The Biochemical Energy Balance of the Coral Symbiosis

Johanna Howes

December 2015

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Science

Aquatic Photosynthesis Group
Climate Change Cluster
School of Life Sciences
University of Technology Sydney

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Date:

Acknowledgements

There are too many people to count that I need to thank for their invaluable assistance, but I'm going to try. A huge thank you needs to go to the technical support staff for both the department of Chemistry and C3 with a specific thank you to Paul Brooks, Ronald Shimmon and Linda Xiao. Sutinee Sinutok, Katherina Petrou and Ross Hill provided vital assistance with experimental design, experimental execution and a biology crash course that I desperately needed. A huge thank you also to Milán Szabó for his incredible literature searching skills and encyclopaedic knowledge of photosynthetic function.

A special thanks goes to Olivia Sackett for being amazing, travelling to Wisconsin and providing much-needed advice and encouragement. Thanks also to the IR beamline staff at both the Synchrotron Radiation Center in Madison, WI and the Australian Synchrotron in Melbourne. Specifically Julia Sedlmair for looking after us in Wisconsin and Keith Bambery for help with data processing. Phil Heraud and Carol Hirschmugl also gave me amazing ideas and direction for tricky imaging data at WIRMS 2013 and beyond. This work was made possible by funding provided by C3, as well as the International Synchrotron Access Program (ISAP) through the Australian Synchrotron.

Thank you to my fellow C3 PhD candidates for the countless emergency coffee runs and for listening to my experimental woes. Similar thanks goes to my fellow first year chem tutors for (safe) laboratory shenanigans. Thank you to my best friend, Camille and Sarah, who surprised me with my "Cheer Squad Box" filled with encouraging messages from friends and family. Thank you to my incredible Mum, Dad and sister, for putting a roof over my head when I needed it, endless encouragement, love and unwavering support. And thanks for listening to me vent when you didn't understand a word I was saying.

And finally, thank you to my amazing supervisors, Peter Ralph and Barbara Stuart. None of this would have been remotely possible without your encouragement, advice, excitement, experimental help, red-pen-covered thesis edits, pushing me to achieve my best, fighting for me when I needed it and commiserating when things didn't go the way I wanted them to. I have no words to tell you both how much I have appreciated this opportunity and your help.

Table of Contents

Certificate of Authorship and Originality	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	ix
List of Tables	xviii
Abbreviations	xxi
Abstract	1
Chapter 1. General introduction	3
1.1 Introduction	4
1.2 The coral symbiosis	5
1.2.1 Basic physiology	5
1.2.2 Photosynthesis and photoinhibition	7
1.3 Analysis of <i>Symbiodinium</i> sp.	10
1.3.1 Genetic diversity and tolerance	11
1.3.2 Macromolecular analysis of <i>Symbiodinium</i> sp.	13
1.4 Metabolomics and vibrational spectroscopy	16
1.5 Thesis outline	20
Chapter 2. General methods	22
2.1 Introduction	23
2.2 Sample preparation	23

	2.3 FTIR spectroscopy	24
	2.3.1 ATR spectroscopy	24
	2.3.2 Micro-FTIR spectroscopy	24
	2.3.3 Synchrotron chemical imaging FTIR spectroscopy	25
	2.4 Macromolecular content calculations	26
	2.5 Spectra pre-processing and statistical modelling	28
	2.6 Image processing	28
	2.6.1 Chemical images	28
	2.6.2 Statistical images	28
Chapte	er 3. Macromolecular composition of symbiotic dinoflagellates; variation	between
clades		30
	3.1 Introduction	31
	3.2 Initial assessment of <i>Symbiodinium</i> sp.	31
	3.2.1 Investigation of tolerance	31
	3.2.2 FTIR spectroscopy	33
	3.2.3 Spectral analysis	34
	3.3 Macromolecular content of <i>Symbiodinium</i> sp.	39
	3.3.1 Characterisation of cells by FTIR spectroscopy	39
	3.3.2 Macromolecular content	40
	3.3.3 Statistical modelling	42
	3.3.4 Lipid structure	45
	3.3.5 Protein secondary structure	46
	3.4 Discussion	47

