, v3) have been

processed by the updating procedure, the one by dotted circle (i.e. v2) is being

processed, and the one by broken circle (i.e. v1) is going to be processed.

The edges represented by solid line correspond to the relations that have been

updated with
⋂

vj∈Fk
Rij �Rjk, the edges by dotted line are being updated, and

the edges by broken line are waiting to be updated. For this QCN, Fk = F2 =

{v3, v4} and the relations R32 and R42 are being updated. The detailed steps

are shown in Algorithm 5. We call this new algorithm DPC+.

Algorithm 5: DPC+(N , α), a more efficient partial path consistency and
path consistency algorithm

Input: A QCN N = (V, C) with n variables, and an ordering
α = (v1, . . . , vn) of V .

Output: True or False, a graph G = (V,E), and an updated N .

1 (result,G,N ) ← DPC(N ,α);
2 if result = False then
3 return (False,G,N );
4 end
5 for vk from vn to v1 do
6 foreach vi s.t. i > k and {vi, vk} ∈ E(G) do
7 Fk ← {vj : j > k ∧ {vj, vk} ∈ E(G)};
8 Rik ←

⋂
vj∈Fk

Rij �Rjk;
9 Rki ← R−1

ik ;
10 end
11 end
12 return (True,G,N );

The following theorem shows that DPC+ establishes PPC on a satisfiable

QCN that is defined over a distributive subalgebra. Note that if we replace

the graph G in Line 1 with the complete graph of the same order, DPC+ will

achieve PC.

Theorem 3.23. Let N = (V, C) be a QCN that is defined over a distributive subal-
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gebra of a qualitative calculus that satisfies (3.2) and (3.3), and α = (v1, . . . , vn)

an ordering of V . Then, DPC+ returns (True, G,N ′) if and only if N is satisfi-

able, where G is a chordal graph such that GN ⊆ G and α is a perfect elimination

ordering of it, and N ′ is the PPC w.r.t. G subnetwork of N

Proof. We defer the proof to Appendix B.1.

Interestingly, because DPC+ achieves PPC for distributive subalgebras, we

know that DPC can be used to achieve minimality on the special pair of vari-

ables, i.e. (vn−1, vn). Formally, we have the following conclusion. Note that a

similar circumstance has been observed in [96] for simple temporal problems.

Corollary 3.24. Let N = (V, C) be a consistent QCN that is defined over a dis-

tributive subalgebra of a qualitative calculus that satisfies (3.2) and (3.3), and

α = (v1, . . . , vn) an ordering of V . Let N ′ be the DPC subnetwork of N w.r.t. α,

and (vn−1R
′
n−1,nvn) the constraint between vn−1 and vn in N ′. Then, R′

n−1,n is the

minimal label between vn−1 and vn.

Proof. Note that DPC+ establishes PPC on N and hence minimality on N .

From the procedure of N , it is easy to see that after applying DPC on Line 1, the

relation between vn−1 and vn is not updated any more. Therefore, the resulting

relation R′
n−1,n by DPC for vn−1 and vn is the same as the one in the minimal

subnetwork of N after applying DPC+. This means R′
n−1,n is minimal.

The DPC+ algorithm only needs to update each triangle in a graph at most

three times. This means that the time complexity of DPC+ is linear in the

number of triangles in the graph.

Theorem 3.25. Let N = (V, C) be a QCN, and α = (v1, . . . , vn) an ordering of

V . Then, DPC+ returns (True, G,N ′) in Θ(t + n +m) time, or (False, G,N ′) in

O(t+ n+m) time, where G is a chordal graph w.r.t. α such that GN ⊆ G, N ′ is
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a subnetwork of N , and t is the number of triangles in G and m is the number of

edges in G.

Proof. The DPC algorithm considers each triangle in G exactly once. During

this process, inconsistency can be detected. For each vk and vi such that i > k

and {vi, vk} ∈ E, lines 6–8 in DPC+ will consider all the triangles involving

vi and vk once. Therefore, each triangle {vi, vj, vk} such that i, j > k and

{vi, vk}, {vj, vk} ∈ E will be considered at most twice and, as such, due to

iterating vk from v1 to vn every triangle in the graph will be considered at most

twice. Note that DPC+ also needs to scan through the vertices and edges in G,

then the total time complexity of DPC+ is Θ(t+ n+m).

In terms of the maximum vertex degree d of G, with the above analysis, it is

easy to see that DPC+ has a time complexity of O(nd2), where n is the number

of variables.

While DPC+ only needs to visit each triangle in a graph at most three

times, PPC usually requires to visit each such triangle many more times than

that (e.g., 3|B|), as we have mentioned before. This is also the case with the

PC enforcing algorithm PC, because when a complete graph is used in PPC,

PPC is exactly the same as PC. Therefore, we expect DPC+ to be more efficient

than both PPC and PC.

Empirical Evaluation of DPC+

In [87], we have shown that DPC+ is much more efficient than PPC (and hence

PC) for establishing PPC on both random and real-world QCNs over distribu-

tive subalgebras of RCC8. Specifically, the random QCNs in [87] were gener-

ated by using the Barabási-Albert (BA) model, which is proposed by Barabási

and Albert [8] and first exploited in QSTR by Sioutis et al. [111]. The BA
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model BA(n,m) is usually used to generate scale-free graphs with n vertices. A

graph is scale-free if the fraction P (k) of vertices in the graph having k neigh-

bouring vertices follows a power law, i.e. P (k) ∼ k−γ, where γ usually lies

in the range (2, 3) and may occasionally lie outside the range. The BA model

BA(n,m) can generate scale-free graphs following P (k) ∼ k−3. Generally, it

works as follows. Initially, there are m0 vertices form a connected graph. The

other vertices are added one by one, and m (< m0) previously added vertices

are randomly chosen to connect the newly added vertex with edges. m is thus

called the preferential attachment value. When m is much smaller than n, the

generated graphs are sparse, i.e. the number of edges of the graph is quite

small compared to that of the corresponding complete graph with n variables.

By associating qualitative relations with the edges, we obtain scale-free struc-

tured QCNs [111].

For these sparsely structured QCNs, the time and the number of (non-

universal) constraint checks2 needed for DPC+ to accomplish PPC are both

significant smaller than that of PPC, especially when the number of variables

becomes very large. Similar results were also observed on real-world datasets,

e.g. for the administrative geography of Greece3 with 1,732,999 variables and

5,236,270 constraints, DPC+ took 11.19s and checked about 36,000,000 con-

straints, while PPC cost 398.63s and checked about 119,000,000 constraints.

In the following, we show the advantage of DPC+ over PPC for establish-

ing partial path consistency on QCNs over the distributive subalgebras of IA.

In particular, our experiment is based on random consistent QCNs generated

by the BA model BA(n,m). In [109] it was noted that m = 3 the generated

QCNs lies in the phase transition region [101] of IA, where QCNs are equally

2A constraint check is performed when we compute the relation r = Rij ∩ Rik �Rkj and
check if r ⊂ Rij .

3In: http://www.linkedopendata.gr
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possible to be consistent or inconsistent. However, we found that for the dis-

tributive subalgebras of IA, this seems no longer the case. Even for m = 2,

most generated QCNs are inconsistent if we randomly choose the relations in

a distributive subalgebra with equal probability. Therefore, we use another

technique4 to select relations. First, we generate a scale-free graph by using

BA(n,m). Then we construct a set of intervals by randomly selecting endpoints

in a sequence of integers, i.e. 1 to 100. Note that there is a basic IA relation

between any two intervals. For two variables that have an edge in the corre-

sponding scale-free graph, we randomly select a relation from the distributive

subalgebra of IA that contains the basic relation between these two variables.

In this way, we obtain a consistent QCN that has scale-free structure and is

over a distributive subalgebra of IA.

In our experiments, for each of the two maximal distributive subalgebras

CIA and SIA, and for each value of n from 1,000 to 10,000 with a step size of

1,000, we generated 10 consistent QCNs with BA(n,m = 2). We compared

the performance of DPC+ and PPC on these datasets, where the implemen-

tations of both algorithms are based on the python implementations used in

[87, 111]. We did not consider inconsistent instances in the experiment, be-

cause we want to focus on the performance of DPC+ to establish PPC. If a

QCN is inconsistent, PPC will not be established, and DPC+ becomes DPC,

whose performance on detecting inconsistency has been analysed in [114]. In

fact, on inconsistent QCNs over both CIA and SIA generated by BA(n,m = 2)

for n from 1,000 to 10,000, we observed that DPC can detect inconsistency in

0.005s, while that of PPC is about 0.2s.

We used the maximum cardinality search algorithm [119] to obtain a vari-

able elimination ordering for PPC to triangulate the graph and for DPC+ to

4From Michael Sioutis: http://cgi.di.uoa.gr/~sioutis/work.php
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execute DPC. This algorithm can find a variable elimination ordering to trian-

gulate a graph into a chordal graph G = (V,E) in time O(|V |+ |E|).
The performance was measured by the computation time and the number

of visited triangles, on a computer running Red Hat Enterprise Linux 6.7 with a

2.9GHz Intel Xeon E5-2690 CPU, and 32GB 1600MHz RAM. We did not count

the time for finding the ordering, as both PPC and DPC+ will use the same

ordering and have the same time for finding the ordering.
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Figure 3.11: Comparison of DPC+ and PPC for increasing number of variables.

Figure 3.11 shows the results. From the results, we can see that DPC+
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costs much less time than PPC and visits much less number of triangles for

these QCNs. In particular, in Figure 3.11(a), when the number of variables

grows to 10, 000, the computation time of PPC increases rapidly from about

1 second to more than 200 seconds, while the computation time of DPC+ re-

mains below 10 seconds. Figure 3.11(b) shows the number of visited triangles

by both algorithms, as well as that of the chordal graphs (“Chordal” in the fig-

ure). Note that the scale of the y-axis is now logarithmic. In the figure, the

number of visited triangles by DPC+ is smaller than that by PPC for an order of

magnitude. Moreover, the number of visited triangles by PPC grows faster than

DPC+ as the number of variables and the number of triangles in the chordal

graph increases. Similar phenomenon can be observed in Figure 3.11(c) and

(d) for SIA. Note that the difference between DPC+ and PPC becomes smaller,

which is probably due to that the compositions of the relations in this subclass

are more likely to be restrictive and hence result in less propagation.

We also considered the effect of different values of m in the BA model

BA(n,m). In particular, for n = 5,000, for each value of m in {1, 2, 3, . . . , 10},

we generated 10 datasets for each of CIA and SIA. The results are shown in

Figure 3.12. Note that when m = 1 the generated QCNs are in tree structures

that are already chordal and do not contain triangles. The results indicate

that DPC+ is much more scalable than PPC when m increases. In particu-

lar, for the synthetic QCNs over CIA, the computation time of DPC+ remains

very short (no more than 300 seconds) while that of PPC grows quickly up to

more than 16,000 seconds. For the synthetic QCNs over SIA, we can observe

similar phenomenon. Also, we observed a larger growth rate of the number

of visited triangles for PPC than that for DPC+. These results, together those

of RCC8, suggest that DPC+ will be a more efficient substitute of the tradi-

tional algorithms for achieving PPC as well as PC for QCNs over distributive
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subalgebras.
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Figure 3.12: Comparison of DPC+ and PPC for increasing m in BA(n =
5000,m).

3.7 Further Discussion

In this section we discuss the relation of distributive subalgebras with concep-

tual neighbourhood graphs [46] and classical CSPs.
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3.7.1 Conceptual Neighbourhood Graph

Using the conceptual neighbourhood graph (CNG) of IA [46], Ligozat [81] gives

a geometrical characterisation for the ORD-Horn relations H. Consider the

CNG of IA (shown in Figure 3.13 (b)) as a partially ordered set (BIA,�) (by

interpreting that any relation to be smaller than its right or upper neighbours).

For θ1, θ2 ∈ BIA with θ1 � θ2, we write [θ1, θ2] as the set of basic interval

relations θ such that θ1 � θ � θ2, and call such a relation a convex interval

relation. An IA relation R is called preconvex if it can be obtained from a convex

relation by removing one or more basic relations with dimension lower than

R, where the dimension of b, bi, o, oi, d, di is 2, the dimension of m,mi, s, si, f, fi

is 1, and the dimension of eq is 0. For example, [o, eq] = {o, s, fi, eq} is a convex

relation and {o, eq} is a preconvex relation. Ligozat has shown that ORD-Horn

relations are precisely preconvex relations. Every path consistent QCN over H
is consistent [93]. In addition, every path consistent QCN over the subclass of

convex relations is globally consistent and minimal [81].

Interestingly, as we have seen before, the classes of convex IA and RCC8

relations are maximal distributive subalgebras of IA and RCC8 respectively.

For IA, Ligozat characterises the convex relations by using the CNG of IA in

Figure 3.13 (b). Similar idea applies to PA and RCC5 directly. For PA, the CNG

is shown in Figure 3.13 (a). From the CNG of PA, we observe that the “convex”

relations correspond to relations in CPA = {<,=, >,≤,≥}, one of the maximal

distributive subalgebras of PA. For RCC5, the CNG is shown in Figure 3.13 (b).

The subclass of convex RCC5 relations is precisely the maximal distributive

subalgebra D5
14.

The CNG of CRA is constructed by using the CNG of PA. For example, note

that < and = are conceptual neighbours in the CNG of PA, and NW is defined

as x < x′ and y > y′ and N is defined as x = x′ and y > y′. Then N and
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Figure 3.13: Conceptual Neighbourhood Graphs.

NW should be conceptual neighbours in the CNG of CRA. The complete CNG

of CRA is given in [82] and the subclass of convex CRA relations corresponds

to the maximal distributive subalgebra CPA ⊗ CPA. Like CRA, the CNG of RA is

constructed by using the CNG of IA. The subclass of convex RA relations [6] is

the maximal distributive subalgebra CIA ⊗ CIA.

For RCC8, the situation is a little different. We need to revise the CNG by

introducing three imaginary relations TPP′,TPP−1′ and PO′ (see Figure 3.13,

right). After this modification, Chandra and Pujari [17] identified the class of

convex RCC8 relations, which is precisely the maximal distributive subalgebra

D8
41.

At first, it seems that we can design an appropriate CNG, from which we can

obtain the other maximal distributive subalgebras like the convex subclasses.

However, this seems impossible, as for PA the maximal distributive subalgebra

SPA contains {<,>} but does not contain either ≤ or ≥.
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3.7.2 Connection with Classical CSPs

For finite domain CSPs, Montanari [90] observed properties similar as the

distributivity here. In particular, Montanari defined a concept called star-

distributive constraint network, which is very similar to our notion of distribu-

tivity, except that it only requires the relations to form a closure w.r.t. the

constraint network. If the concept of distributive subalgebra for finite domain

CSPs is defined similar, then a constraint network over a distributive subalge-

bra is always star-distributive, while it is not clear whether a star-distributive

network is always over a distributive subalgebra.

Table 3.1: An example showing that CRC relations are not always distributive.
⎛
⎝ 1 0 0

1 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 1 1

0 0 1
0 0 1

⎞
⎠

⎛
⎝ 0 0 1

1 1 1
0 1 0

⎞
⎠

⎛
⎝ 0 0 1

0 0 1
0 0 0

⎞
⎠

⎛
⎝ 0 0 1

1 1 1
0 0 0

⎞
⎠

R S T R � (S ∩ T ) R � S ∩R � T

As we have seen, relations in a distributive subalgebra exhibit convexity

in the sense of Helly. In finite CSP, row convex constraints [123] and (the

more general) tree convex constraints [132] enjoy a similar property, which

is specified w.r.t. the “rows” or “images” of the constraints rather than the

constraints themselves. The relations R, S, and T in Table 3.1 are all CRC

constraints but R � (S ∩ T ) 	= R � S ∩ R � T . Note that in this case R ∩ S 	= ∅,

R ∩ T 	= ∅, S ∩ T 	= ∅ but R ∩ S ∩ T = ∅. This means that CRC relations are

not always distributive and do not always have the Helly Property in (3.5). It

seems that the distributivity of finite domain constraints and the Helly Property

are also somehow related.
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3.8 Summary

In this chapter, we first discussed useful properties of distributive subalgebras

and identified maximal distributive subalgebras for popular qualitative calculi.

It turns out that several previously identified useful subclasses (e.g., the convex

subclasses) coincide with some maximal distributive subalgebras. Based on the

useful properties, for QCNs over distributive subalgebras, we showed the ap-

plicability of several efficient algorithms to solve the three important problems

in QSTR, i.e. the consistency problem, the minimal labelling problem, and the

(weakly) global consistency problem. The characterisation and properties of

distributive subalgebras gives us insights of qualitative spatial and temporal

reasoning, and the applicability of efficient algorithms will increase the scala-

bility of a knowledge base and real-world applications for handling qualitative

spatial and temporal information. In the next chapter, we will see that dis-

tributive subalgebras are also useful for solving the redundancy problem.





Chapter 4

Redundancy in QCNs

4.1 Introduction

Removing redundant information in QCNs is helpful for accelerating some

tasks whose efficiency is strongly related to the density of the QCN or the num-

ber of constraints in the QCN. These include the adjustment of the position

or the shape of the geometrical objects so that the spatial constraints between

objects are satisfied [127, 128] and the comparison of QCNs by calculating

the differences between paired relations between QCNs [53, 94], as well as

dynamically updating QCNs. More details on this have been discussed in Sec-

tion 2.5.4. Many other possible applications exist and are worth investigating

in the future, such as how to efficiently merge two QCNs, how to reveal the

essential structure of the QCN, and so on.

In the following, we will focus on discussing how distributive subalgebras

can help to correctly and efficiently identify redundant constraints and prime

subnetworks for QCNs. The general idea is as follows. We first investigate

solving the redundancy problem of general QCNs in Section 4.2. Then in Sec-

tion 4.3 we focus on discussing how distributive subalgebras can help to iden-

99
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tify redundant constraints and prime subnetworks for QCNs, including results

about unique prime subnetworks for some QCNs and the correspondence of re-

dundant constraints in a QCN and its path consistent subnetwork. Section 4.4

discusses efficient algorithms to construct prime subnetworks.

Bibliographic Note. The work reported in this chapter is based on the joint

work with Sanjiang Li, Weiming Liu, Matt Duckham, and Alan Both, which was

first published in

• Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan Both:

On Redundant Topological Constraints, Artificial Intelligence, 2015, vol.

225, pp. 51–76.

The work was initiated and motivated by Matt Duckham and Sanjiang Li. The

first breakthrough was made by Weiming Liu, who found that B̂5, the closure

of basic RCC5 relations, has the distributivity property. Through collaboration

with Sanjiang Li and Weiming Liu, we proved more general results for dis-

tributive subalgebras of both RCC5 and RCC8, and devised the algorithm (i.e.

Algorithm 6). I also constructed examples for illustrating that several results

only hold for certain distributive subalgebras. Matt Duckham and Alan Both

conducted the empirical evaluation in the publication, which is not included in

this thesis.

4.2 Redundant Constraints

Recall that in Chapter 2, a QCN N = (V, C) entails a constraint (viRijvj),

written as N |= (viRijvj), if for every solution (a1, . . . , an) of N we have

(ai, aj) ∈ Rij. Redundant constraints can be defined w.r.t. entailment.

Definition 4.1. Let N be a QCN over a qualitative calculus M. A constraint

(viRvj) in N is redundant if N \ {(viRvj)} |= (viRvj). A QCN is prime if it
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does not have any redundant constraints, and reducible otherwise. If a QCN

N ′ contains a subset of constraints of N is equivalent to N and is prime, then

N ′ is a prime subnetwork of N .

An example of redundant constraints and prime subnetwork has been given

in Example 2.2.

The central question to find a prime subnetwork is to determine if a con-

straint is redundant. Generally, this is hard, as the following proposition shows.

Proposition 4.2. Let M be one of IA, RCC5/8, CRA, and RA, and N be a QCN

over M. Suppose that (xRy) is a constraint in N . It is then co-NP-complete to

decide if (xRy) is redundant in N .

Proof. First of all, we note that (xRy) is redundant in N iff (N \ {(xRy)}) ∪
{xRcy} is inconsistent, where Rc = � \R, i.e. the complement of R. Since it is

NP-complete to decide if a QCN over IA, RCC5/8, CRA, or RA is consistent, we

know that the problem of determining if a constraint is redundant in a network

is in co-NP. On the other hand, it is easy to construct a polynomial many-one

reduction from the problem of checking the inconsistency of a QCN over one of

these calculi to the redundancy problem, as shown in the following argument.

Fix two variables x, y. Suppose N is an arbitrary QCN over one of these calculi

with variables V and x, y are two variables in V . Then N is inconsistent iff

N \{(xRy)} |= (xRcy) iff (xRcy) is redundant in (N \{(xRy)})∪{xRcy}. This

shows that the redundancy problem is co-NP complete.

By contrast, for PA, the problem of deciding if a constraint is redundant in

a QCN is clearly in P.

To construct a prime subnetwork of a given QCN, a naive method would be

to remove redundant constraints sequentially from the QCN until it is prime.
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Suppose that {c1, . . . , ck} is the set of non-trivial redundant constraints in a

QCN N . For 0 ≤ i ≤ k − 1 and N0 = N , define

Ni+1 =

⎧⎨
⎩

Ni \ {ci+1} if ci+1 is redundant in Ni;

Ni if otherwise.
(4.1)

Note that we have the following conclusion.

Proposition 4.3. If a constraint (xRy) is not redundant in a QCN N , then it is

not redundant in any subset of N containing this constraint.

Proof. Suppose N ′ ⊆ N and (xRy) is a constraint in N ′. Assume on the

contrary that (xRy) is redundant in N ′, i.e. N ′ \ {(xRy)} |= (xRy). Let

N ∗ = N \{(xRy)} and N ∗∗ = N ′ \ {(xRy)}. Then any solution of N ∗∗ satisfies

(xRy). Because N ′ ⊆ N , any solution of N ∗ is also a solution of N ∗∗ and satis-

fies (xRy). Therefore, (xRy) is redundant in N , which is a contradiction.

Then it is easy to see that Nk does not contain any redundant constraint

and is equivalent to N , i.e. Nk is a prime subnetwork of N . Suppose that de-

termining if a constraint is redundant in a QCN is in O(t) time, then Nk can be

obtained in O(n2 · t) time. In particular, for N over PA, as van Beek [121] have

shown that there is an algorithm to decide the consistency in O(n2) time, the

redundancy of a constraint can also be decided in O(n2) time and a prime sub-

network can be constructed in O(n4) time. For the preconvex subclass of CRA,

a prime subnetwork can also be constructed in O(n4) time, as Ligozat [82]

showed that there is an algorithm to decide the consistency in O(n2) time.

For IA, RCC5/8, and RA, by Proposition 3.3, the consistency of a QCN over

a tractable subclass that contains all basic relations can be determined by the

cubic time algorithm PC and hence a prime subnetwork can be constructed in

O(n5) time for a QCN over a such tractable subclass. Here a tractable subclass
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of RA specially refers to one of the currently known ones that contain all the

basic relations (cf. [6]).

It would be interesting to specially consider the core of a QCN.

Definition 4.4. Let N is a QCN over a qualitative calculus M. The core of N ,

written as Nc, is the set of non-redundant constraints in N .

Similar to the case of computing a prime subnetwork, by removing all the

redundant constraints in N , the core can be computed in O(n4) for the whole

PA and the preconvex subclass of CRA, or O(n5) time for tractable subclasses

of IA, RCC5/8, or RA that contain all the basic relations.

By Proposition 4.3, we know that the core Nc is contained in every prime

subnetwork of N , and Nc itself is prime. A natural question is whether Nc is

equivalent to N and hence it is a prime subnetwork of N . In other words, we

want to know if the prime subnetworks of N are unique. In general, however,

this is not the case.

Example 4.1. Consider the QCN N over H5 shown in Figure 4.1(a). The core

Nc (shown in Figure 4.1(b)) is not equivalent to N and hence not a prime

subnetwork of N . This is because (v3 DR v2) is feasible in Nc but not in N .

3v

1v 2v

4v

PP

PP

(a) a QCN N over H5

1v 2v

4v

3v

(b) the core Nc of N

Figure 4.1: An example showing that the core is not necessarily equivalent to
the original QCN.
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This means that the redundancy of some constraints might be dependent

on other redundant constraints. Note that the relations in the above QCN are

not all contained in a distributive subalgebra of RCC5. That is, this degenerate

case is probably due to the absence of distributivity. On the other hand, for a

QCN over a distributive subalgebra of PA or RCC5/8, if it is not all-different as

specified in (3.8), then the core also might not be equivalent to N .

Example 4.2. Suppose N is the QCN over RCC5 specified as below

{v1 P v2, v2 P v3, v3 P v1, v1 PO v4, v2 PO v4},

where P = {PP,EQ}. Then both PO constraints in N are redundant. This is be-

cause, by establishing PC on N we have that v1 EQ v2, v1 EQ v3, and v2 EQ v3.

Therefore, knowing one PO constraint will infer the other. N has no other re-

dundant constraints and {v1 P v2, v2 P v3, v3 P v2} is the core of N but not equiv-

alent to N . It is easy to see that Nc ∪ {v1 PO v4} and Nc ∪ {v2 PO v4} are two

prime subnetworks of N .

This kind of circumstances could happen when N is not all-different. Nev-

ertheless, in this case, we can easily merge the equal variables and update the

constraint accordingly to make N all-different. In the following, we will as-

sume that a QCN is all-different. Interestingly, with this assumption, a QCN N
over any distributive subalgebra of PA or RCC5/8 has its core Nc as the unique

prime subnetwork, as we will see in the following section.

4.3 Unique Prime Subnetworks

We first summarise the results in Theorem 3.11 and in Theorem 3.22.
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Theorem 4.5. Let S be a distributive subalgebra of PA, IA, CRA, RA, and RCC5/8.

Suppose N is a consistent QCN over S and Np its a-closure. In addition, suppose

G = (V,E) is a chordal graph such that GN ⊆ G and NG
p is the PPC subnetwork

of N w.r.t. G. Then Np is identical to the minimal subnetwork of N , and for any

(vi, vj) ∈ E and the constraint (viTijvj) ∈ NG
p we have that Tij is the minimal

label between vi and vj.

Suppose N is a QCN over a distributive subalgebra S and Np its a-closure.

Let (xRy) and (xSy) be the constraints from x to y in N and Np respectively.

We will first show that, for distributive subalgebras of PA or RCC5/RCC8, (xRy)

is redundant in N iff (xSy) is redundant in Np. To this end, we first take a look

at the following two lemmas showing that a constraint (xRy) in N is redundant

iff R contains W , where

W =
⋂

{CT(π) : π ∈ PN\{(xRy)}
xy }, (4.2)

i.e. the intersection of the weak compositions of all paths from x to y in N \
{(xRy)}. All of the following discussions assume that the QCNs are consistent.

Lemma 4.6. Suppose N is a QCN over a qualitative calculus M and (xRy) a

constraint in N . Then (xRy) is redundant in N if R ⊇ W .

Proof. Write N ′ = N \{(xRy)}. For every path π from x to y in N ′, since (xRy)

is redundant in N , we know N ′ entails (xCT(π)y). By the definition of W , this

implies that N ′ entails (xWy). Suppose R ⊇ W . It is clear that every solution

of N ′ also satisfies (xRy), and therefore, (xRy) is redundant in N .

Note that this conclusion is true for any QCN over any qualitative calculus.

Interestingly, for distributive subalgebras, the other way around is also true.
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Lemma 4.7. Let S be a distributive subalgebra of any one of the calculi PA, IA,

RCC5/8, CRA and RA. Suppose N is an all-different QCN over S and (xRy) is a

constraint in N . Assume that W is defined as in (4.2). Then (xRy) is redundant

in N only if R ⊇ W .

Proof. Suppose (xRy) is redundant in N . Then each solution of N ′ = N \
{(xRy) also satisfies (xRy). Write (xTy) for the constraint between x and y

in N ′
p, the a-closure of N ′. Note that the relation between x and y in N ′ is

the universal relation �. By Proposition 3.15 we know that T = � ∩ W = W .

Furthermore, by Theorem 4.5, we know each basic relation in T is feasible in

N ′, that is, for each basic relation in T , there is a solution of N ′ satisfying it.

This implies that W (= T ) is contained in R.

In general, this result does not hold for non-distributive subalgebras. For

example, consider the QCN N over H5 shown in Figure 4.2 and the constraint

(v1PPv2). It is easy to show that N is PC, i.e., N = Np, and (v1PPv2) is

redundant in N . However, we have W = {PP,EQ}, which is not contained in

R = PP.

3v

1v 2v

4v

PP

-1PO,PP,PP

Figure 4.2: An example showing Lemma 4.7 generally does not hold for non-
distributive subalgebras, where N = Np is a path-consistent QCN over H5.

For distributive subalgebras, the above characterisation of redundant con-

straints can be made to paths of length two if N itself is path consistent.
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Proposition 4.8. Let S be a distributive subalgebra of any one of the calculi PA,

IA, RCC5/8, CRA and RA. Suppose N is an all-different and path consistent QCN

over S. Then a constraint (viSijvj) is redundant in N iff Sij =
⋂{Sik � Skj : k 	=

i, j}, i.e., Sij is the intersection of the weak compositions of all paths from vi to vj

that have length two.

Proof. By Lemma 4.6 we know that (viSijvj) is redundant in N if Sij contains

Wij, the intersection of the weak compositions of all paths from vi to vj in

N \ {(viSijvj)}. Then the “if” direction is clear. Next we prove the “only if”

direction.

Suppose that (viSijvj) is redundant in N . Let π = (c1, c2, ..., cs) (s ≥ 2) be

a path from vi to vj in N \ {(viSijvj)} such that ct = (ut−1Stut) (t = 1, . . . , s),

u0 = vi and us = vj. We have CT(π) = S1 � CT(π>1), where π>1 = (c2, . . . , cs).

Suppose u1 = vk. Then S1 = Sik and π>1 is a path from vk to vj. For π>1

containing the constraint (vi�vj), we have that Skj ⊆ � = CT(π>1). For π>1

not containing the constraint (vi�vj), then π>1 is a path in N . Because N is

PC, we know by Proposition 3.12 that Skj ⊆ CT(π>1). Therefore, Sik � Skj ⊆
CT(π). Due to the arbitrariness of π, we know that Wij ⊇ ⋂

k �=i,j Sik � Skj.

Since (viSijvj) is redundant in N , by Lemma 4.7, Sij ⊇ Wij ⊇
⋂

k �=i,j Sik � Skj.

On the other hand, by the fact that N is PC, we have
⋂

k �=i,j Sik � Skj ⊇ Sij.

Therefore Sij =
⋂

k �=i,j Sik � Skj.

Still, this result does not hold in general for non-distributive subalgebras.

Consider again the PC QCN N over RCC5 over H5 shown in Figure 4.2. Al-

though (v1 PP v2) is redundant in N , S13 � S32 ∩ S14 � S42 = {PP,EQ} strictly

contains {PP}.

