

University of Technology, Sydney

Faculty of Engineering and Information Technology
SCHOOL OF COMPUTING AND COMMUNICATIONS

PhD Thesis

Tracking and Fine-Grained Activity Recognition in Depth Videos

Prepared By: SARI AWWAD

Principal Supervisor: Prof. Massimo Piccardi

Co-Supervisor: Dr. Richard Xu

NOVEMBER, 2016

Certificate of Authorship and Originality

Title: Tracking and Fine-Grained Activity Recognition in Depth Videos

Author: Sari Awwad

Date: November, 2016

Degree: **PhD**

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of author

Acknowledgements

Foremost, I would like to express my sincere gratitude to my principal supervisor, Professor Massimo Piccardi for the continuous support in my PhD study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my PhD study.

My sincere thanks also go to my home country "Jordan", my sponsor "The Hashemite University" and Dr. Ahmad Otoom for giving me the greatest opportunity to complete my PhD with a greatest superviso, and my thanks also goes to Dr. Bashar and Dawacom company.

I would like to thank my mother for her continuous prayer for me, and thanks for my brothers: Osama, Samer, Saed, Sameh, and my lovely sister Joman for their continuous supports.

I thank my colleagues: Dr. Shaukat Abidi, Mrs. Fairouz Hussein, Dr. Ava Bargi and Dr. Ehsan Zare Borzeshi, they are a great group, thank you all.

To a wonderful companion, great gratitude to my wife, Lina. Her support, encouragement, quiet patience and unwavering love were undeniably the bedrock upon which the past fourteen years of my life have been built. Her tolerance of my occasional vulgar moods is a testament in itself of her unyielding devotion and love.

Also, I thank Lina's parents, Mr. Asad and Mrs. Somayya, for their unending encouragement and support.

To the lovely kids, my daughters Farah and Aseel, and my son Osama who have decorated my life and made it full of happiness and joy.

Finally, this thesis is dedicated to the soul of my father, may Allah forgive him and grant him his highest paradise (Ameen).

Sari Awwad.

November, 2016, Sydney

Abstract

Tracking and activity recognition in video are arguably two of the most active topics within the field of computer vision and pattern recognition. Historically, tracking and activity recognition have been performed over conventional video such as color or grey-level frames, either of which contains significant clues for the identification of targets. While this is often a desirable feature within the context of video surveillance, the use of video for activity recognition or for tracking in privacy-sensitive environments such as hospitals and care facilities is often perceived as intrusive. For this reason, this PhD research has focused on providing tracking and activity recognition solely from depth videos which offer a naturally privacy-preserving visual representation of the scene at hand. Depth videos can nowadays be acquired with inexpensive and highly-available commercial sensors such as Microsoft Kinect and Asus Xtion. The two main contributions of this research have been the design of a specialised tracking algorithm for tracking in depth data, and a fine-grained activity recognition approach for recognising activities in depth video. The proposed tracker is an extension of the popular Struck algorithm, an approach that leverages a structural support vector machine (SVM) for tracking. The main contributions of the proposed tracker include a dedicated depth feature based on local depth patterns, a heuristic for handling view occlusions in depth frames, and a technique for keeping the number of support vectors within a given budget, so as to limit computational costs. Conversely, the proposed fine-grained activity recognition approach leverages multi-scale depth measurements and a Fisher-consistent multi-class SVM. In addition to the novel approaches for tracking and activity recognition, in this thesis we have canvassed and developed a practical computer vision application for the detection of hand hygiene at a hospital. This application was developed in collaboration with clinical researchers from the Intensive Care Unit of Sydney's Royal Prince Alfred Hospital. Experiments presented through the thesis confirm that the proposed approaches are effective, and either outperform the state of the art or significantly

reduce the need for sensor instrumentation. The outcomes of the hand-hygiene detection were also positively received and assessed by the clinical research unit.

Contents

A۱	bstrac	et			i
C	ontent	ts			iii
Li	st of I	Figures			vi
Li	st of	Fables			ix
Al	bbrevi	iations			X
1	Intr	oduction	n		1
	1.1	Backgr	ound and	Motivation	1
	1.2	Resear	ch Questi	ons and Main Contributions	6
	1.3	Signific	cance		8
	1.4	Thesis	Structure		9
2	Lite	rature F	Review an	nd Background	12
	2.1	Object	Tracking		13
		2.1.1	Tracking	g Algorithms	15
			2.1.1.1	Detection-Based Tracking and Kernels	15
			2.1.1.2	Blob Tracking	18
			2.1.1.3	Kalman Filter	20
			2.1.1.4	Particle Filters	22
	2.2	Feature	e Descript	ors	26
		2.2.1	Global d	escriptors	27
			2.2.1.1	Grid-based global descriptors	27
			2.2.1.2	Shape-contour based global descriptor	28
			2.2.1.3	Spatio-temporal based global descriptors	29
		2.2.2	Local de	escriptors	31
			2.2.2.1	Grid-based local descriptors	33
			2.2.2.2	Texture-based local descriptors	35

