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Abstract 

 

The intention of employing hospital beds is to bring comfort to the 

hospitalised people and support the clinical staff in patient-care activities. Over many 

years, hospital beds have been upgraded from simple beds created by crude stretchers 

to smart beds equipped with various advanced functionalities such as motorised 

wheels and an intelligent steering system. With these features, patient transportation 

becomes much easier and safer than before. In addition, the number of manual 

handling tasks and injuries of nurses in relation to the transfer of patients are 

significantly reduced.  

However, a drawback of the current smart hospital beds is that their steering 

systems are controlled by human users. In recent years, the increasing number of 

people being hospitalised (especially obese patients) has led to work overload 

problems for nurses. Stress, exhaustion and distraction of staff are some of the effects 

of the nursing work overload problem. These are also major factors causing 

unpredictable risks for both patient and medical staff during transportation within 

hospitals.  

An integration of an operator-following function not only allows the smart 

hospital bed to deal with the problem of human control but also creates an innovative 

solution in terms of patient transport. To achieve this, a 3-stage operator-following 

control strategy is required for the bed system. In the first stage, the operator is 

identified by the utilisation of a target detection algorithm. In the second stage, based 

on the information obtained relating to the operator, operator-following controllers 

generate desired velocities for the smart hospital bed. In the final stage, a low-level 

controller drives the bed system to track the desired velocities.   

In relation to operator detection, two approaches, consisting of the Gaussian 

Distribution Method (GDM) and the Artificial Neural Network (ANN), are 

investigated and developed for the smart hospital bed. Technically, the GDM 

classifier is based on a threshold condition of a Mahalabonis distance between a 

testing point and the training data set. On the other hand, the ANN classifier is based 
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on a construction of a neural network model through a training procedure. The 

experimental results show that the operator detection performance of the Neural 

Network - Levenberg Marquardt (NN-LM) method is better than that of the GDM 

method (92.41% sensitivity and 89.8% specificity vs 91% sensitivity and 88.5% 

specificity). 

In terms of the low-level control, two approaches including an Optimal 

Multivariable Proportional Integral Derivative (OMPID) control method and an 

Optimal Multivariable Neural Network (OMNN) control approach are introduced 

and designed for the smart hospital bed. In theory, the OMPID control algorithm is a 

combination of a Triangular Diagonal Dominance (TDD) decoupling technique and 

an Optimal Proportional Integral Derivative (OPID) control design. Meanwhile, the 

OMNN control strategy combines a two-phase diagonal decoupling technique and an 

Optimal Neural Network (ONN) control design. Real-time implementation indicates 

that the OMNN controller drives the smart hospital bed to track the desired velocities 

with higher accuracy, smaller overshoot, shorter rise time and settling time than the 

OMPID controller.  

From the results obtained from the operator detection algorithms and the low-

level control algorithms, an advanced operator-following control strategy is 

developed for the smart hospital bed. This is a combination of the neural network 

based operator detection method, the Proportional Integral Derivative (PID) based 

operator-following strategy and the intelligent multivariable low-level control 

approach. The Levenberg-Marquardt (LM) learning algorithm is chosen to train the 

neural network classifier. Two PID controllers are utilised to minimise the distance 

and angle error between the operator and the bed system. The Optimal Multivariable 

Neural Network control strategy takes the responsibility of stabilising the overall 

system under the effect of uncertainties. The experimental results serve to show that 

the operator-following performance of the smart hospital bed using the advanced 

operator-following control strategy is more stable and efficient than that of the bed 

system without the proposed approach. 
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CHAPTER 1  . INTRODUCTION 

1.1   PROBLEM STATEMENT 

Hospital beds are medical devices that are principally developed for 

hospitalised people. Compared to regular beds, hospital beds have many advantages 

such as the capabilities of changing the patient’s posture, adjusting the bed height to 

assist the patient to get in or out of bed, and reducing the risk of falling out of bed 

through a side rail system. Over the years, hospital beds have been upgraded with 

various functionalities to provide comfort for patients and convenience for hospital 

employees. Despite great improvements to the different functionalities of hospital 

beds, they still pose several problems, especially in relation to patient transport.   

One of these problems is that a patient has to be switched between many 

different beds of various sizes on their journey from an ambulance to a recovery 

room. This is inconvenient and time consuming for nurses particularly when they 

encounter special patients such as obese patients and critical neurosurgical patients. 

For obese patients, the caregivers always need to exert more energy and cooperate 

with at least one other staff member to complete the patient transferral task. For 

critical neurosurgical patients, the hospital employees must be extremely careful to 

ensure patient safety.  

   Another problem is that the clinical staff have to perform many manual 

handling operations to complete the patient transport. Many studies show that patient 

handling tasks are recognised as one of the major causes of musculoskeletal injuries 

among the nursing workforce (Byrns et al. 2004; Nelson & Baptiste 2004; Pompeii, 

Lipscomb & Dement 2008; Retsas & Pinikahana 2000). According to a study of 

Pompeii et al, one-third of all musculoskeletal injuries resulted from patient handling 

activities (2009).  

In order to deal with these drawbacks, a smart hospital bed is considered to be 

a promising solution. Unlike the conventional hospital bed, motorised wheels and an 

intelligent steering system are integrated into this kind of bed. With these features, 
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the smart hospital bed is an efficient and safe way for the hospital employees to 

transport patients. In addition, it not only minimises bed switching but also reduces 

manual handling tasks and nursing injuries.  

In the literature, various smart hospital beds have been proposed; however, all 

the steering systems of the current smart beds are controlled by human users. A 

recent article indicates that human mistakes are major contributing factors in terms of 

the potential and unexpected risks of patient transport within hospitals (Chao et al. 

2015). Patient transportation will not be guaranteed if hospital staff experience work 

overloads.  

Owning an operator-following ability supports the smart hospital bed to deal 

with the problem of human control. By tracking hospital staff, the smart hospital bed 

has the capability to travel to a destination without the steering of the user. Due to 

this, unexpected risks in patient transport can be substantially decreased. Moreover, 

this function enables the smart bed to collaborate with an autonomous navigation 

robot to perform the patient transport. The robot functions to guide the bed to the 

destination. It can be seen that this collaboration not only assists the caregivers to 

fully concentrate on patient-care activities but also creates an innovative solution 

with respect to patient transport. To the best of our ability, we have not found other 

articles which focus on this innovation.    

To enable the operator-following function, a 3-stage control strategy is 

required for the smart hospital bed. In the first stage, an operator detection algorithm 

is implemented to allocate the operator. Then, in the second stage, the obtained 

information of the target is adopted as the control input for an operator-following 

controller in the second stage. Depending on each situation, this controller is 

appropriately designed to meet the requirements of the following behaviour such as 

tracking with a fixed distance, moving side-by-side or simultaneously following the 

operator and avoiding obstacles. In the last stage, there is a low-level controller 

playing the role of stabilising the overall system.    