3.5 Conclusions	50
Chapter 4. Macromolecular composition of symbiotic dinoflagellates; variation	in
response to elevated irradiance and temperature	52
4.1 Introduction	53
4.2 Results	54
4.2.1 Photosynthetic function	54
4.2.1 Macromolecular content changes	56
4.2.1.1 Protein	56
4.2.1.2 Carbohydrates	56
4.2.1.3 Phosphorylated compounds	57
4.2.1.4 Lipids	61
4.2.2 Structural analysis	63
4.2.2.1 Lipids	63
4.2.2.2 Protein	67
4.2.3 Statistical Analysis	68
4.3 Discussion	86
4.4 Conclusions	92
Chapter 5. Macromolecular composition of symbiotic dinoflagellates; variation	in
response to extreme temperature	94
5.1 Introduction	95
5.2 Results	96
5.2.1 Macromolecular content	97
5.2.2 Structural analysis using micro-FTIR spectroscopy	102
5.2.3 Statistical analysis of micro FTIR spectroscopy samples	109
	V1

5.3 Discussion	120
5.4 Conclusions	125
Chapter 6. Initial assessment of macromolecular variation of symbiotic dinoflag	gellates
by Synchrotron FTIR-imaging spectroscopy	126
6.1 Introduction	127
6.2 Data collection and processing	127
6.3 Results	128
6.3.1 Chemical imaging	128
6.3.2 Statistical imaging	132
6.4 Discussion	142
6.5 Conclusions	145
Chapter 7. General discussion and thesis summary	146
7.1 Introduction	147
7.2 Structural changes	147
7.2.1 Lipids	148
7.2.2 Protein secondary structure	149
7.2.3 Significance in relation to photosynthetic health and repair	150
7.2.4 Significance in relation to field samples	151
7.3 Macromolecular content and energy storage	152
7.4 Summary of key findings	153
7.5 Future research	155

References		159
Appendix		176
Appe	endix 1	177
Appe	endix 2	189
Appe	endix 3	195
Appe	endix 4	199

List of Figures

Figure 1.1: Cross-section of a coral polyp.	6
Figure 1.2 : Schematic representation of the metabolic products exchanged within coral symbiosis.	the 8
Figure 1.3 : Genetic clades of <i>Symbiodinium</i> sp. and their associated hosts. Clades for this thesis are in bold. Phylogenetic tree adapted from Coffroth and Santos (20)	
Figure 3.1 : Maximum quantum yield for clades A and F exposed to elevated temperature. Data points are mean (n=4) and error bars are \pm SEM.	32
Figure 3.2 : Comparison of typical <i>Symbiodinium</i> sp. spectra with and without rin Doted lines indicate area of media interference.	using. 34
Figure 3.3 : Comparison of spectra for band assignments. From top to bottom: representative <i>Symbiodinium</i> sp. spectra, lipid standard, protein standard and carbohydrate standard.	35
Figure 3.4 : Total averaged spectra (n=20). Refer to Table 3.1 for band assignment	nts.
	41
Figure 3.5 : Total averaged spectra 2 nd derivatives (n=20). Spectra are off-set on y for comparison.	y-axis 41
Figure 3.6: PLSDA model scores plot (A) and loadings (B).	44
Figure 3.7 : Lipid CH stretching region (3100-2800 cm ⁻¹). Spectra are averages (r and are normalised to the =CH ₂ band (3015 cm ⁻¹) for comparison.	n=20)

Figure 4.1: Photosynthetic efficiency of clades A and F exposed to environmenta	al
treatments. Elevated light = $100 \mu mol photons.s^{-1}$ and elevated temperature = 31°	C.
Data points are mean (n=4) and error bars are \pm SEM. rmANOVA results are	
summarised in Tables A2.1-A2.2.	55

Figure 4.2: Change in protein content (%) over time for clades A and F. Elevated light = $100 \mu mol photons.s^{-1}$ and elevated temperature = $31^{\circ}C$. Data points are mean (n=4) and error bars are \pm SEM. rmANOVA results are summarised in Tables A2.3-A2.4.

58

Figure 4.3: Change in carbohydrate content (%) over time for clades A and F. Elevated light = $100 \mu mol photons.s^{-1}$ and elevated temperature = $31^{\circ}C$. Data points are mean (n=4) and error bars are \pm SEM. rmANOVA results are summarised in Tables A2.5-A2.6.

Figure 4.4: Change in phosphorylated compounds content (%) over time for clades A and F. Elevated light = $100 \mu mol photons.s^{-1}$ and elevated temperature = $31^{\circ}C$. Data points are mean (n=4) and error bars are \pm SEM. rmANOVA results are summarised in Tables A2.7-A2.8.