From the above proposition, we have another characterisation of the re-

dundant constraints in the a-closure Np w.r.t. the paths in the original QCN N .
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Corollary 4.9. Let N is an all-different QCN over any distributive subalgebra

of the calculi PA, IA, RCC5/8, CRA and RA. Suppose Np is the a-closure of N
and (xSy) is a constraint in Np. Assume that (xSy) is redundant in Np. Then

S =
⋂{CT(π) : π ∈ PN

xy, |π| ≥ 2}, i.e. the intersection of all paths from x to y in

N with length ≥ 2.

Proof. Because (xSy) is redundant in Np, by Proposition 4.8, we know S =⋂{Sxk � Sky : k 	= x, y}, i.e. the intersection of the weak compositions of all

paths with length 2 from x to y in Np. For each constraint (uiSijuj) in such

a path, Proposition 3.12 shows that Sij =
⋂

π∈PN
ij
CT(π), i.e. the intersection

of the weak compositions of all paths from ui to uj in N . Replace each Sij in⋂{Sxk � Sky : k 	= x, y} with
⋂

π∈PN
ij
CT(π). By the distributivity of weak com-

position, we know that S =
⋂{Sxk � Sky : k 	= x, y} becomes the intersection

of the weak compositions of several paths from x to y in N with length ≥ 2,

and S ⊇ ⋂{CT(π) : π ∈ PN
xy, |π| ≥ 2}, the intersection of the weak composi-

tions of all the paths from x to y in N with length ≥ 2. By Proposition 3.12

again we know that ∀π that is a path from x to y in N , S ⊆ CT(π) and hence

S ⊆ ⋂
π∈PN

xy
CT(π). Note that

⋂
π∈PN

xy
CT(π) ⊆ ⋂{CT(π) : π ∈ PN

xy, |π| ≥ 2}.

This shows that S =
⋂{CT(π) : π ∈ PN

xy, |π| ≥ 2}.

We next show that (xRy) is redundant in N iff (xSy) is redundant in Np for

some distributive subalgebras. First we have the following observation.

Lemma 4.10. Suppose N1 and N2 are two equivalent QCNs and N2 is a refine-

ment of N1. Assume further that (x R1 y) ∈ N1 and (x R2 y) ∈ N2 are two

corresponding constraints between x and y. Then (x R1 y) is redundant in N1

only if (x R2 y) is redundant in N2.

Proof. Write N ′ for N1 \ {(xR1y)} and N ′′ for N2 \ {(xR2y)}. Suppose (xR1y)

is redundant in N1. Then N ′ |= (xR1y). Because N ′′ is a refinement of N ′,
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we know that every solution of N ′′ is a solution of N ′ and hence also satisfies

(xR1y). Therefore, every solution of N ′′ is a solution of N1. Note that N1 and

N2 are equivalent. Then every solution of N ′′ is also a solution of N2 and hence

satisfies (xR2y). Thus, (xR2y) is redundant in N2.

Proposition 4.11. Let S be a distributive subalgebra of PA or RCC5/8. Suppose

N is an all-different QCN over S. Assume that (xRy) and (xSy) are the con-

straints from x to y in N and Np respectively. Then (xRy) is redundant in N iff

(xSy) is redundant in Np.

Proof. For the necessary part, note that Np refines N and Np is equivalent to

N , then by Lemma 4.10, we have that (xRy) is redundant in N only if (xSy) is

redundant in Np. The proof of the sufficiency part is given in Appendix B.2.

The result also does not hold in general for non-distributive subalgebras.

Consider the QCN N over H5 shown in Figure 4.3 and the constraint from v3

to v2. It is clear that the constraint (v3PPv2) is redundant in Np. However,

(v3PPv2) is not redundant in N . This is because (v3 DR v2) is consistent with

N \ {(v3PPv2)} (shown in Figure 4.3(c)). Actually, it is easy to construct a

solution {a1, a2, a3, a4} of N \ {(v3PPv2)}, in which (a3 PP a1), (a1 PP a4) and

(a2 DR aj) for j = 1, 3, 4.

3v

1v 2v

4v

DR,PP

PP

(a) a QCN N over H5

1v 2v

4v

PP

PP

3v

(b) its a-closure Np

1v 2v

4v

DR,PP

PP

3v

(c) N \ {(v3PPv2)}

Figure 4.3: An example showing Proposition 4.11 generally does not hold for
non-distributive subalgebras.
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Moreover, for the two maximal distributive subalgebras of IA, the fact that

(xSy) is redundant in Np also does not necessarily imply that (xRy) is redun-

dant in N . Actually, we can find an example showing this even for QCN over

B̂IA.

Example 4.3. In the QCN in Figure 4.4(a), x{f, fi, eq}y is not redundant be-

cause replacing it with x{si}y still retains the consistency of the QCN. But in

the corresponding a-closure in Figure 4.4(b), x{f, fi, eq}y is redundant, since

f � fi = {f, fi, eq}. We should note that a similar example for QCNs over RA can

be easily constructed by using the relations in the form R⊗ idU .

1v 2v

3v
{d,oi,f} {fi}

{f,fi,eq}

(a) The original IA QCN.

1v 2v

3v
{f} {fi}

{f,fi,eq}

(b) The corresponding a-closure.

Figure 4.4: An example showing Proposition 4.11 does not necessarily hold for
IA QCN over B̂IA, where x{f, fi, eq}y is not redundant in the original QCN but
redundant in the a-closure.

In addition, for B̂CRA of CRA, Proposition 4.11 is also not true, as shown by

the following example.

Example 4.4. In Figure 4.5, the constraint v1(<, �)v2 is not redundant in the

original QCN, because removing it yields v1(�,<)v2 in the a-closure. On the

other hand, the constraint v1(<,<)v2 is redundant in the a-closure of the origi-

nal QCN. We note that this is due to a “partial” violation of the all-different con-

dition, as the minimal relation between v1 and v2 would be v1(<,=)v2 where

the two variables “equal” in the last dimension.
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1v 2v

3v
(*,<) (=,<)

(<,*)

(a) The original CRA QCN.

1v 2v

3v
(<,<) (=,<)

(<,<)

(b) The corresponding a-closure.

Figure 4.5: An example showing Proposition 4.11 does not necessarily hold for
CRA QCN over B̂CRA, where (v1(<, ∗)v2) is not redundant in the original QCN
but (v1(<,<)v2) is redundant in the a-closure.

Recall that Theorem 4.5 asserts that Np is minimal. Proposition 4.11 can

be rephrased as follows:

Proposition 4.12. Let S be a distributive subalgebra of PA or RCC5/8. Suppose

N is an all-different QCN over S and Nm the minimal subnetwork of N . Assume

that (xRy) and (xSy) are the constraints from x to y in N and Nm respectively.

Then (xRy) is redundant in N iff (xSy) is redundant in Nm.

With the above results, by the theorem below, we know the core is also

the unique prime subnetwork of an all-different QCN N over any distributive

subalgebra of PA or RCC5/8.

Theorem 4.13. Let S be a distributive subalgebra of PA or RCC5/8. Suppose N
is an all-different QCN over S and Nc the core of N . Then Nc is equivalent to N
and hence the unique prime subnetwork of N .

Proof. Suppose c1, c2, . . . , ck are the redundant constraints of N . Let N0 = N
and Ni+1 = Ni \ {ci+1} for 0 ≤ i ≤ k. Note that Nk is precisely Nc, the core of

N . Assume on the contrary that 0 ≤ i < k is the largest integer such that Ni is

equivalent to N .

Suppose ci+1 = (xRy) and (xSy) is the corresponding constraint in Nm, the

minimal network of N . Note that ci+1 is also in Ni. By Proposition 4.12 we
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know (xSy) is redundant in Nm since (xRy) is redundant in N . Because Nm

is also the minimal network of Ni, by Proposition 4.12 again we know (xRy)

is redundant in Ni. This means that Ni+1 is equivalent to Ni, hence N . This

contradicts our assumption that i < k is the largest integer such that Ni is

equivalent to N . Therefore, i = k and Nc is equivalent to N .

As we have noted in the beginning of this section, for non-distributive sub-

algebras, the conclusion above is not always true, i.e. the core of a QCN might

not be equivalent to it. Moreover, for IA, RA, and CRA, the above conclusion is

not true even for QCNs with basic relations.

Example 4.5. Consider the IA QCN in Figure 4.6. Both the constraints (v1mv2)

and (v1mv3) are redundant in the original QCN, because m � s = m and m � si =

m. However, the core shown in Figure 4.6(b) is obviously not equivalent to the

original network. This is due to the fact that the redundancy of these two

constraints is determined by each other. A similar example for QCN over RA

can also be constructed by using the relations in the form R⊗ idU .

1v 2v

3v
{m} {s}

{m}

(a) The original IA QCN.

1v 2v

3v
{s}

(b) The core.

Figure 4.6: An example showing the core of a IA QCN over BIA is not equivalent
to the QCN.

Example 4.6. In the QCN in Figure 4.7(a), both v1(<,<)v2 and v3(<,<)v2 are

redundant. However, the core shown in Figure 4.7(b) is not equivalent to the

original QCN. We think that the circumstance comes from the partial violation

of the all-different condition.
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3v

1v

2v

(<,=)

4v

(=,<)

(<,<)

(<,<)

(<,>)

(a) The original IA QCN.

3v

1v

2v

(<,=)

4v

(=,<)

(<,>)

(b) The core.

Figure 4.7: An example showing the core of a CRA QCN over BCRA is not
equivalent to the QCN.

4.4 An Efficient Algorithm for Computing the Core

We have shown that the core of a QCN over a tractable subclass of PA or

RCC5/8 can be found in O(n4) or O(n5) time. As an improvement, we pro-

pose an O(n3) time algorithm for the distributive subalgebras of PA or RCC5/8

to compute the core, shown as Core(N ) in Algorithm 6. To identify redundant

constraints in the input QCN N , this algorithm first applies the result in Propo-

sition 4.8, i.e. (viSijvj) is redundant in Np iff Sij =
⋂{Sik � Skj : k 	= i, j}, to

find redundant constraints in the a-closure of N . Then by Proposition 4.11,

the corresponding constraints in N is also redundant. The core is computed

by directly removing all the redundant constraints. It can be easily seen that

the algorithm runs in O(n3) time.

Later, Sioutis et al. [113] proposed a more efficient algorithm based on

chordal graph and PPC. In particular, they have the following conclusion.

Proposition 4.14 ([113]). Let S be a distributive subalgebra of any one of the

calculi PA and RCC5/8. Suppose N is an all-different QCN over S and is PPC

w.r.t. G = (V,E), where G is a chordal graph s.t. GN ⊆ G. In addition, suppose

Np = {(viSijvj)} is the a-closure of N . Then, for (vi, vj) ∈ E, the constraint

(viSijvj) is redundant in Np iff Sij =
⋂{Sik � Skj : k 	= i, j, {vi, vk}, {vk, vj} ∈

E}.
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Algorithm 6: Core(N ), an algorithm for finding prime subnetworks.

Input: A consistent QCN N = {viRijvj : 1 ≤ i, j ≤ n} with
V = {vi : 1 ≤ i ≤ n} over a distributive subalgebra S of PA or
RCC5/8.

Output: Nc: the core of N .

1 Redun ← ∅;
2 Np ← PC(N );
3 foreach constraint (viSijvj) ∈ Np do
4 Qij ← �;
5 foreach variable vk ∈ V \ {vi, vj} do
6 Qij ← Qij ∩ Sik � Skj;
7 if Qij = Sij then
8 Redun ← Redun ∪ {(viRijvj)};
9 break the inner loop;

10 end
11 end
12 end
13 Nc ← N \ Redun.

To use this result to efficiently calculate the core, it is important to know

how to efficiently check if N is an all-different QCN, i.e. (∀i, j)[(i 	= j) → (N 	|=
(vi idU vj))] (cf. (3.8)). Otherwise the above conclusion will not improve the

efficiency of the algorithm Core for arbitrary QCNs. Fortunately, it suffices to

only check whether there are pairs of vi, vj such that (vi idU vj) is in the PPC

subnetwork.

Proposition 4.15. Let S be a distributive subalgebra of PA or RCC5/8, and N
is a consistent QCN over S. Suppose that G = (V,E) is a chordal graph s.t.

G(N ) ⊆ G and NG
p is the PPC subnetwork of N w.r.t. G. Then N 	|= (viidUvj)

for any vi 	= vj ∈ V iff (uidUv) 	∈ NG
p for any {u, v} ∈ E.

Proof. Note that, by Theorem 4.5, in NG
p the relations on the edges of the

chordal graph are minimal labels. It is easy to see that if N 	|= (viidUvj) for any

vi 	= vj ∈ V then (uidUv) 	∈ NG
p for any {u, v} ∈ E.
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For the “if” direction, suppose on the contrary that N |= (viidUvj) for some

vi 	= vj ∈ V . Then {vi, vj} 	∈ E, because (viidUvj) 	∈ NG
p for any {vi, vj} ∈ E.

Without loss of generality, let us suppose {vi, vj} is the first edge that was added

into E and that generates new triangles, when we try to complete G and obtain

a-closure according to the proof of Proposition 3.21. Then for any k 	= i, j and

{vi, vk}, {vk, vj} ∈ E, due to PPC of NG
p we have idU � Sik = Sjk, where Sik

and Sjk are the relations in NG
p . This will result in that Sik � Skj = Sik � S−1

ik ,

which contains O for RCC5 or RCC8, and contains � for PA by Lemma 3.14.

This means that
⋂{Sik � Skj : k 	= i, j and {vi, vk}, {vk, vj} ∈ E} 	= idU . This is

a contradiction to the construction of the relation between vi and vj.

Therefore, we can determine if a QCN is all-different by using its PPC

subnetwork, which will be more efficient than using the PC subnetwork.

Note that if {vi, vj} 	∈ E, then (viSijvj) is always redundant in Np. Regard-

ing the core of a QCN, Sioutis et al. [113] have discussed the following result

and a more efficient algorithm that makes use of the graph structure of QCNs

to find the core.

Theorem 4.16 ([113]). Let S be a distributive subalgebra of PA or RCC5/8.

Suppose N is an all-different QCN over S and G = (V,E) a chordal graph s.t.

G(N ) ⊆ G. Assume that NG
p is the PPC subnetwork of N w.r.t. G and Nc is

the core of N . Then a constraint (viRijvj) in N is also in Nc iff {vi, vj} ∈ E and

Sij 	= ⋂{Sik � Skj : k 	= i, j, {vi, vk}, {vk, vj} ∈ E}, where (viSijvj), (viSikvk),

and (vkSkjvj) are the constraints in NG
p .

4.5 Summary and Discussion

In this chapter, we discussed the redundancy problem of distributive subal-

gebras. For any all-different QCN over one of the distributive subalgebras of
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PA and RCC5/8, we showed that there exists a unique prime subnetwork of

the QCN that is exactly the core of it. On the other hand, for non-distributive

subalgebras and distributive subalgebras of IA, RA, and CRA, we have pro-

vided examples to show the conclusion generally does not hold. We have also

devised an O(n3) time algorithm to construct the unique prime subnetwork

(i.e. the core) of any QCN over one of the distributive subalgebras of PA and

RCC5/8.

In [77] and [113], the effectiveness and the efficiency of the algorithm Core

and the one using the PPC subnetwork to construct the core of a QCN have

been thoroughly verified on several real-world datasets. In particular, in [77],

the evaluation was conducted on the complete basic RCC8 QCNs of two kinds

of datasets, i.e. the structured dataset about statistical areas that contains no

overlapping regions and the unstructured footprint dataset derived from social

media, which contains a variety of regions of different size and shapes but

sharing almost no adjacent boundaries. It was observed that on both datasets

there are more than 90% redundant constraints. There is also a correlation

between the number of PO relations and the number of redundant constraints

on the dataset of footprint, i.e. the less PO constraints the more redundant

relations there are. This can be explained by that the weak compositions of PO

with other relations are usually not very restrictive and always contains PO.

Moreover, it is easy to see from the composition table of RCC8 that, if a QCN

contains only DC,EC,PO relations, then there will be no redundant constraints

at all. In [113], the algorithms are tested on larger and sparser QCNs that also

contain non-basic RCC8 relations. They observed a speed-up of the algorithm

using the PPC subnetwork over the algorithm Core. Interestingly, although

the density of the QCNs is already very low, there are still many redundant

constraints in some of these QCNs, with a highest reduction rate of 65.66%.
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With a high reduction rate of constraints on real-world datasets, prime sub-

networks can be used to simplify the structure of QCNs so that other tasks

whose performance is strongly related to the structure, e.g. the topological

adjustment of spatial scenes and comparison of different QCNs, as we have

mentioned in Section 2.5.4. This will make the comprehensive knowledge

base be able to better support other applications.

However, removing redundant constraints from QCN will make the re-

trieval of the removed constraints inefficient. In fact, to restore a removed

constraint from the prime subnetwork, we need to enforce either DPC or PPC

on the QCN, which has a worst case performance O(n3). When the number of

variables becomes larger, the retrieval of the removed constraints will quickly

become inefficient. In fact, in [77], on the footprint dataset where the regions

contains less vertices, the retrieval of the relations from the prime subnetwork

becomes less efficient than direct geometric computation. On several small

datasets of 600 variables, which will be used in the following chapters, we

have also observed that retrieving relations with the prime subnetworks takes

more than 107ns, which is longer than most of the computation time from ge-

ometric representation. In other words, the prime subnetwork representation

is not suitable to be used as a representation that support efficient retrieval of

relations. Moreover, it is still an open question if the prime subnetwork rep-

resentation is applicable for CDC QCNs, which are very common in real-world

applications to describe directional information.

Therefore, we need other techniques to support efficient relation retrieval

for any two given variables or entities, while keeping the storage size in a

relatively low level. In the next two chapters, we will discuss two promising

candidates that can reduce the storage space as well as support efficient rela-

tion retrieval.





Chapter 5

Compact Representation: Encoding

with MBRs

5.1 Introduction

In the literature, we have seen that the vast majority of the researches on QSTR

have been devoted to the efficiency of the reasoning time. These researches

presume that the qualitative relations are always explicitly stored in QCNs, and

many previous applications of QSTR only deal with a relatively small number

of variables [48, 102, 121, 127] or on sparse structured QCNs [111–113].

On the other hand, although QCNs derived from sources like text descriptions

[54, 62, 70] usually have a sparse structure, there are still cases that the QCNs

are complete and have a large number of variables and relations in many real-

world applications. The large size of the QCNs severely restricts the ability

of knowledge bases or applications to handle qualitative spatial information.

Specifically, for the fundamental task of retrieving the relation between two

variables, the ideal solution is to have an explicit relation between any two

variables. However, because the size of a complete QCN is quadratic if the

119
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relations are binary and even cubic if the relations are ternary, the complete

QCN representation will cost a lot of storage space for spatial or temporal

scenes with hundreds of thousands of variables. The QCNs would be too costly

or infeasible to fit into fast accessible storage, which in turn makes the retrieval

of the relations much less efficient.

Note that although the prime subnetwork discussed in the previous chapter

can simplify the QCN, it is not suitable for the task of retrieving the relations,

because to restore the removed relations this approach needs to run O(n3) time

algorithms, which will soon become infeasible when the number of variables n

becomes large. On the other hand, when the geometric representation of spa-

tial entities is available, the current applications such as GIS [104] rely on a

compromise that uses geometric algorithms to directly compute the relations.

However, the online computation could be expensive, because it requires com-

putation time that is proportional to the number of vertices in the polygon,

which can be quite large (e.g. in our test data we have encountered polygons

with more than 30,000 vertices).

Therefore, an important challenge for QSTR is to develop methods for rep-

resenting qualitative spatial information more compactly while the relations

can still be retrieved efficiently, i.e. to solve the compact representation prob-

lem specified in Chapter 2.

In this chapter, we present a simple but powerful technique to represent

both topological and directional information compactly, while supporting effi-

cient retrieval of the relations between spatial objects. The technique focused

on dealing with QCNs derived from geometric information. In this case, quali-

tative relations mainly serve as a layer for query answering and human-friendly

interaction (e.g., [16]), and for respecting privacy concerns in cases such as

the precise locations or boundaries are sensitive. It is worth noting that, unlike
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previous chapters, our scope in this chapter is restricted to basic relations in

RCC8 or CDC, and where exact regions are given.

This chapter is organised as follows. In Section 5.2 we briefly review the

state-of-the-art approach for the compact representation problem, i.e. the spa-

tial clustering index proposed by Fogliaroni [43]. Then we present our ap-

proach in Section 5.3 and analyse its effectiveness in theory and by experi-

ments. In Section 5.4, we discuss how to efficiently retrieve the relation be-

tween two entities with the compact representation and evaluate it on real-

world datasets. In Section 5.5, we propose several derivatives of our approach.

Section 5.6 summarises this chapter and discusses the problem of the current

methods.

Bibliographic Note. The work reported in this chapter is based on the joint

work with Matt Duckham, Sanjiang Li, and Steven Schockaert, which was first

presented in the following publication.

• Zhiguo Long, Matt Duckham, Sanjiang Li, and Steven Schockaert: Index-

ing Large Geographic Datasets with Compact Qualitative Representation,

International Journal of Geographical Information Science, 2016, vol.

30, no. 6, pp. 1072–1094.

Sanjiang Li and I initiated the research in the paper about compact representa-

tion. Guided by Sanjiang Li, I proposed the core idea and devised the algorithm

in the paper. Matt Duckham provided constructive advice and helped on the

empirical evaluation, which was conducted by myself. Steven Schockaert also

provided valuable advice on the empirical evaluation and improvements of the

techniques.
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5.2 Spatial Clustering Index

Before discussing our approach, we first have a brief review of the state-of-

the-art approaches for this problem in the literature. Fogliaroni et al. [43, 44]

proposed the spatial clustering index to provide a more compact qualitative rep-

resentation. The approach uses the so-called clustering relations to reduce the

storage of qualitative relations between regions. Given a qualitative calculus

M, a relation α ∈ M is a clustering relation if it is downward closed under

set inclusion, i.e. for any regions a and b, from (a, b) ∈ α and a′ ⊆ a, b′ ⊆ b,

we have that (a′, b′) ∈ α. It is straightforward to show that RCC8 only has

one clustering relation, i.e. DC, and CDC has exactly four, i.e. the single tile

relations NW, NE, SW, and SE.

Given a spatial dataset containing the set of regions D = {oi : i ∈ I},

the spatial clustering index builds a spatial clustering structure on D and then

selectively computes and stores the relations between the regions. It makes

use of some auxiliary geometric shapes, called “index tiles” to help detect the

clustering relations between the regions that are associated with the index tiles.

Regions are associated with these index tiles according to a certain predefined

strategy, such as the strategy of considering the intersection between a region

and the index tile. In general, spatial clustering index is constructed as follows

for RCC8 or CDC.

1. Build a spatial clustering structure I = {(tj, Cj) : j ∈ J}, where each tj

is an index tile with j ∈ J (J is a set of integers for numbering tj) and

Cj ⊆ D a cluster of regions associated with tj according to some strategy,

and D = {oi : i ∈ I} is covered by {tj : j ∈ J}, i.e.
⋃

i∈I oi ⊆
⋃

j∈J tj.

2. For each pair (i, j) ∈ J × J , execute the following steps:

(a) If (ti, Ci) = (tj, Cj), then compute and store the RCC8/CDC relation
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between every two regions in Ci(= Cj);

(b) If (ti, Ci) and (tj, Cj) are different, then compute the RCC8/CDC

relation between ti and tj;

i. If the relation between ti and tj is a clustering relation, then

store this relation1 for ti and tj, and continue for the next pair

of i, j;

ii. If the relation between ti and tj is not a clustering relation, then

compute and store the relations between every region in Ci and

every region in Cj.

As we can see from the above steps in 2(b), the relations between some regions

will not need to be computed and stored if the index tiles for these regions are

in a clustering relation. Then the storage space to represent the RCC8/CDC

relations will be reduced. Different types of index tiles and clustering struc-

tures will affect the reduction rate. Fogliaroni [43] implemented two instances

of spatial clustering index: one is grid-based and the other is R*-tree based.

As R*-trees [9] are only one of the variants of R-trees, the R*-tree clustering

index can be straightforwardly extended to methods based on other variants of

R-trees [61]. In this thesis, we will refer to this class of methods as the R-tree

clustering index.

The grid clustering index partitions the plane into grid cells of equal size,

and uses the grid cells as index tiles (see Figure 5.1). To build a spatial cluster-

ing structure, different strategies can be exploited. For RCC8, the grid cluster-

ing index uses the strategy that a region ri is associated with an index tile t iff

t∩mbr(ri) 	= ∅; for CDC, it uses the strategy that a region ri is associated with

1It is optional whether to store the clustering relation between tiles. Based on different
query strategies, we may either not need this piece of information such as for the strategy later
used in our experiments, or need it for some other strategies like the one in [43].
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an index tile t iff mbr(ri) and t have a common interior point. For both RCC8

and CDC,

1o

2o 3o

5o
4o

6o

Figure 5.1: Illustration of grids in the plane and grid index tiles ti.

The R-tree clustering index uses an instance of the R-tree family to hier-

archically construct index tiles. To understand how to build the R-tree clus-

tering index, we first take a look at the structure of the original R-tree in the

two-dimensional plane. For example, Figure 5.2(a) shows a set of regions

{o1, . . . , o8} in the plane, and Figure 5.2(b) gives an R-tree structure for these

regions, where the MBRs have been given in Figure 5.2(a). As illustrated in the

figure, an R-tree is a balanced tree structure with root, non-leaf nodes, and leaf

nodes that are on the same level. Moreover, each leaf node of an R-tree con-

tains an array of leaf entries in the form of (mbr(a), oid(a)), where a is an object

and oid(a) is the address of a. For example, nodes n4, n5, n6, n7 in Figure 5.2(b)

are leaf nodes, and o1, . . . , o8 are objects. Each non-leaf node contains an ar-

ray of entries in the form of (mbr(ni), nodeid(ni)), where ni is a child node of

the current one, nodeid(ni) is the address of ni, and mbr(ni) is the MBR of the

MBRs in the entry array of ni. The R-tree clustering index then uses the MBRs

in an R-tree of the regions as the index tile, e.g. mbr(n2), . . . ,mbr(n7) in Fig-

ure 5.2(b). R*-tree has the same structure specification as the original R-tree,

which applies a different approach to split a node with too many entries.
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(a) Regions and tiles in the plane.
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root

leaf index tiles
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(b) The corresponding R-tree.

Figure 5.2: Illustration of an R-tree.
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To build a spatial clustering structure, for both RCC8 and CDC, the R-tree

clustering index hierarchically builds the clustering index and has two strate-

gies. A leaf (index) tile in the R-tree clustering index is mbr(ni), where ni is a

parent node of a leaf node, e.g. in Figure 5.2 mbr(ni) for i = 4, 5, 6, 7 are leaf

index tiles. For leaf index tiles, in the first strategy, a region ri is associated

with a leaf index tile t only if mbr(ri) and t have a common interior point;

in the second strategy, a region ri is associated with a leaf index tile t only if

mbr(ri) is contained in t. For a non-leaf index tile t, in both strategies of the

R-tree clustering index, a lower level index tile t′ is associated with t only if t′

is contained in t. The strategies are summarised in Table 5.1.

Table 5.1: Strategies to associate ri (or t′) with t, where t and t′ are index tiles,
t◦ is the interior of t, and ri is a region.

Strategies RCC8 CDC
grid clustering index t ∩mbr(ri) 	= ∅ t◦ ∩mbr(ri) 	= ∅

leaf tile for R-tree clustering index
t◦ ∩mbr(ri) 	= ∅

mbr(ri) ⊆ t
non-leaf tile for R-tree clustering index t′ ⊆ t

As has been observed in [43], the performance of the spatial clustering

index (i.e. the reduction ratio of the storage space) strongly depends on the

quality of the clustering structure. A bad clustering structure will not only

result in many repeated considerations of region pairs, but also fail to associate

a sufficient number of regions to index tiles that are in clustering relations. It

was conjectured in [43] and confirmed by some experimental results that the

grid clustering index has the best performance when the size of index tiles is

about the average size of the regions in the dataset.

There is another variant of the spatial clustering index for point objects

developed by Al-Salman [1], which aims to obtain a better cluster by using

a more sophisticated clustering strategy (i.e. the density-based approach DB-
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SCAN [41]) and using the concave hull [30, 36] of each cluster as the index

tile rather than using the MBR for RCC8 case. However, the effectiveness of

this approach for regions remains a question and hence we will not discuss it

here.

5.3 The MBR-Based Approach

In the following, we present another alternative, called the MBR-based ap-

proach, for solving the compact representation problem.

The MBR-based approach (denoted by MA) was inspired by the following

observations:

1. MBRs can usually be obtained in real-world applications at very low cost,

and can be stored linearly with respect to the number of involved objects.

2. While the number of region pairs whose MBRs do not have common point

(or interior point) depends on the nature of the considered datasets, we

found that many real-world datasets contain a large number of such pairs

(e.g. administrative areas), and hence the MBR of a region usually only

intersects with a small number of the MBRs of other regions.

3. The RCC8 relation between two regions can be unambiguously inferred

from the RCC8 relation between their MBRs if the two MBRs have no

common point.

4. The CDC relation between two regions can be unambiguously inferred

from the CDC relation between their MBRs (and sometimes the MBRs of

their connected components) if the two MBRs have no common interior

point.
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5. Calculating the RCC8/CDC relation between two MBRs is much easier

and more efficient than calculating the RCC8/CDC relation between two

arbitrary regions.

Algorithm 7 shows the main steps of MA. In Line 3, we first find all pairs

(oi, oj) such that the corresponding MBRs have a common point, and then

calculate the RCC8 relations between such pairs in Lines 4-6. Similarly, we

calculate the CDC relations in Lines 9-12. Note that since CDC relations are

not closed under converse [86], we need to calculate and store both the CDC

relation from oi to oj and that from oj to oi.

Algorithm 7: MA(D), an algorithm for the MBR-based approach to con-
struct compact representation.

Input: A set of regions D = {o1, . . . , on}.
Output: A compact representation, from which RCC8/CDC relations can

be derived.
1 Obtain the MBRs {mbr(o1), . . . ,mbr(on)} of D = {o1, . . . , on};
2 case RCC8 do
3 Pair ← {(oi, oj) : i < j,mbr(oi) ∩mbr(oj) 	= ∅};
4 foreach (oi, oj) ∈ Pair do
5 Calculate and store the RCC8 relation between oi and oj;
6 end
7 end
8 case CDC do
9 PairInt ← {(oi, oj) : i < j, (mbr(oi))

◦ ∩ (mbr(oj))
◦ 	= ∅};

10 foreach (oi, oj) ∈ PairInt do
11 Calculate and store the CDC relation from oi to oj and that from

oj to oi;
12 end
13 end

The idea of the algorithm is related to the widely used MBR pre-processing

technique, which is applied in GIS systems to filter out candidate answers for

queries. However, while the standard pre-processing method aims to improve

the computation time of geometric algorithms, we propose to use MBRs to
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construct a more compact representation of qualitative spatial information.