The operator-following performance of the smart hospital bed heavily 

depends on the operator detection method and the low-level controller. The operator 
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detection enables the smart bed to classify the operator in a complex space consisting 

of the target and non-target objects. The more accurate the detection method is, the 

more efficient the tracking performance is. The low-level controller guarantees the 

stability of the overall system under uncertainties. The lack of this controller leads to 

the instability and inefficiency of the bed system since various uncertain factors 

impact the bed system such as internal system uncertainties, the surface friction or 

the weight of the patient.  

In terms of the operator detection, a vision system is a popular approach for 

developing operator detection algorithms such as in the works of Hyukseong et al 

(2005), Zhichao et al (2007), Perng et al (2012), Motokucho et al (2014a), Li et al 

(2015). Although this approach is successful in detecting the operator, the vision 

system usually suffers from huge computational complexity and its performance can 

be easily affected by the settings of the camera and uncertainties (Chen Tun et al. 

2011). On the other hand, many studies show that the laser scanner can meet the 

successful performance of following an operator due to its advantage of high 

accuracy and reliability (Chen Tun et al. 2011; Kmiotek & Ruichek 2008; Lee et al. 

2006; Mozos, Kurazume & Hasegawa 2010).  

With respect to the low-level control design, technically, there are three major 

problems that should be considered. The first problem is the dynamic modelling of 

the smart hospital bed. In the literature, one of two popular ways for constructing the 

dynamic model is derived from the utilisation of the Euler-Lagrange formulation. In 

fact, this approach is appropriate for simulation purposes since it is difficult to 

precisely calculate the parameters of the Euler-Lagrange dynamic equation. The 

alternative approach is the employment of techniques for approximating and 

identifying the dynamic model. Nevertheless, this approach frequently utilises 

complicated computational algorithms therefore it is limited in terms of real-time 

application.   

A coupling effect is another problem which should be considered when 

treating the dynamics of the smart hospital bed as a multivariable system. 

Technically, the coupling effect is the crossing interaction between the system’s 

inputs and outputs. It is one of the factors leading to instability of the overall system. 
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Diagonal decoupling and triangular decoupling techniques are effective solutions for 

coping with the coupling effect problem. Technically, both decoupling techniques 

transform a multivariable system into independent scalar systems. However, the 

resulting system compensated by the diagonal decoupler has a diagonal structure 

whereas that compensated by the triangular decoupler has a triangular structure. 

Moreover, the decoupling approach completely eliminates the coupling effect 

problem while the triangular approach reduces it in such a way that off-diagonal 

elements of the compensated system do not influence the stability of the overall 

system. Recently, the application of these techniques on the smart hospital bed has 

been lacking.   

The last problem is the choice of an appropriate control method for dealing 

with system uncertainties. In the literature, several advanced control methods have 

been utilised for controlling wheeled mobile systems including the Lyapunov-based 

control methods, adaptive control methods and the sliding mode control method. To 

achieve robust performance, the Lyapunov-based control and adaptive control 

methods require heavy and complex computation. On the other hand, the sliding 

mode control suffers two main disadvantages consisting of the chattering 

phenomenon (Slotine & Sastry 1983) and “the difficulty involved in the calculation 

of what is known as the equivalent control” (Ertugrul & Kaynak 2000). Moreover, 

few experimental results have been reported to confirm the effectiveness of these 

control approaches on the wheeled mobile systems such as electrical power 

wheelchairs and autonomous mobile robots.  

 Recently, neural networks have offered various efficient solutions for coping 

with control problems with uncertainties since they have the advantages of learning 

by experience and mapping nonlinear functions. In most neural network control 

schemes, the intelligent controller is directly connected to the system. However, the 

smart hospital bed is an unknown system therefore it faces the problem of an 

unknown plant Jacobian. In theory, the definition of the plant Jacobian is the partial 

derivative of a system’s outputs in relation to its inputs. The calculation of the plant 

Jacobian is required when utilising back propagation to train the neural network 
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controller. In the literature, findings related to the solution of the plant Jacobian 

problem on the smart hospital bed are absent.         

1.2 AIMS OF THESIS  

In accordance with the problem statement above, this doctoral study focuses 

on developing advanced assistive control strategies for supporting the smart hospital 

bed during the transportation of a patient. Hence, three particular aims are 

investigated and given as follows.  

The first purpose is about the development of an operator detection algorithm 

with a high accuracy. A feature extraction is firstly employed to remove redundant 

information from environmental data and determine features of target and non-target 

objects in the remaining data. Subsequently, the operator is identified by a 

classification method. In this study, two classification approaches consisting of the 

GDM and the ANN classification methods are investigated and implemented.  

The second purpose is to construct a hospital bed dynamic model and design 

a multivariable control strategy for dealing with the coupling effect problem and 

tracking the desired velocities. Regarding the bed as a linear multivariable system 

with uncertainties, its approximated dynamic model is obtained via a parametric 

identification process. A TDD decoupler is calculated to reduce crossing effects 

between the system’s input and output variables and to simplify a multivariable 

system into two independent scalar systems. Following this, an Optimal PID control 

method is applied for each independent scalar system.  

The last purpose is to develop intelligent multivariable control strategies for 

supporting the bed performance during its operation. One of proposed control 

approaches is an advanced operator-following control strategy including 3 design 

stages. The aim of the first design stage is to obtain information related to the 

operator whereas that of the second design stage is to control the operator-following 

behaviour. The last stage is derived from the development of an optimal neural 

network low-level controller which is also the alternative intelligent control strategy.   
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For the advanced low-level controller, this is a combination of a two-phase diagonal 

decoupling technique and an optimal neural network control method.  

1.3 CONTRIBUTIONS 

In terms of smart hospital bed development, this thesis offers the following key 

contributions:   

(i) The proposal and implementation of a neural network based operator 

detection algorithm for the smart hospital bed. Experimental results 

confirm that this method is applied successfully on the hospital bed and 

its accuracy is high.  

(ii) The investigation and reconstruction of a hospital bed dynamic model 

based on a parametric identification process. The obtained dynamic 

model plays a crucial role for designing advanced control strategies for 

the bed system.  

(iii) A multivariable control strategy is proposed and developed for smart 

hospital beds. This approach is a combination of a TDD decoupling 

technique and an OPID control method. Experimental results show that 

the proposed strategy has been successfully implemented in the smart 

hospital bed system. The coupling effect is effectively reduced to an 

acceptable level.   

(iv) An optimal multivariable neural network controller is designed for the 

smart hospital bed under the effect of uncertainties. The design combines 

a two-phase diagonal decoupler and optimal neural network controllers. 

Real-time experiments demonstrate that the advanced controller not only 

significantly reduces the crossing interaction between the system’s inputs 

and outputs but also guarantees the robustness of the overall system.  

