

University of Technology, Sydney

Faculty of Engineering and Information Technology

Research of Inductive Power Transfer System for Electric Vehicle

A thesis submitted for the degree of

Doctor of Philosophy

Shuo Wang

(2016)

Title of the thesis:

Research of Inductive Power Transfer System for Electric Vehicle

Ph.D. student: Shuo Wang E-mail: Shuo.Wang-1@student.uts.edu.au

Supervisor: A/Prof. Youguang Guo E-mail: <u>Youguang.Guo-1@uts.edu.au</u>

Co-Supervisor: Dr. Li E-mail: <u>Li.Li@uts.edu.au</u>

External Supervisor: Prof. David Dorrell E-mail: <u>dorrelld@ukzn.ac.za</u>

Address:

School of Electrical, Mechanical and Mechatronic Systems University of Technology Sydney, NSW 2007, Australia

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Shuo Wang

Date:

Acknowledgments

My thesis could not have come to fruition without the assistance of many contributors.

Hereby, I would express my deep gratitude to my supervisors Professor David Dorrell, Associate Professor Youguang Guo and Dr. Li.

Professor Dorrell supported me with great direction, advices and any other helps in my research. His optimism, patience, motivation, and immense knowledge, has been inspiring me in the past four years. His patient and guidance on solving problems, writing reports and oral communicating with profession rewards my entire research life.

Associate Professor Guo spent plenty of time discussing from experiment design to thesis writing with me and gave me many great advices. He is a model for me in professional integrity.

I am grateful to my co-supervisor Dr Li for his support with my presentations and reviewing the draft.

I would also express my gratitude to Associate Professor Peter Watterson, Dr Paul Walker Dr. Guangzhong Xu, Dr. Chengcheng Liu, Mr. Russell Nicolson, and Mr. Laurence Stonard, for their help with my research.

I would like to thank my colleagues, Dr. Lei Zhang, Dr. Jiageng Ruan, Dr.Sangzhi Zhu, Dr. Xingxing Zhou, Dr. Tianxiao Zhang, Dr. Yu Wang, Dr. Jinglai Wu, and Mr. Jianwei Zhang for their supports.

I also wish to gratefully acknowledge the consistent financial support of the following agents: China Scholarship Council (CSC) and University of Technology, Sydney (UTS).

Most especially to my family, words alone cannot express what I own them for their encouragement and whose patient love enabled me to complete this thesis. Firstly, it is my father Yanzhi Wang my my mother Huapeng Wu. I left China for my study in Australia and couldn't visit my parents regularly during my past 4 years. My parents never said a word about my absent as their child but just showed their understanding. Secondly, I would like thank my unle Dehong Yu and aunt Huayou Wu. They taught me so much, from living in Australia to how to do research. Finally, I would like to thank my wife, Hongjun Qiao. She came to Australia to support my study and always encourage me. Our time here together in Australia would be my best memories.

Publications and Conference Contributions

The following publications are part of the thesis

Peer reviewed international scientific journal publications

- S. Wang and D. G. Dorrell, "Loss analysis of circular wireless EV charging Coupler," in IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, Nov. 2014.
- 2. S. Wang and D. G. Dorrell, "Copper loss analysis of EV charging coupler," IEEE Trans.Magn., vol. 51, no. 11, pp. 1-4, Nov. 2015.
- 3. S. Wang, D. G. Dorrell, Y. Guo and M. F. Hsieh, "Inductive charging coupler with assistive coils," IEEE Trans. Magn., vol. 52, no. 7, pp. 1-4, July 2016.

Peer reviewed international scientific conference publications

- S. Wang and D. G. Dorrell, "Review of wireless charging coupler for electric vehicles", Proc. IEEE 39th Annu. Conf. Ind. Electron. Soc. (IECON), pp. 7274-7279
- S. Wang and D. Dorrell, "Simulation of electric vehicle inductive charging system," 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, 2015.

Abstract

Electric vehicles are a promising option for future transportation. The technology related to these have undergone rapid development over the last two decades and there are now many commercial electric vehicles available on the market. However, consumers still suffer from the "range anxiety" due to the limited driving range and long recharging time (refuelling time) compared to traditional internal combustion engine vehicles. Wireless charging is an alternative recharging option; currently the usual recharging method uses plug-in charging. With wireless charging, the connection between grid and vehicle can be established in less than a second without any manual operation. Therefore, recharging EVs can take place during a short stop or in motion. This means that there are more recharging windows available during vehicle use which would effectively extend the range of the vehicle and reduce consumers "range anxiety".

This work is divided into three parts. The first part addresses the background and reviews the literature on EV recharging technologies. This is formed from first two chapters: Chapter 1 provides the introduction and outline of this thesis; Chapter 2 puts forward a literature review of the state of the art of recharging technology. The design of the wireless charging coupler is reviewed in this chapter.