We will show that it can significantly reduce the storage and outperform the

spatial clustering index approach by Fogliaroni et al. [43], both in theory and

in experiments. We will also illustrate the efficiency of retrieving the relation

between any two given variables by using the resulting compact representa-

tion.

5.3.1 Correctness

We need to show that the algorithm is correct. That is, after applying the al-

gorithm to a set of regions D = {o1, ..., on}, the RCC8/CDC relation between

any two regions oi and oj can be correctly retrieved from the resulting repre-

sentation. In other words, the relation is either stored explicitly or can be un-

ambiguously inferred from the corresponding MBRs mbr(oi) and mbr(oj) (and

sometimes the MBRs of the connected components of the regions). In the fol-

lowing, we show that the relations that are not stored can be inferred from the

relations between MBRs.

It is easy to see that, as the following proposition shows, for RCC8, the

non-stored topological relations can always be inferred from the topological

relations between the corresponding MBRs.

Proposition 5.1 ([76, 95] ). Given two (connected or disconnected) regions a

and b, if mbr(a) DC mbr(b), i.e. mbr(a) ∩mbr(b) = ∅, then aDCb.

The following proposition shows that for CDC and connected regions, a

similar conclusion also holds. In the following, (mbr(a))◦ denotes the interior

of the MBR mbr(a).

Proposition 5.2. Given two regions a and b, if a is connected and (mbr(a))◦ ∩
(mbr(b))◦ = ∅, then δ(mbr(a),mbr(b)) = δ(a, b), i.e. the CDC relation from a to b
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is the same as that of mbr(a) to mbr(b).

Proof. It is easy to see that δ(a, b) ⊆ δ(mbr(a),mbr(b)). In the following, we

show δ(mbr(a),mbr(b)) ⊆ δ(a, b).

Because (mbr(a))◦ ∩ (mbr(b))◦ = ∅, mbr(a) must be contained in one of the

following tile regions: tNW ∪ tN ∪ tNE, tNE ∪ tE ∪ tSE, tSE ∪ tS ∪ tSW, tNW ∪ tW ∪ tSW.

mbr( )a

b mbr( )b

a
NWt

Wt

SWt St SEt

Et

NEtNt

0( , )x y

Figure 5.3: Illustration of the proof of Proposition 5.2.

Without loss of generality, suppose mbr(a) is contained in tNW∪ tN∪ tNE (see

Figure 5.3 for illustration). Let ti be one of these three tiles. There are two

cases when (mbr(a))◦ ∩ t◦i 	= ∅.

Case 1. mbr(a) ⊆ ti. Then we have a◦ ∩ t◦i 	= ∅ and thus the tile name of ti

is also in δ(a, b).

Case 2. mbr(a) ∩ ti 	= ∅ and mbr(a) 	⊆ ti. Let y− and y+ be the minimum

and maximum y-coordinates of mbr(a) respectively. Then ∃x s.t. the points

(x, y) with y ∈ (y−, y+) satisfy (x, y) ∈ t◦i and (x, y) ∈ (mbr(a))◦. Because a

is connected, we know that there is some y0 ∈ (y−, y+) s.t. (x, y0) ∈ a◦. This

means a◦ ∩ t◦i 	= ∅.
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Figure 5.4: The CDC relation from mbr(a) to mbr(b) is {NW,N,NE}, while the
CDC relation from a to b is {NW,NE}.

Therefore, we have shown that δ(mbr(a),mbr(b)) ⊆ δ(a, b).

For possibly disconnected regions, however, we cannot always get the cor-

rect CDC relation merely from the MBRs of the regions. Figure 5.4 shows such

an example, where the CDC relation from a to b is {NW,NE} but the CDC re-

lation from mbr(a) to mbr(b) is {NW,N,NE}. In this case, we need to take the

connected components of a into consideration.

Lemma 5.3. Given two possibly disconnected regions a, b, suppose a1, . . . , ak are

the connected components of a. Then δ(a, b) =
⋃

i=1,...,k δ(ai, b), where each δ(ai, b)

is a subset of {NW,N,NE,W,O,E, SW, S, SE}.

Proof. Because a◦ ∩ t◦i 	= ∅ if and only if there exists a connected component

ai of b s.t. a◦i ∩ t◦i 	= ∅ (see, e.g., Figure 5.4), the conclusion is easy to see.

The above lemma states that the CDC relation of disconnected regions can

be obtained from the CDC relations of their connected components. Note that

in the algorithm MA, we only need to store the CDC relation when mbr(a)
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and mbr(b) have no common interior point. In this case, mbr(ai) and mbr(b)

also do not have common interior point. Then by Proposition 5.2, δ(ai, b) =

δ(mbr(ai),mbr(b)) and hence δ(a, b) =
⋃

i=1,...,k δ(mbr(ai),mbr(b)) (see, e.g., Fig-

ure 5.4). In summary, for possibly disconnected regions, we have the following

conclusion that the CDC relations not stored can always be inferred from the

relations between the MBRs of the connected components of the regions.

Proposition 5.4. Given two possibly disconnected regions a, b, suppose a1, . . . , ak

are the connected components of a, and mbr(a) and mbr(b) have no common

interior point. Then δ(a, b) =
⋃

i=1,...,k δ(mbr(ai),mbr(b)).

5.3.2 Effectiveness

Regarding the effectiveness of the algorithm to construct a compact represen-

tation of RCC8 and CDC relations, the major concern is the number of relations

that need to be stored for a given dataset D, since the geometric information

and the MBRs scale linearly with the number of spatial entities. For conve-

nience, we call such a number the qualified size of D for the corresponding

algorithm (e.g., the complete QCN, MA or the grid/R-tree clustering indexes),

and use it as the measure for the performance of the algorithms.

For the grid and R-tree clustering indexes, the qualified size is related not

only to the characteristics of the dataset but also to the parameters chosen

by the algorithms, such as the index tile size for the grid clustering structure

and the maximal number of children allowed in a node of an R-tree. For MA,

however, the qualified size is only related to a particular characteristic of the

spatial geometric dataset, i.e. the average intersection degree as defined below.

Definition 5.5. Given a spatial dataset of n regions D = {o1, . . . , on}, let P =

{(mbr(oi),mbr(oj)) : mbr(oi) ∩ mbr(oj) 	= ∅} and Q = {(mbr(oi),mbr(oj)) :
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(mbr(oi))
◦ ∩ (mbr(oj))

◦ 	= ∅}. We call |P |/n the average intersection degree of

D for RCC8, and call |Q|/n the average intersection degree of D for CDC.

Intuitively, the average intersection degree characterises that, in the dataset,

the MBR of a region on average intersects with how many other MBRs. If the

context of the specific calculus is clear, we will simply refer to d̄ = |P |/n or

d̄ = |Q|/n as the average intersection degree of D. The average intersection

degree of D actually determines the qualified size of D for MA.

Proposition 5.6. Given a spatial dataset of n regions D, the qualified size of D
for MA is nd̄/2 for RCC8 relations and nd̄ for CDC relations.

Interestingly, for many real-world datasets, most regions only have a rel-

atively small number of “neighbouring” regions and the average intersection

degree tends to be quite small when compared to the number of regions in the

configuration. For example, Figure 5.5 shows the distribution of the number

of intersecting MBRs for a given MBR (i.e. the intersection degree of an MBR)

for the administrative areas of Australia. We have d̄ ≈ 7.12, which is quite

small compared to the number of regions n = 1,395. As a result, the qualified

size of this dataset for MA will be much smaller than the qualified size for the

complete QCN representation.

Moreover, the qualified size of a given set of regions for MA is never larger

than the qualified size for the grid or the R-tree clustering indexes, for both

RCC8 and CDC.

Proposition 5.7. Given a set of possibly disconnected regions D = {o1, ..., on},

then, for RCC8, the qualified size of D for MA is not larger than the qualified sizes

of D for either the grid clustering index or the R-tree clustering index.

Proof. We defer the proof to Appendix B.3.
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Figure 5.5: Distribution of intersection degree of the administrative areas of
Australia.

A similar result also applies to CDC.

Proposition 5.8. Given a set of possibly disconnected regions D = {o1, ..., on},

for CDC the qualified size of D for MA is not larger than the qualified sizes for

either the grid or the R-tree clustering indexes.

Proof. We also defer the proof to Appendix B.3.

Finally, we note that the task of identifying all (interiorly) intersecting

MBRs can be efficiently accomplished. In fact, this task is a classic problem

known as the Rectangle Intersection Problem (or Rectangle Spatial Join Prob-

lem). There are several well-known efficient algorithms. Using the so-called

interval trees or segment trees or priority search trees, we can identify all in-

tersecting pairs of MBRs in time O(n log n+ k), where k is the number of inter-

secting pairs. For example, see works in [10, 59, 60, 104]. Since on average

there are only a small number of MBRs intersecting with a given MBR, the time

needed is usually dominated by O(n log n). Moreover, for the many datasets,

using brute-force search to find intersecting pairs of MBRs is already very effi-

cient.
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5.3.3 Empirical Evaluation

We compare the performance of MA with the grid and the R-tree clustering

indexes proposed in [43], and also with the complete QCN representation.

When applying the grid clustering index, as in Chapter 6 of [43] we select a

grid G that covers the dataset such that the size of each index tile in the grid is

about the same as the average size of the regions in the dataset D = {o1, ..., on}.

Following [43] and as specified in Table 5.1, the cluster of regions associated

with an index tile t is exactly the set of regions {oi} such that t ∩mbr(oi) 	= ∅.

For the R-tree clustering index, since there are no generally accepted op-

timal parameter settings or tree building strategies, we use the efficient bulk-

loading variant of R-tree, the STR R-tree [74], as an illustration of the perfor-

mance of the R-tree clustering index. The STR R-tree is designed for static or

a priori available objects, which is the case here, and it can efficiently build an

R-tree such that only a small number of MBRs overlap. The implementation of

STR R-tree used in the experiment is from JTS2. We use the default parameter

setting of the implementation. Also, we build the R-tree clustering index struc-

ture from the root level of the tree, because, as suggested in [43], the algorithm

will reduce more of the qualified size if it starts from a shallower level of the

tree. Similar to the grid clustering index, the R-tree clustering index associates

regions with index tiles by using the strategies specified in Table 5.1.

As noticed in [43], the grid clustering index has another weak point. In the

grid clustering procedure, some pairs of regions may be simultaneously asso-

ciated with several index tiles. This will result in these pairs of regions being

repeatedly used for computation. If the number of such pairs is large, then the

number of qualified relations would be so large that using the grid clustering

index even becomes more expensive than the complete representation. In our

2http://www.vividsolutions.com/jts/JTSHome.htm



136 5. Compact Representation: Encoding with MBRs

experiments, before calculating the spatial relation, we check whether a pair

of regions has already been considered.

Datasets

We select four classes of real-world datasets for the evaluation. The first class

(called Real-1) contains datasets that have relatively small average intersec-

tion degrees and various number of regions. The second class (called Real-2)

contains datasets that have relatively large average intersection degrees and

similar number of regions. The third class (called Real-3) contains datasets

that have large number of regions and small average intersection degrees. The

fourth class (called Real-4) contains datasets of larger number of regions than

the ones in Real-2, and have relative large average intersection degrees.

Real-1 comprises administrative datasets of various sizes extracted from

Global Administrative Areas (GADM3): Germany-adm3 (434 regions), Ukraine-

adm2 (629 regions), Australia-adm2 (1395 regions), China-adm3 (2411 re-

gions), and USA-adm2 (3145 regions). The average intersection degrees of all

the five datasets are around seven. Real-2 consists of five datasets about envi-

ronmental habitats extracted from the European Environment Agency (EEA4),

containing approximately the same number of regions but with different av-

erage intersection degrees. In particular, the five datasets of Real-2 were se-

lected to ensure a range of average intersection degrees. Each dataset contains

around 600 regions, with average intersection degrees of respectively about 45,

106, 122, 180, and 205. Real-3 contains four datasets that have a large number

of regions : Statistical Areas Level 1 of Australia (SA1; 54,772 regions), New

South Wales Mesh Blocks of Australia (NSWMB; 107,317 regions), County Sub-

3http://www.gadm.org/
4http://www.eea.europa.eu/
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divisions of USA The average intersection degrees of SA1, NSWMB, and CS are

about seven, while that of SA1 is about 24. (CS; 36,702 regions), and School

Catchment Areas of USA (SC; 65,192 regions). Real-4 consists of four datasets

about species distribution and habitat from EEA: HEU(5,322 regions; average

intersection degree about 254), HMS(6,258 regions; average intersection de-

gree about 247), SEU (10,061 regions; average intersection degree about 467)

and SMS (11,613 regions; average intersection degree about 474).

Real-1 and Real-2 are mainly used to illustrate the two factors that affect

the qualified size of MA, while Real-3 and Real-4 show the scalability of this

approach.

Result. Figure 5.6 shows the results of our experiments for Real-1 and Real-2.

It is immediately clear from Figure 5.6 that the other algorithms in the figure

dominate the complete QCN representation (‘Complete’ in the figures) in all

cases. Figures 5.6(a) and (b) show for Real-1 the qualified size of MA, which is

actually nd̄ for CDC or nd̄/2 for RCC8, and thus grows linearly in the number

of regions n for both RCC and CDC relations. The qualified size of MA is consis-

tently smaller than the grid or R-tree clustering indexes. Indeed, the qualified

sizes of the grid and the R-tree clustering indexes quickly become prohibitively

high as the number of regions increases for CDC (note that the y-axis is in log10

scale), although these two algorithms perform better for RCC8 than for CDC.

This is probably because the clustering index mainly helps to distribute disjoint

objects into different clusters, which can distinguish the clustering relation DC

clearly from other relations for RCC8 but cannot distinguish well the clustering

relations and non-clustering relations for CDC.

The results on Real-2 (Figures 5.6(c) and (d)) further show that MA is out-

performing the other algorithms, and that it linearly depends on the average

intersection degree. Taking a closer look, we can see that there are indeed sev-
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(a) Real-1, RCC8 (in logarithmic scale)

0 500 1000 1500 2000 2500 3000 3500
0

1

10

100

1000

10000

100000

1000000

10000000

Q
ua

lif
ie

d
Si

ze

Number of Regions

MA
Grid
R-Tree
Complete

(b) Real-1, CDC (in logarithmic scale)
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(c) Real-2, RCC8 (in linear scale)
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Figure 5.6: Qualified size variation with respect to the number of regions and
the average intersection degree, on real-world dataset.
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eral differences from the results for Real-1. First, the difference between the

grid clustering index and the R-tree clustering index becomes much smaller for

both RCC8 and CDC (noting that the y-axis uses a linear scale in Figures 5.6(c)

and (d)). Second, the growth rates of the qualified size for the grid and the

R-tree clustering indexes are not as high as the growth rates for Real-1. The

first difference is due to the large number of regions intersecting with each

other in Real-2. This makes it especially hard for both grid and R-tree cluster-

ing indexes to find good clustering structures. Consequently there is very little

difference between the clustering powers of these two approaches. The second

difference is due to poor performance of both algorithms. To be specific, as the

average intersection degree grows while the number of regions is fixed, the

qualified sizes for both grid and R-tree clustering indexes remain large.

For the larger datasets in Real-3 and Real-4, Figure 5.7 shows the results.

In the results we omitted the complete QCN representation for all these large
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Figure 5.7: Qualified size comparison on large real-world datasets.

datasets, as it will have too large numbers that makes the comparison of the

other methods unclear. From these results on large datasets, we can still ob-

serve that MA has the best results on all the datasets and has a better scala-
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bility (for CDC we can see differences in order of magnitude). Note that for

the dataset NSWMB in Real-3, both the grid and R-tree clustering indexes have

exceeded the 16GB memory limit for RCC8 and CDC. This is another advan-

tage of MA noticed in the experiments, i.e. it requires a much smaller memory

size than the grid and the R-tree clustering indexes to construct the represen-

tation. In particular, it requires less than 1GB for all of the datasets, while the

other two approaches cost more than 10GB for the large datasets in Real-3 and

Real-4. We think this is due to the clustering index structure of these two ap-

proaches and the auxiliary record that is used to remove repeatedly calculated

pairs of regions.

In summary, MA outperforms both of the grid and R-tree clustering indexes

for CDC and RCC8, as well as the complete QCN representation for RCC8

or CDC. The advantage of MA is especially noticeable for CDC, because the

clustering structures cannot distinguish well the clustering relations for CDC.

5.4 Query Support

We focus on the type of queries about checking the relation between two given

regions. This type of queries can be regarded as the most fundamental one, as

we have discussed in the introduction of the compact representation problem

in Section 2.5.5. The essence of other types of queries, such as the one about

finding all regions that satisfy a relation with a given region, involves inferring

or obtaining the actual relation between any two regions, i.e. the query type

that we focus on.

One factor that may affect the efficiency of query answering is the choice of

data structures where the relations are stored. One should note that this choice

is generally task dependent. For example, we could store the relations in a
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relational database, in which case we can use both the variables and relations

as identifiers. It has the advantage of being more flexible in the types of queries

that are supported. One could also store the relations in a hash table for more

efficient retrieval, which however might have scalability problem.

Note that it is possible to index the objects by using R-trees and other re-

lated data structures to improve retrieval efficiency (see e.g. [9, 61, 95]).

Such techniques mainly focus on answering the type of queries about all pairs

of regions that satisfy a given relation and assume that the relations between

regions are explicitly available. We should note that such techniques of us-

ing R-trees are different from the R-tree clustering index, where they assume

that the qualitative relations are already known and use data structures like

R-trees for regions to filter out pairs of regions that could not satisfy the given

relation. These techniques might be useful to further improve the efficiency

of retrieving relations, e.g., by building spatial index on the MBRs. Currently

we do not consider such optimisations, in order to focus on discussing how the

representation itself could be helpful.

To answer the queries, we use both the stored RCC8/CDC relations and the

MBRs of regions, and sometimes the MBRs of the connected components of

the regions if the calculus is CDC. In general, to identify the relation between

two regions, it runs as follows. First, we check if the relation is stored explicitly

(e.g., for CDC we check if two MBRs intersect interiorly), if so then return it;

otherwise use the MBRs to calculate the relation according to Propositions 5.1

and 5.4. In the analysis that follows, we focus solely on the more challenging

CDC relation. For RCC8, both MA and the grid/R-tree clustering indexes only

omit DC relations, and so the query performance for RCC8 is highly predicable

and similar across all these methods.

For CDC, in practice, we do not need to strictly follow the procedure in-
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duced by Proposition 5.4. Consider the example shown in Figure 5.4 again.

To calculate the CDC relation from a to b, by δ(mbr(a),mbr(b)) = {NW,N,NE},

it is not difficult to see that a must have connected components say a1 and a2

such that NW ∈ δ(a1, b) and NE ∈ δ(a2, b). Hence we only need to check if

there exists a connected component ai of a such that N ∈ δ(ai, b). Even better,

in this case, we only need to check if the x-projection of a

Ix(a) = {x : (∃y)(x, y) ∈ a} (5.1)

has non-empty intersection with the open interval (x−
b , x

+
b ), where

x−
b = inf{x : (∃y)(x, y) ∈ b} and x+

b = sup{x : (∃y)(x, y) ∈ b} . (5.2)

The following observation can be used to further simplify the procedure.

Proposition 5.9. Given two possibly disconnected regions a, b such that (mbr(a))◦∩
(mbr(b))◦ = ∅, if δ(mbr(a),mbr(b)) contains at most two single tile relations, then

δ(a, b) = δ(mbr(a),mbr(b)).

This is the case when for example δ(mbr(a),mbr(b)) is a single tile relation

other than O, which includes not only the CDC clustering relations but also

some others like N and W .

Based on the above observations, now we present the query answering

method for CDC based on the representation obtained by MA, denoted by

MAQ. Write R12 for the CDC relation from o1 to o2 (i.e. o2 as the reference ob-

ject) and S12 for the CDC relation from mbr(o1) to mbr(o2), where mbr(o1) and

mbr(o2) are the MBRs of o1 and o2, respectively. If (mbr(o1))
◦ ∩ (mbr(o2))

◦ 	= ∅,

then we know the CDC relation is explicitly stored. Otherwise, we have the

following conclusions.
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• If o1 is a connected region, then R12 is the same as S12 by Proposition 5.2.

• If o1 is a disconnected region, then R12 and S12 can only be 1-tile, 2-tile,

or 3-tile relation. We only need to consider the two cases below.

– Case 1: if S12 is a 1-tile or 2-tile relation, then R12 is the same as S12

by Proposition 5.9.

– Case 2: if S12 is a 3-tile relation, then it can only be one of these

four cases: {NW,N,NE}, {NW,W, SW}, {NE,E, SE}, and {SW, S,

SE}. The difference between R12 and S12 lies only in the presence

of the ‘middle’ tile name (e.g. N is the middle tile name of {NW,

N,NE}, and E for {NE,E, SE}) in them. Therefore, we only need to

check if there is a connected component oi1 of o1 that intersects with

the middle tile interiorly, and if so then R12 = S12, otherwise R12 is

S12 excluding the middle tile.

For Case 2 above, it can be accomplished by simply checking the intersection of

Ix(o1) (or Iy(o1)) and (x−
o2
, x+

o2
) (or (y−o2 , y

+
o2
)) as specified in (5.1) and (5.2). In

particular, for each connected component oi1 of o1, we check the projection of

the rectangle mbr(oi1) on the x/y-axis and (x−
o2
, x+

o2
) (or (y−o2 , y

+
o2
)). For example,

for S12 = {NW,N,NE}, we check the projection of mbr(oi1) on the x-axis and

(x−
o2
, x+

o2
). If they intersect, then mbr(oi1) must have an interior intersection with

the middle tile N, because mbr(oi1) can only lie in the area covered by tiles NW,

N, and NE.

For the grid and R-tree clustering indexes, it should be noted that in [44]

and [43] Fogliaroni et al. did not consider the mechanism to answer the

queries discussed here (i.e. the ones about finding the CDC relation between

two given objects). Nevertheless, there are many possible ways to answer this

type of queries for the grid and R-tree clustering indexes. Specifically, when
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the MBRs are available, we can exploit the following strategy for obtaining the

CDC relation δ(o1, o2).

1. First compute the CDC relation δ(mbr(o1),mbr(o2)) from mbr(o1) to mbr(o2);

2. If the relation is one of the CDC clustering relations (NW, NE, SW, SE),

then δ(o1, o2) = δ(mbr(o1),mbr(o2));

3. Otherwise, the relation between the regions must have been previously

computed and stored in the resulting representation.

The difference between this strategy and MAQ mainly lies in the case where

the MBR relation is not a clustering relation and at the same time it does not

contain the tile name O (that is, the two MBRs do not intersect interiorly). In

such case, this strategy will retrieve the stored relation while MAQ will use the

MBRs to compute the relation. We denote this query answering strategy by GQ

for the grid clustering index and by RTQ for the R-tree clustering index.

5.4.1 Empirical Evaluation

In Experiment 2, the performance of answering a basic spatial query was tested

using the different representations from MA, the grid clustering index, the R-

tree clustering index, the complete QCN (denoted by the word “Complete”),

and using direct geometric computation of relations between given objects

(denoted by “Direct”). The specific spatial query used here is to find the

CDC/RCC8 relation between two given objects. In the analysis that follows,

we focus solely on the more challenging CDC relation. For RCC8, the MBR-

based algorithm, and the grid and R-tree clustering indexes only omit the DC

relation, and so the RCC8 query performance is highly predicable and similar

across all these methods.
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To answer the query for the representation obtained by MA, we use the

aforementioned query answering strategy MAQ. Based on MAQ, direct compu-

tation can be optimised in the case where the MBRs do not intersect interiorly,

by exploiting exactly the same steps of MAQ. In the following experiments, we

will always apply this optimisation to direct computation.

For the representation obtained by the grid and the R-tree clustering in-

dexes, we will use the strategies GQ and RTQ to answer the queries respec-

tively. Moreover, in the experiment, to make MAQ and GQ/RTQ comparable,

MAQ will first check if two MBRs are in a clustering relation. This will only

slightly increase the query time. For direct computation, when it comes to

check if two geometries intersect, we will first use the MBRs of the two geome-

tries to pre-test the possibility of intersection.

We will assume that the calculated relations, MBRs and geometric informa-

tion are all available in memory. For each method and dataset, the calculated

relations are stored in a database that is hash indexed using the identifiers of

geometries as keys, e.g. the key for relation Rij is i × N + j, where N is a

sufficiently large integer. Here the MBRs serve as an index for the relations

stored in the database. The experiments have been done on a computer run-

ning Ubuntu 14.04, with an Intel R© CoreTM-i3 1.6GHz CPU and 16GB memory.

We tested answering queries on 10,000 random pairs in each of the largest

dataset (USA-adm2) in Real-1 and the one with highest average intersection

degree in Real-2 (called Real-2.5), as illustrations of the performance of MAQ.

The 10,000 pairs are chosen by randomly sampling in the set of all pairs of

regions. For the larger datasets in Real-3 and Real-4, the representations from

the grid/R-tree clustering indexes and the complete QCN representation can

hardly be fitted into the memory, and hence we did not include them here.

Later in the next section, we will show the query answering performance for
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Figure 5.8: (a) Query times on the dataset USA-adm2 in Real-1. (b) Query
times on the dataset with highest average intersection degree in Real-2 (i.e.
Real-2.5). Note that ‘◦’ represents values that lie more than 1.5 box lengths
from the hinge of the box.

MAQ on datasets in Real-3 and Real-4.

Result. As we can see from Figure 5.8, answering queries by MAQ exhibits

promising performance. Compared with the two extremes, it is at least as effi-

cient as direct computation from the geometry and is substantially faster than

retrieval from the complete QCN (note that all the relations are stored in an in-

memory database). Like the query answering strategies by the grid and R-tree

clustering indexes, MAQ represents a compromise that can support more effi-

cient queries than either of these two extremes. In particular, for USA-adm2,

the median query time of MAQ is respectively about 28%, 73%, 73%, and 97%

lower than that of direct computation, GQ, RTQ and the complete QCN rep-

resentation; for Real-2.5, the median query time of MAQ is respectively about

38%, 97%, 94%, and 91% lower than that of the other methods. Hypothesis

tests also confirmed the visual impression from Figure 5.8, that on average

MAQ can be more efficient than all the other approaches (Mann-Whitney U

test, significant at the 5% level). However, it should be noted that such statis-
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tical significance in this case is only a guide, as a large number of samples and

different distributions can be misleading towards comparisons of differences.

The difference between USA-adm2 and Real-2.5 is that the former contains

a lot of regions that are disjoint. Therefore, more of the CDC relations can

be calculated from the MBRs of regions in USA-adm2, rather than to retrieve

from the database or calculate from geometric representation. This explains

the difference between the performance on these two datasets of all methods

except the complete QCN representation. In summary, the result indicates that

the representation obtained by MA is a useful alternative in practice to sup-

port efficient answering of queries on the qualitative spatial representation, in

addition to reducing construction time and size of the representation.

Discussion. Even though the direct computation shows a performance that is

good to some extent, it is worth noting that this method is not always efficient

for answering queries. The reason is as follows. There are many “degenerate”

cases for the direct computation. In fact, in the experiment on Real-2.5, for

the direct computation, about 3,000 instances (30% of all the tested ones) have

query answering time of more than 10,000ns, compared with the case of MAQ,

which has no instances beyond time 10,000ns.

Sometimes the calculated relations would be stored in hash tables in mem-

ory, the operation to access a relation will be much faster than the case in

the experiment. When the hash table is not very large, for these methods, the

more relations that are explicitly stored, the faster the query answering will be.

In this case, the performance of the complete QCN will be the best, followed

by GQ and RTQ, and then MAQ. However, this storage mechanism will not

be scalable for the complete QCN, whose size is quadratic to the number of

objects. This makes us choose the database storage instead for the experiment.

In some other cases, the calculated relations would be stored in a database
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on hard disk rather than in memory. In this case, all the methods except for

the direct computation will take more time to answer the query, as reading

data from hard disk is slower than from memory. The MBR query method will

require fewer reading operations than the others because it stores fewer rela-

tions. Another possibility is that the MBRs and geographic information are also

stored on hard disk. In this case, all the methods except retrieving from the

complete representation will require more reading operations, as they would

probably use the MBRs and geometric information to calculate the relations.

The exact impact of storing relations on disk is difficult to measure, as perfor-

mance will crucially depend on optimisations by the database and operating

system, such as bundling several queries to the database or by caching some

frequent queried relations.

We should also note that although query answering by the MBR query

method on average equals or outperforms all the other approaches, it is pos-

sible to find or construct degenerate cases, where the performance of this

method could be worse than these alternatives. In particular, in the case where

the relation of MBRs contain three tile names and these MBRs do not intersect

in their interiors, the MBR query method might lead to inefficient queries. In

such cases, answering queries by using the MBR query method needs to check

if the ‘middle’ tile name is valid in the real CDC relation. This in turn involves

checking intersection of the tile and the MBRs of the connected components

in the primary object. For example, in Figure 5.4, the MBRs of region a and

region b are in CDC relation with three tile names {NW,N,NE}. Note that

a contains many connected components and none of them intersect with the

middle tile N. In this case, to compute the actual CDC relation between a and

b using the MBR approach, the query will probably need to check the MBRs of

all the connected components of a.



5. Compact Representation: Encoding with MBRs 149

However, such degenerate cases seem to be rare in practice. As we have

seen, on average answering queries based on the MBR approach is the most

efficient one of all the alternatives tested. Note that on average, each region

in USA-adm2 contains 3.5 connected components and in Real-2.5 the number

is 34. This means in practice the validity of the “middle” tile name can usually

be confirmed after checking only a few MBRs of connected components. More-

over, the performance on the degenerate cases can be optimised, such as by

spatially indexing the MBRs of connected components to reduce the number

of tests for intersection.

Finally, we note that all the methods might be further optimised in real-

world applications. For example, the MBRs of connected components of the

regions can be indexed using advanced spatial indexing techniques such as R-

Tree [95] to reduce computation when checking CDC relations. Here we are

more interested in analysing the performance of the MBR query method itself.

Thus, to be clearer about how the MBR query method performs, we were not

applying other optimisations, and the experiments here are just illustrations of

the performance of the MBR query method, to show it is feasible in practice.

5.5 Derivatives of the MBR-Based Approach

The qualified size of MA can be further reduced. In this section, we discuss

three derivatives of MA that further reduce the qualified size of MA.

For the first technique, denoted by MC, to decide which relations need

to be explicitly stored, it first applies MA to D, and then for the stored re-

lations, it compares the CDC/RCC8 relation Ra,b between two regions a and

b with the CDC/RCC8 relation Rmbr(a),mbr(b) between the MBRs of the two re-

gions mbr(a),mbr(b). If the relation Ra,b is the same as Rmbr(a),mbr(b), e.g. Fig-
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Figure 5.9: Illustration of cases where MC or MD will not store the relation
while MA will.

ure 5.9(a), then we remove Ra,b from the storage. This technique would work

well if Ra,b = Rmbr(a),mbr(b) holds for many pairs of regions. In the query stage, to

find the correct relation between a and b, it then suffices to return the relation

that is stored, if it is available, and to calculate Rmbr(a),mbr(b) otherwise.