Contents

			2.2.2.3 Space-time interest points local descriptors	36
		2.2.3	Depth Features	38
	2.3	Detect	ing events and activities in a video	40
		2.3.1	Human-centred action detection	41
		2.3.2	The "blind" approach	41
		2.3.3	Fine-grained activity recognition	42
			2.3.3.1 Object localization	43
			2.3.3.2 Classification approaches in fine-grained activity	
			recognition	44
		2.3.4	Role of computer vision in various fields of medicine	45
	2.4	Suppor	rt vector machines	45
		2.4.1	Binary SVM	46
		2.4.2	Kernels: SVM from Linear to Nonlinear Classifiers	48
		2.4.3	Multi-Class SVM	50
		2.4.4	Structural SVM	51
2	Troc	dzina in	depth videos	56
J	3.1	_	uction and Background	56
	3.2		d work	57
	3.3		ruck tracker: overview	59
	3.4		sions for depth tracking	63
	J.T	3.4.1	Local depth features for tracking	63
		3.4.2	Support vector removal based on prototype selection	64
		3.4.3	Occlusion handling	68
	3.5		ments	69
	3.3	3.5.1	Datasets	69
		3.5.2	Experimental results	70
		3.3.2	Experimental results	70
4	Fine	-Grain	ed Activity Recognition in Depth Videos	76
4		Introdu		76
	4.2	_	round and related work	77
	4.3		sed Approach	79
		4.3.1	The Local Depth Feature: LDPT	80
		4.3.2	Feature Encoding	82
		4.3.3	Multi-Class Classification by M-SVM ²	83
	4.4		ments	85
		4.4.1	Dataset	85
		4.4.2	Features extraction and classification	86
		4.4.3	State of the Art on the Dataset	87
		4.4.4	Experimental Results and Discussion	88

Contents V

5	Auto	omated	Hand Hygiene Detection	91
	5.1	Introd	uction and background	. 91
		5.1.1	Study Objectives	
	5.2	Metho	ods	
		5.2.1	Simulation of the clinical environment and the first moment of hand hygiene	
		5.2.2	Capture and processing of RGB and depth images	. 95
		5.2.3	Maintenance of privacy during development of the image	
			analysis	
		5.2.4	Outcome measures and diagnostic accuracy	
	5.3	Hand	Hygiene approach and experiments	
		5.3.1	Dataset	. 98
		5.3.2	Hand Hygiene Events	. 98
		5.3.3	Computer vision techniques for detection of dispensing alcoholased hand rub (Event 1A)	
		5.3.4	Computer vision techniques for detection hand rubbing (Even 1B)	
		5.3.5	Computer vision techniques for detection of touching the patient (Event 2)	
		5.3.6	Hand Hygiene Detection Experimental results	
	5.4		ssion	
6	Con	clusion	and Future Work	107
Bi	bliog	raphy		11(

110

List of Figures

1.1	Depth frame example from a simulated hospital scenario	2
1.2	Depth frame examples from a simulated hospital scenario, the Prince-	
	ton Tracking Benchmark, and "50 salads" datasets	5
1.3	Thesis Structure	11
2.1 2.2	Tracking Stages in Computer Vision (Yang et al., 2011) Tracking by detection example; using super pixel-based discriminative appearance where (a) a new frame at time t. (b) surrounding region of the target in the last frame, i.e., at state X_t . (c) segmentation result of (b). (d) the computed confidence map of super pixels	14
	The super pixels coloured with red indicate a strong connection to the target, and those coloured with dark blue indicate a strong connection to the background. (e) the confidence map of the entire frame. (f), (g) and (h), (i) show two target candidates with high and	1.0
2.3	low confidence, respectively. Model) (Wang et al., 2011) Blob tracking example: Two-dimensional blob tracking by applying	18
2.3	the mean-shift algorithm to an image where pixel values represent likelihood of being on the tracked object (Collins, 2003)	19
2.4	Particle tracking example: by using appearance-adaptive models (top row is the adaptive velocity model and the bottom row is the	
2.5	zero-velocity model) (Zhou et al., 2004)	25
2.6	Running shape: the kinematic constrains for knee and elbows angles are used for feature detection	29
2.7	Movement recognition based on a sequence of space-time shapes in a video (Deng et al., 2010)	30
2.8	(a) Space-time volume of stacked silhouettes, (b) Motion history volumes. Figures reprinted from (Poppe, 2010)	31
2.9	Examples of local descriptors within a still image (Mikolajczyk and	_ 1
-	Tuytelaars, 2015)	32