The second part is the study of the inductive charging system. Chapter 3 introduces the wireless charging pad analysis, which includes a circular pad and a rectangular pad analysis. The parameters of the pads are analysed. An analytical and numerical combined method for resistance analysis is introduced to wireless charging coupler resistance analysis which is

the first contribution of this research. And Chapter 4 proposes a pad geometry with assistive coils which is a new arrangement that improves the coil coupling which is the secondary contribution of this study. Chapter 5 analyses the inductive power transfer system at circuit level, and experiment validation is carried out.

Finally, conclusions and future work are given in Chapter 6.

Keywords: *EV*, *Wireless charging technology, Pad design, Pad analysis, Inductive charging system analysis*

Contents

Certificate of	f Original Authorship	i	
Acknowledg	ments	ii	
Publications	Publications and Conference Contributionsiv		
Abstract		v	
List of Table	2S	ci	
List of Figur	es x	ii	
Nomenclatur	re xv	ii	
Chapter 1		1	
Introduction		1	
1.1 Bac	kground	1	
1.2 Res	earch Objectives	3	
1.3 The	esis Outline	4	
1.4 Ref	erence	6	
Chapter 2		7	
Literature Re	eview of EV Charging Methods	7	
2.1 Con	nductive charging method 1	0	
2.1.1	Single Stage Charger 1	2	
2.1.2	Two Stage Charger	3	
2.1.3	Off Board Charger 1	5	
2.2 Wii	reless Charging Methods 1	6	
2.2.1	EV Wireless Charging Technologies 1	8	
2.2.2	Magnetic Resonance Coupling Transfer	1	
2.2.3	Permanent Magnet Coupling	2	
2.2.4	Inductive Charging Method	3	
2.3 Rev	view of EV Inductive Charging Technology	3	

	2.3.1	Coupler Power Source	
	2.3.2	Compensation	
	2.3.3	Stationary Wireless Charging Coupler	
	2.3.4	On-Line/In-Motion Charging	
	2.3.5	Discussion	
2	.4 Sun	nmary	40
2	.5 Ref	erences	42
Cha	apter 3		52
Ana	alysis of V	Wireless EV Charging Coupler	52
3.1	Introd	uction	52
	3.1.1	Circular Pad Structure	53
	3.1.2	Power Levels	53
	3.1.3	Self and Mutual Inductances of Coils	54
	3.1.4	Modelling of the IPT system	56
3.2	Pad A	nalysis	59
	3.2.1	Analysis Methods	59
	3.2.2	Simulation Environment	61
	3.2.3	Simulation Result	63
3.3	Coppe	er Loss analysis	
	3.3.1	Skin and Proximity Effect Loss and Calculation Method	73
	3.3.2	Loss Analysis of a Conductor	
	3.3.3	Wire Geometric Modelling	77
	3.3.4	Coupler Model and Results	83
3.4	Recta	ngular Pad Analysis	85
	3.4.1	Rectangular Pad Simulation	85
	3.4.2	Experiment Validation	
3.5	Summ	nary	100
3.6	Refer	ence	102

Cha	Chapter 4 104		
Ind	Inductive Charging Coupler with Assistive Coils		
4.1	.1 Introduction		
4.2	.2 Wireless Charging Systems		105
	4.2.1	Two Winding Structure	106
	4.2.2	Four Winding Structure	109
4.3	Propo	sed Coupler with Assistive Coils	111
	4.3.1	Circuit Model for Proposed Coupler	113
	4.3.2	Simulation Results	114
	4.3.3	Circuit Analysis	116
4.4	Sumn	nary	119
4.5	Refer	ences	120
Cha	Chapter 5		
IPT	System	Analysis	122
5.1	Circu	it Analysis with Compensation	123
	5.1.1	System Efficiency Relationship with Rload.	123
	5.1.2	Secondary Side Output Current	125
	5.1.3	Efficiency with the mutual inductance	126
	5.1.4	IPT System Performance versus Frequency	128
	5.1.5	Impedance Analysis	129
5.2	System	m Simulation	131
	5.2.1	DC Input Simulation	131
	5.2.2	Full bridge Inverter	132
	5.2.3	Phase shift Control	133
	5.2.4	IPT System Simulation Results	135
	5.2.5	Charger with Three Phase AC Source Simulation Results	140
5.3	Exper	iment	143
	5.3.1	Coupler setup	145

	5.3.2	Power Electronics setup	146
	5.3.3	Experiment Result	148
5.4	Summ	ary	154
5.5	Refere	nces	155
CH	APTER 6		157
Cor	clusions	and Future Work	157
6.1 Conclusions			157
6	.2 Future	Work	158