For the second technique, denoted by MD, it further reduces the qualified

size of MA, by removing any DC relation R(a, b) in the representation that

satisfies the following condition: for every connected component ai of a and

for every connected component bj of b, we have that mbr(ai)DCmbr(bj) (e.g.

see Figure 5.9(b)). To efficiently check this condition, we subsequently check

the following conditions:

1. for every connected component ai of a, mbr(ai)DCmbr(b);

2. for every connected component bj of b, mbr(a)DCmbr(bj).

3. for every connected component ai of a that does not satisfy the first con-

dition and for every connected component bj of b that does not satisfy

the second condition, mbr(ai)DCmbr(bj).

The removed DC relation Ra,b can be retrieved by using the MBRs of the con-

nected components of the regions:
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1. if mbr(a)DCmbr(b) then Ra,b = DC;

2. otherwise, if one of the above three conditions are satisfied then Ra,b =

DC;

3. if none of the above holds, then the relation must have been stored.

This method will work well if the MBRs of the connected components approx-

imate the disjointness of the regions well. Note that this method comes at the

cost of efficient query answering than MA and MC, since a larger number of re-

lations between the MBRs may need to be checked. Based on MD, there could

be techniques dealing with relations other than DC. The idea would be similar,

but involves many other details and we would not consider them here.

The third technique, denoted by MM, combines MC and MD. Based on the

representation obtained by MC, it further removes the relations satisfying the

conditions for MD. For MM, the removed DC relation Ra,b can be retrieved as

follows

1. if mbr(a)DCmbr(b) then Ra,b = DC;

2. otherwise if one of the three conditions for MD are satisfied then Ra,b =

DC;

3. otherwise if Ra,b is stored, then return the stored relation;

4. if none of the above holds, then we know Ra,b = Rmbr(a),mbr(b) by the

specification of MC.

Table 5.2: Reduction rates of the qualified size for CDC relations of MC over
MA.

Dataset SA1 NSWMB CS SC HEU HMS SEU SMS
MC 0.000% 0.000% 0.000% 2.596% 0.232% 0.189% 0.258% 0.231%
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Table 5.3: Reduction rates of the qualified size for RCC8 relations of the deriva-
tives of MA over MA.

Dataset SA1 NSWMB CS SC HEU HMS SEU SMS
MC 3.969% 5.788% 3.000% 34.223% 9.752% 10.205% 10.371% 10.898%
MD 0.260% 0.000% 0.324% 3.390% 44.604% 44.444% 40.043% 40.883%
MM 4.229% 5.788% 3.324% 37.613% 54.357% 54.649% 50.415% 51.781%

Experiments (Table 5.2 and Table 5.3) on these approaches show that for

the RCC8 relations on some datasets there could be a large reduction, while

for CDC relations the reduction is relatively small. For CDC, this is probably

due to the good performance of MA, where a large portion of the relations

that coincide with the relations of MBRs have been identified. For RCC8 in Ta-

ble 5.3, we observe that higher reduction rates of MC mostly occur for method

MD and MM in the datasets that have a relatively higher average intersection

degree and a larger number of connected components for each region (i.e.

HEU, HMS, SEU, SMS). This is probably because in such case a lot of regions

are in DC relations but their MBRs are not. Moreover, the dataset SC has much

higher reduction rates than the others in Real-3, especially for the methods MC

and MM. Note that the average intersection degree of this dataset is relatively

large and in the meantime the average number of connected components is

relatively small. These might lead to that the relations of the regions are likely

to be the same as the relations of the MBRs of the regions or the MBRs of the

connected components. Finally, note that for the datasets in Real-4, the high

reduction rates are mainly due to MD, which, compared to MA, only further re-

moves some DC constraints. Therefore, although the reduction rates on these

datasets are high, there are still a large number of non-DC constraints being

stored.

Next, let us have a look at the query answering times. Figure 5.10 compares

the time of answering queries on the datasets SC and HMS (which have high
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(a) RCC8 query times on the dataset SC.
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(b) RCC8 query times on the dataset HMS.
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(d) CDC query times on the dataset HMS.

Figure 5.10: Comparison of the performance of query answering with MC, MD,
MM and other methods on the datasets SC and HMS.
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reduction rates) by these approaches with previously discussed approaches.

It should be noted that the representations of some approaches exceeded our

memory limit (16GB) and thus we did not show their query times in the figure.

These include the complete QCN representation (“Complete”) on the dataset

SC for both RCC8 and CDC, and the grid/R-tree clustering indexes (“Grid” and

“R-Tree”) on the dataset SC for CDC.

From the results, we can see that in all the cases, MC has a similar perfor-

mance as MA and the grid/R-tree clustering indexes, which is probably due

to their similar query strategies, i.e. first checking if MBRs disjoint and then

retrieve relation from database or calculate the relation from MBRs. Also, note

that MD and MM have a worse performance on dataset HMS than on SC. This

indicates that the reduction in storage space results in longer query times for

MD and MM. Finally, the direct computation (“Direct”) has a smaller average

query time than the other approaches on SC and HMS for RCC8. This is not

surprising, because, especially for RCC8, there are a large proportion of cases

where the optimisation of MA can be applied to Direct (e.g., for RCC8, Di-

rect can pre-test MBR intersection), and on these datasets direct computation

sometimes can be more efficient than I/Os of databases applied in all the other

methods. On the other hand, by comparing the results of Direct on HMS and

SC, we see that the number of long query times of Direct increases when there

is an increase of the number of cases where the optimisation of MA can not be

applied (i.e. when MBRs have intersections).

5.6 Summary and Discussion

We have seen that MA and its derivatives have promising performance for en-

coding topological and directional information compactly, while retrieving the
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relation of any given pair of variables is still efficient. Moreover, they have pro-

vided an integrated representation for both the RCC8 and CDC information, by

using MBRs. This is desirable when we want to build a qualitative database of

different aspects of spatial and temporal information, as it saves storage space

simultaneously for different information. Finally, the MBR information is usu-

ally available in a spatial database, which would make it easy to incorporate

the compact representation with the current database.

In the previous chapter, we have discussed the prime subnetwork technique

for simplifying the complete QCN representation. By removing redundant con-

straints, this technique will reduce the number of constraints in storage. How-

ever, as have been observed before, this technique has several problems to

be applicable for the task here. First and foremost, it currently does not pro-

vide efficient enough strategy to answer the query about the relation between

two given regions/variables. The only way to answer such query by using

the prime subnetwork representation would be using the qualitative reasoning

techniques such as PC, PPC, and DPC discussed in Chapter 3. Although these

techniques are efficient in terms of qualitative reasoning, they cost too much

time to answer the queries, especially when the number of regions/variables

becomes large (note that the worst case time complexity for these techniques is

O(n3)). For example, even for datasets in Real-2 with only about 600 variables,

it takes 107ns to retrieve the relation that removed in the prime subnetwork

representation. Also, it is not applicable to the CDC information, which is the

main focus of MA. Therefore, we do not consider it as a competitive alternative

for the compact representation problem.

Another technique to simplify the complete QCN representation is specifi-

cally for the RCC8 information. This technique, called Non-DC, removes all the

DC relations in the complete QCN, and assume that if a relation for two regions
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is not stored then it is DC. The resulting representation will have less stored

relations than the one obtained by MA and MD, as well as the one by the grid

or the R-tree clustering indexes. This is because the only type of relations that

the latter techniques do not store is DC relations. Nevertheless, Non-DC tech-

niques have several shortcomings compared to MA. Obviously, it does not work

for CDC information. Also, because Non-DC assumes that a relation not stored

is always DC (similar to the closed world assumption), sometimes it might re-

turn the incorrect relation. For example, when some stored relations were lost

due to some unexpected error without being noticed, the Non-DC method will

still assume these records are DC relations. On the other hand, MA (and MD)

will report unknown or error in this case, because they first check if the MBRs

have intersection to see whether the relation should have been stored. Note

that however MC and MM have the same problem of returning the wrong re-

lation, as they assume the relation that is not found in the records can always

be calculated from the MBRs.

We should note that MA and its derivatives can only deal with the case

where the input is a set of geometric shapes. In real-world applications, there

are also many cases where the input is in the form of qualitative relations,

such as text descriptions about places in Wikipedia (e.g. the description of

Darling Harbour in Chapter 1). Also, as mentioned above, for RCC8 relations

Non-DC will dominate the current techniques, including MA and MD. On the

other hand, Non-DC has the problem of reporting wrong relations in certain

cases, as discussed above, and there are datasets with a large number of non-

DC relations (e.g. the datasets in Real-4) where Non-DC, as well as MA and

its derivatives, cannot perform very well. Therefore, in the next chapter, we

propose another technique to compactly encode the RCC8 relations while sup-

porting efficient relation retrieval for any two regions or variables.



Chapter 6

Compact Representation: Encoding

with Rectangles

6.1 Introduction

In the previous chapter, the main idea is to use MBRs to approximate the re-

gions, such that some of the relations can be unambiguously inferred from the

MBRs. It is based on the observation that many real-world datasets have rela-

tively small “average intersection degree”, which counts the number of MBRs

intersecting a given one in the dataset on average. However, in applications,

there are also cases where (i) the average intersection degree is quite large

(ii) for some regions we may only know how they qualitatively relate to other

regions, without access to precise boundaries (see, e.g., [107, 124, 126]). The

MBR-based approach MA (and its derivatives) will be less useful in these cases,

since its performance will be worsened when the average intersection degree

becomes larger and it relies on the polygon representation of the regions.

Therefore, in this chapter, we will present another approach that uses axis-

aligned rectangles to compactly encode the RCC8 relations between a set of

157
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regions, such that the relation between any two regions can be retrieved effi-

ciently. These rectangles usually are not the MBRs of the regions. The scope of

this chapter is restricted to basic RCC8 relations.

In Section 6.2 we give an algorithm to construct a rectangular pseudo so-

lution for an RCC8 scenario and show how to efficiently retrieve the relation

between two entities with the pseudo-solution representation. Section 6.3 dis-

cusses different implementation details of the algorithm to construct pseudo-

solutions. We empirically evaluate the effectiveness of our method on large

real-world datasets and analyse its performance in Section 6.4.

Bibliographic Note. The work reported in this chapter is based on the joint

work with Steven Schockaert and Sanjiang Li, following the research on com-

pact representation in the previous chapter. In the beginning of this research,

Sanjiang Li, Steven Schockaert, and I discussed about the possibility to gen-

erate simple shapes for compact representation. Later, Steven Schockaert and

I developed the idea of pseudo-solution, with intriguing proposals from San-

jiang Li. With the help of Steven Schockaert and Sanjiang Li, I devised the

algorithm, implemented it, and conducted the empirical evaluations. Most of

the contents in this chapter were first presented in the following publication.

The algorithm used here has been adjusted a little, by changing the way to

construct rectangles, as discussed in Section 6.2.1.

• Zhiguo Long, Steven Schockaert, and Sanjiang Li: Encoding Large RCC8

Scenarios Using Rectangular Pseudo-Solutions, KR, 2016, pp. 463–472.

6.2 Pseudo-Solutions

Recall that a QCN N can be seen as a set of constraints between several vari-

ables. A solution of N is an assignment of entities in a domain to the variables
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such that the constraints between all the variables are satisfied by the entities.

For example, Figure 6.1(a) gives a set of regions and there is a corresponding

QCN about the RCC8 relations between these regions in Figure 6.1(b). Then

the regions naturally give a solution of the QCN as every constraint in the QCN

is satisfied by these regions.

1o

2o 3o

5o
4o

6o

(a) V

EC DC

1o

2o 3o

4o5o

6o

(b) N

Figure 6.1: A set of regions V = {o1, . . . , o6} and the corresponding RCC8 QCN
N .

For the QCN in the above example, when we restrict the domain to rect-

angles, there will be no solution of the corresponding N , although the RCC8

QCN N itself is consistent. This is because, when the rectangles r1, . . . , r5 sat-

isfy the relations between o1, . . . , o5, we cannot find a rectangle r6 for o6 that

satisfies all the relations between o6 and o1, . . . , o5. Figure 6.2(a) illustrates

this circumstance, where there is no rectangle that can be in EC relation with

r1 while in DC relation with the other rectangles.

Nevertheless, by removing enough number of constraints from N , we can

always find a rectangular solution of the resulting QCN. For example, by re-

moving the constraints between o1, . . . , o5, we can find another set of rectan-

gles that satisfy the other constraints, as shown in Figure 6.2(b). Here, we say

a QCN N can be weakened by removing one or several constraints from N .

Based on weakened QCNs, we can then define a pseudo-solution of N .
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3r

4r

5r

(a) S0

1r 6r
4r

5r

2r

3r

(b) S1

Figure 6.2: An illustration of a pseudo-solution of the spatial scenario in Fig-
ure 6.1.

Definition 6.1. Given a QCN N and the set of variables is V , a pseudo-solution

of N is a sequence L = 〈S0, . . . , Sk〉 of assignments to V0, . . . , Vk ⊆ V such that

there exists a sequence of progressively weakened networks 〈N0, . . . ,Nk+1〉
that satisfy:

• N0 = N , Nk+1 = ∅, and Ni = N \ (⋃i−1
j=0 N|Vj

) (1 ≤ i ≤ k + 1);

• Si is a partial solution of Ni satisfying the constraints in Ni|Vi
for every

0 ≤ i ≤ k.

Note that if L is a pseudo-solution, then every constraint in N is satisfied

by at least one of the partial solutions in L. We can easily verify this for the

pseudo solution given by the rectangles in Figure 6.2. A pseudo-solution is

not necessarily a solution of N , and the QCN N might not even be consistent.

However, as we will see later, a pseudo-solution L allows us to retrieve the

basic RCC8 relation between any two variables from N . Here, as in the ex-

ample, we are particularly interested in complete basic QCNs over RCC8 (i.e.

RCC8 scenarios) and rectangular pseudo-solutions, which consist of partial so-

lutions that assign axis-aligned rectangles to variables. The reason we consider

axis-aligned rectangles is that we can easily calculate the RCC8 relations be-
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Table 6.1: Correspondence of basic RCC8 relations and RA relations.

DC {b, bi} ⊗ � ∪ �⊗ {b, bi}
EC {m,mi} ⊗ (� \ {b, bi}) ∪ (� \ {b, bi})⊗ {m,mi}

PO
{o, oi} ⊗ (� \ {b, bi,m,mi})
∪(� \ {b, bi,m,mi})⊗ {o, oi}
∪{d, s, f} ⊗ {di, si, fi} ∪ {di, si, fi} ⊗ {d, s, f}

TPP
{s, f} ⊗ {d, s, f, eq} ∪ {d, s, f, eq} ⊗ {s, f}
∪d ⊗ eq ∪ eq ⊗ d

NTPP d ⊗ d
EQ eq ⊗ eq

tween them, which will be helpful for constructing a compact representation

that supports efficient retrieval of RCC8 relations.

6.2.1 Constructing Pseudo-Solutions

To construct a rectangular pseudo-solution, we need to somehow transform

the RCC8 scenario into QCNs where we can easily construct rectangular partial

solutions. There are three ways for that. The first one is to build a correspon-

dence between the RA relations and the basic RCC8 relations. The second one

is to transform the basic RCC8 relations into IA relations. The third one is to

seek help from the PA relations.

Correspondence between RA and RCC8

As we are constructing rectangular pseudo-solutions, the calculus RA, which

can model the relations between rectangles, is the first consideration for trans-

forming the basic RCC8 relations. However, there are several difficulties. First,

we have seen in the example that a consistent RCC8 scenario might not have

a rectangular solution, so the resulting RA QCN might not have a solution.

This is not the hardest problem, and we can use the idea of pseudo-solution
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to tackle it. The second difficulty is about the efficiency. When transforming

an RCC8 basic relation into an RA relation, the resulting RA relation might be

outside the largest known tractable subclass of RA (i.e. the strongly-preconvex

subclass) identified by Balbiani et al. [6]. See Table 6.1 and also [95, Figure 4]

and [76, Figure 7] for the correspondence of RA relations and basic RCC8 rela-

tions. This suggests that it might be NP-hard to determine if a basic RCC8 QCN

has a rectangular solution and it would be inefficient to construct rectangular

pseudo-solutions from RA QCNs.

Correspondence between PA and RCC8

We can decompose the corresponding RA relation of a basic RCC8 relation

into several RA relations that are PA representable. An IA relation ρ is PA repre-

sentable or pointisable [72, 122] if there exists a PA network N over variables

{x−
1 , x

+
1 , x

−
2 , x

+
2 } such that (x−

1 < x+
1 ) and (x−

2 < x+
2 ) are in N and ρ is identical

to the solution set sol(N ) of N , i.e.

ρ = {([a−, a+], [b−, b+]) | 〈a−, a+, b−, b+〉 ∈ sol(N )}.

We say that an RA relation is PA representable if it is the Cartesian product of

two IA relations that are PA representable. A PA representation of a basic RCC8

relation then can be defined accordingly.

Definition 6.2. Let R be a basic RCC8 relation. Suppose N is a PA QCN for

variables V = {x−
1 , x

+
1 , x

−
2 , x

+
2 , y

−
1 , y

+
1 , y

−
2 , y

+
2 } such that (x−

i < x+
i ) and (y−i <

y+i ) are in N for i = 1, 2. We say that N is a PA representation of R if there is

an RA relation contained in R that is PA representable by N , i.e. identical to

the solution set of N .

Since a PA representation is actually a PA QCN, a solution of it can be
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up/right

right

down/rightdowndown/left

left

up/left up

a
b

Figure 6.3: Two rectangles a and b in DC relation, where the corresponding PA
representation of b is to the “right” of that of a.

considered as the endpoints of two rectangles. For example, Figure 6.3 shows

two rectangles a and b whose endpoints form a solution of a PA representation

of DC {(x−
1 < x−

2 ), (x
−
1 < x−

2 ), (x
−
1 < x−

2 ), (x
−
1 < x−

2 )} (the relations for y-

coordinates are omitted since they are universal relations). Generally for a

basic RCC8 relation R, we say that a set of its PA representations cover R, if,

for any two rectangles satisfying the RCC8 relation, the endpoints of them also

satisfy one of the PA representations.

In addition, if we consider a as the reference object, then b is on the “right”

of a. In fact, all pairs of rectangles (a, b) whose endpoints form a solution of this

PA representation will satisfy that b is on the “right” of a. Then we say that the

PA representation corresponds to the relative position “right”. It may have been

noticed that for the “right” PA representation of DC, some rectangles might

also be in relative position “up” or “down”, as shown in Figure 6.3. However,

here we will associate this PA representation with “right”, as there is another

PA representation corresponding to “up” that covers this case. Similarly, we

can characterise other PA representations of DC with relative positions, as well

as those of EC, TPP/TPP−1, and PO.

Table 6.2 shows a choice of PA representations that cover the basic RCC8

relations. Note that these PA representations are not the only choices that
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cover the basic RCC8 relations. In Table 6.2, we use “r”, “l”, “u”, and “d” to

specify the relative positions of each PA representation. Note that sometimes a

PA representation can corresponds to several relative positions.

Table 6.2: Correspondence of basic RCC8 relations and PA representations.

(x−
1 , x

−
2 ) (x−

1 , x
+
2 ) (x+

1 , x
−
2 ) (x+

1 , x
+
2 ) (y−1 , y

−
2 ) (y−1 , y

+
2 ) (y+1 , y

−
2 ) (y+1 , y

+
2 )

DC (r) < < < < � � � �
DC (l) > > > > � � � �
DC (u) � � � � < < < <
DC (d) � � � � > > > >
EC (r) < < = < � <,= >,= �
EC (l) > = > > � <,= >,= �
EC (u) � <,= >,= � < < = <
EC (d) � <,= >,= � > = > >
PO (r) < < > < � < > �
PO (l) > < > > � < > �
PO (r) = < > < < < > �
PO (r) = < > < � < > >
PO (r,l) > < > < < < > �
PO (r,l) > < > < � < > >
PO (l) > < > = < < > �
PO (l) > < > = � < > >
PO (u) � < > � < < > <
PO (d) � < > � > < > >
PO (u) < < > � = < > <
PO (u) � < > > = < > <
PO (u,d) < < > � > < > <
PO (u,d) � < > > > < > <
PO (d) < < > � > < > =
PO (d) � < > > > < > =
TPP (r) = < > < >,= < > <,=
TPP (l) > < > = >,= < > <,=
TPP (u) >,= < > <,= = < > <
TPP (d) >,= < > <,= > < > =
TPP (r,l,u,d) = < > = > < > <
TPP (r,l,u,d) > < > < = < > =
NTPP > < > < > < > <
EQ = < > = = < > =

Correspondence between IA and RCC8

The disadvantage of directly transforming the RCC8 relations into PA represen-

tations is that the total number of variables will be 4n, where n is the number
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of variables in the original RCC8 QCN, which would decrease the efficiency

of constructing rectangular pseudo-solutions. Is it possible to reduce the total

number of variables after transformation? In fact, we can first make use of the

ORD-Horn IA relations H. Similar to the concept of being PA representable, we

say an RA relation is Horn representable if it is the product of two IA relations

that are in H.

Definition 6.3. Let R be a basic RCC8 relation. Suppose α and β are two IA

relations in H and N = {(x1αx2), (y1βy2)} is an IA QCN. We say that N is a

Horn representation of R if α⊗ β is contained in R.

For a basic RCC8 relation R, we say that a set of its Horn representations

cover R, if, for any two rectangles satisfying the RCC8 relation, the x and y

projections of them also satisfy one of the Horn representations. Table 6.3

shows a choice of Horn representations that cover the basic RCC8 relations.

Similar to the case of PA representations, we can also characterise these Horn

Representations with relative positions “right”, “left”, “up”, and “down”. In

Table 6.3, we also use “r”, “l”, “u”, and “d” to specify the relative positions of

each PA representation.

After transforming RCC8 relations into Horn representations, we obtain an

IA QCN over H, which can actually be divided into two IA QCNs over H for x-

and y-projections respectively. Enforcing path consistency PC is able to decide

the consistency of them. Moreover, Renz [98] showed the following result.

Proposition 6.4 ([98]). Given a path consistent QCN N over H, by applying

the strategy in Algorithm 8, we are able to refine the H relations in N to PA

representable IA relations while retaining the resulting QCN to be path consistent.

It means that we can easily transform Horn representations into PA rep-

resentations whenever needed, while retaining path consistency. With this
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Table 6.3: Correspondence of basic RCC8 relations and Horn Representations.

(x1, x2) (y1, y2)
DC (r) b �
DC (l) bi �
DC (u) � b
DC (d) � bi
EC (r) m � \ {b, bi}
EC (l) mi � \ {b, bi}
EC (u) � \ {b, bi} m
EC (d) � \ {b, bi} mi
PO (r) o � \ {b, bi,m,mi}
PO (l) oi � \ {b, bi,m,mi}
PO (u) � \ {b, bi,m,mi} o
PO (d) � \ {b, bi,m,mi} oi
PO (r,l,u,d) d, o, s, f di, oi, si, fi
PO (r,l,u,d) di, oi, si, fi d, o, s, f
TPP (r) s, eq d, s, f
TPP (l) f, eq d, s, f
TPP (u) d, s, f s, eq
TPP (d) d, s, f f, eq
NTPP d d
EQ eq eq

Algorithm 8: RefH(R), an algorithm for refining a Horn IA relation into
a PA representable IA relation.

Input: R, an IA relation in H.
Output: R∗, an IA relation that is PA representable.

1 if R = {eq} then
2 R∗ ← R;
3 end
4 else
5 R′ ← R ∩ {b, bi, o, oi, d, di};
6 if R′ 	= ∅ then
7 R∗ ← R′;
8 end
9 else

10 R∗ ← R \ {eq};
11 end
12 end
13 return R∗.
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result, using Horn representations to construct pseudo-solutions would also be

as convenient as using PA representations.

Algorithm

We will now present the algorithm for encoding any complete basic RCC8

QCNs, i.e. RCC8 scenarios, by rectangular pseudo-solutions. Here, we focus on

dealing with a set of regions that implicitly induce an RCC8 scenario, while the

idea can be easily adapted to the case of directly taking RCC8 basic constraints

as input. The following discussion will be based on the Horn representations

rather than the PA representations.

Recall that, when restricted to rectangles, each basic RCC8 relation is cov-

ered by a set of Horn representations as defined before. Therefore, we can

incrementally build an IA QCN in a greedy fashion, from that we can construct

a partial rectangular solution of the RCC8 QCN. Algorithm 9 and Algorithm 10

together give the detailed process.

Algorithm 9: EPS(N ), an algorithm for constructing a pseudo-solution
of an RCC8 scenario.

Input: N , an RCC8 scenario with variables V .
Output: L, a pseudo-solution of N (initially empty).

1 while N 	= ∅ do
2 (S,N ′) ← CPS(N );
3 L.add(S);
4 N ← N ′;
5 end

In particular, on Line 2 of Algorithm 9, it repeatedly calls Algorithm 10 to

construct partial solutions of the progressively weakened RCC8 QCNs. When

all constraints have been removed from the original scenario N , we know that

any constraint from the original scenario is satisfied by a partial solution, and
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Algorithm 10: CPS(N ), an algorithm for constructing a rectangular par-
tial solution.

Input: N , an RCC8 QCN with variables V .
Output: A pair (S,N ′) where S is a rectangular partial solution of N

and N ′ is a correspondingly weakened QCN.

1 Is ← ∅;
2 Vs ← ∅;
3 for each variable v0 ∈ V do
4 v0.feasible ← true;
5 I ′s ← Is;
6 for each variable vi ∈ Vs do
7 if ∃Hornv0Rvi path consistent with I ′s then
8 I ′s.add(Hornv0Rvi);
9 else

10 v0.feasible ← false;
11 break;
12 end
13 end
14 if v0.feasible then
15 Vs.add(v0);
16 Is ← I ′s;
17 end
18 end
19 S ← solution(Is);
20 N ′ ← N \N |Vs;

hence that L is a pseudo-solution of the original scenario. As for Algorithm 10,

it repeats the following steps for each variable v0 to construct a rectangular

partial solution of a weakened RCC8 QCN N .

• Line 6: Given that Vs is the set of variables that have already been con-

sidered in these steps, for each basic RCC8 constraint (v0Rvi) between v0

and vi ∈ Vs, execute the following steps.

– Line 7: choose a Horn representation Hornv0Rvi for (v0Rvi) that is

path consistent with the current IA QCN I ′s being built (initially I ′s is
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a copy of the IA QCN Is);

– Line 9: if no such choice is possible, then move to the next variable.

• Line 16: If no inconsistencies have occurred, update the IA QCN Is with

I ′s, where all the chosen Horn representations have been added.

After this process, we obtain a path consistent IA QCN Is corresponding to

a subset Vs of variables in the RCC8 QCN N . Note that Is is a path consistent

QCN over H. By Proposition 6.4, we can transform Is into a path consistent

QCN I∗s over PA representable IA relations, and then transform I∗s into a path

consistent PA QCN Ps. By using the idea of the algorithm by van Beek [121]

based on topological sort, we can find a solution of Ps, from that a rectangular

partial solution S of the RCC8 QCN N can be easily constructed. Then on

Line 20, we weaken N to N ′ by removing all the constraints between the

variables in Vs. Note that these constraints are satisfied by S. In fact, it is easy

to see that the following conclusion holds.

Proposition 6.5. Let Si be the partial solution that is constructed in the i-th

iteration of the while loop in Algorithm 9 and let Vi be the corresponding set of

variables. It holds that any constraint (uRv) from the original RCC8 QCN N
is satisfied by the partial solution Si0, where i0 is the smallest index for which

u, v ∈ Vi0.

After each iteration of the while loop in Algorithm 9, at least one constraint

is removed. Therefore the algorithm will terminate after at most O(n2) it-

erations, where |V | = n. In practice, a larger number of constraints would

typically be removed in each iteration, and thus we can expect the required

number of iterations actually to be much smaller. The number of operations

taken by Algorithm 10 is polynomial in the number of variables, because we
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add IA constraints corresponding to at most O(n2) RCC constraints. By in-

crementally checking the path consistency, the total number of operations by

Algorithm 10 is bounded by O(n5).

6.2.2 Clustering

When the number of variables becomes very large, it would not be feasible to

directly apply our approach to the whole RCC8 scenario. To address this, we

propose to cluster the variables and apply the approach to the RCC8 scenario

for each of these clusters. Note that this is different from the use of clusters by

Fogliaroni [43] discussed in the previous chapter. The idea of Fogliaroni was

to remove constraints between variables in different clusters by using the so-

called clustering relations. In contrast, we use clusters to decompose the large

scenario into smaller scenarios, so that Algorithms 9 and 10 can be efficiently

applied to compactly encode the constraints between the variables in each

cluster.

When we start from a set of regions rather than the explicit RCC8 scenario,

we use the idea of Quadtree [42] to obtain a suitable clustering. In particular,

the space of the regions is first split into N ×N grid cells of equal size, where

N is called the initial grid size. A region is assigned to a grid cell if it has a

common point with that cell. If the number of regions assigned to a single grid

cell exceeds a given limit K, then we split that cell into four cells of equal size,

and repeat the procedure until either all grid cells are assigned with less than

K regions or the maximum number of splits M has been arrived at. Note that

in practice there might be common points that belong to more than K of the

regions, in which case the resulting clusters will always contain more than K

regions. Furthermore, if two regions are connected, i.e. they have a common

point, then there is always at least one cluster to which they both belong.
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We then use Algorithms 9 and 10 to generate a sequence of rectangular

pseudo-solutions for the RCC8 scenarios of these clusters. Moreover, assuming

that the clusters are ordered in some way, we will only consider the RCC8

constraint (uRv) in the first cluster that contains both u and v, i.e. we remove

this constraint from the RCC8 QCNs of all succeeding clusters.

6.2.3 Answering Queries

To retrieve the RCC8 relation Rij between vi and vj, note that the constraint

(viRijvj) is only considered in the first cluster that contains both vi and vj. Then

we first need to find out the pseudo-solution corresponding to this cluster. After

determining the pseudo-solution, we need to find the first partial solution in it

that covers both vi and vj. If there are no clusters that contain both variables,

it means that the RCC8 relation between them is DC. Algorithm 11 shows the

procedure.

Algorithm 11: QPS(vi, vj), an algorithm for retrieving an RCC8 relation
from a pseudo-solution.

Input: (vi, vj), a pair of variables.
Output: R, the RCC8 relation between them.

1 Lc ← FindPseudoSol(vi, vj);
2 if Lc does not exist then
3 return DC;
4 end
5 S ← FindPartialSol(vi, vj);
6 R ← CalculateRelation(S(vi), S(vj);
7 return R.