Figure 4.5: Change in total lipid content (%) over time for clades A and F. Elevated light = $100 \mu mol photons.s^{-1}$ and elevated temperature = $31^{\circ}C$. Data points are mean (n=4) and error bars are \pm SEM. rmANOVA results are summarised in Tables A2.9-A2.10.

Figure 4.6: Change in lipid saturation over time for clades A and F. Elevated light = $100 \mu mol photons.s^{-1}$ and elevated temperature = 31° C. Data points are mean (n=4) and error bars are \pm SEM. rmANOVA results are summarised in Tables A2.11-A2.12.

64

Figure 4.7: Change in lipid branching over time for clades A and F. Elevated light = $100 \mu mol photons.s^{-1}$ and elevated temperature = $31^{\circ}C$. Data points are mean (n=4) and error bars are \pm SEM. rmANOVA results are summarised in Tables A2.13-A2.14.

Figure 4.8 : Change in lipid disorder over time for clades A and F. Elevated light =	= 100
μmol photons.s ⁻¹ and elevated temperature = 31°C. Data points are mean (n=4) and	d error
bars are \pm SEM. rmANOVA results are summarised in Tables A2.15-A2.16.	66

- **Figure 4.9**: PLSDA model scores (A) and loadings (B) for clade A cells exposed to elevated light.
- **Figure 4.10**: PLSDA model scores (A) and loadings (B) for clade F cells exposed to elevated light.
- **Figure 4.11**: PLSDA model scores (A) and loadings (B) for clade A cells exposed to elevated temperature.
- **Figure 4.12**: PLSDA model scores (A) and loadings (B) for clade F cells exposed to elevated temperature.
- **Figure 4.13**: PLSDA model scores (A) and loadings (B) for clade A cells exposed to elevated light and temperature.
- **Figure 4.14**: PLSDA model scores (A) and loadings (B) for clade F cells exposed to elevated light and temperature.
- **Figure 4.15**: PLSDA model scores (A and B) and loadings (C) for clade A cells exposed to all treatments.
- **Figure 4.16**: PLSDA model scores (A and B) and loadings (C) for clade F cells exposed to all treatments.
- **Figure 5.1**: Photosynthetic efficiency of cells exposed to 2° C/day increase in temperature. All error bars are \pm SEM (n=5). Refer to Table 4.1 and A4.2 for rmANOVA results.

96

- **Figure 5.2**: Change in protein content (%) over time for cells exposed to a 2 $^{\circ}$ C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM. Refer to Tables A4.1 and A4.2 for rmANOVA results.
- **Figure 5.3**: Change in carbohydrate content (%) over time for cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM. Refer to Tables A4.1 and A4.2 for rmANOVA results.
- **Figure 5.4**: Change in phosphorylated compounds (%) over time for cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM. Refer to Tables A4.1 and A4.2 for rmANOVA results.
- **Figure 5.5**: Change in lipid content (%) over time for cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM. Refer to Tables A4.1 and A4.2 for rmANOVA results.
- **Figure 5.6**: Comparison of derivatised spectra from amide I region for clade A cells exposed to a 2°C/day increase in temperature. Spectra are averages (n=16) and different colour represents different day (T0-5).
- **Figure 5.7**: Comparison of derivatised spectra from amide I region for clade F cells exposed to a 2°C/day increase in temperature. Spectra are averages (n=16) and different colour represents different day (T0-5).
- **Figure 5.8**: Comparison of derivatised spectra for C-H stretching region for clade A cells exposed to a 2°C/day increase in temperature. Spectra are averages (n=16) and different colour represents different day (T0-5).
- **Figure 5.9:** Change in lipid saturation for clade A cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM.
- **Figure 5.10**: Change in lipid branching for clade A cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM.

