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Saltmarshes and mangroves are among the most productive and most at risk ecosystems to the 

impacts of human activity and climate change, globally. Along with seagrasses, these coastal 

r capacity to 

accumulate and store C. Consequently, there is interest in the processes which govern C 

accumulation and storage in these ecosystems and their potential to mitigate climatic change. 

While previous research has indicated high C stocks and accumulation in saltmarshes, there is 

substantial spatial variability in saltmarsh C. An understanding of the factors behind this 

variability is required to better inform regional and global C management. Within the study 

region of southeast (SE) Australia, this thesis therefore aims to: quantify and characterise 

saltmarsh C stocks; determine the role of geomorphic and vegetation factors in C 

accumulation and storage; assess variations in quantity and character of C with sediment 

depth and in relation to environmental change.  

Analysis of sediment cores collected from 18 sites revealed mean (± SE) belowground C 

stocks of 164.45 ± 8.74 Mg C ha-1, comparable to global values. Stocks were more than two 

times higher in fluvial (226.09 ± 12.37 Mg C ha-1) relative to marine (104.54 ± 7.11) 

geomorphic sites, but did not vary between the saltmarsh vegetation structures tested. 

Vegetation type, however, was determined to play an important role in surface accumulation 

with mid- (19 month) and short-term (6 d) measures showing faster C accumulation in upper 

marsh rush saltmarsh relative to both succulent and grass lower marsh assemblages. 

Additionally, the encroachment of saltmarsh by high biomass mangrove trees and shrubs was 

shown to bring about substantial increases in C storage in both biomass and belowground C 

stocks. While there were general trends of decreasing C content with sediment profile depths, 

this was not always the case. The preservation of deep mangrove roots (in both contemporary 



saltmarsh areas as well as areas currently under mangrove encroachment) and/or remnant 

stable C sources (including char) were both responsible for peaks in C density down profile.  

This thesis improves our understanding of the processes influencing coastal wetland C 

storage, with implications for the prioritisation of planning policies and on-ground activities 

which aim to maximise the benefits from wetland protection and restoration. Such initiatives 

have the potential to increase overall C storage, thereby presenting a negative feedback to 

global warming, while also presenting other ecosystem service benefits.
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