To allow for efficient query answering, we store the information about each

variable vi as follows.

• An array with the indices of the pseudo solutions corresponding to the
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clusters that contain vi, sorted in ascending order. We call this array the

pseudo-solution array of vi.

• For an entry corresponding to a cluster Ckin the pseudo solution array

of vi, we associate an array with the indices of the partial solutions (for

Ck), that involve vi, sorted in ascending order. We call the array a partial

solution array of vi w.r.t. the cluster Ck.

The total storage size is then proportional to the total number of rectangles.

For a dataset, the number of variables is fixed, and hence the total storage

size will be determined by the average number of rectangles constructed for a

variable.

We now analyse in more detail about using the proposed representation to

answer queries efficiently, i.e. to execute FindPseudoSol(vi, vj) and FindPartial-

Sol(vi, vj).

For FindPseudoSol(vi, vj), the relevant pseudo-solution for a given pair of

regions (vi, vj) can be found, by using the corresponding pseudo-solution ar-

rays Ai and Aj, in O(|Ai| + |Aj|) steps. Let us write |Ai| = ai. Suppose each

ordered pair (vi, vj) (i 	= j) is queried with equal probability. Then the average

number of comparisons is given by:

O(
1

n(n− 1)

n∑
i=1

∑
i �=j

(ai + aj)) = O(
1

n

∑
i

ai) = O(
1

n

∑
k

|Ck|),

where n is the number of pseudo-solutions (and also the number of clusters)

and |Ck| is the number of regions in cluster Ck. In other words, the average

number of comparisons is proportional to the total cardinality of the clusters.

After determining the corresponding pseudo-solution, we need to find out

the first partial solution in the pseudo-solution that specifies a rectangle for

each of the two variables, i.e. to execute FindPartialSol(vi, vj). Let bi be the
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number of partial solutions in the pseudo-solution corresponding to Ck, which

in total specify bi rectangles for vi. If each pair of (vi, vj) is queried with equal

probability, then, similar to the case of finding the relevant pseudo-solution, we

can find the first partial solution which specifies rectangles to the two variables

vi and vj by O(1
t

∑
i bi) comparisons on average, where t is the number of

variables in the considered cluster. In other words, the average number of

comparisons for determining the relevant partial solutions is proportional to

the total number of specified rectangles in the considered pseudo-solution.

When the cluster is fixed, the number of variables will be fixed too, and thus

the average number of comparisons is determined by the average number of

rectangles constructed for each variable in that cluster.

As we can see from the above analysis, to reduce the storage size and to

answer queries efficiently, we should (i) reduce the total cardinality of the

clusters and (ii) reduce the average number of rectangles that is constructed

for a variable in a pseudo-solution. Later we will discuss how we could tackle

these in implementation.

6.2.4 The Non-DC Method

In the previous chapter, we have known that for RCC8 information, the method

Non-DC always has a more compact representation than using MC, MD, or the

grid/R-tree clustering indexes. Therefore, in the experiments, we will use Non-

DC as our main baseline. Given a set of n variables, let N c = {viRijvj : Rij 	=
DC, 1 ≤ i < j ≤ n} be the set of non-DC constraints, i.e. the ones stored by

Non-DC. Note that on average, each region intersects with 2|N c|/n regions

in the dataset. In the following, we will refer to |N c|/n as the Intersection

Measurement Index (IMI) for the dataset, and use it as the measure of the

performance of Non-DC on a dataset.
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In terms of actual storage, we first note that both methods depend on var-

ious implementation factors such as data structures. Here we give a rough

analysis. For Non-DC, to store a relation for two regions, assume that we use

the 32-bit int data type to store the ID of a region and 3 bits to store a relation.

Then Non-DC needs (32× 2+3)|N c| = (16× 4+3)|N c| bits in total, where |N c|
is the number of non-DC relations. For the pseudo-solution representation, to

store a rectangle, assume that we use the 32-bit int data type. Then in total

it needs 32 × 4 × k bits, where k is the number of rectangles. In addition, to

store the indices of pseudo-solutions and partial solutions, assume that we also

use the 32-bit int data type. Note that the number of pseudo-solutions and the

number of partial solutions are both smaller than the number of rectangles.

Then we need additional 32× 2×k bits at most. Moreover, because for a given

cluster and for a partial solution of the cluster, the number of rectangles is

small (smaller than the number of variables in the cluster), we can instead use

the 16-bit short int data type for the endpoints of rectangles, which reduces the

total storage size for rectangles to be 16×4×k. Also, for each cluster, the num-

ber of partial solutions is usually small, and we can again use the 16-bit short

int data type. Thus, the total storage size of the pseudo-solution representation

will be 16× 7× k. It is worth noting that in some applications (e.g. [111]), the

relation from a to b and the relation from b to a are both stored for efficient re-

trieval of both relations, and in this case Non-DC needs double of the previous

storage size, i.e. (16×8+3)|N c| bits, while the pseudo-solution representation

has already had the support for retrieving both relations and the storage size

will remain 16× 7× k bits.

In the experiments, in order to see the essence of the performance of the

pseudo-solution representation, we will use k/n, the average number of rect-

angles, as the measure to compare with the IMI value |N c|/n, i.e. the measure
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of Non-DC.

Besides the storage size, we note again that Non-DC, as well as the two

derivatives MC and MM of MA, is based on some kind of close world assump-

tion, and will return an incorrect relation if the actual relation was lost by

accident. On the other hand, the pseudo-solution representation can avoid

this problem. In fact, the only DC relations that are not encoded by rectangles

are between variables that are never contained in the same cluster. Therefore,

we can assign each variable an additional rectangle where these rectangles are

pairwise disjoint, and then all of these DC relations will be corrected encoded.

6.3 Implementation

In this section, we discuss some implementation details and improvements of

the algorithm, which affect the overall performance.

For clustering, we restrict K, the (soft) limit of the number of regions in

each cluster, to be 500. In practice, this limit should be chosen as large as pos-

sible to reduce the total cardinality of the clusters, while keeping the number

of the variables in the clusters feasible for the algorithm. For each dataset, we

first test different values of the initial split size N by clustering the variables

with them, to see which value gives smaller total cardinality of the clusters.

Note that N = 1 is not always optimal. In fact, for some datasets used in

our experiments, the optimal value of N would be larger values such as 11.

For each of the clusters obtained by clustering with the optimal value of N ,

we generate a pseudo-solution containing a sequence of rectangular partial

solutions.

For the algorithm of constructing a pseudo-solution, the crucial part is to

generate partial solutions, i.e. CPS (Algorithm 10). In CPS, first note that
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some variables in Vs might not have constraints with any of the other variables

in Vs, because these constraints might have already been satisfied by earlier

partial solutions and removed from the QCN. In such a case, it is not necessary

to include a rectangle for each of these variables in the new partial solution.

Therefore, we can generate a partial solution for the current QCN w.r.t. the

variables in Vs without such ones. This will reduce the total number of rectan-

gles in the pseudo-solution without affecting the correctness of the algorithm.

The following discussions will always apply such operation when generating a

partial solution.

6.3.1 Optimisations

Besides, there are three critical steps in Algorithm 10 that affect the number of

rectangles in the resulting pseudo-solutions:

1. Line 3: How to choose v0?

2. Line 6: How to choose vi?

3. Line 7: How to choose a Horn representation of (v0Rvi)?

In a naive implementation of the algorithm, which we will refer to as Naive, we

simply consider a random ordering of the variables, and choose the first Horn

representation according to the static ordering as in Table 6.3.

However, the order to choose variables as v0 and the order to choose vari-

ables in Vs as vi will affect the results significantly. The major reason would

be that, for a set of variables, the constraints associated with them will affect

the likelihood of finding a rectangular partial solution for them. For example,

suppose v0 has EC relations with variables {v1, . . . , v5} that are pairwise DC.

If we first add {v1, . . . , v5} into Vs, it might be impossible to find rectangles
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for these five variables such that all the EC constraints are satisfied. Note that

the rectangle of v0 should touch the rectangles of the variables {v1, . . . , v5}.

Then, after choosing the Horn representations corresponding to some specific

relative positions of the disjoint rectangles of {v1, . . . , v5}, it will be impossible

to find a rectangle for v0 such that the rectangle is touching each rectangle of

{v1, . . . , v5}.

2r

3r 4r

5r

1r

0r

Figure 6.4: Illustration of the dilemma of the order of choosing Horn represen-
tations.

For example, let r1, . . . , r5 be the rectangles for v1, . . . , v4. Suppose we have

chosen that

1. r2 is to the right of r1;

2. r3 is to the right of r2 and to the downside of r1;

3. r4 is to the right of r3 and to the downside of r1 and r2;

4. r5 is to the left of r1 and to the upside of r2.

Because of Choices 1, 2, 3 and 4, r1 can only touch the upside edge of r0.

From Choices 2 and 3, r2 can also only touch the upside edge of r0. However,

under such restrictions, we cannot find r0 for v0 such that r5 also touches it.

Figure 6.4 illustrates this dilemma. For the order of choosing vi, it would have
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a similar circumstance. This suggests that we should order the variables based

on the kind of relations in which they are involved.

The optimisation Label

Based on the above intuition, we propose the following improvement. For

every variable, we count the number of times it is involved in each of the basic

RCC8 relations. Using nv
R to denote such a number, we then order the variables

as follows. For variable v, let the vector

(nv
R1
, nv

R2
, nv

R3
, nv

R4
, nv

R5
)

contain the number of R1, . . . , R5 relations for v. Here, we consider (R1, . . . ,

R5) corresponds to a permutation of the five relations DC, EC, PO, TPP(i),

and NTPP(i), where TPP(i) means the relation is either TPP or TPP−1 and

similarly NTPP(i) means the relation is either NTPP or NTPP−1. Here we do

not distinguish TPP and TPP−1 (and NTPP and NTPP−1) because we think they

are of the same importance for they are the inverse of the other.

To order variables, we use the lexicographic order between these vectors.

In other words, we first order the variables according to nv
R1

. To break ties, we

first consider nv
R2

, etc. We will refer to this improvement as Label.

We generated several synthetic datasets to test which permutation of the

five of relations has the best performance. In particular, for each IMI value in

{13, 20, 28, 37, 46}, we generated 10 datasets of 100 simple regions (i.e. con-

vex polygons), and for each IMI value in {15, 23, 28, 35, 42}, we generated 10

datasets of consistent RCC8 scenarios of 100 variables. To generate a convex

polygon, we sample some elements from a set of points with integer coor-

dinates, say {(i, j) : 0 ≤ i, j ≤ d}, and calculate the convex hull of the se-
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lected points. To sample the points, we first randomly select a “feed” point,

which induces a Gaussian distribution on the integer points around it, and

then we randomly sample the other points from this Gaussian. To generate

consistent RCC8 scenarios, we exploit the Barabási-Albert (BA) model used in

Section 3.6.3 in Chapter 3. For each IMI value, we extracted 10 RCC8 scenar-

ios by using the technique introduced in [114] from the scale-free structured

QCNs generated by the BA model (with the preferential attachment of 2). More

specifically, for the scenarios with the IMI value 15, we have set the percentages

of the relations DC, EC, PO, TPP(i), NTPP(i) to be 76%, 10%, 10%, 2%, 2%, and

for the other IMI values, we reduce the percentage of DC relations accordingly

and increase the percentages of the other relations by amounts proportionally

to their percentages. Such percentages of relations were chosen to mimic the

QCNs representing the RCC8 relations between regions.

For these datasets, we count the average number of rectangles in the pseudo-

solution generated by each permutation of the five types of constraints. Due to

the large number of permutations, in Table 6.4 we only report the minimum

average number of rectangles generated for the 10 datasets of simple regions

(the second row of the table), and that for the 10 datasets of BA scenarios (the

fourth row of the table).

Table 6.4: Minimum average numbers of rectangles generated by Label with
different permutations for synthetic datasets.

IMI (Simple Regions) 13 20 28 37 46
Min. Avg. #Rect 3.30 3.70 3.96 3.76 3.32

IMI (BA Scenario) 15 23 28 35 42
Min. Avg. #Rect 10.51 12.61 13.64 14.99 15.96

The average numbers of rectangles generated by using the permutation

(NTPP(i),TPP(i),PO,EC,DC) are shown in Table 6.5. In fact, by checking the

average number of rectangles generated by each permutation of the five types
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Table 6.5: Average numbers of rectangles generated by Label with the permu-
tation (NTPP(i),TPP(i),PO,EC,DC) for synthetic datasets.

Simple IMI 13 20 28 37 46
Simple 3.30 3.70 4.09 3.76 3.55
BA IMI 15 23 28 35 42

BA 10.90 12.81 13.98 15.02 16.11

of constraints, we found that this permutation leads to the smallest average

residual value and a moderately good performance, compared to the minimum

values in Table 6.4. One can see, by comparing these tables, that there is

only a small difference between the values of the chosen permutation and the

minimum values of all considered permutations.

Note that the containment relations are ordered before the others. One

possible reason could be that the relative position of one rectangle involved

in a containment relation has a great influence on the relative position of

the other rectangle. On the other hand, it is usually easy to find a rect-

angle that satisfies a given DC constraint. In the following, Label will use

(nv
NTPP(i), n

v
TPP(i), n

v
PO, n

v
EC, n

v
DC) to order the variables.

The optimisation Weight

We also consider the following alternative. With each variable v we associate

a score sv defined as:

sv = w1n
v
R1

+ w2n
v
R2

+ w3n
v
R3

+ w4n
v
R4

+ w5n
v
R5
,

where (R1, . . . , R5) corresponds to a permutation of the five relations DC,

EC, PO, TPP(i), and NTPP(i). We can then order the variables according to

these scores. As wi can be seen as the weight for Ri, this improvement will be

referred to as Weight.
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Moreover, based on the result of Label, we assume that (R1, . . . , R5) =

(NTPP(i),TPP(i),PO,EC,DC) and w1 > w2 > w3 > w4 > w5. We should note

that it is not possible to test all the values of the weights wi, and thus we will

only choose the best one from a manually selected candidate set of weights.

To generate a candidate set of weights, we first let the initial values to be

(4, 3, 2, 1, 0). Here w5 is set to 0 because we want to prevent the number of

DC relations from affecting the selection of v according to the other relations.

Then we generate several other candidate values by increasing the values for

w1, w2, and w3 up to 15, while maintaining the ordering w1 > w2 > w3. In

Table 6.6 we report the minimum average number of rectangles generated by

Weight with these values for the 10 datasets of simple regions (the second row

of the table), and that for the 10 datasets of BA scenarios (the fourth row).

Table 6.6: Minimum average numbers of rectangles generated by Weight with
different values for wi (i = 1, . . . , 5) on synthetic datasets.

IMI (Simple Regions) 13 20 28 37 46
Min. Avg. #Rect 3.24 3.70 3.81 3.67 3.48

IMI (BA Scenarios) 15 23 28 35 42
Min. Avg. #Rect 10.46 12.29 13.34 14.41 15.39

Table 6.7 shows the average number of rectangles generated by Weight with

the values (10, 5, 2, 1, 0). In fact, among the candidate values, we found that the

result with the values (10, 5, 2, 1, 0) shown in Table 6.7 has the smallest residual

number and a moderately good performance, compared to the minimums in

Table 6.6. Again, the average numbers of generated rectangles of the chosen

weights are close to the minimum numbers for all the considered weights. In

the following, we will use sv = 10nv
NTPP(i) + 5nv

TPP(i) + 2nv
PO + 1nv

EC as the score

of a variable v in Weight.
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Table 6.7: Average numbers of rectangles generated by Weight with the values
(10, 5, 2, 1, 0) on synthetic datasets.

IMI (Simple Regions) 13 20 28 37 46
Min. Avg. #Rect 3.48 3.82 4.07 3.76 3.67

IMI (BA Scenarios) 15 23 28 35 42
Min. Avg. #Rect 10.98 12.68 13.62 14.65 15.67

The optimisation Type

Finally, we consider the third critical point that affects the performance of the

algorithm, i.e. how to choose a Horn representation for RCC8 relations that

do not correspond to a unique Horn representation. Assume we have a set

of regions rather than the explicit RCC8 relations. We use a heuristic way to

choose Horn representations. In particular, note that a Horn representation of

a basic RCC8 relation corresponds to some configurations of rectangles, and

these rectangles have relative positions such as left, right, up, and down (cf.

Table 6.3). After finding out the relative position of the MBRs, we check if the

MBRs are in the same relation as the regions. If this is the case, we will consider

first the Horn representations corresponding to the same relative position of

the MBRs. Otherwise, we look at the relative position of the centre points

of the MBRs. The Horn representations that have the same relative position

(e.g. right) as the centre points will be considered first. We will refer to this

improvement as Type.

Usually, the relative position of the centre points of the MBRs is vague,

e.g., one lies at the right up corner of the other. Therefore, we introduce

the function 1/(1 + ekα) to assign probabilities to choosing one of the relative

position, where k controls the steepness of the transition of probabilities from

0 to 1. We tested different values of k from 1 to 20 on the synthetic datasets

consisting of convex polygons. It turns out that the results with k = 2, shown
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in the third row of Table 6.8, have the most stable and the smallest residuals

compared to the minimum numbers, as shown in the second row of Table 6.8.

In the following, we will set k = 2 in Type.

Table 6.8: Minimum average numbers of rectangles generated by Type with
different values of k and average numbers of rectangles generated by Type
with k = 2 for synthetic datasets.

IMI (Simple Regions) 13 20 28 37 46
Min. Avg. #Rect 3.41 4.16 4.41 5.26 5.45

Avg. #Rect for k = 2 3.72 4.42 5.00 5.41 5.89

6.3.2 Comparison of Optimisations

To compare the performance of the different variants of our algorithm, we first

use the previous synthetic datasets. In the above, we have already obtained

the results of Label, Weight, and Type on the datasets of convex polygons, as

well as the results of Label and Weight on the RCC8 scenarios extracted from

the BA model. Here, we also include Naive and the other two variants that

combine Label or Weight and Type. For all the tests in this subsection, we did

not cluster the regions or the variables.

Table 6.9 summaries the average number of rectangles for each variant of

our algorithm on the datasets of convex polygons. We can see from the table

that Weight and Label perform similarly, and substantially outperform Naive.

In most cases, Type alone is not as effective as Weight and Label, while the

combination of Label/Weight and Type usually leads to the best performance.

For the RCC8 scenarios extracted from the BA model, the performance of

each of these variants decreases (see Table 6.10). This is mainly because it is

already hard to find 2D simple geometric solutions of these constraints. The

method Naive results in a significant larger average number of rectangles than
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Table 6.9: Comparison of the average number of rectangles needed for differ-
ent implementations on the datasets of 100 convex polygons.

IMI Naive Weight Label Type Weight+ Type Label+Type
13 13.70 3.48 3.30 3.72 3.08 2.76
20 14.05 3.82 3.70 4.42 3.12 3.14
28 12.62 4.07 4.09 5.00 3.24 3.31
37 11.71 3.76 3.76 5.41 3.36 3.53
46 10.86 3.67 3.55 5.89 3.02 3.40

Table 6.10: Comparison of the average number of rectangles generated by
different implementations for the RCC8 scenarios of 100 variables extracted
from the BA model.

IMI Naive Weight Label
15 31.54 10.98 10.90
23 36.66 12.68 12.81
28 38.42 13.62 13.98
35 39.35 14.65 15.02
42 40.06 15.67 16.11

the IMI value for each of these datasets. On the other hand, both Weight and

Label still notably improve Naive and have much smaller numbers of rectangles

than the IMI values. Note that variants involving Type are not applicable here

since these datasets have no geometric information.

We also compared the variants on Real-2 consisting of five small real-world

datasets used in the previous chapter. These datasets have cardinalities about

600, and IMI values of 12, 30, 46, 52, and 74. Table 6.11 shows the aver-

age number of rectangles for each variants of our algorithm. Similar to the

previous results, Label and Weight still have good performance. All the oth-

ers improve Naive, while Label+ Type and Weight+ Type did not improve Label

and Weight. This is probably because that in this case many regions consist

of multiple connected components, where the MBRs or centre points of MBRs

seems less effective to reflect the correct relative positions and hence Type
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Table 6.11: Comparison on small real-world datasets of the average number of
rectangles needed for different implementations.

#var IMI Naive Weight Label Type Weight+ Type Label+Type
600 12 61.15 6.67 6.61 16.12 8.07 8.16
610 30 52.71 10.14 10.21 22.56 13.17 12.90
605 46 44.87 12.33 12.26 27.81 15.15 14.91
611 52 90.47 16.65 16.30 35.99 20.47 19.99
604 74 70.74 18.78 20.46 44.55 24.96 26.10

would be likely to order PA representations in a wrong way. Note that all these

implementations except Naive outperform the Non-DC method in all cases, in

the sense that the average number of required rectangles is smaller than the

average number of relations that need to be stored by the Non-DC method,

with the latter being equal to the IMI value. In the following experiments, we

will focus on the optimisations Label and Weight.

6.4 Empirical Evaluation

Although the idea of the pseudo-solution approach could handle either an

RCC8 scenario directly or a scenario that is implicitly induced by a set of re-

gions, we will mainly consider the latter here, since we are mostly interested in

the cases where the number of regions is too large to be explicitly represented

as an RCC8 scenario.

To test the performance of our method on large real-world datasets, we

have used several datasets in the previous chapter, including four datasets

(HEU, HMS, SEU, and SMS) about species distribution and habitat from the

European Environment Agency1 (EEA), a dataset (CS) with county subdivi-

sions2 of the USA, a dataset (SC) of school catchment areas3 in the USA, and

1http://www.eea.europa.eu/
2http://www.census.gov/
3http://nces.ed.gov/surveys/sdds/sabs/
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the combination of the last two (CS+SC). The four datasets from EEA contain

5,322, 6,258, 10,061 and 11,613 regions (after removing duplicates), with an

IMI of respectively 63.92, 61.83, 121.54, and 119.91. The dataset CS contains

36,702 regions, with an IMI of 3.10. The dataset SC contains 65,192 regions

(after removing duplicates), with an IMI of 9.36. The dataset CS+SC con-

tains 101,894 regions with an IMI of 7.11. For the datasets HEU, HMS, SEU,

and SMS, the percentages of EC,PO,TPP(i),NTPP(i) among the non-DC rela-

tions are about 68.4%, 25.7%, 5.8%, 0.1% respectively. For SC, the percentages

are about 42.8%, 41.2%, 10.2%, 5.8% respectively. For CS+SC, the percentages

are about 51.8%, 34.7%, 8.6%, 4.9% respectively. The dataset CS only contains

DC and EC relations, where the percentage of the EC relations is about 0.2%.

As the number of variables in these datasets is very large, we will cluster the

variables by setting the limit size of a cluster as 500.

6.4.1 Comparison With Baseline Methods

In the experiments, we use the Non-DC method as our main baseline, since for

RCC8 information it leads to more compact representations than the grid or

the R-tree clustering index and the MBR approaches MA and MD, according to

the discussion in the previous chapter. As we have analysed in Section 6.2.4,

we will measure the storage size of Non-DC by the IMI value for each dataset

(i.e. the number of non-DC constraints averaged over the number of regions).

The storage size of our algorithm will be measured by the average number of

rectangles in the pseudo-solution representation.

In addition to comparing our results against the Non-DC method, we also

present the results of the two derivatives of the MBR-based approach, i.e. MC

and MD. Note that in general, the Non-DC method is not guaranteed to out-

perform these two methods. Both of them need to store the MBRs of regions



6. Compact Representation: Encoding with Rectangles 187

besides the constraints, and MD also needs to store the MBRs of connected

components of the regions. Therefore, we measure the storage size of both

methods by calculating the average number of stored MBRs and relations for

each variable.

For the prime subnetwork method discussed in Chapter 4, currently it does

not provide efficient enough strategy for retrieving the relation between two

given variables, but resolves to qualitative reasoning on the whole network,

which can be very inefficient when the number of variables becomes large

(O(n3) worst case time complexity). As mentioned before, even for prime sub-

networks with about 600 variables for the Real-2 datasets, it takes 107ns to

calculate the relation between two variables whose constraint has been char-

acterised as redundant and removed in the prime subnetwork. Therefore, we

do not consider it as a comparable representation, and did not include it as a

baseline here.

Table 6.12 shows the results on the real-world datasets. We can see that

for the datasets HEU, HMS, SEU, and SMS, where the IMI values are relatively

large, the number of non-DC constraints for each region is about 2.5 to 3.4

times larger than the number of rectangles generated by Label and Weight. For

the datasets with very small IMI value but large number of regions, the results

of Label and Weight are still comparable with and sometimes even better than

the other approaches. This is what we may expect in cases where the IMI is

small. By contrast, when the IMI becomes larger the differences will become

more pronounced. For example, for each of the SEU and SMS datasets, the

total number of non-DC constraints is about 1,400,000, while the total number

of rectangles generated by Label or by Weight is only about 440,000.

Note that the average number of rectangles generated by Label and Weight

becomes larger when the IMI increases. To check the connection between the
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Table 6.12: Comparison of storage sizes of Label, Non-DC, MC, and MD for
large real-world datasets.

HEU HMS SEU SMS CS SC CS+SC
Label 23.37 24.68 35.63 37.96 3.31 6.62 5.40
Weight 24.38 25.60 36.97 38.57 3.45 6.32 5.29

Non-DC 63.92 61.83 121.54 119.91 3.10 9.36 7.11
MC 118.10 113.93 205.82 205.27 4.37 9.03 7.35
MD 74.22 69.94 127.32 122.79 4.50 9.04 7.41

growth rate of the number of generated rectangles and that of the IMI, we per-

formed an additional experiment on synthetic data. For each of the IMI values

from 11 to 223 with a step size around 15, we generated 10 datasets of 500

regions. Each of the regions is a set of disconnected polygons and the poly-

gons can be concave. The number of disconnected polygons for each region

is randomly chosen between 1 and 10. A concave polygon is generated as the

previous process of generating convex polygons, by replacing the convex hull

with the concave hull of points. When clustering, we set the limit size of a

cluster to be 300. Note that if instead we set the limit size of a cluster to be

200, some clusters may have to be split many times, which will make clustering

perform poorly and even fail. In this experiment we also included the results

without clustering as a comparison.

Figure 6.5 illustrates the number of rectangles generated by Label, in rela-

tion to the IMI of the dataset. Note that each data point is averaged over 10

datasets. The result of Weight is almost the same as Label and for clarity we

have removed it from the figure. From the result, we can see that both the

growth rates of Label with clustering (Label-Cluster in the figure) and without

clustering are similar and are much smaller than that of the IMI. By comparing

the results with and without clustering, we also observed that the side effect of

clustering becomes more noticeable when the IMI increases, as the difference
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Figure 6.5: Illustration of the growth rate of Label with and without clustering
when IMI increases.

in the number of generated rectangles becomes larger. The reason for the side

effect of clustering is that, when the IMI increases, a larger number of vari-

ables will be included in several clusters and hence some extra rectangles will

be generated for these variables.

In Figure 6.5, we also observed another interesting phenomenon, i.e. when

IMI grows to be relatively large, the number of rectangles generated by Label

(and Weight) without clustering on the contrary becomes smaller. In that case,

the QCNs of the datasets contain more PO relations than the other relations ex-

cept DC, i.e. PO relations becomes dominant. To have a closer examination of

the effect of different types of relations in the QCN, we conducted experiments

on several randomly generated RCC8 scenarios, which are extracted from the

QCNs generated by the BA model. In particular, for each of the IMI values from

16 to 196, with a step size of 20, we extracted 10 complete basic RCC8 QCNs of

500 variables. When the IMI value increases, the percentage of the relation R

also increases, starting from p0 with a step size of about 0.08, where R can be
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EC, PO, TPP(i), and NTPP(i), and p0 is 10% for EC and PO and 2% for each of

NTPP(i) and TPP(i). The results are shown in Figure 6.6.
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(c) TPP(i)
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Figure 6.6: The number of rectangles generated by Label and Weight on
datasets with different dominant relations.

From the results, we can see that, for the case of where the number of PO

relations becomes dominant, the number of rectangles generated by Label and

Weight decreases visibly when the IMI grows close to the maximum value. For

the case of TPP(i) and NTPP(i), when the IMI approaches the maximum value,

the number of rectangles also decreases, but only for a small amount. For the

case of EC, the number of rectangles keeps increasing, for which we should

note that there might not exist convex shaped solutions to the QCNs. Also,



6. Compact Representation: Encoding with Rectangles 191

for the case where PO dominates the other relations, the number of gener-

ated rectangles is smaller than that for the cases where EC, TPP(i), or NTPP(i)

dominates. The reason for this phenomenon is probably that the PO relations

are easier to be satisfied by rectangles than the other types of relations. In fact,

for instance, when all the relations are EC, the rectangular pseudo solutions

will contain O(n2) number of rectangles. Moreover, TPP(i) and NTPP(i) re-

lations seem difficult to be captured by rectangles, particularly when they are

mixed with other relations. This might due to that when one rectangle con-

tains another, these two rectangles are likely to have the same relations with

the other rectangles, while usually it is not the case in the randomly generated

QCNs. Nevertheless, the number of rectangles is still smaller than the number

of non-DC constraints in most of the datasets tested, especially when the IMI

becomes large. In addition, we expect that, in large real-world datasets of re-

gions, these “degenerated” cases of QCNs are rare, since we have shown that

our approach works well for such datasets in previous experiments.

6.4.2 Answering Queries

Next we consider the computation time that is needed to determine the RCC8

relation between two given variables. This corresponds to the evaluation of

queries such as “does species A live in an area where species B is also present”

or “is neighbourhood X is the catchment area of school Y ”. This kind of queries

are common in applications such as GIS and are fundamental ones. More com-

plex queries can be answered by integrating our approach with other tech-

niques, such as using the pseudo-solution representation as a compact back-

end representation of the R-tree method in [95]. In the following, we will

compare the performance of three methods: (i) determining the relation by

comparing the geometric representation of the boundaries of the regions by
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using JTS4 (Direct), (ii) using the pseudo-solution produced by the method

Label5, and (iii) using an RCC8 QCN without DC constraints (Non-DC). Note

that when information is stored on disk rather than in memory, the perfor-

mance of all methods would be affected. In such case, the I/O operations to

the storage would dominate the performance of query answering, and it would

be difficult to compare the efficiency of these methods. Therefore, in the ex-

periment, we assume that all the information, including geometries of regions,

MBRs, constraints, and rectangles are stored in memory. Specifically, the con-

straints are stored in a hash table indexed by the identifiers of variables, and

the rectangles are stored as explained before. The experiment was conducted

on a computer with Intel R© CoreTM i3 1.6 GHz CPU and 16 GB RAM.