- **Figure 5.11**: Change in lipid disorder for clade A cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM.
- **Figure 5.12**: Comparison of derivatised spectra for C-H stretching region for clade F cells exposed to a 2°C/day increase in temperature. Spectra are averages (n=16) and different colour represents different day (T0-5).
- **Figure 5.13**: Change in lipid saturation for clade F cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM.
- **Figure 5.14**: Change in lipid branching for clade F cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM.
- **Figure 5.15**: Change in lipid disorder for clade A cells exposed to a 2° C/day increase in temperature. Data points are mean (n=5) and error bars are \pm SEM.
- **Figure 5.16**: PLSDA model scores (A) and loadings (B) for clade A cells exposed to a 2°C/day increase in temperature.
- **Figure 5.17**: PLSDA model scores (A) and loadings (B) for clade F cells exposed to a 2°C/day increase in temperature.
- **Figure 5.18**: Scores (A) and loadings (B) for PLS model for clade A cells exposed to a 2°C/day increase in temperature.
- **Figure 5.19**: Scores (A) and loadings (B) for PLS model for clade F cells exposed to a 2°C/day increase in temperature.
- **Figure 5.20**: PLS predicted vs reference values for F_v/F_m for clade A. Trend line is linear with r^2 value of 0.913 and confidence intervals are 95%.
- **Figure 5.21**: PLS predicted vs reference values for F_v/F_m for clade F. Trend line is linear with r^2 value of 0.295 and confidence intervals are 95%.

- **Figure 6.1**: Chemical images for Clade F cells collected at 25 $^{\circ}$ C (example 1). Images show the following: A = light microscope image, B = α-helix proteins, C = β-sheet protein, D = lipid, E = carbohydrates and F = phosphorylated compounds. Colour bar indicates blue is high intensity and red is low.
- **Figure 6.2**: Chemical images for Clade F cells collected at 25 °C (example 2). Images show the following: A = light microscope image, $B = \alpha$ -helix proteins, $C = \beta$ -sheet protein, D = lipid, E = carbohydrates and F = phosphorylated compounds. Colour bar indicates blue is high intensity and red is low.
- **Figure 6.3**: Chemical images for Clade F cells collected at 30 °C (example 1). Images show the following: A = light microscope image, $B = \alpha$ -helix proteins, $C = \beta$ -sheet protein, D = lipid, E = carbohydrates and F = phosphorylated compounds. Colour bar indicates blue is high intensity and red is low.
- **Figure 6.4**: Chemical images for Clade F cells collected at 30 °C (example 2). Images show the following: A = light microscope image, $B = \alpha$ -helix proteins, $C = \beta$ -sheet protein, D = lipid, E = carbohydrates and F = phosphorylated compounds. Colour bar indicates blue is high intensity and red is low.
- **Figure 6.5**: Chemical images for Clade F cells collected at 34 $^{\circ}$ C (example 1). Images show the following: A = light microscope image, B = α-helix proteins, C = β-sheet protein, D = lipid, E = carbohydrates and F = phosphorylated compounds. Colour bar indicates blue is high intensity and red is low.
- **Figure 6.6**: Chemical images for Clade F cells collected at 34 °C (example 2). Images show the following: A = light microscope image, $B = \alpha$ -helix proteins, $C = \beta$ -sheet protein, D = lipid, E = carbohydrates and F = phosphorylated compounds. Colour bar indicates blue is high intensity and red is low.
- **Figure 6.7**: HCA mapping for a cell collected at 25 °C (example 1). Groups are colour coded for both the HCA map (B) and the average spectra (C). Dotted lines indicate band intensities used to build chemical images (Figure 6.1).

- **Figure 6.8**: HCA mapping for a cell collected at 25 °C (example 2). Groups are colour coded for both the HCA map (B) and the average spectra (C). Dotted lines indicate band intensities used to build chemical images (Figure 6.2).
- **Figure 6.9**: HCA mapping for a cell collected at 30 °C (example 1). Groups are colour coded for both the HCA map (B) and the average spectra (C). Dotted lines indicate band intensities used to build chemical images (Figure 6.3).
- **Figure 6.10**: HCA mapping for a cell collected at 30 °C (example 2). Groups are colour coded for both the HCA map (B) and the average spectra (C). Dotted lines indicate band intensities used to build chemical images (Figure 6.4).
- **Figure 6.11**: HCA mapping for a cell collected at 34 °C (example 1). Groups are colour coded for both the HCA map (B) and the average spectra (C). Dotted lines indicate band intensities used to build chemical images (Figure 6.5).
- **Figure 6.12**: HCA mapping for a cell collected at 34 °C (example 2). Groups are colour coded for both the HCA map (B) and the average spectra (C). Dotted lines indicate band intensities used to build chemical images (Figure 6.6).
- **Figure 6.13**: Scores (A) and loadings (B) for the PCA model for collated HCA loadings assigned to locations within cells.
- **Figure A1.1**: Spectra for clade A exposed to elevated light (top to bottom; T0-T5). Spectra are averages (n=12)
- **Figure A1.2**: Spectra for clade F exposed to elevated light (top to bottom; T0-T5). Spectra are averages (n=12)
- **Figure A1.3**: Spectra for clade A exposed to elevated temperature (top to bottom; T0-T5). Spectra are averages (n=12).
- **Figure A1.4**: Spectra for clade F exposed to elevated temperature (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A1.5: Spectra for clade A exposed to a combination of elevated light and	
temperature (top to bottom; T0-T5). Spectra are averages (n=12).	181