(v) An advanced operator-following control strategy is proposed and 

implemented to enhance the operator-following performance of the smart 

hospital bed. In this approach, a neural network based operator detection 

method is firstly adopted to detect the operator from the obtained 

environmental data. Accordingly, information related to the operator is 
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utilised as control inputs for two PID controllers which play a role of 

minimising tracking errors of the operator-following performance. Finally, 

the intelligent multivariable control algorithm is implemented to let the 

system track desirable velocities. Experimental results confirm that the 

overall system is stable in the presence of uncertainties.  

1.4 STRUCTURE OF THESIS 

This thesis contains six chapters, an appendix and references. Each chapter of 

the thesis is organised as follows:  

- Chapter 2 contains the literature review related to the topic. It commences 

with a background for conventional hospital beds. Then a current research 

review of smart hospital beds related to the patient transport problem is 

presented. Following this, the chapter introduces an advanced control 

framework for the smart hospital bed. At the end of the chapter, a discussion 

about the smart hospital beds and the advanced control framework serves to 

provide the motivation for this study.   

- Chapter 3 describes operator detection algorithms for the tracking purpose of 

a smart hospital bed. Section 3.2 describes the system structure of the smart 

hospital bed which is employed throughout this thesis. After this, two target 

detection algorithms consisting of the Gaussian Distribution Method and the 

Neural Network classification method are provided. This chapter also 

introduces an operator-following control strategy for the smart hospital bed. 

Experimental results and a discussion conclude the chapter.  

- Chapter 4 presents an Optimal Multivariable PID control strategy for smart 

hospital beds. A multivariable dynamic model of the bed system is firstly 

approximated via a parameter verification procedure. Then the multivariable 

control algorithm with two stages: stage 1 – a TDD decoupling technique and 

stage 2 – an Optimal PID control design – are described. Experimental results 

are displayed in the next section. The chapter concludes with a discussion 

about the proposed multivariable control strategy.  
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- Chapter 5 details intelligent multivariable control strategies for smart hospital 

beds. In section 5.2, an advanced operator-following control algorithm is 

presented. Subsequently, an advanced low-level control method combining a 

two-phase diagonal decoupling technique and an optimal neural network 

control design is introduced in the next part of the chapter. The end of the 

chapter focuses on experimental results and discusses the proposed 

approaches.  

- Chapter 6 offers the general conclusion for this doctoral study. In addition, 

the final chapter introduces future research approaches for the field of 

operator detection and some potential control methods based on novel 

decoupling techniques. 

1.5 PUBLICATIONS RELATED TO THESIS 

The following conference papers have been presented during the doctoral 

research:  

 Huy Hoang, N., Tuan Nghia, N., Clout, R., Gibson, A. & Nguyen, H.T. 2013, 

'Development of an assistive patient mobile system for hospital environments', 

Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual 

International Conference of the IEEE, pp. 2491-4. 

 Huy Hoang, N., Tuan Nghia, N., Clout, R. & Nguyen, H.T. 2014, 'An 

advanced control strategy of an electrical - Powered hospital bed', 

Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual 

International Conference of the IEEE, pp. 1190-3. 

 Huy Hoang, N., Tuan Nghia, N., Clout, R. & Nguyen, H.T. 2015, 'A novel 

target following solution for the electric powered hospital bed', Engineering 

in Medicine and Biology Society (EMBC), 2015 37th Annual International 

Conference of the IEEE, pp. 2572-5. 
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CHAPTER 2  . LITERATURE REVIEW 

2.1 HOSPITAL BEDS 

2.1.1 Definition, structure and classification  

A hospital bed is essentially designed for people who are hospitalised during 

medical treatment. Over the years, the hospital bed has been transformed from a 

simple bed created by crude stretchers to a multifunctional bed equipped with 

various features e.g. wheels, side rails and adjustable body parts. In general, the 

current hospital bed has some common features consisting of a sturdy flexible frame, 

rails on the side and wheels. These are distinctive features of the hospital bed as 

opposed to the regular bed.  

  The flexible frame feature allows the hospital bed to fully adjust its body 

parts such as the head, middle and foot in a wide range of ways. In addition it also 

assists the hospital staff in patient-care procedures. Usually the bed frame is divided 

into several sections which can be moved in a number of different ways. Some 

auxiliary sections are probably added into the bed to provide precise adjustments for 

special bed positions including Trendelenburg, reversed Trendelenburg or chair 

positions. In the Trendelenburg position, the body of the patient is supine and the 

head is tilted down, allowing the patient’s feet and legs to remain above the level of 

the heart (Bridges & Jarquin-Valdivia 2005). Meanwhile, the reverse Trendelenburg 

position is the opposite position of the Trendelenburg position.   

Another typical component of the hospital bed is the side rail system which is 

designed to protect the patient from falling accidents. Depending on each particular 

procedure, the guardrails are flexible and can be moved up or down. For instance, the 

side rails are raised in the night time to serve as protection for the patient or are 

lowered to assist the clinical staff when transferring the patient between the bed and 

the other medical equipment. There are various types of side rails to serve different 

purposes. Some are simply to prevent the patient from rolling out whereas others 
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have equipment that can aid the patient without physically confining the patient to 

the bed (Wikipedia 2010). 

Another feature is the wheel system. Being equipped with a set of wheels 

enables the bed to easily travel within the hospital environment and makes the patient 

transportation between two wards simpler. In order to ensure patient safety, the 

medical staff can use the brake system to stop the bed while transporting the patient 

or to lock the wheel when performing the patient transfer. Sometimes the auxiliary 

driving wheel is placed under the bed to meet the requirement of high performance. 

This wheel allows the bed to easily turn around its own axis and steer in narrow 

spaces.  

Beside the most essential components, the hospital bed has some other 

equipment including an over bed table, mattress and various kinds of linen or pads 

which are used on the bed. The over bed table is utilised for mealtimes and as work 

surfaces for both hospitalised people and the hospital staff. Technically, it is located 

in the middle side of the bed, pulled over the bed and adjusted to various heights 

according to patient demand. The mattress is designed to withstand frequent soiling 

without trapping in moisture that can lead to bacterial growth (Etolen 2003). 

 

Figure 2.1:  Mechanical hospital bed (Audrey 2016)  
 

Nowadays, there are three common types of hospital bed including the 

mechanical bed, semi-electric bed and full-electric bed. If these beds are compared, 

the flexible frame and the height of the mechanical bed are adjusted by turning a 

manual crank at the foot of the bed while those of the electric bed are adjusted by a 

control system with various actuators. The semi-electric bed utilises two motors, one 
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to raise the head and the other to raise the foot, however there is still the requirement 

of a manual crank to change the height of the bed (Wikipedia 2010). Demonstrations 

of the hospital beds are shown in Figure 2.1 to 2.3. 