Figure 6.7 presents the results of 10,000 random pairs for the following

datasets: SEU (which has the largest IMI) and CS+SC (which has the largest

number of variables). The queries only involve pairs of variables whose MBRs

intersect, and the 10,000 pairs are chosen by randomly sampling in the set of

all such pairs. This is motivated by the observation that when geometric infor-

mation is available, it is easy to apply a pre-test for intersection of the MBRs

by all methods. For these two datasets, Label exhibits a clearly better per-

formance than Direct and is reasonably efficient compared to Non-DC, which

simply needs to retrieve the constraint from a hash table. The median query

time for Label is about 3,000ns for SEU and about 2,000ns for CS+SC, while for

Direct it is around 500,000ns for both datasets and 500ns for Non-DC. In fact, in

both datasets there are about 3000 queries for which the Direct method needs

more than 106ns. Note that the fact that Label generates more rectangles for

the SEU dataset than for the CS+SC dataset translates into a higher query time

for the former dataset.

4http://www.vividsolutions.com/jts/JTSHome.htm
5Using Weight would have similar results and we omitted it here.
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Figure 6.7: (a) Query times on SEU dataset. (b) Query times on CS+SC
dataset.

As we discussed in Section 6.2.3, the major procedure of query answering

using pseudo-solutions is to search the pseudo-solution arrays and the partial

solution arrays. Therefore, the query time for a pair of variables depends on

the number of pseudo-solutions (which is the same as the number of clusters)

and the number of partial solutions (where the variables appear) for a pseudo-

solution. Generally, when these numbers increases, both the storage size and

the query time will increase. In the following, we illustrate this on the BA

QCNs generated by BA model as in Figure 6.6(a) for the case of EC. These

QCNs have 500 variables each, and there is only one cluster for each QCN, and

thus one pseudo-solution. This is desirable, as we want to fix one factor to

see the effect of another factor on query time. Here we only fix the number

of pseudo-solution, and the case for fixing the number of partial solutions is

similar and will not be considered. We randomly sampled 1,000 queries for

each QCN. Figure 6.8 shows the means and medians of the query times. As

shown in the figure, the mean and median query times scale about linearly in

the average number of rectangles per variable, which is a confirmation of our

analysis in Section 6.2.3.
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Figure 6.8: Query times on datasets of increasing storage size.

6.5 Summary and Discussion

In the previous sections, we have seen that the pseudo-solution representa-

tion can compactly encode the RCC8 information while supporting efficient

retrieval of the relations between two given entities. In particular, it works

well on large datasets of regions where the number of non-DC constraints is

relatively large. These cases are the weak points of the previous methods such

as MA and its derivatives, and the Non-DC method as well. For real-world

datasets, under certain optimisations, i.e. Label and Weight, the resulting rep-

resentation has a size that can be considered as linear in the number of spa-

tial entities. Query answering on the representation has also been shown to

be much more efficient than direct computation by using geometric shapes.

In fact, the efficiency of query answering is mainly determined by the aver-
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age number of rectangles in the representation, while the complexity of the

original regions or the number of entities have little effect. As a result, the

pseudo-solution representation can scale to very large number of regions (e.g.

the dataset CS+SC has more than 100,000 regions), while query answering

remains efficient.

In the experiments, we have also seen that there are “degenerate” cases,

e.g. where EC relation is dominant. In these cases, the pseudo-solution rep-

resentation might become quadratic. Nevertheless, such cases seem not to be

common in real-world applications. Besides, the clustering method could have

a negative effect on the performance. This is due to the fact that some vari-

ables will be repeatedly clustered into various clusters and the algorithm needs

to generate rectangles for them in each cluster. Moreover, when the number of

non-DC constraints becomes very large, the clustering method might fail. The

reason is that in such case there could be a large number of regions that have

a common point and will need to be clustered into the same cluster, which in

turn makes it impossible to reduce the number of regions in the cluster for the

clustering method. Furthermore, the current clustering method cannot deal

with pure qualitative input, because it relies on the geometric information. For

clustering variables in a QCN, existing algorithms (e.g. [51, 115]) to partition

or decompose graphs might be helpful.

The current pseudo-solution method can only handle complete basic RCC8

information. However, the idea of using pseudo-solutions is promising and

opens up several areas for future work. For example, this idea can be applied

to compactly encoding QCNs for other calculi. Specifically for a complete basic

QCN over PA or IA, we can directly make use of a solution of it, which con-

sists of linear number of time points or intervals. From these time points or

intervals, the PA or IA relation can be easily calculated. This makes the repre-
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sentation of the QCN linear in the number of variants. We might also be able to

encode complete basic CDC QCNs. In addition, this idea might be generalised

for RCC8 QCNs that contain non-basic relations.

Finally, with the pseudo-solution method and the previous MA method, for

various datasets with different properties, we can encode both topological and

directional information more compactly and support query answering of rela-

tions efficiently. Table 6.13 and Table 6.14 briefly summarised the approaches

to representing and retrieving RCC8 or CDC relations discussed in this thesis.

By compactly encoding the spatial information, these methods greatly improve

the feasibility of building a comprehensive knowledge base of qualitative spa-

tial/temporal information, and will play an important role in applying QSTR

to real-world applications.
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Table 6.13: Summary of approaches to representing and retrieving RCC8 rela-
tions.

Method Storage Size Query Time Useful Case

MA
Less than
Complete

Shorter than
Complete,
Similar to

Direct

Usually not as
useful as Non-DC,
but can be used
for datasets with a
mixture of RCC8
and CDC relations

Spatial-
Clustering

Index
Larger than MA Similar to MA

Not more useful
than MA

Complete
(Database)

Largest
Long, due to
database I/O

Small datasets

Non-DC (Hash
Table)

The least
among the first
four methods

Dominating the
first four

methods and
MA Derivatives

Large datasets
with many DC
relations

MA Derivatives
Less than MA,
sometimes less
than Non-DC

Shorter than
Complete, but
may be longer

than Direct

Usually not as
useful as Non-DC

Pseudo-Solution
Less than
Non-DC

Shorter than
Direct, longer
than Non-DC

Large datasets
with many non-DC
relations

Direct
Storage of

regions, can be
large

Long when
MBRs intersect

When regions are
in simple shape
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Table 6.14: Summary of approaches to representing and retrieving CDC rela-
tions.

Method Storage Size Query Time Useful Case

MA
Less than
Complete

Shorter than
Direct and
Complete

Large dataset
where many MBRs
do not intersect, or
large datasets of
mixed RCC8 and
CDC relations

Spatial-
Clustering

Index
Larger than MA Similar to MA

Not more useful
than MA

Complete
(Database)

Largest
Long, due to
database I/O

Small datasets

MC
Less than MA,
sometimes less
than Non-DC

Shorter than
Complete, but
may be longer

than MA

Similar to MA

Direct
Storage of

regions, can be
large

Long when
MBRs intersect

When regions are
in simple shape



Chapter 7

Conclusion

The capability to handle qualitative spatial and temporal information is desir-

able in many real-world applications, such as the intelligent personal assistants

with growing popularity and geographic information systems. Building a com-

prehensive knowledge base of qualitative spatial and temporal information is a

generalised way to help applications accumulate and process such information.

QSTR provides techniques to such a knowledge base for this purpose. QSTR

represents the spatial and temporal information between entities as relations,

and uses QCNs to gather the relations and to encode connections between

relations. The QCN representation adds a qualitative information layer to ap-

plications and knowledge bases, and qualitative reasoning techniques help to

exploit the QCN for various tasks.

However, there are several important problems that limit the applicability

of QSTR to practical circumstances. Specifically, because of the large amount of

information to handle, the size of the QCN representation could be so large that

the techniques that rely on it become too slow, and the information becomes

too costly or even infeasible to be encoded. This calls for efficient reasoning

and concise representation. In this thesis, we have provided several solutions

199
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to the corresponding problems.

7.1 Thesis Contributions

Qualitative reasoning techniques on QCNs would be more efficient and more

powerful if one can better understand the properties of the relations in the

QCNs. The related question we answered in this thesis is what kind of sub-

classes of qualitative relations are sufficient for algorithms to do qualitative

reasoning more efficiently by making use of sparse structures. We proposed

the concept of distributive subalgebras to characterise a family of subclasses

of relations, and identified maximal ones in various qualitative calculi, i.e. PA,

IA RCC5/8, CRA, and RA. Some of the maximal distributive subalgebras in

fact coincide with previously identified important subclasses in QSTR, such as

the subclasses of convex IA relations [81] and convex RCC8 relations [17].

For distributive subalgebras, we showed that tasks, including the consistency

problem, the minimal labelling problem, and the (weakly) globally consistency

problem, can be accomplished with efficient algorithms, including DPC (only

for the consistency problem), PPC (and PC), and DPC+. Moreover, with the

properties of distributive subalgebras, the algorithms DPC and DPC+ reduce

the number of propagations compared to PC and PPC to accomplish the same

tasks, which means that even in cases the structure is not sparse, these two

algorithms will still be more efficient than the algorithms PPC and PC for dis-

tributive subalgebras.

For concise representation, we first studied the redundancy problem, i.e.

how to identify and to remove redundant constraints in a QCN without chang-

ing the solution set of the QCN. The general problem was shown to be co-

NP-complete. For tractable subclasses of PA, IA, CRA, RA, and RCC5/8, con-
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structing a prime subnetwork can be accomplished in O(n4) or O(n5) time, and

there can be more than one prime subnetworks. Distributive subalgebras are

helpful for solving this problem more efficiently. For any QCN over distribu-

tive subalgebras of PA and RCC5/8, we showed that the set of non-redundant

constraints (i.e. the core) in the QCN is exactly the unique prime subnetwork

of it. On the other hand, we provided examples showing that the results gen-

erally do not hold for distributive subalgebras of IA, RA, or CRA, neither for

non-distributive subalgebras of RCC5/8 or PA. For a QCN over any distributive

subalgebra of PA and RCC5/8, we proposed an O(n3) algorithm based on the

a-closure (i.e. the PC subnetwork) to construct the core, which was further

improved in [113] by using the PPC subnetwork. With more concise QCNs,

the tasks that are sensitive to the number of constraints will become more

efficient, such as topological adjustment of geometric data according to the

constraints and comparison of QCNs.

In spite of its ability to simplify QCNs, we noticed that the prime subnet-

work representation is not suitable for the task of retrieving the relations. This

is because it requires qualitative reasoning on the QCN, which is in O(n3) worst

case time (n is the number of variables). Even for a small number of variables

the retrieval is too slow. Therefore, we proposed alternative techniques to com-

pactly represent the qualitative information to support efficient retrieval of the

relations.

The first technique is the MA method. The idea of MA is that, for RCC8,

when the MBRs of two regions do not have a common point, then the RCC8 re-

lation between the regions and that between the MBRs are both DC; for CDC,

when the MBRs of two regions do not have a common interior point, then the

CDC relation between the regions can be calculated either from the MBRs of

them or from the MBRs of their connected components. In this way, the only
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stored RCC8 (or CDC) relations are the ones between the regions whose MBRs

have common point (or common interior point). The number of stored RCC8

or CDC relations by a method is called the qualified size of the dataset for the

specific method. Compared to the previous approaches proposed in [43], we

proved that the qualified size for MA is at most as large as that for those ap-

proaches. In real-world datasets, especially for the case of CDC relations, the

advantage of MA over these approaches and the complete QCN representa-

tion becomes more significant. For retrieval relation of two given regions, we

developed the algorithm MAQ based on the compact representation by MA.

We demonstrated that for CDC relations MAQ is actually much more efficient

than direct computation from geometric representations. When the relations

are stored in database, MAQ is also more efficient than the approaches in [43]

and the complete QCN representation, because it requires less I/O operations.

We also proposed several derivatives of MA that are based on more careful

examination of the relations between the MBRs. For some datasets where the

average intersection degree is relatively larger, these derivatives can have a

higher reduction rate, at the expense of higher computation time to retrieve

the relations.

Note that for RCC8, when there is a large number of non-DC constraints for

the dataset, the MA methods and its derivatives, as well as the Non-DC method

that only stores non-DC constraints, will still need to store a large number of

constraints. To represent the RCC8 information more compactly for this kind

of datasets, we proposed another technique, i.e. the pseudo-solution represen-

tation. For an RCC8 scenario or a set of regions that induce an RCC8 scenario,

the idea of this technique is to assign a small number of axis-aligned rectangles

to each of the spatial entities, such that the RCC8 relation between any two en-

tities can be calculated from two rectangles for these regions. If on average the
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number of rectangles is small for each entity, then the resulting representation

will be very compact. Moreover, since the retrieval of relations is based on

rectangles, it remains very efficient. We showed on real-world datasets of re-

gions that the pseudo-solution representation can encode the RCC8 relations

more compactly than the other approaches, particularly for the datasets where

the average number of non-DC constraints is very large. We also demonstrated

its scalability with respect to the number of non-DC constraints, where the

pseudo-solution representation shows a sub-linear performance in the number

of non-DC constraints. For relation retrieval, both on datasets with large av-

erage number of non-DC constraints and on datasets with large number of re-

gions, the retrieval based on the pseudo-solution representation exhibits much

better performance than direct computation from geometric representations,

and is reasonably efficient compared to simple table look-up of relations.

All of these results contribute to building a comprehensive knowledge base

that helps real-world applications to handle qualitative spatial and temporal

information. With more efficient reasoning techniques, such a knowledge base

can extract qualitative information from large-scale data and respond to re-

quests by users with less latency. By simplifying the QCN representation, it can

serve as a more concise interface of qualitative information. By representing

the qualitative information more compactly, it will not only save storage space,

but also be scalable to very large datasets without significant decrease in the

efficiency to provide qualitative information.

7.2 Future Perspectives

The results in the thesis have shown the potential of applying QSTR to real-

world applications to deal with large-scale data. These results lead to several
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meaningful future research directions.

7.2.1 Extension of Efficient Algorithms

Distributive subalgebras have many useful properties and algorithms based on

these properties have shown promising performance. One natural question is

how we can extend these algorithms to deal with larger subclasses or even

with the whole qualitative calculus. For example, the traditional backtracking

algorithm [101, 112] for checking the consistency of a QCN uses PC or PPC as

forward checking of the feasibility of a branch. Note that DPC is more efficient

than both of them for checking the consistency of a QCN over a distributive

subalgebra. However, it will be inefficient if we directly apply DPC each time

when we need to forward check (look ahead) a constraint on the branch, as we

do not make use of the consistency of the QCN in the former stage. Therefore,

it would be interesting to see how we could properly apply DPC to the back-

tracking scheme. One promising solution is to develop an incremental version

of DPC.

Incrementally applying the algorithms would also help deal with dynamic

information, which is very common in real-world applications. For example,

in [48, 109, 110], the authors have investigated how to achieve PC and PPC

with incremental versions of PC and PPC. As we have shown in the thesis, for

static QCNs over distributive subalgebras, DPC+ can achieve PC and PPC

more efficiently than these two algorithms. If we have an incremental version

of DPC+, then we can deal with dynamic information in larger scale.

The prime subnetwork technique might also improve the efficiency of qual-

itative reasoning on dynamic information. By simplifying the structure of the

initial QCNs, further update and reasoning on the QCN might be easier. For

example, to generate an assignment for the variables so that the values satisfy
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the dynamically updated constraints, we might need to check consistency on

the changing QCN repeatedly, where a simplification of the QCN will greatly

improve the efficiency. How to integrate the prime subnetwork technique with

algorithms like DPC and DPC+ would be an interesting challenge.

7.2.2 Extension of Compact Representation

The techniques for compact representation in this thesis only deal with basic

relations. In real-world applications, there are also many cases of incomplete

or indeterminate information, where the regions might have vague boundaries,

or the relations might not be basic (see, e.g., [23, 54, 54]). Being able to deal

with this kind of information will greatly increase the scope of the techniques.

One possible extension is to introduce “vague” MBRs or axis-aligned rectangles.

The “vague” MBRs or rectangles could consist of two rectangles, one of which

contains the other. This is like the “egg-yolk” representation in [23]. The

incomplete or indeterminate information can then be encoded by the relations

between the vague MBRs or rectangles. For example, to encode the constraint

(u{EC,PO}v), we can assign to u the rectangles r1 and r2 and to v the rectangle

r3 such that r1NTPPr2, r1ECr3, and r2POr3.

In addition, it will be an important improvement if we can answer more

complex queries with compact representation. On one hand, the current tech-

niques can efficiently retrieve the relation between any pair of variables/regions.

On the other hand, it is also vital to deal with the task of retrieving regions that

satisfy specific relations with some given regions. One possible approach is to

apply indexing techniques such as the variants of R-trees to MBRs and rectan-

gles of compact representation, such that the candidate regions can be quickly

filtered out by using the corresponding MBRs or rectangles.

Supporting dynamic information with a compact representation is another
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useful extension. For instance, we need to update the representation if some

relations are changed or some new variables are added. Note that the changes

are usually local, so it is possible that we only need to adjust a small portion of

the current representation. How to properly adjust the representation would

be worth investigating further.

Finally, repairing the current compact representation techniques for the de-

generate cases might lead to substantial improvements. For example, as we

have mentioned before, when the number of EC constraints becomes large,

the number of rectangles generated by the pseudo-solution method could be

O(n2) many. This is due to the shape and dimension of the rectangle. By using

a slightly more complex shape (e.g. rectangles with holes) or increasing the

dimension, not only the EC constraints could be better captured, but also the

overall representation might be improved significantly.



Appendix A

Maximal Distributive Subalgebras

In the following, we list the maximal distributive subalgebras of PA, IA, RCC5
and RCC8.

A.1 Maximal Distributive Subalgebras of PA

The closure of basic relations of PA contains 4 non-empty relations

B̂PA = {<,>,=, �}. (A.1)

One of the maximal distributive subalgebras contains 6 non-empty relations

<,>,=, �,≤,≥, (A.2)

which is exactly the subclass CPA of convex PA relations [122].

The other one contains 5 non-empty relations

<,>,=, �, 	=, (A.3)

which is exactly the subclass SPA identified in [3].

A.2 Maximal Distributive Subalgebras of IA

The closure of basic IA relations, B̂IA, contains 29 non-empty relations (see
Table A.1). Our computation shows that IA has two maximal distributive sub-
algebra, one contains additional 53 non-empty relations, shown in Table A.2,
which is exactly the subclass CIA of convex IA relations; the other contains
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additional 52 non-empty relations, shown in Table A.3, which is exactly the
subclass SIA identified in [3].

Table A.1: The closure of basic IA relations, B̂IA, contains 29 non-empty rela-
tions.

{fi} {f} {si} {s} {mi} {m} {oi} {o} {di} {d} {bi} {b} {eq}
{f,fi,eq} {s,si,eq} {di,o,fi} {d,oi,f}
{d,o,s} {di,oi,si} {bi, di, oi, mi, si} {b, di, o, m, fi}
{b,o,m} {bi,oi,mi} {bi, d, oi, mi, f} {b, d, o, m, s}
{bi, d, di, o, oi, mi, s, si, f, fi, eq} {b, d, di, o, oi, m, s, si, f, fi, eq}
{d, di, o, oi, s, si, f, fi, eq} {b, bi, d, di, o, oi, m, mi, s, si, f, fi, eq}

Table A.2: Additional relations contained in CIA.

{fi, eq} {di, fi} {d, di, o, oi, mi, s, si, f, fi, eq}
{f, eq} {di, si} {d, di, o, oi, m, s, si, f, fi, eq}
{si, eq} {di, si, fi, eq} {d, di, o, oi, m, mi, s, si, f, fi, eq}
{s, eq} {di, oi, si, f, fi, eq} {bi, mi}
{oi, f} {di, oi, mi, si} {bi, oi, mi, f}
{oi, si} {di, oi, mi, si, f, fi, eq} {bi, oi, mi, si}
{oi, si, f, eq} {di, o, s, si, fi, eq} {bi, oi, mi, si, f, eq}
{oi, mi} {di, o, m, fi} {bi, di, oi, mi, si, f, fi, eq}
{oi, mi, f} {di, o, m, s, si, fi, eq} {bi, d, oi, mi, s, si, f, eq}
{oi, mi, si} {d, f} {bi, d, di, o, oi, m, mi, s, si, f, fi, eq}
{oi, mi, si, f, eq} {d, s} {b, m}
{o, fi} {d, s, f, eq} {b, o, m, fi}
{o, s} {d, oi, s, si, f, eq} {b, o, m, s}
{o, s, fi, eq} {d, oi, mi, f} {b, o, m, s, fi, eq}
{o, m} {d, oi, mi, s, si, f, eq} {b, di, o, m, s, si, fi, eq}
{o, m, fi} {d, o, s, f, fi, eq} {b, d, o, m, s, f, fi, eq}
{o, m, s} {d, o, m, s} {b, d, di, o, oi, m, mi, s, si, f, fi, eq}
{o, m, s, fi, eq} {d, o, m, s, f, fi, eq}

A.3 Maximal Distributive Subalgebras of RCC5

For RCC5, the closure of basic relations B̂5 contains 12 non-empty relations.
These are the five basic relations, and 7 other relations (see Table A.4).
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Table A.3: Additional relations contained in SIA.

{f, fi} {bi, d, di, o, oi, s, si} {b, d, di, o, oi, m, s, si}
{s, si} {b, bi, d, di, o, oi} {bi, d, di, o, oi, s, si, f, fi, eq}
{di, oi} {bi, d, di, o, oi, mi} {b, bi, d, di, o, oi, f, fi}
{di, o} {bi, d, di, o, oi, mi, f, fi} {b, bi, d, di, o, oi, s, si}
{d, oi} {bi, d, di, o, oi, mi, s, si} {b, bi, d, di, o, oi, s, si, f, fi, eq}
{d, o} {bi, d, di, o, oi} {b, bi, d, di, o, oi, mi}
{b, o} {d, di, o, oi, f, fi} {b, bi, d, di, o, oi, mi, f, fi}
{b, di, o} {bi, d, di, o, oi, f, fi} {b, bi, d, di, o, oi, mi, s, si}
{b, d, o} {b, di, o, m} {b, bi, d, di, o, oi, mi, s, si, f, fi, eq}
{bi, oi} {d, di, o, oi, s, si} {b, bi, d, di, o, oi, m}
{bi, di, oi} {b, d, o, s} {b, bi, d, di, o, oi, m, f, fi}
{bi, di, oi, si} {b, d, o, m} {b, bi, d, di, o, oi, m, s, si}
{bi, di, oi, mi} {b, d, di, o, oi} {b, bi, d, di, o, oi, m, s, si, f, fi, eq}
{bi, d, oi} {b, d, di, o, oi, f, fi} {b, bi, d, di, o, oi, m, mi}
{bi, d, oi, f} {b, d, di, o, oi, s, si} {b, bi, d, di, o, oi, m, mi, f, fi}
{bi, d, oi, mi} {b, d, di, o, oi, m, f, fi} {b, bi, d, di, o, oi, m, mi, s, si}
{d, di, o, oi} {b, d, di, o, oi, m} {b, d, di, o, oi, s, si, f, fi, eq}
{b, di, o, fi}

Table A.4: Relations contained in B̂5.

{DR} {PO} {PP} {PP−1} {EQ}
{PO,PP} {PO,PP−1} {PO,PP,PP−1,EQ}

{DR,PO,PP} {DR,PO,PP−1} {DR,PO} �.
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The first maximal distributive subalgebra, denoted by D5
14, contains in ad-

dition the following two more relations except the relations in B̂5

{PP,EQ}, {PP−1,EQ}.

The second maximal distributive subalgebra, denoted by D5
20, contains in ad-

dition eight more relations as shown in Table A.5.

Table A.5: Additional relations contained in D5
20.

{PO,EQ} {PO,PP,EQ} {PO,PP,PP−1} {PO,PP−1,EQ}
{DR,PO,PP,PP−1} {DR,PO,PP−1,EQ}

{DR,PO,EQ} {DR,PO,PP,EQ}.

It is easy to see that both D5
14 and D5

20 are contained in H5, the maximal
tractable subclass of RCC5 identified in [65, 100].

A.4 Maximal Distributive Subalgebras of RCC8

For RCC8, the closure of basic relations B̂8 contains 37 non-empty relations as
shown in Table A.6.

Table A.6: Relations contained in B̂8.

{PO,TPP} {PO,TPP−1} {PO,TPP,NTPP}
{PO,TPP−1,NTPP−1} {PO,TPP,TPP−1,EQ}

{PO,TPP,NTPP,TPP−1,EQ} {PO,TPP,TPP−1,NTPP−1,EQ}
{PO,TPP,NTPP,TPP−1,NTPP−1,EQ} {TPP,NTPP} {TPP−1,NTPP−1}

{EC,PO} {EC,PO,TPP} {EC,PO,TPP−1} {EC,PO,TPP,NTPP}
{EC,PO,TPP−1,NTPP−1} {EC,PO,TPP,TPP−1,EQ}

{EC,PO,TPP,NTPP,TPP−1,EQ} {EC,PO,TPP,TPP−1,NTPP−1,EQ}
{EC,PO,TPP,NTPP,TPP−1,NTPP−1,EQ}

{DC,EC} {DC,EC,PO} {DC,EC,PO,TPP} {DC,EC,PO,TPP−1}
{DC,EC,PO,TPP,NTPP} {DC,EC,PO,TPP−1,NTPP−1}

{DC,EC,PO,TPP,TPP−1,EQ} {DC,EC,PO,TPP,NTPP,TPP−1,EQ}
{DC,EC,PO,TPP,TPP−1,NTPP−1,EQ} �.

The first maximal distributive subalgebra, denoted by D8
41, contains in ad-

dition the following four relations

{TPP,EQ} {TPP,NTPP,EQ} {TPP−1,EQ} {TPP−1,NTPP−1,EQ}.
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This distributive subalgebra turns out to be exactly the class of convex RCC8
relations identified in [17]. The second maximal distributive subalgebra, de-
noted by D8

64, contains in addition 27 more relations shown in Table A.7. It

Table A.7: Additional relations contained in D8
64.

{PO,EQ} {PO,TPP,EQ} {PO,TPP−1,EQ} {PO,TPP,TPP−1}
{PO,TPP,NTPP,EQ} {PO,TPP−1,NTPP−1,EQ}

{PO,TPP,TPP−1,NTPP−1} {PO,TPP,NTPP,TPP−1}
{PO,TPP,NTPP,TPP−1,NTPP−1} {EC,PO,EQ} {EC,PO,TPP,EQ}

{EC,PO,TPP−1,EQ} {EC,PO,TPP−1,NTPP−1,EQ}
{EC,PO,TPP,NTPP,EQ} {EC,PO,TPP,TPP−1}

{EC,PO,TPP,TPP−1,NTPP−1} {EC,PO,TPP,NTPP,TPP−1}
{EC,PO,TPP,NTPP,TPP−1,NTPP−1}

{DC,EC,PO,EQ} {DC,EC,PO,TPP,EQ} {DC,EC,PO,TPP−1,EQ}
{DC,EC,PO,TPP,TPP−1} {DC,EC,PO,TPP−1,NTPP−1,EQ}

{DC,EC,PO,TPP,NTPP,EQ} {DC,EC,PO,TPP,NTPP,TPP−1}
{DC,EC,PO,TPP,TPP−1,NTPP−1}

{DC,EC,PO,TPP,NTPP,TPP−1,NTPP−1}.

is easy to check that both D8
41 and D8

64 are contained in H8, one of the three
maximal subclasses of RCC8 identified in [98].





Appendix B

Supplementary Proofs

B.1 Proofs for Chapter 3

Theorem 3.10. RA has exactly four maximal distributive subalgebras, which are
the Cartesian products of the two maximal distributive subalgebras of IA.

The following lemma is useful in the proof of the above theorem to trans-
form the intersections, weak compositions, and converses of RA relations.

Lemma B.1 ([6]). For relations R1, R2, R3, R4 in RA, we have

• (R1 ⊗R2) ∩ (R3 ⊗R4) = (R1 ∩R3)⊗ (R2 ∩R4);

• (R1 ⊗R2) � (R3 ⊗R4) = (R1 �R3)⊗ (R2 �R4);

• (R1 ⊗R2)
−1 = R−1

1 ⊗R−1
2 .

In the following we give the proof of the above theorem.

Proof. For convenience, we write R1 and R2 for the two maximal distributive
subalgebras CIA and SIA. It is straightforward to show that their Cartesian
products Ri ⊗Rj (1 ≤ i, j ≤ 2) are all distributive subalgebras of RA.

In order to show the maximality of Ri ⊗ Rj, suppose R is a relation in
RA and R 	∈ Ri ⊗ Rj. We show that the subalgebra ̂{R} ∪ (Ri ⊗Rj) is not
distributive. Let Rx = {α ∈ BIA : ∃β ∈ BIA s.t. (α, β) ∈ R} and define Ry

similarly. Note that R ⊆ Rx ⊗Ry. There are two cases.
Case 1. R ⊂ Rx ⊗ Ry. Then there exist relations α0, β0 ∈ B̂RA s.t. α0 ∈ Rx,

β0 ∈ Ry, and α0 ⊗ β0 	∈ R. Let S = α0 ⊗ � and T = � ⊗ β0. Note that
B̂RA ⊂ Ri ⊗Rj and S, T ∈ B̂RA. Then S, T ∈ ̂{R} ∪ (Ri ⊗Rj). It is easy to see
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that R∩S 	= ∅, R∩T 	= ∅, and S∩T 	= ∅, but R∩S∩T = ∅. By Theorem 3.8,
this implies that ̂{R} ∪ (Ri ⊗Rj) is not distributive.

Case 2. R = Rx ⊗ Ry. Then we have either Rx 	∈ Ri or Ry 	∈ Rj. Take
Rx 	∈ Ri as an example. By the maximality of Ri in IA, we know that ̂{Rx} ∪ Ri

is not distributive. By Theorem 3.8, this implies that there exist R0, S0, T0 ∈
̂{Rx} ∪ Ri that do not satisfy the Helly Property (3.5). Note that for any rela-

tion A in IA we have A � � = �, and hence Rx ⊗ � ∈ ̂{Rx ⊗Ry} ∪ (Ri ⊗Rj) =
̂{R} ∪ (Ri ⊗Rj). Also, for any B ∈ Ri, we know B ⊗ � ∈ Ri ⊗Rj. Together,

for any relation R1 ∈ ̂{Rx} ∪Di we have R1 ⊗ � ∈ ̂{R} ∪ (Ri ⊗Rj). There-
fore, R0 ⊗ �, S0 ⊗ �, and T0 ⊗ � are all in ̂{R} ∪ (Ri ⊗Rj). However, the three
relations R0 ⊗ �, S0 ⊗ �, and T0 ⊗ � do not satisfy (3.5), which means that

̂{R} ∪ (Ri ⊗Rj) is not distributive.
The above shows the maximality of Ri ⊗ Rj. To show the uniqueness,

suppose that S is a distributive subalgebra. We will show that S is a subset of
Ri ⊗Rj for some i, j (1 ≤ i, j ≤ 2).

First, we show that for every R ∈ S we have R = Rx ⊗ Ry. Suppose
otherwise. Then there exist α, β ∈ B̂IA s.t. α ∈ Rx, β ∈ Ry, and α ⊗ β 	∈ R.
Similar to the proof of the maximality, we can show that both α⊗ � and �⊗ β
are in B̂RA and, hence, in S. The three relations R,α ⊗ �, � ⊗ β, however, do
not satisfy (3.5).