Figure A1.6: Spectra for clade F exposed to a combination of elevated light and temperature (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A1.7: 2nd derivative spectra for clade A exposed to elevated light (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A1.8: 2nd derivative spectra for clade F exposed to elevated light (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A1.9: 2nd derivative spectra for clade A exposed to elevated temperature (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A1.10: 2nd derivative spectra for clade F exposed to elevated temperature (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A1.11: 2nd derivative spectra for clade A exposed to a combination of elevated light and temperature (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A1.12: 2nd derivative spectra for clade F exposed to a combination of elevated light and temperature (top to bottom; T0-T5). Spectra are averages (n=12).

Figure A3.1: Spectra for clade A exposed to a gradual increase in temperature (from top to bottom; T0-T5). Spectra are averages (n=16).

Figure A3.2: Spectra for clade F exposed to a gradual increase in temperature (from top to bottom; T0-T5). Spectra are averages (n=16).

Figure A3.3: 2nd derivative spectra for clade A exposed to a gradual increase in temperature (from top to bottom; T0-T5). Spectra are averages (n=16).

Figure A3.4: 2nd derivative spectra for clade F exposed to a gradual increase in temperature (from top to bottom; T0-T5). Spectra are averages (n=16).

List of Tables

Table 2.1: Light and temperature regimes for the experiments.	24
Table 2.2: Integrated regions for the estimation of macromolecular content.	26
Table 3.1: Integrated regions for the estimation of elemental pools.	37
Table 3.2: Main infrared band assignments for <i>Symbiodinium</i> sp. ($v = \text{stretching}$, bending, as = asymmetric, s = symmetric).	δ = 37
Table 4.1: PLSDA model parameters for clade A and F cells exposed to elevated	light.
	69
Table 4.2: PLSDA model parameters for clade A and F cells exposed to elevated temperature.	71
Table 4.3: PLSDA model parameters for clade A and F cells exposed to a combin of elevated light and temperature.	nation 72
Table 4.4: Parameters for PLSDA model for clade A split into two groups.	80
Table 4.5: Parameters for PLSDA model for clade A split into three groups.	80
Table 4.6: Parameters for PLSDA model for clade A split into four groups.	80
Table 4.7: Parameters for PLSDA model for clade F split into two groups.	82
Table 4.8: Parameters for PLSDA model for clade F split into three groups.	82
Table 5.1: Parameters for PLSDA model for clade A split into three groups.	110 xviii

Table 5.2: Parameters for PLSDA model for clade F split into three groups.	112
Table 5.3: Parameters for PLSDA model for clade F split into two groups.	113
Table A2.1 : rmANOVA groups for clade A maximum quantum yield of PSII (ps	<0.05).
Table A2.2 : rmANOVA groups for clade F maximum quantum yield of PSII (p<	189 <0.05). 189
Table A2.3 : rmANOVA groups for clade A protein content (p<0.05).	189
Table A2.4 : rmANOVA groups for clade F protein content (p<0.05).	190
Table A2.5 : rmANOVA groups for clade A carbohydrate content (p<0.05).	190
Table A2.6 : rmANOVA groups for clade F carbohydrate content (p<0.05).	190
Table A2.7 : rmANOVA groups for clade A lipid content (p<0.05).	191
Table A2.8 : rmANOVA groups for clade F lipid content (p<0.05).	191
Table A2.9 : rmANOVA groups for clade A phosphorylated compounds content (p $<$ 0.05).	191
Table A2.10 : rmANOVA groups for clade F phosphorylated compounds content (p<0.05).	t 192
Table A2.11: rmANOVA groups for clade A unsaturated: saturated lipid content	ratio

(p<0.05).