List of Tables

Table 2-1. Levels of EV chargers	8
Table 2-2. Battery Charging Methods [2.7]	14
Table 2-3 General Parameters for Three Generations of On-Line EV Charging	
Table 3-1. Basic Geometrical Parameters	
Table 3-2. Ferrite Material Characteristics	
Table 3-3. Parameters of the Wireless Charger	67
Table 3-4. Parameters of the Wireless Charger	71
Table 3-5. Parameters of Simulated Wires	
Table 3-6. Copper Loss of Primary Side Winding Types 2 and 3 at 20 kHz	85
Table 3-7. Rectangular Pad Parameters	
Table 3-8. Inductance from Experiment and Simulation	
Table 3-9. Measured Laid and calculated k with spacing	
Table 4-1 Parameters of Simulated Coupler	111
Table 4-2 Inductance Matrix of Four Coils	114
Table 4-3 Coupling Coefficient Matrix of Four Coils	115
Table 5-1 Parameters for Efficiency Analysis	125
Table 5-2. Frequency Analysis Parameters	128
Table 5-3 Parameters of the IPT system	130
Table 5-4. Output Power with Phase Shift Angle	138
Table 5-5. System Efficiency Versus Load	153

List of Figures

Fig. 2.1. A unidirectional topology used for Level 1 chargers.	9
Fig. 2.2 A unidirectional topology for Levels 1 and 2 chargers.	9
Fig. 2.3. A bidirectional topology for Level 3 chargers	10
Fig. 2.4. Structure for conductive charging	11
Fig. 2.5. Classification of conductive chargers	12
Fig. 2.6. AC/DC conventional boost rectifier [8]	13
Fig. 2.7. Dual active bridge DC/DC converter.	15
Fig. 2.8. General structure for Level 3 fast Charging.	16
Fig. 2.9 Wireless charging technology	
Fig. 2.10. MRCT EV charging system	22
Fig. 2.11 General structure of the IPT system.	
Fig. 2.12 Full bridge inverter.	
Fig. 2.13. Basic compensation topology.	
Fig. 2.14. IPT system: a) early IPT charging system, b) IPT charging system with	
compensation	30
Fig. 2.15. Flux of circular pad	31
Fig. 2.16. Top view and cross view of a flux pipe pad.	32
Fig. 2.17. Structure of DD pad: (a) top view (b) cross view	33
Fig. 2.18. A possible lumped on road charging.	35
Fig. 2.19. Three phase track topologies: (a) bipolar and (b) unipolar	37
Fig. 2.20. The top view and cross view of OLEV power transfer system: (a) dual typ (b) mono type.	be and
Fig. 3.1. Geometry of circular pad.	53
Fig. 3.2. Concept of mutual inductance using two magnetically coupled loops	55
Fig. 3.3. Circuit model of IPT system.	56
Fig. 3.4. Circuit model using equivalent source for coupler windings <i>Lp</i> and <i>Ls</i>	57

Fig. 3.5. Circular pad full scale FEA simulation model
Fig. 3.6. Maxwell 3D representation of one-6th section
Fig. 3.7. Coupling factor k for transformer with and without ferrite cores
Fig. 3.8. Flux density in the ferrite cores
Fig. 3.9. Voltages of secondary winding and capacitor
Fig. 3.10. Ohmic losses in the shield and ferrite core
Fig. 3.11. Flux Leakage
Fig. 3.12. Force on the winding
Fig. 3.13. Concept of skin and proximity effects on stranded and bundled conductors 75
Fig. 3.14. Simulation model of wires a) single conductor; b) 61 strands model; c) 349
Fig. 3.15. Loss distribution in a single conductor
Fig. 3.16. Loss of single conductor wire verse frequency and radius
Fig. 3.17 (a) Skin effect factor of wires: (b) Proximity effect G factor of wires
Fig. 3.18 (a) Maxwell 3D representation of one-sixth section: (b) The magnetic field
strength along the wire over time
Fig. 3.19. The magnetic field strength over winding
Fig. 3.20. Simulation model of rectangular pad: a) coupler model side view, b) top view of primary side coupler
Fig. 3.21. Self-inductances of primary and secondary windings and mutual inductance with 186 mm ferrite bar on both sides
Fig. 3.22. Mutual inductance versus misalignment with 186 mm ferrite bar on both sides 87
Fig. 3.23. Mutual inductance versus air bap distance with 186 mm ferrite bar on both sides
Fig. 3.24. Coupling coefficient versus misalignment and air gap distance with 186 mm ferrite bar on both sides
Fig. 3.25. Secondary side coil with 93 mm ferrite bar simulation
Fig. 3.26. Inductance of primary and secondary winding and mutual inductance with 93 mm ferrite bar on secondary side
Fig. 3.27. Mutual inductance versus air gap distance with 93 mm ferrite bar on secondary side