Next, we show that S is a subset of Ri ⊗Rj for some i, j. Write Sx = {Rx :
R ∈ S} and Sy = {Ry : R ∈ S}. We assert that Sx and Sy are both distributive
subalgebras of IA. In fact, we first note that if R = Rx ⊗ Ry ∈ S, then both
Rx ⊗ � and �⊗Ry are in S. This is because, for instance, {eq} ⊗ � is a relation
in B̂RA ⊆ S and (Rx ⊗ Ry) � ({eq} ⊗ �) = Rx ⊗ �. Furthermore, it is easy to
check that {Rx ⊗ � : Rx ⊗ Ry ∈ S} is a subalgebra and is contained in S, and
hence it is distributive. Thus Sx is a distributive subalgebra of IA and, hence,
contained in either R1 or R2. The same conclusion applies to Sy. Therefore, S
is a subset of Ri ⊗Rj for some i, j.

Theorem 3.11. Let M be a qualitative calculus that satisfies (3.2) and (3.3).
Suppose S is a distributive subalgebra of M. Then every path consistent QCN
over S is weakly globally consistent and minimal.

Proof. We first note that, since M satisfies (3.2), any three relations in M
satisfy the Peircean Law (3.1), and any distributive subalgebra S of M is Helly
and hence satisfies (3.4).

Suppose N = {viRijvj : 1 ≤ i, j ≤ n} is a path consistent QCN over S. Write
Vk = {v1, v2, . . . , vk} and W k+1

t = Vt ∪ {vk+1} for 1 ≤ k < n and 1 ≤ t ≤ k. Let
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ΔVk
= {viδijvj : vi, vj ∈ Vk} be a consistent scenario of the restriction of N on

Vk, i.e. N|Vk
= {viRijvj : vi, vj ∈ Vk} (see Figure B.1).

1v kv
1,kRR

1,tR ,t kR… …
tv1

1,t…… vv vv,……
t

(a) N|Vk

kv
1,k

1,t ,t k

1v … …
tv1 …… vv vv……
t

(b) ΔVk

Figure B.1: Illustration of N|Vk
and ΔVk

in the proof.

We show ΔVk
can be extended to a consistent scenario ΔVk+1

of N|Vk+1
. Note

that any path consistent basic QCN over M is consistent by the assumption in
(3.3).

Let R̂k+1,i =
⋂k

j=1(Rk+1,j � δj,i) for i = 1, . . . , k. It is easy to see R̂k+1,i ⊆
Rk+1,i. Our idea is as follows:

Step 1. Choose an arbitrary basic relation δk+1,1 in R̂k+1,1.

Step 2. Extend a consistent scenario ΔWk+1
t

to a consistent scenario ΔWk+1
t+1

by

choosing a certain basic relation δk+1,t+1 in R̂k+1,t+1, together with the
constraints {viδi,t+1vt+1|1 ≤ i ≤ t} in ΔVk

. See Figure B.2 for the
illustration of ΔWk+1

t
and ΔWk+1

t+1
.

Step 3. Repeat Step 2 for 1 ≤ t ≤ k − 1 until a consistent scenario ΔVk+1
of

N|Vk+1
= N|Wk+1

k
is obtained.

To show Step 1 can be achieved, we prove that R̂k+1,i =
⋂k

j=1(Rk+1,j � δj,i) 	=
∅ for all 1 ≤ i ≤ k. By applying the Peircean Law in (3.1), for 1 ≤ j, j′ ≤ k we
have

(Rk+1,j � δji) ∩ (Rk+1,j′ � δj′i) 	= ∅ ⇔ ((Rk+1,j′ � δj′i) � δij) ∩Rk+1,j 	= ∅

⇔ (Rj′,k+1 �Rk+1,j) ∩ (δj′i � δij) 	= ∅.

Since N is path consistent and the partial scenario ΔVk
is also path consis-

tent, we have δj′j ⊆ Rj′,j ⊆ Rj′,k+1 �Rk+1,j and δj′j ⊆ δj′i � δij. Therefore
(Rj′,k+1 �Rk+1,j) ∩ (δj′i � δij) 	= ∅ and hence (Rk+1,j � δji) ∩ (Rk+1,j′ � δj′i) 	= ∅
for any 1 ≤ j, j′ ≤ k. Note that S is Helly by Proposition 3.8, we know
R̂k+1,i =

⋂k
j=1(Rk+1,j � δj,i) 	= ∅ for all 1 ≤ i ≤ k.

To show Step 2 can be achieved, we only need to find a basic relation
δk+1,t+1 in R̂k+1,t+1 such that ΔWk+1

t
∪ {vk+1δk+1,t+1vt+1} is path consistent, for

t = 1, . . . , k − 1.
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Figure B.2: Illustration of ΔWk+1
t

and ΔWk+1
t+1

in the proof.

With the following statements, we can show the existence of such δk+1,t+1.

Statement 1. δk+1,i � δi,t+1 ∩ R̂k+1,t+1 	= ∅ for any 1 ≤ i ≤ t.

Statement 2. δk+1,i � δi,t+1 ∩ δk+1,j � δj,t+1 	= ∅ for any 1 ≤ i, j ≤ t.

In fact, from the above statements and that S is Helly, we know (
⋂t

i=1(δk+1,i � δi,t+1))∩
R̂k+1,t+1 	= ∅. Thus, there exists a δk+1,t+1 in R̂k+1,t+1 such that

(
t⋂

i=1

(δk+1,i � δi,t+1)) ∩ δk+1,t+1 	= ∅. (B.1)

To show this δk+1,t+1 actually extends ΔWk+1
t

, we also need to prove that ΔWk+1
t

∪
{viδi,t+1vt+1 : 1 ≤ i ≤ t} ∪ {vk+1δk+1,t+1vt+1} is path consistent. Note that we
only need to show δk+1,t+1 ⊆ δk+1,i � δi,t+1 for any 1 ≤ i ≤ t, because ΔWk+1

t
and

ΔVt+1(⊆ ΔVk
) are both path consistent. This will be true if (B.1) is true. There-

fore, in the following, we show that the two statements above are actually
true.

For Statement 1, note

(
k⋂

j=1

(Rk+1,j � δj,t+1)) � δt+1,i =
k⋂

j=1

(Rk+1,j � δj,t+1 � δt+1,i)

⊇
k⋂

j=1

(Rk+1,j � δji).
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Then R̂k+1,t+1 � δt+1,i ⊇ R̂k+1,i ⊇ δk+1,i 	= ∅, that is δk+1,i ∩ (R̂k+1,t+1 � δt+1,i) 	=
∅. By Peircean Law, we have (δk+1,i � δi,t+1) ∩ R̂k+1,t+1 	= ∅ for any 1 ≤ i ≤ t.

For Statement 2, for any 1 ≤ i, j ≤ t we have

(δk+1,i � δi,t+1) ∩ (δk+1,j � δj,t+1) 	= ∅ ⇔ (δi,k+1 � δk+1,j � δi,t+1) ∩ δj,t+1 	= ∅

⇔ (δi,k+1 � δk+1,j) ∩ (δi,t+1 � δt+1,j) 	= ∅.

Because ΔWk+1
t

is a (path) consistent scenario, we have δij ⊆ δi,k+1 � δk+1,j

for 1 ≤ i, j ≤ t. Note ΔVt+1(⊆ ΔVk
) is also a (path) consistent scenario, we

have δij ⊆ δi,t+1 � δt+1,j. Then (δi,k+1 � δk+1,j) ∩ (δi,t+1 � δt+1,j) ⊇ δij 	= ∅ for
1 ≤ i, j ≤ t, and hence (δk+1,i � δi,t+1) ∩ (δk+1,j � δj,t+1) 	= ∅.

Proposition 3.21 ([113]). Let M be a qualitative calculus that satisfies (3.2)
and (3.3). Suppose N = {viRijvj : 1 ≤ i, j ≤ n} is a QCN over a distributive
subalgebra S of M and V = {v1, ..., vn}. Assume in addition that G = (V,E)
is a chordal graph such that GN ⊆ G. Then achieving PPC on G decides the
consistency of N and results in the same relations on the edges of G as achieving
PC.

Before proving the theorem, let us first take a look at a property of chordal
graphs from [13].

Lemma B.2 ([13]). If G = (V,E) is an incomplete chordal graph, then one can
add a missing edge {u, w} with u, w ∈ V such that

• the graph G′ = (V,E ∪ {{u, w}}) is chordal graph; and

• the graph induced by X = {x|{u, x}, {x, w} ∈ E} is complete.

In the following we give the proof of the theorem.

Proof. The proof is similar to the one given for CRC constraints [13, Theo-
rem 3]. This proof does not exploit the conclusion in Theorem 3.11 and is thus
slightly different from the one in [113].

Suppose we have a chordal graph G = (V,E) such that GN ⊆ G and N is
PPC w.r.t. G. We will add to G the missing edges one by one until the graph is
complete. To prove the theorem, we show that the relations of the constraints
can be computed from the existing ones so that the updated QCN is PPC w.r.t.
each intermediate graph, including the complete graph.

In the following we assume that the ordering (v1, . . . , vn) is a perfect elim-
ination ordering of the chordal graph G. Denote Si = {vn−i+1, . . . , vn}, Gi =
G(Si) = (Si, Ei) where Ei = {{vr, vs} ∈ E : vr, vs ∈ Si}, and Fi = {vk ∈
adj(vi) : k > i}, where adj(vi) = {vj : {vj, vi} ∈ E}.

We add the missing edges one by one to G in the following manner accord-
ing to Lemma B.2:



218 B. Supplementary Proofs

1. choose the largest i such that Gi is complete;

2. add a missing edge {vn−i, vj} to G where vj ∈ Si;

3. add to N the constraint (vn−iRn−i,jvj) where

Rn−i,j =
⋂

vk∈Fn−i

(Rn−i,k �Rk,j).

After adding one edge, we prove that N is still PPC w.r.t. the resulting graph.
Figure B.3 illustrates the notations Gi, Fn−i, and vn−i.

jv

n iv
j
iG

n iFF

jj

'kv
kv

Figure B.3: Illustration for the proof of Proposition 3.21.

First, we show that Rn−i,j is non-empty. To show this, by Theorem 3.8, we
only need to show that (Rn−i,k �Rk,j) ∩ (Rn−i,k′ �Rk′,j) 	= ∅ for any vk 	= vk′ ∈
Fn−i. Such a pairwise intersection is not empty because, by the Peircean Law,
we have

(Rn−i,k �Rk,j) ∩ (Rn−i,k′ �Rk′,j) 	= ∅ ⇔ (Rk,n−i �Rn−i,k′) ∩ (Rk,j �Rj,k′) 	= ∅.

Since G(Fn−i ∪ {vn−i})1 and Gi are complete and the corresponding subnet-
works on them are path consistent, we have Rk,k′ ⊆ Rk,n−i �Rn−i,k′ and Rk,k′ ⊆
Rk,j �Rj,k′ . This shows that (Rk,n−i �Rn−i,k′) ∩ (Rk,j �Rj,k′) 	= ∅ and, hence,
(Rn−i,k �Rk,j) ∩ (Rn−i,k′ �Rk′,j) 	= ∅.

We then need to show that the resulting QCN is path consistent. To this
end, we only need to consider the three paths (vn−i, vj, vk′), (vn−i, vk′ , vj), and
(vk′ , vn−i, vj).

For (vn−i, vj, vk′), note that, for any k ∈ Fn−i, we have Rn−i,k′ ⊆ Rn−i,k �Rk,k′ ⊆
Rn−i,k �Rk,j �Rj,k′ . Therefore, we have Rn−i,k′ ⊆

⋂
k∈Fn−i

(Rn−i,k �Rk,j �Rj,k′).
By distributivity, we know Rn−i,k′ ⊆ (

⋂
k∈Fn−i

Rn−i,k �Rk,j) �Rj,k′ = Rn−i,j �Rk,j.
For (vn−i, vk′ , vj), by the construction of Rn−i,j, we have Rn−i,j ⊆ Rn−i,k′ �Rk′,j.

1Note that G(Fn−i ∪ {vn−i}) = (Fn−i ∪ {vn−i}, E∗), where E∗ = {{vr, vs} ∈ E : vr, vs ∈
Fn−i ∪ {vn−i}}.
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For (vk′ , vn−i, vj), we need to show that Rk′,j ⊆ Rk′,n−i �Rn−i,j. Note that
Rn−i,j =

⋂
vk∈Fn−i

(Rn−i,k �Rk,j). Because S is distributive, it is sufficient to
show, for each k ∈ Fn−i, Rk′,j ⊆ Rk′,n−i �Rn−i,k �Rk,j. Because G(Fn−i∪{vn−i})
is complete and PC, we have Rk′,k ⊆ Rk′,n−i �Rn−i,k. Moreover, because
G(Fn−i ∪ {vj}) ⊆ Gi is complete and PC by construction and induction, we
know Rk′,j ⊆ Rk′,k �Rk,j ⊆ Rk′,n−i �Rn−i,k �Rk,j.

Thus, after adding a missing edge to G and add the corresponding con-
straint to N , N remains PPC w.r.t. G. At last we will get the complete graph
that is the completion of G. Note that the constraint corresponding to each of
the original edges in G is not changed. This finishes the proof.

Theorem 3.23. Let N = (V, C) be a QCN that is defined over a distributive subal-
gebra of a qualitative calculus that satisfies (3.2) and (3.3), and α = (v1, . . . , vn)
an ordering of V . Then, DPC+ returns (True, G,N ′) if and only if N is satisfi-
able, where G is a chordal graph such that GN ⊆ G and α is a perfect elimination
ordering of it, and N ′ is the PPC w.r.t. G subnetwork of N

Proof. After calling DPC in line 1, N becomes DPC w.r.t. α and we get a
chordal graph G such that GN ⊆ G and α is a perfect elimination ordering of
it. In what follows, we denote by N (0) the DPC network before applying the
next steps of DPC+ and by N the updated network obtained afterwards.

Suppose that Nk is the restriction of the updated N on the variables {vn−k+1,
. . . , vn−1, vn}, that is, the updated partial QCN after considering the variables
{vn−k+1, . . . , vn−1, vn} in the for loop in line 4 of DPC+. Note that Nn = N .
It suffices to show that Nk is PPC given that Nk−1 is PPC. For simplicity, let
t = n−k+1. Then to this end, we only need to consider the variables in Ft, and
show that ∀vi, vj ∈ Ft, we have Rit 	= ∅, Rij ⊆ Rit �Rtj, and Rit ⊆ Rij �Rjt.
Figure B.4 illustrates the case.

iv
jv

'jv

1n kv

v

( )tv

v
1kN

Figure B.4: Illustration for the proof of Theorem 3.23.

To simplify our proof, we first adjust the updating rule in line 7 of DPC+
from Rit ←

⋂
vj∈Ft

Rij �Rjt to Rit ←
⋂

vj∈Ft
Rij �R(0)

jt , where R
(0)
jt is the relation

between vj and vt in the original DPC network, viz., N (0). We denote the
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adjusted algorithm by DPC+∗. We will first prove that the conclusion holds for
DPC+∗.

We first show that Rit 	= ∅ for all vi ∈ Ft. Note that ∀vj, vj′ ∈ Ft, by DPC

of N (0), we have Rjj′ ⊆ R
(0)
jj′ ⊆ R

(0)
jt �R(0)

tj′ . By DPC of Nt−1, we have Rjj′ ⊆
Rji �Rij′ . Therefore, ∅ 	= Rjj′ ⊆ R

(0)
jt �R(0)

tj′ ∩Rji �Rij′ . By the Peircean Law in

3.1, we have (Rij �R(0)
jt )∩ (Rij′ �R(0)

j′t ) 	= ∅. According to the Helly property of

distributive subalgebras as in 3.4, we have Rit =
⋂

vj∈Ft
Rij �R(0)

jt 	= ∅.

Next, we show that Rij ⊆ Rit �Rtj. Note that as Rjt =
⋂

vj′′∈Ft
Rjj′′ �R(0)

j′′t,
we have

Rit �Rtj = (
⋂

vj′∈Ft

(Rij′ �R(0)
j′t )) � (

⋂
vj′′∈Ft

(R
(0)
tj′′ �Rj′′j)).

Because the relations are in a distributive subalgebra, we have

Rit �Rtj =
⋂

vj′∈Ft

⋂
vj′′∈Ft

(Rij′ �R(0)
j′t �R

(0)
tj′′ �Rj′′j).

As N (0) is DPC, we have Rj′j′′ ⊆ R
(0)
j′j′′ ⊆ R

(0)
j′t �R

(0)
tj′′ , and as Nt−1 is PPC,

we have Rij ⊆ Rij′ �Rj′j′′ �Rj′′j. Therefore Rij ⊆ Rij′ �R(0)
j′t �R

(0)
tj′′ �Rj′′j,

∀vj′ , vj′′ ∈ Ft, and hence Rij ⊆ Rit �Rtj.
Next, we show that Rit ⊆ Rij �Rjt. In fact,

Rit =
⋂

vj′∈Ft

(Rij′ �R(0)
j′t ) ⊆

⋂
vj′∈Ft

(Rij �Rjj′ �R(0)
j′t )

=Rij � (
⋂

vj′∈Ft

(Rjj′ �R(0)
j′t )) = Rij �Rjt.

Since vj is arbitrary in Ft and Rj′t ⊆ R
(0)
j′t , we also have

Rit =
⋂

vj′∈Ft

(Rij′ �R(0)
j′t ) =

⋂
vj′∈Ft

(Rij′ �Rj′t). (B.2)

Therefore, under the updating rule of DPC+∗, we have that Nt is PPC if
Nt−1 is PPC and, thus, DPC+∗ enforces PPC on N . Regarding DPC+, its
updating rule will update the first Rit by using relations in Nt−1 and N (0), and
then update the following Ri′t by using the updated Rit, and so on. By induc-
tion, we can prove that each updated Rit is stronger than R

(0)
it and weaker than⋂

vj′∈Ft
Rij′ �R∗

j′t, where R∗
j′t is obtained by DPC+∗. By (B.2), the relations ob-
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tained by DPC+ are the same as those obtained by DPC+∗. As DPC+∗ enforces
PPC on N , we have that DPC+ also enforces PPC on N .

B.2 Proofs for Chapter 4

Proposition 4.11. Let S be a distributive subalgebra of PA or RCC5/8. Suppose
N is an all-different QCN over S. Assume that (xRy) and (xSy) are the con-
straints from x to y in N and Np respectively. Then (xRy) is redundant in N iff
(xSy) is redundant in Np.

Proof. Here we prove the sufficiency part. We focus on the case of RCC5 and
RCC8, while following a similar procedure the case for PA can be easily proved.

Write N ′ and N ′′ for N \ {(xRy)} and Np \ {(xSy)} respectively. Suppose
(xSy) is redundant in Np. Let W be the intersection of the weak compositions
of all paths from x to y in N \{(xRy)}. To show that (xRy) is redundant in N ,
by Lemma 4.6, we only need to show R ⊇ W .

Recall S = R ∩W by Lemma 3.15. To show R ⊆ W , we first show

R ∩W ⊇ W ∩ Ol �R ∩R � Ol, (B.3)

where Ol is either O5 or O8 (cf. Lemma 3.14 for definition), according to
whether N is over RCC5 or RCC8.

Because (xSy) is redundant in Np, by Corollary 4.9, we know S is the
intersection of the weak compositions of all paths from x to y in N of length
≥ 2.

As we have seen in the proof of Proposition 3.15, there are three types of
paths of length ≥ 2. For every path π of Case 1 or 3 (cf. Proposition 3.15), we
know CT(π) contains W . Suppose π is a path of Case 2 and ci = (xRy) for
some 1 ≤ i ≤ s. Then CT(π) = CT(π<i) � R � CT(π>i). Note that if π<i (π>i,
respectively) is non-empty, then CT(π<i) (CT(π>i), respectively) contains Ol

by Lemma 3.14. Either π<i or π>i is a cycle path. Therefore, CT(π) contains
Ol � R ∩ R � Ol ∩ Ol � R � Ol. In summary, for each path π from x to y in N
with length ≥ 2, we have CT(π) ⊇ W ∩ Ol � R ∩ R � Ol ∩ Ol � R � Ol. Because
Ol �R � Ol is always the universal relation (as PO �R � PO = PO � PO = � (by
Lemma 3.14), we know S, as the intersection of the weak compositions of all
paths from x to y in N with length ≥ 2, contains W ∩ Ol � R ∩ R � Ol. Since
S = R ∩W , we have (B.3) immediately.

We next show R ⊇ W . Because N is consistent and satisfies (3.8), we know
S = R ∩W is neither empty nor {EQ}, i.e.,

∅ 	= R ∩W 	= {EQ}.
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If PO ∈ R, then Ol � R ∩ R � Ol ⊇ PO � PO is the universal relation. That
R ⊇ W follows directly from R ∩W ⊇ W ∩ � = W .

If PO 	∈ R, then PO 	∈ W because PO ∈ Ol �R ∩R �Ol and (B.3) holds. We
show R ⊇ W . We only consider RCC8 relations. The case for RCC5 relations is
similar. Suppose R is a relation in a distributive subalgebra of RCC8 such that
PO 	∈ R and R 	= EQ. By checking the lists of relations in the two maximal
distributive subalgebras given in Appendix A.4, R is either a basic relation
other than PO and EQ, or one of the following relations

{TPP,NTPP}, {TPP−1,NTPP−1},
{DC,EC}, {TPP,EQ}, {TPP−1,EQ}, (B.4)

{TPP,NTPP,EQ}, {TPP−1,NTPP−1,EQ}.

There are several sub-cases. Suppose R is a basic relation α other than PO
and EQ. We write αd for the other basic relation such that {α, αd} is a relation
in (B.4). For example, DCd = EC, TPPd = NTPP, and TPP−1d = NTPP−1. From
the RCC8 composition table we can see

{α, αd,PO} ⊆ PO � α ∩ α � PO ⊆ O8 � α ∩ α � O8

holds for every basic relation α other than PO and EQ. We assert that αd 	∈ W
if R = {α}. This is because, otherwise, we have αd ∈ W ∩ O8 �R ∩R � O8 and
hence by (B.3) αd ∈ R ∩ W ⊆ R. A contradiction. In particular, if α is DC,
EC, NTPP, or NTPP−1, then W = R. If α is either TPP or TPP−1, then we can
further show that EQ ∈ O8 � α ∩ α � O8 and hence EQ 	∈ W . This implies that
W = R.

Suppose R is {DC,EC}, {TPP,NTPP,EQ}, or {TPP−1,NTPP−1,EQ}. Note
that PO 	∈ W , and ∅ 	= R ∩W 	= {EQ}. This shows that W is contained in R.

Suppose R is {TPP,NTPP} or {TPP−1,NTPP−1}. By (B.3) and EQ ∈ O8 �
R ∩R � O8 we know that W does not contain EQ. Hence W is contained in R.

Suppose R is {TPP,EQ}. By (B.3) and NTPP ∈ O8 � R ∩ R � O8, W cannot
contain NTPP. This implies that W is contained in R. The case for R =
{TPP−1,EQ} is similar.

In summary, we have R ⊇ W in all cases. In other words, R can be obtained
as the intersection of all paths from x to y in N \ {(xRy)}. Hence (xRy) is
redundant in N by Lemma 4.6.
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B.3 Proofs for Chapter 5

Proposition 5.7. Given a set of possibly disconnected regions D = {o1, ..., on},
then, for RCC8, the qualified size of D for MA is not larger than the qualified sizes
of D for either the grid clustering index or the R-tree clustering index.

Proof. Suppose the RCC8 relation for two regions oi, oj ∈ D is calculated and
stored by MA. Then their MBRs must intersect, i.e. mbr(oi) ∩ mbr(oj) 	= ∅.
Note that for the grid and the R-tree clustering indexes, the MBRs of regions
are used to build the spatial clustering structure, and by the definition of the
spatial clustering structure, the tiles in the index completely cover the objects
(and, hence, their MBRs), i.e.

⋃n
k=1 mbr(ok) ⊆

⋃
l∈J tl.

For the grid clustering index, by the above assumption, we know there must
be one index tile t0 s.t. t0 ∩ mbr(oi) ∩ mbr(oj) 	= ∅. By the strategy of building
a clustering structure of the grid clustering index for RCC8 (see Table 5.1),
we know that oi and oj are associated with the same clustering structure entry
(t0, C0). Therefore, according to Step 2(a) for building a spatial clustering
index on Page 122. the RCC8 relation between oi and oj will be computed and
stored by the grid clustering index.

For the R-tree clustering index, we only need to prove that there exist two
leaf index tiles t1 and t2 such that t1 ∩ t2 	= ∅ and oi and oj are associated with
t1 and t2 respectively.

As shown in Table 5.1, there are two strategies for the R-tree clustering
index to associate a region to a leaf index tile. In the first strategy, by the
assumption that

⋃n
k=1 mbr(ok) ⊆

⋃
l∈J tl, we know that mbr(oi) and mbr(oj), as

well as mbr(oi) ∩ mbr(oj), are covered by several leaf index tiles. Then among
the index tiles that cover mbr(oi) and mbr(oj), there are two index tiles t1 and
t2 (t1 might be equal to t2) such that (i) t1 and mbr(oi) have a common interior
point, (ii) t2 and mbr(oj) have a common interior point, and (iii) t1 ∩ t2 ∩
mbr(oi) ∩ mbr(oj) 	= ∅. This means that o1 and o2 are associated with t1 and
t2, respectively, and t1 and t2 are not DC, which is the only clustering relation
of RCC8. For the R-tree clustering index that is built by the second strategy,
again by the assumption that

⋃n
k=1 mbr(ok) ⊆

⋃
l∈J tl, we know that there must

be two leaf index tiles t1 and t2 (t1 might be equal to t2) such that o1 and o2
are associated with t1 and t2, respectively, and mbr(oi) ⊆ t1 and mbr(oj) ⊆ t2.
Therefore t1 ∩ t2 ⊇ mbr(oi) ∩ mbr(oj) 	= ∅, i.e. t1 and t2 are not in clustering
relation DC.

From the above discussion, we know the RCC8 relation between oi and oj
will also be calculated and stored by the R-tree clustering index.

Proposition 5.8. Given a set of possibly disconnected regions D = {o1, ..., on},
for CDC the qualified size of D for MA is not larger than the qualified sizes for
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either the grid or the R-tree clustering indexes.

Proof. Suppose the CDC relation from region oi ∈ D to region oj ∈ D is calcu-
lated and stored by MA. This implies that their MBRs have a common interior
point, i.e. (mbr(oi))

◦ ∩ (mbr(oj))
◦ 	= ∅. Note that we have

⋃n
k=1 mbr(ok) ⊆⋃

l∈J tl.
For the grid clustering index, by the above assumption, we know there must

be one index tile t0 s.t. t0 ∩ (mbr(oi))
◦ ∩ (mbr(oj))

◦ 	= ∅. By the grid clustering
indexing strategy of building a clustering structure for CDC we know oi and
oj are both associated with t0. Therefore, the CDC relations between oi and oj
will be calculated and stored by the grid clustering index.

For the R-tree clustering index, we only need to prove that there exist two
leaf index tiles t1, t2 such that t1 ∩ t2 	= ∅ and oi and oj are associated with t1
and t2 respectively.

We consider the two strategies of building the R-tree index for leaf index
tiles (Table 5.1). For the first strategy, like the above discussion for the grid
clustering index, we know there is a leaf index tile t0 such that oi and oj are
both associated with t0. For the second strategy, we know that there exist
two leaf index tiles t1 and t2 (t1 might be equal to t2) such that o1 and o2
are associated with t1 and t2, respectively, and mbr(oi) ⊆ t1 and mbr(oj) ⊆ t2.
Therefore t◦1 ∩ t◦2 ⊇ (mbr(oi))

◦ ∩ (mbr(oj))
◦ 	= ∅, i.e. t1 and t2 have a common

interior point. Thus t1 and t2 are not in any CDC clustering relation.
From the above discussion, the CDC relation from oi to oj will be calculated

and stored by the R-tree clustering index.
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List of Publications

The thesis is related to the following joint work with co-authors.

• Chapter 3 is mainly based on the follow publications.

– Zhiguo Long and Sanjiang Li: On Distributive Subalgebras of Qual-
itative Spatial and Temporal. Conference on Spatial Information
Theory (COSIT 2015), pp. 354–374.

– Zhiguo Long, Michael Sioutis, and Sanjiang Li: Efficient Path Consis-
tency Algorithm for Large Qualitative Constraint Networks. 25th In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2016),
pp. 1202–1208.

• The follow publication is also related to Chapter 3.

– Michael Sioutis, Zhiguo Long, and Sanjiang Li: Efficiently Reason-
ing about Qualitative Constraints through Variable Elimination. 9th
Hellenic Conference on Artificial Intelligence (SETN 2016), pp. 1–
10. (Best Paper Award)

• Chapter 4 is mainly based on the following publication, which also con-
tains results related to Chapter 3.

– Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan
Both: On Redundant Topological Constraints. Artificial Intelligence,
2015, vol. 225, pp. 51–76.

• The following publication is an extended abstract of the above publica-
tion.
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– Matt Duckham, Sanjiang Li, Weiming Liu, and Zhiguo Long: On
Redundant Topological Constraints (Extended Abstract). 14th In-
ternational Conference on Principles of Knowledge Representation
and Reasoning (KR 2014), pp. 618–621.

• Chapter 5 is based on the following publication.

– Zhiguo Long, Matt Duckham, Sanjiang Li, and Steven Schockaert:
Indexing Large Geographic Datasets with Compact Qualitative Rep-
resentation. International Journal of Geographical Information Sci-
ence, 2016, vol. 30, no. 6, pp. 1072–1094.

• Chapter 6 is based on the following publication.

– Zhiguo Long, Steven Schockaert, and Sanjiang Li: Encoding Large
RCC8 Scenarios Using Rectangular Pseudo-Solutions. 15th Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning (KR 2016), pp. 463–472.

Below we list the other publications during my PhD candidature that are out
of the scope of this thesis.

• Zhiguo Long and Sanjiang Li: A Complete Classification of Spatial Re-
lations Using the Voronoi-Based Nine-Intersection Model, International
Journal of Geographical Information Science, 2013, vol. 27, no. 10, pp.
2006–2025.

• Jae Hee Lee, Sanjiang Li, Zhiguo Long, and Michael Sioutis: On Re-
dundancy in Simple Temporal Networks. 22nd European Conference on
Artificial Intelligence (ECAI 2016), pp. 828–836. All authors contributed
equally.

• Shufeng Kong, Sanjiang Li, Yongming Li, and Zhiguo Long: On Tree-
Preserving Constraints. 21st International Conference on Principles and
Practice of Constraint Programming (CP 2015), pp. 244–261.



Bibliography

[1] Al-Salman, R. [2014], Qualitative Spatial Query Processing: Towards
Cognitive Geographic Information Systems, PhD thesis, University of Bre-
men, Germany.