192

Table A2.12 : rmANOVA groups for clade F unsaturated: saturated lipid content (p<0.05).	nt ratio 192
Table A2.13 : rmANOVA groups for clade A lipid branching (p<0.05).	193
Table A2.14 : rmANOVA groups for clade F lipid branching (p<0.05).	193
Table A2.15 : rmANOVA groups for clade A lipid disorder (p<0.05).	193
Table A2.16 : rmANOVA groups for clade F lipid disorder (p<0.05).	194
Table A4.1 : rmANOVA groups for clade A cells subjected to a gradual increas temperature.	se in 199
Table A4.2 : rmANOVA groups for clade F cells subjected to a gradual increas temperature.	e in 199

Abbreviations

ANOVA Analysis of variance

ATP Adenosine triphosphate

ATR Attenuated total reflectance

BSA Bovine serum albumin

CD Circular dichroism

Chl *a* Chlorophyll a

DNA Deoxyribonucleic acid

EMSC Extended multiplicative scatter correction

FPA Focal plane array

FTIR Fourier transform infrared

GBR Great Barrier Reef

GC-MS Gas chromatography – mass spectrometry

HCA Hierarchical clustering analysis

Hsp Heat shock protein

IR Infrared

IRENI Infrared environmental imaging

LHC Light harvesting complex

MS Mass spectrometry

NMR Nuclear magnetic resonance

OEC Oxygen evolving complex

PAM Pulse amplitude modulated

PCA Principal component analysis

PCP Peridinin-chlorophyll-protein

PLS Partial least squares

PLSDA Partial least squares discriminant analysis

PSI Photosystem I

PSII Photosystem II

rmANOVA Repeated-measures analysis of variance

RMSEP Root mean square error of prediction

SEM Standard error of the mean

sp. Species

SRC Synchrotron Radiation Center

SST Sea surface temperature

TEM Transmission electron microscopy

XRD X-Ray diffraction

Abstract

Over the last three decades, coral reefs around the world have declined by an estimated 51%. This has largely been caused by anthropogenic climate change resulting in increases in ocean acidification and sea surface temperatures. At their core, corals are a symbiotic relationship between a microscopic algae of the genus *Symbiodinium* known as "zooxanthellae", the cnidarian coral host and associated bacterial communities.

Under severe environmental stress, the coral will expel the algae. This results in the host losing its major source of organic carbon.

Extensive research into tolerance of the algae, have revealed a large genetic diversity within the genus *Symbiodinium* and it is thought that macromolecular content (carbohydrates, proteins, lipids and phosphorylated compounds) have an effect on biochemical processes responsible for energy acquisition and repair of photosynthetic membranes within the cells. Metabolomics, the study of macromolecular compounds within a biological system, has been applied in various forms, to describe individual compounds such as fatty acids or sterols, contained within different clades of *Symbiodinium*.

In this study, two clades of *Symbiodinium* sp. were chosen based on their differing tolerance to environmental stress, and analysed to investigate macromolecular changes in the face of fluctuations in light and temperature. Under normal growth conditions, clades of *Symbiodinium* sp. differed in protein and lipid structure. This is the first time this has been reported to date.

In order to further explore these differences in macromolecular content and structure, the cells were subjected to sub-lethal light and temperature treatments. Under these conditions, it was found that both clades increased their β -sheet protein secondary

structure. When exposed to elevated light, lipid was stored and carbohydrate consumed whereas the opposite was found under elevated temperature. This has further implications for nutrient exchange *in hospite*.

Clades of *Symbiodinium* sp. were then exposed elevated temperature to simulate bleaching conditions. Under these high temperatures, clade A was found to exhibit the largest decline in maximum quantum yield of PSII indicating photodamage. This decline in F_v/F_m was linked to changes in lipid and protein secondary structure indicating a change in thylakoid membrane structure occurred under extreme stress. It was also proposed that the change in protein secondary structure was related to protein subunits associated with the oxygen evolving complex, and subsequently photodamage and PSII repair mechanisms.

Synchrotron FTIR spectroscopic chemical imaging was also used to further analyse these changes in *Symbiodinium* sp. from a single-cell perspective. Macromolecular compound groups (protein, lipid, carbohydrate and phosphorylated compounds) were shown to be distributed differently across the cells. Further to this, there appeared to be a difference in the regions in which α -helix and β -sheet protein structures clustered across the individual cells.