List of Figures vii

2.10	An example on space-time features represented by three frames of a drinking action. Three types of features with different arrangement of histogram blocks. Histograms for composed blocks (Temp-2,	
	Spat-4) are concatenated into a single feature vector. (Ikizler and	
	Duygulu, 2009)	34
2.11	An example on texture features represented by gradients, where (a to c) are represent training stages and (d to g) represent testing stages. (Dalal and Triggs, 2005)	36
2.12	Examples of spatio-temporal interest points for a "walking" action: (a) 3D plot of leg pattern shown upside down to simplify interpretation; (b) spatio-temporal interest points detection overlayed on	
	walking legs (Laptev, 2005)	37
2.13	Space-time cells of a depth sequence of the forward kick action. For each time segment, the frames are placed together in the same	
	space. (Vieira et al., 2012)	39
2.14	Example of HON4D descriptors for each cell and their concatena-	
	tion. (Oreifej and Liu, 2013)	40
	Binary SVM(Meyer and Wien, 2015)	47
2.16	An example of non-linear classifiers using the Gaussian kernel (Stanevs	
	and Tsvetkov, 2005)	50
2.17	An example of natural language parsing by structural SVM from (Le Nguyen et al., 2005)	53
3.1	The main steps of Struck: a) the estimated ground-truth bounding box at frame i (a positive support vector); b) other bounding boxes around the ground truth (negative support vectors); c) the score, $w^{\top}\phi(x,y)$, of all bounding boxes is computed; d) the constraints in equation (3.2) impose that the score of the true displacement, y_i , is greater than that of any other displacement, $y \neq y_i$, by an amount set by the chosen loss function, $\Delta(y_i,y)$. At its turn, $\Delta(y_i,y)$ is chosen to be complementary to the overlap between bounding boxes y_i and y .	61
3.2	Examples of occlusion handling in A) the hospital simulation and B) PTB datasets	67
3.3	Cases of success and failure for the proposed tracker and the original Struck tracker.	73
3.4	Comparison between the proposed tracker and the original Struck tracker with various features; A) by varying the search radius; B) by varying the budget size.	74
	by varying the budget size	, 4
4.1	Examples of depth frames from the "50 Salad" dataset	79
4.2	Overview of the proposed approach	80

List of Figures viii

4.3	The hierarchy of cells (smallest), depth patterns (intermediate; num-	
	bered from 1 to 12) and LDPTs (largest). This figure should be	
	viewed in color	81
4.4	Confusion matrix for the proposed method. Rows and columns represent ground-truth and predicted class labels, respectively. Num-	
	bers represent frequencies in percentages and the cells' gray-levels	
	visually encode the frequencies from 0% = black to 100% = white	90
5.1	The Five Moments of Hand Hygiene	93
5.2	An example of acquisition software that includes depth, RGB, and	
	skeleton	96
5.3	An example of the images that were used in this work. For the sake	
	of visualization, the small RGB patch is superimposed to the bottle	
	area	96
5.4	Event 1 of Hand Hygiene detection approach	99
5.5	Event 2 of Hand Hygiene detection approach	100
5.6	Background removal procedure	102

List of Tables

2.1	Most used kernels functions (Stanevski and Tsvetkov, 2005)	49
3.1	Accuracy comparison for the proposed tracker and other trackers on the Princeton Tracking Benchmark.	71
3.2	Comparison of average accuracy with different prototype selection techniques and distances	71
4.1	Dataset activities and video frame counts	86
4.2	Recall, precision and F1 score for each activity class with the proposed approach	89
4.3	Comparison of recognition performance	89
4.4	Recall and precision for the proposed method with and without PCA.	90
5.1	Accuracy of Moment 1 monitoring	103

Abbreviations

DP Depth **P**atterns

EM Expectation Maximization

FV Feature Vector

HAI Healthcare Associated Infections

KPF Kalman Particle Filter

LDP Local Depth Patterns

LDPT Local Depth Patterns for Tracking

MEI Motion Energy Images

MHT Multilple Hypothesis Tracking

PCA Principal Component Analysis

PTB Princeton Tracking Benchmark

RFID Radio Frequency Identification Device

ROI Region Of Interest

RPAH Royal Prince Alfred Hospital

SMO Sequential Minimal Optimization

SVM Support Vector Machine

WHO World Health Organisation