 

Figure 2.2:   Semi – electric hospital bed (Drivemedical 2015) 

 

                                Figure 2.3:   Electric hospital bed (Stryker 2013a) 

2.1.2 Advantages and disadvantages 

Featuring many outstanding qualities in comparison to regular beds, the 

hospital bed aims to maximise comfort for hospitalised people and provide 

convenience for the hospital staff during the medical treatment. Generally, the 

hospital bed offers some important advantages which are listed as follows:  

- The hospital bed assists the patient to change position. Spending long 

periods of time in bed can result in the patient facing the problem of 

pressure ulcers or bedsores. In order to deal with this problem, the bed 
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enables the hospitalised patients to change the bed position. This 

adjustment allows the patients to reduce the pressure between the bed 

surface and particular parts of their body. Moreover, it improves the 

patients’ blood circulation during periods of time in bed.    

- With the side rail system, the hospital bed protects the patient from falling 

accidents and makes them feel secure while lying on the bed. For some 

special patients such as patients with dementia or other cognitive 

impairments, guardrails are important to reduce the potentiality of injuries 

due to falls. In addition, the bed rail system is useful for some patients 

who seek to re-position themselves.  

-  Easy adjustment of the bed height and raising the patient higher or lower 

simplifies the problem of patients getting in or out of bed. Through such 

means, patients can easily sit up and get out of bed. For some special 

patients with hip, knee and back problems, the hospital bed can be 

transformed into a chair position which can assist the patients to 

comfortably get into a standing posture.  

- The medical bed supports the hospital staff in various procedures when 

they face the problem of work overload and patient handling tasks which 

can lead to musculoskeletal injuries. In the case of transporting patients 

between two wards, the auxiliary driving wheel makes it easy for the 

hospital staff to steer the bed. In terms of patient care, the hospital bed 

can lift up the patient to a position which is suitable for the caregivers to 

perform their work without straining their bodies. 

Despite having many advantages, there are still some drawbacks of the 

hospital bed. In particular, this study is concerned with the drawbacks of the bed in 

relation to patient transportation. Generally, a patient is moved through many 

different beds of various sizes and functionalities on their journey from the 

ambulance to the recovery ward, and hospital employees have to perform a number 

of manual handling operations to complete the transport. This is unsafe and time 

consuming, especially in relation to obese patients and critical surgery patients. In 
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addition, patient handling activities such as lifting heavy patients and pushing the 

hospital bed have been identified as major causes of nursing injuries. 

For the manual and semi-electric hospital beds, the proposed problem of 

special patient transport is a big issue since the caregiver must not only exert a high 

level of care but also expend more energy to complete the task. For the electric 

hospital beds, despite many sections of the hospital bed being motorised, its wheel 

system is not motorised for transportation. The only improvement of its steering 

system is the integration of the auxiliary fifth wheel which enables the staff to easily 

steer the bed to the destination. However, in the case of serving special patients, the 

caregiver still has to cooperate with at least one other staff member and expend more 

energy to move the bed.       

This section presents several fundamentals about the current hospital bed 

including a definition, typical features, advantages and classification. It can be seen 

that the hospital bed is indispensable for patients and nurses during medical 

treatment. Concerning the patient transport problem, this section analyses the 

disadvantages of the current hospital bed when transporting the patient within the 

hospital environment. The current hospital bed should accordingly be upgraded to 

overcome its drawbacks. The smart hospital bed, a next generation in terms of the 

hospital bed, is a promising solution for the problems of the current hospital bed.      

2.2 SMART HOSPITAL BEDS 

2.2.1 Definition and current research  

A smart hospital bed is the next generation in terms of the conventional 

hospital bed. It is equipped with advanced technologies such as a sensory system, 

vision system, central processing unit, wireless connection and motorised wheels. 

This section focuses on the current research into the smart hospital bed which is 

related to the improvement of patient transport.  



 
 

14 

 

 

Figure 2.4:  Zoom Motorised Drive System (Stryker 2013b) 

To solve the problem of transporting patients, the smart hospital bed is 

equipped with an intelligent driving system. Various driving systems have been 

proposed in the literature. The Zoom Motorised Drive System of Stryker is one of 

these systems. This system is designed to virtually eliminate the strenuous pushing 

and pulling that occurs during the transportation of heavy patients (Stryker 2013c). 

Compared with the normal auxiliary driving wheel, the Stryker’s Zoom system 

reduces physical intensity by 42% (Stryker 2013d) and the mean L4/L5 spinal disc 

compression force by 42% on incline transition (Stryker 2013e). Demonstration of 

the Zoom Motorised Drive System is shown in Figure 2.4.  

 

Figure 2.5:  IntelliDrive Powered Transport System (Hill-Rom 2014) 

Another driving system is known as IntelliDrive Powered Transport, which is 

proposed by Hill-Rom. Similar to the Stryker’s Zoom system, the Hill-Rom’s 

IntelliDrive system not only enables the  safe and easy transport of patients 
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throughout the hospital; it also reduces the number of hospital staff needed for 

patient transport (Hill-Rom 2015). Besides this, it has some particular advantages, 

including the capabilities of precise turning, manoeuvring, stopping and navigating 

ramps with automatic deceleration on the decline and acceleration on the incline. 

Figure 2.5 shows a demonstration of the IntelliDrive Powered Transport system. 

 

Figure 2.6:   I-Drive PowerTM System (Linet 2013b) 

Aiming to maximise safety during patient transport, Linet developed a new 

technology in terms of motorised in-bed patient transport called I-Drive PowerTM 

(Linet 2013a). Unlike the two drive systems above, the I-Drive PowerTM can provide 

excellent performance in relation to transporting patients even under extreme load 

conditions when driving or turning. In addition, the intelligent accelerator optimises 

the drive speed in various drive situations such as during long travel periods or in 

narrow spaces.  In order to avoid the risk of self-activation, a Safety SenseTM system 

is designed to work as a power on/off button and driving handle. A demonstration of 

the I-Drive PowerTM system is illustrated in Figure 2.6.  

Another solution is presented by Panasonic. This manufacturer developed a 

2-in-1 system for patient transport, called a bed wheelchair. In this system, a bed part 

is detached from the main bed, then it is actively transformed into a wheelchair. 

While in wheelchair mode, the bed has the ability of detecting and avoiding obstacles. 

Moreover, the wheelchair is equipped with a manual electronic control system; hence 

the patient is able to easily transport themselves between two wards without the need 

for assistance from hospital staff. This design not only supports the patient 
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(especially elderly or disabled patients), it gives them the freedom to get in and out 

of bed on their own and it decreases the workload of the caregiver (Hornyak 2009). 

However, it is not suitable for obese patients over 200 kilos. Figure 2.7 shows the 

Panasonic bed wheelchair system.  