Fig. 3.28. Mutual inductance versus misalignment with 93 mm ferrite bar on secondary s	ide . 91
Fig. 3.29. Coupling coefficient versus misalignment and air gap distance with 93 mm ferrite bar on secondary side	. 92
Fig. 3.30. FEA model for secondary side coil only pad	. 92
Fig. 3.31. Inductance of primary and secondary winding and mutual inductance of secondary side coil only pad	. 93
Fig. 3.32. Mutual inductance versus air gap distance with secondary side coil only pad	. 94
Fig. 3.33. Mutual inductance versus misalignment with secondary side coil only pad	. 94
Fig. 3.34. FEA model for coil only pad.	. 95
Fig. 3.35. Inductances of primary and secondary windings, and mutual inductance of coi only pad	1 . 95
Fig.3.36 Mutual inductance versus air gap distance with coil only pad	. 96
Fig. 3.37. Mutual inductance versus misalignment with coil only pad	. 96
Fig. 3.38. Comparison of mutual inductance of different pads	. 97
Fig. 3.39. Rectangular pad setup.	. 98
Fig. 3.40. Experiment and FEA results of coupling coefficient k	100
Fig. 4.1. Wireless charging circuit.	106
Fig. 4.2. General structure for series-series compensation.	107
Fig. 4.3. Simulation results: (a) uncompensated circuit efficiency and power output, (b) S compensated efficiency and power output	3S 109
Fig. 4.4. General structure for four-coil system.	111
Fig. 4.5. General structure for four-coil system: a) 3D view of transformer; b) top view of primary coupler; c) side view of primary coupler.	f 112
Fig. 4.6. Circuit model for proposed coupler with assistive coil system.	113
Fig. 4.7. Coupling coefficient via airgap length`	115
Fig. 4.8. Two-coil system characteristic with <i>C1</i> and <i>C4</i>	117
Fig. 4.9. Proposed coupler optimisation (efficiency and power maps)	118
Fig. 5.1. Efficiency versus R _{load}	125
Fig. 5.2. Efficiency map of mutual inductance and Rload	127

Fig. 5.3. Pout and efficiency versus HF power source frequency	. 129
Fig. 5.4. The frequency analysis: a) impedance verse frequency, b) Phase angle versus	
frequency	131
Fig. 5.5. IPT system simulation model	. 132
Fig. 5.6. Full bridge inverter.	133
Fig. 5.7. The phase shift control for full bridge Inverter	. 134
Fig. 5.8. Full bridge output voltage and output current	. 135
Fig. 5.9. Load voltage V _{load} and current I _{load}	. 136
Fig. 5.10. Output power (top) and input power waveforms (bottom)	. 136
Fig. 5.11. Inverter output voltage and current at $\alpha = 120$.	. 137
Fig. 5.12. Output power (top) and input power waveforms at $\alpha = 120^{\circ}$. 138
Fig. 5.13. Output power and input power versus phase shift angle	. 139
Fig. 5.14. Efficiency versus phase shift angle	. 140
Fig. 5.15. Simulation model of IPT system with three phase input.	. 141
Fig. 5.16. Output current of three phase rectifier.	. 141
Fig. 5.17. Three phase rectifier DC link voltage	. 142
Fig. 5.18. Three phase IPT system input power and output power	. 142
Fig. 5.19. IPT experiment circuit.	. 143
Fig. 5.20. Test rig: primary side.	. 144
Fig. 5.21. Test rig: coupler and load.	. 144
Fig. 5.22. a) Coupler primary side, and b) Coupler	. 146
Fig. 5.23. Rectifier module and IGBT module for experiment	. 147
Fig. 5.24. Schematic diagram of gate drive.	. 148
Fig. 5.25. PCB view of gate drive.	. 148
Fig. 5.26. DSP output, gate drive signal and the inverter output.	. 149
Fig. 5.27. Time delay between the drive signal and the output voltage	. 150
Fig. 5.28. The voltage and current inputs of the primary side.	. 151
Fig. 5.29. The voltage, current and power to the load.	. 151
Fig. 5.30. Inverter output voltage and current at 21 kHz.	. 152

Fig. 5.31.	Inverter output voltage and current at 20 kHz	152
Fig. 5.32.	System efficiency versus load resistance	153

Nomenclature

Global abbreviations used in this thesis

AC	=	Alternating current
CO_2	=	Carbon dioxide
DC	=	Direct current
EMI	=	Electromagnetic interface
EV	=	Electric vehicle
FEA	=	Finite element analysis
FEM	=	Finite element method
HEV	=	Hybrid electric vehicle
HF	=	High frequency
MRCT	=	Magnetic resonance coupling transfer
PFC	=	Power factor correction
РМСТ	=	Permanent magnet coupling transfer
SWC	=	Stationary wireless charging
WPT	=	Wireless power transfer