[2] Allen, J. F. [1983], ‘Maintaining knowledge about temporal intervals’,
Communications of the ACM 26(11), 832–843.

[3] Amaneddine, N. and Condotta, J.-F. [2012], From path-consistency to
global consistency in temporal qualitative constraint networks, in ‘Inter-
national Conference on Artificial Intelligence: Methodology, Systems, Ap-
plications (AIMSA 2012)’, pp. 152–161.

[4] Amaneddine, N. and Condotta, J.-F. [2013], On the minimal labeling
problem of temporal and spatial qualitative constraints, in ‘The Twenty-
Sixth International FLAIRS Conference (FLAIRS 2013)’, pp. 16–21.

[5] Amaneddine, N., Condotta, J.-F. and Sioutis, M. [2013], Efficient ap-
proach to solve the minimal labeling problem of temporal and spatial
qualitative constraints, in ‘International Joint Conference on Artificial In-
telligence (IJCAI 2013)’, pp. 696–702.

[6] Balbiani, P., Condotta, J.-F. and Fariñas del Cerro, L. [1999], A new
tractable subclass of the rectangle algebra, in ‘International Joint Con-
ference on Artificial Intelligence (IJCAI 1999)’, pp. 442–447.

[7] Balbiani, P., Condotta, J.-F. and Fariñas del Cerro, L. [2002], ‘Tractabil-
ity results in the block algebra’, Journal of Logic and Computation
12(5), 885–909.

[8] Barabási, A.-L. and Albert, R. [1999], ‘Emergence of scaling in random
networks’, Science 286(5439), 509–512.

[9] Beckmann, N., Kriegel, H., Schneider, R. and Seeger, B. [1990], The
R*-tree: An efficient and robust access method for points and rectan-

227



228 BIBLIOGRAPHY

gles, in ‘International Conference on Management of Data (ACM SIGMOD
1990)’, pp. 322–331.

[10] Bentley, J. L. and Wood, D. [1980], ‘An optimal worst case algorithm
for reporting intersections of rectangles’, IEEE Transactions on Computers
C-29(7), 571–577.

[11] Bessière, C., Isli, A. and Ligozat, G. [1996], Global consistency in Inter-
val Algebra networks: Tractable subclasses, in ‘European Conference on
Artificial Intelligence (ECAI 1996)’, pp. 3–7.

[12] Blair, J. R. S. and Peyton, B. [1993], An introduction to chordal graphs
and clique trees, in ‘Graph Theory and Sparse Matrix Computation’,
Springer, Heidelberg, Germany, pp. 1–29.

[13] Bliek, C. and Sam-Haroud, D. [1999], Path consistency on triangulated
constraint graphs, in ‘International Joint Conference on Artificial Intelli-
gence (IJCAI 1999)’, pp. 456–461.

[14] Bodirsky, M. and Dalmau, V. [2013], ‘Datalog and constraint satisfac-
tion with infinite templates’, Journal of Computer and System Sciences
79(1), 79–100.

[15] Bodirsky, M. and Wölfl, S. [2011], RCC8 is polynomial on networks of
bounded treewidth, in ‘International Joint Conference on Artificial Intel-
ligence (IJCAI-11)’, pp. 756–761.

[16] Caduff, D. and Egenhofer, M. J. [2007], ‘Geo-mobile query-by-sketch’,
International Journal of Web Engineering and Technology 3(2), 157–175.

[17] Chandra, P. and Pujari, A. K. [2005], Minimality and convexity proper-
ties in spatial CSPs, in ‘International Conference on Tools for Artificial
Intelligence (ICTAI 2005)’, pp. 589–593.

[18] Chmeiss, A. and Condotta, J. [2011], Consistency of triangulated tempo-
ral qualitative constraint networks, in ‘International Conference on Tools
for Artificial Intelligence (ICTAI 2011)’, pp. 799–802.

[19] Chmeiss, A., Krawczyk, V. and Sais, L. [2008], Redundancy in CSPs, in
‘European Conference on Artificial Intelligence (ECAI 2008)’, pp. 907–
908.

[20] Clementini, E., Di Felice, P. and van Oosterom, P. [1993], A small set
of formal topological relationships suitable for end-user interaction, in
‘International Symposium on Spatial Databases’, pp. 277–295.



BIBLIOGRAPHY 229

[21] Clementini, E., Sharma, J. and Egenhofer, M. J. [1994], ‘Modelling topo-
logical spatial relations: Strategies for query processing’, Computers &
Graphics 18(6), 815 – 822.

[22] Cohen, D. A., Cooper, M. C., Creed, P., Marx, D. and Salamon, A. Z.
[2012], ‘The tractability of CSP classes defined by forbidden patterns’,
Journal of Artificial Intelligence Research 45, 47–78.

[23] Cohn, A. G. and Gotts, N. M. [1996], ‘The ‘egg-yolk’ representation of
regions with indeterminate boundaries’, Geographic Objects with Indeter-
minate Boundaries 2, 171–187.

[24] Cohn, A. G. and Renz, J. [2008], Qualitative spatial representation and
reasoning, in ‘Handbook of Knowledge Representation’, Elsevier, Amster-
dam, Netherlands, pp. 551–596.

[25] Condotta, J.-F., Kaci, S. and Schwind, N. [2008], A framework for merg-
ing qualitative constraints networks, in ‘The Twenty-First International
FLAIRS Conference (FLAIRS 2008)’, pp. 586–591.

[26] Danzer, L., Grünbaum, B. and Klee, V. [1963], Helly’s theorem and its rel-
atives, in ‘Symposium in Pure Mathematics of the American Mathematical
Society (Convexity)’, pp. 101–179.

[27] De Berg, M., Van Kreveld, M., Overmars, M. and Schwarzkopf, O. C.
[2000], Computational Geometry: Algorithms and Applications, Springer,
Heidelberg, Germany.

[28] Dechter, R., Meiri, I. and Pearl, J. [1991], ‘Temporal constraint networks’,
Artificial Intelligence 49(1), 61–95.

[29] Deville, Y., Barette, O. and Van Hentenryck, P. [1999], ‘Constraint sat-
isfaction over connected row-convex constraints’, Artificial Intelligence
109(1), 243–271.

[30] Duckham, M., Kulik, L., Worboys, M. and Galton, A. [2008], ‘Efficient
generation of simple polygons for characterizing the shape of a set of
points in the plane’, Pattern Recognition 41(10), 3224–3236.

[31] Düntsch, I. [2005], ‘Relation algebras and their application in temporal
and spatial reasoning’, Artificial Intelligence Review 23(4), 315–357.

[32] Düntsch, I., Wang, H. and McCloskey, S. [2001], ‘A relation-algebraic
approach to the region connection calculus’, Theoretic Computer Science
255(1-2), 63–83.



230 BIBLIOGRAPHY

[33] Dylla, F., Lee, J. H., Mossakowski, T., Schneider, T., van Delden, A.,
van de Ven, J. and Wolter, D. [2016], ‘A survey of qualitative spatial
and temporal calculi - algebraic and computational properties’, CoRR
abs/1606.00133.

[34] Dylla, F., Mossakowski, T., Schneider, T. and Wolter, D. [2013], Algebraic
properties of qualitative spatio-temporal calculi, in ‘Conference on Spatial
Information Theory (COSIT 2013)’, pp. 516–536.

[35] Edelman, S. [1999], Representation and recognition in vision, MIT press
Cambridge, MA.

[36] Edelsbrunner, H., Kirkpatrick, D. G. and Seidel, R. [1983], ‘On the shape
of a set of points in the plane’, IEEE Transactions on Information Theory
29(4), 551–559.

[37] Egenhofer, M. J. [1997], ‘Query processing in spatial-query-by-sketch’,
Journal of Visual Languages & Computing 8(4), 403–424.

[38] Egenhofer, M. J. and Franzosa, R. D. [1991], ‘Point-set topological spa-
tial relations’, International Journal of Geographical Information System
5(2), 161–174.

[39] Egenhofer, M. J. and Herring, J. [1991], Categorizing binary topologi-
cal relations between regions, lines, and points in geographic databases,
Technical report, Department of Surveying Engineering, University of
Maine.

[40] Egenhofer, M. J. and Sharma, J. [1993], ‘Assessing the consistency of
complete and incomplete topological information’, Geographical Systems
1(1), 47–68.

[41] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. [1996], A density-based
algorithm for discovering clusters in large spatial databases with noise,
in ‘ACM SIGKDD Conference on Knowledge Discovery and Data Mining’,
pp. 226–231.

[42] Finkel, R. A. and Bentley, J. L. [1974], ‘Quad trees: A data structure for
retrieval on composite keys’, Acta Informatica 4(1), 1–9.

[43] Fogliaroni, P. [2012], Qualitative spatial configuration queries – Towards
next generation access methods for GIS, PhD thesis, University of Bre-
men, Germany.



BIBLIOGRAPHY 231

[44] Fogliaroni, P., De Felice, G., Schmid, F. and Wallgrün, J. O. [2011],
Managing qualitative spatial information to support query-by-sketch, in
‘COSIT 2011 Workshop Understanding and Processing Sketch Maps’,
pp. 21–32.

[45] Frank, A. U. [1991], Qualitative spatial reasoning with cardinal direc-
tions, in ‘Österreichische Artificial-Intelligence-Tagung / Austrian Confer-
ence on Artificial Intelligence (ÖGAI-91)’, pp. 157–167.

[46] Freksa, C. [1992], ‘Temporal reasoning based on semi-intervals’, Artificial
Intelligence 54(1), 199–227.

[47] Freuder, E. C. [1978], ‘Synthesizing constraint expressions’, Communica-
tions of the ACM 21(11), 958–966.

[48] Gerevini, A. [2005], ‘Incremental qualitative temporal reasoning: Algo-
rithms for the point algebra and the ORD-Horn class’, Artificial Intelligence
166(1-2), 37–80.

[49] Gerevini, A. E. and Saetti, A. [2011], ‘Computing the minimal relations in
point-based qualitative temporal reasoning through metagraph closure’,
Artificial Intelligence 175(2), 556–585.

[50] Gerevini, A. and Schubert, L. [1995], ‘On computing the minimal labels
in time point algebra networks’, Computational Intelligence 11(3), 443–
448.

[51] Gibson, D., Kumar, R. and Tomkins, A. [2005], Discovering large dense
subgraphs in massive graphs, in ‘International Conference on Very Large
Data Bases (VLDB 2005)’, pp. 721–732.

[52] Ginsberg, A. [1988], Knowledge-base reduction: A new approach to
checking knowledge bases for inconsistency and redundancy, in ‘The
Seventh National Conference on Artificial Intelligence (AAAI 1988)’,
pp. 585–589.

[53] Glasgow, J. I., Fortier, S. and Allen, F. H. [1993], Molecular scene analy-
sis: crystal structure determination through imagery, in ‘Artificial Intelli-
gence and Molecular Biology’, pp. 433–458.

[54] Goodchild, M. F. [2007], ‘Citizens as sensors: the world of volunteered
geography’, GeoJournal 69(4), 211–221.

[55] Gottlob, G. and Fermüller, C. G. [1993], ‘Removing redundancy from a
clause’, Artificial Intelligence 61(2), 263 – 289.



232 BIBLIOGRAPHY

[56] Goyal, R. K. and Egenhofer, M. J. [1997], The direction-relation matrix: A
representation for directions relations between extended spatial objects,
in ‘The Annual Assembly and the Summer Retreat of University Consor-
tium for Geographic Information Systems Science’, pp. 22–81.

[57] Goyal, R. K. and Egenhofer, M. J. [2000], Consistent queries over cardi-
nal directions across different levels of detail, in ‘The 11th International
Workshop on Database and Expert Systems Applications (DEXA 2000)’,
pp. 876–880.

[58] Grimm, S. and Wissmann, J. [2011], Elimination of redundancy in on-
tologies, in ‘Extended Semantic Web Conference (ESWC 2011)’, pp. 260–
274.

[59] Güting, R. H. and Schilling, W. [1987], ‘A practical divide-and-conquer
algorithm for the rectangle intersection problem’, Information Sciences
42(2), 95–112.

[60] Güting, R. H. and Wood, D. [1984], ‘Finding rectangle intersections by
divide-and-conquer’, IEEE Transactions on Computers 100(7), 671–675.

[61] Guttman, A. [1984], R-trees: A dynamic index structure for spatial
searching, in ‘International Conference on Management of Data (ACM
SIGMOD 1984)’, pp. 47–57.

[62] Hoffart, J., Suchanek, F. M., Berberich, K. and Weikum, G. [2013],
‘Yago2: A spatially and temporally enhanced knowledge base from
wikipedia’, Artificial Intelligence 194, 28–61.

[63] Huang, J. [2012], Compactness and its implications for qualitative spa-
tial and temporal reasoning, in ‘International Conference on Principles of
Knowledge Representation and Reasoning (KR 2012)’, pp. 500–508.

[64] Huang, J., Li, J. J. and Renz, J. [2013], ‘Decomposition and tractabil-
ity in qualitative spatial and temporal reasoning’, Artificial Intelligence
195, 140–164.

[65] Jonsson, P. and Drakengren, T. [1997], ‘A complete classification of
tractability in RCC-5’, Journal of Artificial Intelligence Research 6, 211–
221.

[66] Kim, J., Vasardani, M. and Winter, S. [2015], ‘From descriptions to de-
pictions: A dynamic sketch map drawing strategy’, Spatial Cognition &
Computation 16(1), 29–53.



BIBLIOGRAPHY 233

[67] Knauff, M., Rauh, R. and Renz, J. [1997], A cognitive assessment of topo-
logical spatial relations: Results from an empirical investigation, in ‘Inter-
national Conference on Spatial Information (COSIT 1997)’, pp. 193–206.

[68] Knauff, M., Rauh, R. and Schlieder, C. [1995], Preferred mental models
in qualitative spatial reasoning: A cognitive assessment of allen’s calculus,
in ‘The Seventeenth Annual Conference of the Cognitive Science Society’,
pp. 200–205.

[69] Knuth, D. E. [1968], ‘The art of computer programming vol. 1, funda-
mental algorithms’, Addison-Wesley, Reading, MA 9, 364–369.

[70] Koubarakis, M., Kyzirakos, K., Karpathiotakis, M., Nikolaou, C., Sioutis,
M., Vassos, S., Michail, D., Herekakis, T., Kontoes, C. and Papoutsis, I.
[2011], Challenges for qualitative spatial reasoning in linked geospatial
data, in ‘IJCAI 2011 Workshop on Benchmarks and Applications of Spatial
Reasoning (BASR-11)’, pp. 33–38.

[71] Krokhin, A., Jeavons, P. and Jonsson, P. [2003], ‘Reasoning about tem-
poral relations: The tractable subalgebras of Allen’s Interval Algebra’,
Journal of the ACM 50(5), 591–640.

[72] Ladkin, P. B. and Maddux, R. D. [1988], On binary constraint networks,
Technical report, Kestrel Institute, Palo Alto, California, USA.

[73] Lang, D., Winter, S. and Frank, A. U. [2001], ‘Neighborhood relations
between fields with applications to cellular networks’, GeoInformatica
5(2), 127–144.

[74] Leutenegger, S. T., Lopez, M. A. and Edgington, J. [1997], STR: A simple
and efficient algorithm for R-tree packing, in B. Werner, ed., ‘International
Conference on Data Engineering (ICDE 1997)’, IEEE Computer Society,
USA, pp. 497–506.

[75] Li, J. J. and Li, S. [2013], On finding approximate solutions of qualitative
constraint networks, in ‘International Conference on Tools for Artificial
Intelligence (ICTAI 2013)’, pp. 30–37.

[76] Li, S. and Cohn, A. G. [2012], ‘Reasoning with topological and directional
spatial information’, Computational Intelligence 28(4), 579–616.

[77] Li, S., Long, Z., Liu, W., Duckham, M. and Both, A. [2015], ‘On redundant
topological constraints’, Artificial Intelligence 225, 51–78.



234 BIBLIOGRAPHY

[78] Li, S. and Ying, M. [2003], ‘Region Connection Calculus: Its models and
composition table’, Artificial Intelligence 145(1-2), 121–146.

[79] Liberatore, P. [2005], ‘Redundancy in logic I: CNF propositional formu-
lae’, Artificial Intelligence 163(2), 203–232.

[80] Ligozat, G. [1993], Qualitative triangulation for spatial reasoning, in ‘Eu-
ropean Conference on Spatial Information Theory (COSIT 1993)’, pp. 54–
68.

[81] Ligozat, G. [1994], Tractable relations in temporal reasoning: pre-convex
relations, in ‘ECAI 1994 Workshop on Spatial and Temporal Reasoning’,
pp. 99–108.

[82] Ligozat, G. [1998], ‘Reasoning about cardinal directions’, Journal of Vi-
sual Languages and Computing 9(1), 23–44.

[83] Ligozat, G. and Renz, J. [2004], What is a qualitative calculus? A general
framework, in ‘Pacific Rim International Conference on Artificial Intelli-
gence’, pp. 53–64.

[84] Liu, W. [2013], Qualitative constraint satisfaction problems: algorithms,
computational complexity, and extended framework, PhD thesis, Univer-
sity of Technology Sydney, Australia.

[85] Liu, W. and Li, S. [2012], Solving minimal constraint networks in qual-
itative spatial and temporal reasoning, in ‘International Conference on
Principles and Practice of Constraint Programming (CP 2012)’, pp. 464–
479.

[86] Liu, W., Zhang, X., Li, S. and Ying, M. [2010], ‘Reasoning about cardi-
nal directions between extended objects’, Artificial Intelligence 174(12-
13), 951–983.

[87] Long, Z., Sioutis, M. and Li, S. [2016], Efficient path consistency al-
gorithm for large qualitative constraint networks, in ‘International Joint
Conference on Artificial Intelligence (IJCAI 2016)’, pp. 1202–1208.

[88] Mark, D. M., Comas, D., Egenhofer, M. J., Freundschuh, S. M., Gould,
M. D. and Nunes, J. [1995], Evaluating and refining computational mod-
els of spatial relations through cross-linguistic human-subjects testing, in
‘International Conference on Spatial Information Theory (COSIT 1995)’,
pp. 553–568.



BIBLIOGRAPHY 235

[89] Monk, J. D. and Bonnet, R. [1989], Handbook of Boolean algebras, Vol. 3,
North Holland.

[90] Montanari, U. [1974], ‘Networks of constraints: fundamental properties
and applications to picture processing’, Information Sciences 7, 95–132.

[91] Mossakowski, T. and Moratz, R. [2012], ‘Qualitative reasoning about rel-
ative direction of oriented points’, Artificial Intelligence 180, 34–45.

[92] Nebel, B. [1997], ‘Solving hard qualitative temporal reasoning prob-
lems: Evaluating the efficiency of using the ORD-Horn class’, Constraints
1(3), 175–190.

[93] Nebel, B. and Bürckert, H.-J. [1995], ‘Reasoning about temporal rela-
tions: A maximal tractable subclass of Allen’s Interval Algebra’, Journal
of the ACM 42(1), 43–66.

[94] Papadias, D. and Sellis, T. [1994], ‘Qualitative representation of spatial
knowledge in two-dimensional space’, The VLDB Journal 3(4), 479–516.

[95] Papadias, D., Theodoridis, Y., Sellis, T. K. and Egenhofer, M. J. [1995],
Topological relations in the world of minimum bounding rectangles: A
study with R-trees, in ‘International Conference on Management of Data
(ACM SIGMOD 1995)’, pp. 92–103.

[96] Planken, L., de Weerdt, M. and van der Krogt, R. [2008], P3C: A new
algorithm for the Simple Temporal Problem, in ‘International Conference
on Automated Planning and Scheduling (ICAPS 2008)’, pp. 256–263.

[97] Randell, D. A., Cui, Z. and Cohn, A. G. [1992], A spatial logic based
on regions and connection, in ‘International Conference on Principles of
Knowledge Representation and Reasoning (KR 1992)’, pp. 165–176.

[98] Renz, J. [1999], Maximal tractable fragments of the region connection
calculus: A complete analysis, in ‘International Joint Conference on Arti-
ficial Intelligence (IJCAI 1999)’, pp. 448–455.

[99] Renz, J. and Ligozat, G. [2005], Weak composition for qualitative spatial
and temporal reasoning, in ‘International Conference on Principles and
Practice of Constraint Programming (CP 2005)’, pp. 534–548.

[100] Renz, J. and Nebel, B. [1999], ‘On the complexity of qualitative spa-
tial reasoning: A maximal tractable fragment of the region connection
calculus’, Artificial Intelligence 108(1), 69–123.



236 BIBLIOGRAPHY

[101] Renz, J. and Nebel, B. [2001], ‘Efficient methods for qualitative spatial
reasoning’, Journal of Artificial Intelligence Research 15, 289–318.

[102] Renz, J. and Nebel, B. [2007], Qualitative spatial reasoning using con-
straint calculi, in ‘Handbook of Spatial Logics’, Springer, Heidelberg, Ger-
many, pp. 161–215.

[103] Renz, J., Rauh, R. and Knauff, M. [2000], Towards cognitive adequacy
of topological spatial relations, in ‘Spatial Cognition II, Integrating Ab-
stract Theories, Empirical Studies, Formal Methods, and Practical Appli-
cations’, pp. 184–197.

[104] Rigaux, P., Scholl, M. and Voisard, A. [2001], Spatial databases: With
application to GIS, Morgan Kaufmann, Massachusetts, USA.

[105] Rodríguez, M. A., Egenhofer, M. J. and Blaser, A. D. [2003], Query pre-
processing of topological constraints: Comparing a composition-based
with neighborhood-based approach, in ‘International Symposium on Spa-
tial and Temporal Databases (SSTD 2001)’, pp. 362–379.

[106] Schmolze, J. G. and Snyder, W. [1999], ‘Detecting redundancy among
production rules using term rewrite semantics’, Knowledge-Based Systems
12(1-2), 3–11.

[107] Schockaert, S., Smart, P. D., Abdelmoty, A. I. and Jones, C. B. [2008],
Mining topological relations from the web, in ‘International Conference
on Database and Expert Systems Applications (DEXA 2008)’, pp. 652–
656.

[108] Scivos, A. and Nebel, B. [2004], The finest of its class: The natural
point-based ternary calculus LR for qualitative spatial reasoning, in ‘In-
ternational Conference on Spatial Cognition (ICSC 2004)’, pp. 283–303.

[109] Sioutis, M. and Condotta, J.-F. [2014a], Incrementally building par-
tially path consistent qualitative constraint networks, in ‘International
Conference on Artificial Intelligence: Methodology, Systems, Applications
(AIMSA 2014)’, pp. 104–116.

[110] Sioutis, M. and Condotta, J.-F. [2014b], Vertex incremental path con-
sistency for qualitative constraint networks, in ‘Hellenic Conference on
Artificial Intelligence (SETN 2014)’, pp. 454–459.

[111] Sioutis, M., Condotta, J.-F. and Koubarakis, M. [2016], ‘An efficient ap-
proach for tackling large real world qualitative spatial networks’, Interna-
tional Journal on Artificial Intelligence Tools 25(02), 1–33.



BIBLIOGRAPHY 237

[112] Sioutis, M. and Koubarakis, M. [2012], Consistency of chordal RCC-8
networks, in ‘International Conference on Tools for Artificial Intelligence
(ICTAI 2012)’, pp. 436–443.

[113] Sioutis, M., Li, S. and Condotta, J.-F. [2015], Efficiently characteriz-
ing non-redundant constraints in large real world qualitative spatial net-
works, in ‘International Joint Conference on Artificial Intelligence (IJCAI
2015)’, pp. 3229–3235.

[114] Sioutis, M., Long, Z. and Li, S. [2016], Efficiently reasoning about qual-
itative constraints through variable elimination, in ‘Hellenic Conference
on Artificial Intelligence (SETN 2016)’, pp. 1–10.

[115] Sioutis, M., Salhi, Y. and Condotta, J.-F. [2015], A simple decompo-
sition scheme for large real world qualitative constraint networks., in
‘The Twenty-Eighth International FLAIRS Conference (FLAIRS 2015)’,
pp. 119–122.

[116] Skiadopoulos, S. and Koubarakis, M. [2005], ‘On the consistency of
cardinal direction constraints’, Artificial Intelligence 163(1), 91–135.

[117] Smith, T. R. and Park, K. K. [1992], ‘Algebraic approach to spatial
reasoning’, International Journal of Geographical Information Systems
6(3), 177–192.

[118] Stell, J. G. [2000], ‘Boolean connection algebras: a new approach to the
region-connection calculus’, Artificial Intelligence 122(1), 111–136.

[119] Tarjan, R. E. and Yannakakis, M. [1984], ‘Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs’, SIAM Journal on Computing 13, 566–579.

[120] Valdés-Pérez, R. E. [1987], The satisfiability of temporal constraint net-
works., in ‘The Sixth National Conference on Artificial Intelligence (AAAI
1987)’, pp. 256–260.

[121] van Beek, P. [1992], ‘Reasoning about qualitative temporal informa-
tion’, Artificial Intelligence 58, 297–326.

[122] van Beek, P. and Cohen, R. [1990], ‘Exact and approximate reasoning
about temporal relations’, Computational Intelligence 6(3), 132–147.

[123] van Beek, P. and Dechter, R. [1995], ‘On the minimality and global con-
sistency of row-convex constraint networks’, Journal of the ACM 42, 543–
561.



238 BIBLIOGRAPHY

[124] Vasardani, M., Winter, S. and Richter, K.-F. [2013], ‘Locating place
names from place descriptions’, International Journal of Geographical In-
formation Science 27(12), 2509–2532.

[125] Vilain, M. B. and Kautz, H. A. [1986], Constraint propagation algo-
rithms for temporal reasoning, in ‘The Fifth National Conference on Arti-
ficial Intelligence (AAAI 1986)’, pp. 377–382.

[126] Vögele, T., Schlieder, C. and Visser, U. [2003], Intuitive modelling of
place name regions for spatial information retrieval, in ‘Conference on
Spatial Information Theory (COSIT 2003)’, Vol. 2825, pp. 239–252.

[127] Wallgrün, J. O. [2012], Exploiting qualitative spatial reasoning for topo-
logical adjustment of spatial data, in ‘International Conference on Ad-
vances in Geographic Information Systems (SIGSPATIAL 2012)’, pp. 229–
238.

[128] Wallgrün, J. O. [2013], Topological adjustment of polygonal data, in ‘In-
ternational Symposium on Spatial Data Handling (SDH 2013)’, pp. 193–
208.

[129] Wallgrün, J. O. and Dylla, F. [2010], ‘Spatial data integration with quali-
tative integrity constraints’, Online Extended Abstract of International Con-
ference on Geographic Information Science (GIScience 2010) (Paper No.
142).

[130] Worboys, M. F. and Duckham, M. [2004], GIS: A computing perspective,
CRC Press, Florida, USA.

[131] Zhang, X., Liu, W., Li, S. and Ying, M. [2008], Reasoning with cardinal
directions: An efficient algorithm., in ‘The Twenty-Third AAAI Conference
on Artificial Intelligence (AAAI 1988)’, Vol. 8, pp. 387–392.

[132] Zhang, Y. and Freuder, E. C. [2008], ‘Properties of tree convex con-
straints’, Artificial Intelligence 172(12-13), 1605–1612.

[133] Zhang, Y. and Marisetti, S. [2009], ‘Solving connected row convex con-
straints by variable elimination’, Artificial Intelligence 173(12-13), 1204–
1219.


	Title Page
	Certificate of Original Authorship
	Acknowledgement
	Table of Contents
	List of Terms
	List of Notations
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	1 Introduction
	1.1 Qualitative Spatial and Temporal Information
	1.2 Motivation
	1.3 Contributions and Outline of the Thesis

	2 Preliminaries and Backgrounds
	2.1 Introduction
	2.2 Qualitative Calculi
	2.3 Qualitative Constraint Network
	2.4 Important Techniques in QSTR
	2.4.1 Weak Composition
	2.4.2 Path Consistency and Partial Path Consistency

	2.5 Tasks and Problems in QSTR
	2.5.1 The Consistency Problem
	2.5.2 The Minimal Labelling Problem
	2.5.3 The (Weakly) Global Consistency Problem
	2.5.4 The Redundancy Problem
	2.5.5 The Compact Representation Problem

	2.6 Summary

	3 Distributive Subalgebras
	3.1 Introduction
	3.2 Basic Properties of Qualitative Calculi
	3.3 Distributive Subalgebra and Helly Property
	3.3.1 Helly Property

	3.4 Maximal Distributive Subalgebras
	3.4.1 Maximal Distributive Subalgebras of PA, IA, and RCC5/8
	3.4.2 Maximal Distributive Subalgebras of CRA
	3.4.3 Maximal Distributive Subalgebras of RA

	3.5 Path Consistency for QCNs over Distributive Subalgebras
	3.6 The Applicability of Algorithms Improving PC
	3.6.1 Variable Elimination
	3.6.2 Partial Path Consistency
	3.6.3 A More Efficient Algorithm to Achieve PPC and PC

	3.7 Further Discussion
	3.7.1 Conceptual Neighbourhood Graph
	3.7.2 Connection with Classical CSPs

	3.8 Summary

	4 Redundancy in QCNs
	4.1 Introduction
	4.2 Redundant Constraints
	4.3 Unique Prime Subnetworks
	4.4 An Efficient Algorithm for Computing the Core
	4.5 Summary and Discussion

	5 Compact Representation: Encoding with MBRs
	5.1 Introduction
	5.2 Spatial Clustering Index
	5.3 The MBR-Based Approach
	5.3.1 Correctness
	5.3.2 Effectiveness
	5.3.3 Empirical Evaluation

	5.4 Query Support
	5.4.1 Empirical Evaluation

	5.5 Derivatives of the MBR-Based Approach
	5.6 Summary and Discussion

	6 Compact Representation: Encoding with Rectangles
	6.1 Introduction
	6.2 Pseudo-Solutions
	6.2.1 Constructing Pseudo-Solutions
	6.2.2 Clustering
	6.2.3 Answering Queries
	6.2.4 The Non-DC Method

	6.3 Implementation
	6.3.1 Optimisations
	6.3.2 Comparison of Optimisations

	6.4 Empirical Evaluation
	6.4.1 Comparison With Baseline Methods
	6.4.2 Answering Queries

	6.5 Summary and Discussion

	7 Conclusion
	7.1 Thesis Contributions
	7.2 Future Perspectives
	7.2.1 Extension of Efficient Algorithms
	7.2.2 Extension of Compact Representation


	Appendices
	A Maximal Distributive Subalgebras
	A.1 Maximal Distributive Subalgebras of PA
	A.2 Maximal Distributive Subalgebras of IA
	A.3 Maximal Distributive Subalgebras of RCC5
	A.4 Maximal Distributive Subalgebras of RCC8

	B Supplementary Proofs
	B.1 Proofs for Chapter 3
	B.2 Proofs for Chapter 4
	B.3 Proofs for Chapter 5

	C List of Publications

	Bibliography