 

Figure 2.7:   The bed wheelchair system (Panasonic 2009) 

2.2.2 Advantages and disadvantages 

Being equipped with motorised wheels and an intelligent driving system, the 

smart hospital bed efficiently supports nurses in transporting a patient. The clinical 

staff can easily steer the bed without the need for expanding large amounts of energy 

or collaborating with other staff. Therefore, the bed switch process is minimised. In 

addition, the manual handling tasks and nursing injuries during patient transportation 

are reduced significantly.   

However, it can be seen that the current intelligent steering systems of the 

smart hospital beds are controlled by human users. In fact, human control is a major 

contributing factor to the potential and unexpected risks of patient transport within 

hospitals (Chao et al. 2015). Accordingly, the performance of patient transport will 

not be guaranteed if the hospital staff encounter work overload conditions.    

A smart hospital bed with an operator-following function is an innovative 

solution to solve the human control problem in patient transportation. With this 

function, the smart bed transports a patient to a destination through tracking and 

following a nurse or an autonomous robot. These operators take the responsibility of 

navigating for the bed. Hence, unpredictable accidents caused by the hospital 

employee can be substantially reduced. Additionally, this function enables the staff 
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to completely focus on patient-care activities when the bed follows an autonomous 

robot. 

2.3 ADVANCED CONTROL FRAMEWORK 

In fact, there are various dynamic factors impacting on the bed’s performance 

such as internal system uncertainties, environmental conditions (hard platform, glass, 

high friction way), external expected pulling and pushing forces or even the obvious 

case of a patient lying on the bed (especially with heavy patients, over 200kilos). 

These factors lead to the instability and inefficiency of the overall system. Therefore 

it is necessary to develop an advanced control framework for the smart hospital bed.   

In terms of operator-following control design, the advanced control 

framework for the smart hospital bed has three main stages containing operator 

detection, operator-following strategy and advanced low-level control. In the first 

stage, an operator detection algorithm is implemented to allocate the operator. 

Accordingly, obtained information of the target is adopted as control inputs for an 

operator-following controller in the second stage. Depending on each situation, this 

controller is appropriately designed to meet the requirements of the following 

behaviour. In the last stage, there is an advanced low-level controller playing the role 

of stabilising the overall system.    

In the literature, very little research has been done on the advanced control 

framework for the smart hospital bed. This review therefore focuses on research 

related to wheeled mobile robots and electric powered wheelchairs since their 

mechanical systems are similar to that of the smart bed which is comprised of two 

driving wheels.  

2.3.1 Operator detection approaches  

2.3.1.1 Vision system 

A vision system is one of the popular approaches to develop operator 

detection algorithms. In a work of Hyukseong et al (2005), the researchers proposed 
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an efficient object detection method by using two independently moving cameras. 

Technically, the colour histogram analysis was employed to identify the position of 

the operator in the input image. Then the distance between the operator and the robot 

was derived from two moving cameras-based distance estimation procedure. Similar 

to Hyukseong et al, Perng et al (2012) utilised colour features for operator 

recognition and a combination of two vision systems for locating the operator 

position.  Instead of using the colour histogram analysis, Perng et al ’s approach was 

based on a HSV colour space map. However, these solutions require the operator’s 

colour features to be different from the colour of the environment.  

Still using two vision systems, Zhichao et al (2007) presented a novel 

approach to identify the operator without the need for the requirement related to the 

colour conditions of operator and environment. In this study, the researchers detected 

the operator by using a combination of the Lucas-Kanade method, Random Sample 

Consensus (RANSAC) algorithm and Viola-Jones approach to detect an upper part 

of the operator.  

In another study, researchers from Chitose Institute of Science and 

Technology proposed an effective object detection algorithm based on features of the 

lower part of the operator (Motokucho & Oda 2014b). The operator’s features were 

determined by employing the Optical Flow Vectors (OFV) and Disparity Vectors 

(DV) of stereo cameras. The OFV and DV were calculated by a block matching 

algorithm from right/left images and two consecutive ones respectively. 

2.3.1.2 Laser range finder  

An alternative approach employed for developing operator detection 

algorithms is the laser range finder (LRF). In the work of Kmiotek et al (2008), the 

researchers presented a target detection algorithm called the bounding box method. 

In the first stage, the laser data was separated into sets of segments by a segmentation 

procedure. The obtained segments represented the target and non-target objects. For 

each segment, the researchers constructed a bounding box and extracted its diagonal 

feature. For any given segment if the value of the diagonal feature of the bounding 
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box was smaller than a threshold, the segment would be regarded as the target; 

otherwise it would be labelled as a non-target object.  

Also utilising the laser scanner to detect the target, Chen Tun et al (2011) 

proposed a target detection algorithm which is called the modified Inscribe Angle 

Variance. This is a modification of the IAV method introduced by Xavier et al 

(2005). In their study, the researchers used the geometrical properties of the target. In 

the first stage, a curve shape was constructed to cover the laser raw data representing 

a testing object. Then the mean and standard deviation of the angle feature of the 

obtained curve was calculated. Finally, the testing object was the target if the mean 

and standard deviation value satisfied the threshold conditions. The effectiveness of 

the modified IAV algorithm was evaluated by experiments in relation to human 

detection of mobile robots in an indoor environment. 

  Unlike Kmiotek et al and Chen Tun et al, Lee et al (2006) proposed a target 

detection method via the motion feature of the target (human). Firstly, a data 

clustering procedure was implemented to obtain the clusters which are related to 

human legs. Based on the geometric characteristic of human legs, the researchers 

created new human objects from the remaining clusters. Then, an extended Kalman 

filter was utilised to extract the motion features of the human objects. The walking 

models corresponding to the human objects were derived from their motion features. 

It can be seen that Lee et al ‘s method is effective in tracking multiple moving targets. 

Another target detection method was proposed by Mozos et al (2010). In their 

study, the researchers utilised multiple layers of laser range finders to acquire data 

from various parts of the target such as the head, upper body or a leg. In order to 

effectively detect the body parts of the target, the Adaboost algorithm was utilised to 

train the classifiers. Afterwards, the position of the target was derived from a 

probabilistic combination of the outputs of the proposed classifiers. Experimental 

results confirmed the effectiveness of the proposed method in detecting people 

within indoor environments.  
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2.3.2 Operator-following strategy   

Operator-following strategies are divided into various types such as moving 

toward the operator, following the operator at a fixed distance, moving side-by-side 

with the operator or simultaneously tracking the operator in a crowded environment 

and avoiding obstacles. Each following strategy is implemented by a corresponding 

control algorithm generating appropriate linear and angular velocities for the bed 

system.   

The Proportional Integral Derivative is the most popular method which is 

utilised to control the operator-following behaviours since it is simple and effective. 

Normally, two controllers are required to control the linear and angular velocity 

variables of the mobile system. In the literature, various combining strategies have 

been proposed to implement the following behaviours such as P – P (Chung et al. 

2012; Luo et al. 2009; Yoo & Woojin 2011; Yoonchang & Woojin 2011), PD – PD 

(Cai & Matsumaru 2013; Li, Song, et al. 2015; Sakai, Hiroi & Ito 2014), P – PID 

(Eui-Jung et al. 2014) and PID – PID (Yang et al. 2013) controllers.   

Fuzzy logic is another approach which is employed to design the operator-

following control strategies. In a work by Shaker et al (2008),  the researchers aimed 

to develop a conventional fuzzy controller for providing decisions to achieve the 

smoothness and safety objectives of the operator-following problem. Experimental 

results showed that the proposed method met the goal of moving smoothly towards 

the operator without exhibiting any noticeable oscillations. However, since the fuzzy 

system is designed with only one output of acceleration/deceleration, the vehicle 

system is restricted to moving forward and backward.  

In an effort to enable the vehicle system to move with various speeds and 

directions, a fuzzy model introduced by a research group from National Chiao Tung 

University was designed with two outputs containing linear velocity and angular 

velocity variables (Bing-Fei & Cheng-Lung 2013). In their study, the researchers 

aimed to design the fuzzy controller so that their vehicle system always followed the 

operator at a desirable distance and angle. To achieve this goal, distance error and 

angle error variables were utilised as fuzzy model inputs. Based on a fuzzy rule table, 
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the proposed controller generated the control signs of linear velocity and angular 

velocity for the vehicle system.     

2.3.3 Advanced low-level control  

A low-level control algorithm plays a role in guaranteeing the stability of the 

overall system under the influence of uncertain factors. In terms of the current 

operator-following design, a virtual spring dynamic model-based control algorithm is 

a popular approach for dealing with the dynamic problems of a wheeled mobile robot 

and electric powered wheelchair (Do & Lin 2015; Morioka, Joo-Ho & Hashimoto 

2002; Motokucho & Oda 2014a). Technically, this dynamic model is described by 

several system parameters such as the mass of the system, the moment of inertia of 

the vehicle system, viscous coefficients of translation and rotation. However, this 

control approach may be impractical for the smart hospital bed. Due to parametric 

variations caused by the bed mechanism and the operating environment, it is difficult 

to obtain the exact dynamic model. 

Expanding the research area related to advanced control strategies for 

dynamic problems, several methods including nonlinear control, sliding mode 

control and intelligent control have been proposed for wheeled mobile robots and 

electric powered wheelchairs.  

2.3.3.1 Nonlinear control  

Lyapunov-based control approach 

One of the popular nonlinear control methods is the Lyapunov-based control 

algorithm. In the research of Yulin et al (1998) the researchers utilised the Lyapunov 

theory to design a robust control algorithm for a differentially-steered wheeled 

mobile robot. A procedure was implemented to construct the full mathematical 

dynamic model consisting of the external loads and tyre model; then the simplified 

dynamic model was derived from several assumptions of wheel-ground contact. 

Based on model analysis with uncertainties, an exponentially stable tracking control 

algorithm was developed by applying Lyapunov theory. In spite of simulations 
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confirming the robustness of the proposed method against uncertainties, this method 

is not suitable for the smart bed system. Due to various factors impacting the bed, 

this simplified dynamic model is not adequate for the hospital bed model.  

Also utilising the Lyapunov design technique, Aguiar et al (2000) proposed a 

control algorithm for dealing with the dynamics problem of a wheeled mobile robot. 

A simple dynamic model is adopted for developing the nonlinear controller. In an 

effort to analyse the convergence of the proposed control approach, the researchers 

used the Lyapunov’s stability theory combined with the Lasalle’s invariance 

principle. Based on this analysis, the nonlinear adaptive control rule generating a 

global convergence of trajectories of the closed-loop system within the existence of 

parametric modelling uncertainty was obtained. Nevertheless, there is a lack of 

experimental results to verify the efficiency of this method in real-time 

implementation.   

With the purpose of solving the parametric uncertainty problem of 

nonholonomic wheeled mobile robots, a research group of the University of Tehran 

developed a dynamic tracking control method based on Lyapunov functions and 

model reference adaptive control (Gholipour & Yazdanpanah 2003). In the first step, 

Euler Lagrange formulation was utilised for describing the dynamic model of the 

nonholonomic mobile systems. In the next step, nonlinear control rules were 

designed to deal with the kinematic stabilisation. Finally, a model reference adaptive 

controller using the output variables of the nonlinear controller as its inputs was 

developed to stabilise the dynamics part with uncertain parameters. During the 

control design, Gholipour et al applied the Lyapunov theory for guaranteeing the 

stability of state variables and the overall system. However, in order to confirm the 

quality and efficiency of the proposed control approach, only simulations were 

conducted.  

A similar endeavour to apply the Lyapunov-based control method on a 

wheeled autonomous robot is articulated by Wang et al (2009). In their study, the 

Lagrange formulation was also employed to construct the dynamic model of the 

autonomous mobile system. In the design stage, two motion controllers were derived 

from the use of a Lyapunov’s direct method and a computed torque method. 
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Choosing appropriate output variables leads the mobile system with the obtained 

control laws to converge to a desired trajectory with asymptotic stability. The 

feasibility and effectiveness of the method have been demonstrated by experimental 

results.  

Considering a wheelchair with its displaced mass centre, the Lyapunov’s 

method is also utilised in an effort to design control for this kind of mobile system. 

To do this, Andaluz et al (2015) firstly proposed the kinematic and dynamic models 

of the electric-powered wheelchair whose centre of gravity is not placed at the 

wheel’s axis centre of the system. Then, two corresponding controllers were 

developed to deal with the kinematic and dynamic stabilisation of the robot. For each 

cascade subsystem, the appropriate Lyapunov function was employed to analyse the 

stability and robustness of the proposed control laws. Finally, real-time experiments 

were executed to show the proposed controller performance. 

Back-stepping control strategy    

Another advanced method which can be applied to the smart hospital bed is 

back-stepping.  This method is utilised in a study of Fukao et al (2000) to develop 

the adaptive tracking control strategy for a nonholonomic mobile robot with 

unknown parameters. The researchers proposed that an adaptive dynamic controller 

could be developed by the back-stepping strategy if there was the existence of an 

adaptive controller for the kinematic model with unknown parameters. In order to 

verify this idea, Fukao et al firstly indicated an adaptive tracking controller for the 

kinematic model based on the work of Kanayama et al (Kanayama et al. 1990). Then 

the theorem was applied to the dynamic model for developing the torque controller. 

The limitation of this design is that there are a lot of assumptions. In addition, the 

effectiveness of the control algorithm is verified by only simulation results.  

Like Fukao et al, Wenjie et al (2000) attempted to apply the back-stepping 

technique on wheeled mobile robots. The researchers suggested a three-stage control 

design to cope with the robot dynamics with unknown inertia parameters. In the first 

stage, a suitable tracking error was introduced to support the development of the 

control law. Subsequently, the researchers ignored the system dynamic part and 
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regarded the control signal as a virtual force. In the final stage, the kinematic based 

control law was derived from a well-known back-stepping strategy. The efficiency of 

the obtained controller was confirmed by simulation results.  

Unlike previous back-stepping controllers for wheeled mobile systems, Chwa 

(2010) proposed a novel back-stepping control technique based on feedback 

linearisation. With the purpose of developing a simpler and modular control structure, 

the author described the control structure in the form of a cascaded kinematic and 

dynamic linearisation. Following this, the kinematic part was used to design the 

pseudo commands corresponding to the forward linear velocity and the heading 

direction angle variables while the dynamic controller took responsibility for 

generating actual torque forces to guarantee the actual outputs of the system to track 

their reference inputs. Despite various simulations which were implemented to 

validate the proposed control scheme, computation of this method proved to be too 

heavy and complicated.   

The unknown mass and inertia parameter problem of the robot dynamic 

model can be also be handled by the back-stepping based nonlinear control strategy. 

In the work of Aneesh (2012), the author constructed a dynamic robot model 

consisting of the kinematic model and the torque model derived from Lagrange’s 

formulation. Afterward, the Kanayama transformation was adopted to convert error 

dynamics into mobile coordinates. As a result, the tracking problem changed to 

stabilisation. In the control design stage, Aneesh developed a nonlinear back-

stepping controller for kinematics and a model reference adaptive controller for the 

dynamics of the system. To achieve the kinematic stabilisation, both of the obtained 

controllers were shown to meet the Lyapunov stability criterion. Through numerical 

simulations, the robust performance of the proposed control approach was verified.  

The back-stepping method was also presented in the work of the research 

group from China University of Petroleum (Huichao, Shurong & Haiyang 2012). 

Unlike the control approaches mentioned above, the robot model in this study was 

divided into three parts consisting of a conventional kinematic model, an Euler-

Lagrange based dynamic model and a DC motor model. Based on the obtained 

mobile robot model, three tracking controllers corresponding to the three partial 



 
 

25 

 

models were developed via the back-stepping method and the Lyapunov function. To 

validate effectiveness of the proposed tracking controller, the researchers performed 

several simulations.     

Another study attempting to apply the back-stepping method for the wheeled 

mobile robot with kinematic and dynamic uncertainties was presented by Li et al 

(2014). First of all, the robot dynamic model was calculated via the Lagrange method 

with several assumptions. Due to the difference between parametric and non-

parametric uncertainties, two controllers were subsequently designed to enhance the 

operational efficiency of the system. In particular, an adaptive kinematic controller 

was utilised to evaluate the parametric uncertainties whereas the purpose of an 

adaptive robust back-stepping dynamic controller was to compensate for the non-

parametric uncertainties of the robot dynamic system. Finally, the researchers 

applied Lyapunov’s theory for analysing the stability of the robot via the uniformly 

ultimately bounded closed-loop control system.  

By combining back-stepping techniques with low-pass filters, Chang et al 

(2015) introduced a novel tracking control algorithm for mobile robots . This method 

not only dealt with the problem of the partial loss of actuator effectiveness for the 

robot systems but also overcame the problem of “explosions of complexities” caused 

by repeated differentiations of virtual control rules of the conventional back-stepping 

techniques. Through simulation results, the proposed control method was verified to 

effectively preserve the desired control objectives under uncertainties and actuator 

faults.    

From the control point of view, several arguments indicate that the nonlinear 

control strategies such the Lyapunov based control and back-stepping technique are 

impractical for the smart hospital bed. The first reason concerns the dynamic 

modelling procedure via Lagrange’s function. Since there are various uncertain 

factors impacting on the bed system, it is difficult and inefficient to obtain the 

dynamic hospital bed model from the Euler-Lagrange’s formulation. Another reason 

is that these methods are confined to a number of assumptions and their computation 

is too heavy and complicated. The final reason is that there is a lack of real-time 

experiments to verify the effectiveness of these control strategies. 
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2.3.3.2 Sliding mode control  

Owning advantages of fast response and robustness for dealing with system 

uncertainties and external disturbances, Sliding Mode Control (SMC) is known as an 

efficient method to design dynamic control strategies.   

An early work endeavouring to utilise SMC on a wheeled mobile system was 

introduced by Jung-Min and Jong-Hwan (1999). In this study, the researchers 

proposed a novel SMC law for the trajectory tracking problem based on the 

utilisation of an Euler-Lagrange’s dynamic equation. A computed torque method was 

used to feedback-linearise the system dynamics. Despite the simulation and 

experimental results confirming the robustness of the proposed control scheme and 

the efficiency of the accurate tracking ability, the researchers only coped with the 

problem of external disturbances. Parameter variations were not considered in this 

study.  

In an effort to deal with the bounded uncertainty problem in the robot 

dynamics, a quasi-SMC technique formed the basis for a discrete-time SMC law 

presented by Corradini and Orlando (2002), this assured the implementation of the 

controller. Utilising this design method, the robust asymptotic vanishing of tracking 

errors was theoretically verified. Performing real-time experiments on the 

LABMATE vehicle validated the effectiveness of the proposed control law.  

Forming a conservative upper bound for nonholonomic system dynamics, 

Zuozhi et al (2005) proposed a SMC algorithm to ensure that the system could meet 

any desirable trajectory in the presence of structured and unstructured uncertainties. 

Based on the Lagrange’s dynamic equation and Lyapunov's theory, the stability 

analysis illustrated that trajectories not only have the ability of reaching the sliding 

surface in finite time but are confined to sliding surfaces in the subsequent time. 

Despite the simulations successfully demonstrating the proposed algorithm, the 

chattering phenomena still happened near sliding surfaces.  

In order to improve the sliding mode technique for wheeled mobile robot 

control, a novel approach was presented by Wang et al (2010). With the purpose of 

solving the speed jump problem existing in the traditional sliding mode method, the 
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researchers utilised a back-stepping technique based on a neural dynamics model. 

Firstly, this type of dynamics model was  derived from the biological membrane 

model of a nervous system proposed by Hodgkin and Husley (1952). Then, an 

improved back-stepping based sliding mode controller was developed based on the 

obtained dynamics model. However, only the simulation results verified the 

effectiveness of the proposed approach.   

Another work attempting to utilise a back-stepping sliding mode control 

method on a wheeled mobile robot was introduced by a research group from MES 

College of Engineering, Kerala (Vishnu Prasad, Pottakulath & Ajmal 2014). In the 

study, the dynamic model was firstly derived from the Euler-Lagrange approach. 

Afterwards, the back-stepping sliding mode controller was developed to search for 

an acceptable control law so that the tracking error would asymptotically move to 

zero as the time approached infinity with an initial error. During the control design, 

the Lyapunov functions were appropriately chosen to guarantee the stability of the 

overall system. Various simulations were executed to illustrate the robustness and 

performance of the proposed control strategy.   

2.3.3.3 Intelligent control  

Neural networks have been widely utilised to develop dynamic control 

algorithms for the wheeled mobile system since they have many advantages 

consisting of experience based learning, the capability to generalise or the capability 

to map nonlinear functions. An early work attempting to utilise this intelligent 

control technique on a mobile robot system was presented by Fierro and Lewis 

(1998). In their study, the researchers employed a multilayer feed-forward neural 

network to design a neural control strategy. The unknown dynamics of the 

nonholonomic mobile robot was approximated by utilising a multilayer feed-forward 

neural network online. Then, a back-stepping based control law was derived from the 

use of the obtained dynamic model. In the control design, Lyapunov’s theory was 

adopted to prove the stability of the mobile system. Despite simulation results 

verifying the performance of the proposed control strategy the neural training 

algorithm and control scheme are complicated.   
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To make the control structure simpler and to enhance computational 

efficiency, Tiemin et al (2001) introduced a new controller based on a single layer 

neural network. Lagrange formulation was firstly utilised to introduce the robot 

dynamics. Then, the training algorithm was obtained from the Lyapunov’s theory 

therefore the analysis of the system stability was no longer necessary. Although the 

researchers pointed out that this control approach can be implemented in real-time, 

there was a lack of experimental results to validate the effectiveness of the proposed 

control structure.   

Boquete et al (1999) presented a novel neural control algorithm for a 

motorised wheelchair. In their study, the proposed control structure based on an 

inverse control strategy consists of a PID controller playing the role of a dynamic 

controller and a neural controller taking the responsibility of kinematic controller. A 

recurrent RBF network model was designed for the neural controller. To guarantee 

the convergence of the neural control law, the Lyapunov’ stability conditions were 

studied. During the network training, a gradient descent algorithm was applied to 

update weights. In order to deal with the problem of Jacobian calculation, the 

researchers approximated the wheelchair model with the use of a recursive equation. 

Therefore, the Jacabian matrix could be calculated from the obtained wheelchair 

model.       

Extending the previous approach, Boquete et al proposed two solutions for 

dealing with the problem of the Jacobian calculation. In the first approach, a Kalman 

filter was employed for identifying online the wheelchair dynamics (Boquete et al. 

2002). The wheelchair model was approximated through the study of step input 

signals and their corresponding output responses in the state space. By ignoring the 

noise system, the Jacobian calculation could be obtained from the model provided by 

the Kalman filter.  

In the alternative approach, Boquete et al designed an inverse control strategy 

with the use of two neural networks (Boquete et al. 2005). In their control structure, 

the first NN was serially connected to the wheelchair and acted as a neural controller 

whereas the second NN was connected in a parallel sense to the wheelchair and acted 

as a neural identifier. During the online mapping, the wheelchair model was 
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identified by the second NN. As a result, the problem of Jacobian calculation for the 

neural controller could be solved. Unlike the first approach, the assumption of the 

wheelchair dynamics was no longer necessary. Performing real-time experiments 

verified the effectiveness of both improved approaches.   

Another advanced control strategy based on neural network control was 

introduced by Nguyen et al (2007). Regarding the electric power wheelchair as a 

multivariable system with uncertainties, the researchers firstly constructed the 

approximate dynamics model via a parameter verification procedure and then 

proposed a novel neural multivariable control strategy with two stages. In stage 1, a 

decoupling technique with a triangular diagonal dominance property was utilised to 

simplify the multivariable control problem into a series of single variable control 

problems. Then in stage 2, a neural network controller was developed for each 

independent scalar control system. Simulations and experiments served to 

demonstrate the successful performance of the proposed approach.   

With the purpose of utilising neural networks for developing the dynamic 

control of nonholonomic mobile robots, Bugeja et al (2009) introduced two novel 

dual adaptive neural control schemes. In this study, the nonlinear robot dynamic 

functions were approximated by ANNs consisting of a GaRBF and a MLP network. 

In each neural network structure, the researchers randomly evaluated the unknown 

network parameters in real time and neglected preliminary offline neural network 

training. As opposed to other adaptive control strategies, the proposed control laws in 

this research did not depend on the heuristic certainty equivalence property but 

accounted for the uncertainty in the estimates. Various simulations were executed to 

illustrate the effectiveness of the two proposed control schemes.  

Utilising the reinforcement learning algorithm, Luy (2012) proposed a new 

method to design a tracking control scheme for a wheeled mobile robot. In his study, 

Luy firstly altered Lagrange’s formulation to derive a strict feedback tracking system 

in the state space. Then, the researcher utilised the obtained feedback tracking system 

to develop a neural network tracking control scheme with an actor critic structure. 

With the use of a reinforcement learning technique and Lyapunov’s theory, a new 

turning law was designed so that the proposed neural network was able to learn 
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online a tracking-HJB equation and assure the stability of the closed-loop system in 

real-time. Finally, the efficiency of the neural controller was validated by the results 

of the simulation for the mobile robot system.         

Li et al (2015) introduced a neural adaptive control approach for wheeled 

mobile robots. This is a hybrid control strategy which is a combination of a RBF 

neural network, PD control and a robust term. Due to a property of learning fast, the 

researchers used the RBF network to approximate uncertain mobile robot dynamics 

while the robust term was added to decrease the approximation error caused by 

external disturbances. By updating the weight of the RBF network, the control 

strategy not only assured the desired performance of the velocity tracking but also 

minimised the posture tracking error for the wheeled mobile robot. However, only 

simulation results confirmed the effectiveness of the Li’s method.  

Also using the advantage of the RBF neural network, Raeisi et al (2015) 

presented another tracking control algorithm for wheeled mobile robots within the 

presence of uncertainties. In their study, the RBF neural network was adopted for 

compensating for the nonlinearities of the system model. The design of an adaptive 

output feedback tracking controller with only position measurement was derived 

from a work by Arteaga et al (2004).  Unlike the previous control strategies, this 

control approach can be effectively employed for various wheeled mobile robot 

systems since its output equations can be appropriately chosen. Nevertheless, there is 

a lack of real-time implementations to demonstrate the effects of this control method.   

Due to its universal function approximation ability, the fuzzy logic system is 

also used for designing the advanced control algorithms of the wheeled mobile 

systems. In the work of Das et al (2006), the fuzzy logic method was utilised to 

estimate nonlinear wheelchair functions including unknown dynamics. Subsequently, 

an adaptive control law was derived from the estimated dynamic function and 

Lyapunov’s stability theory. During the control design, only the position information 

of the wheelchair was acquired to decrease the cost. Despite simulation and 

experimental results verifying the efficiency of the control approach, the expert 

knowledge required for forming fuzzy rules is an important requirement of the 

design.  
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2.4 DISCUSSION 

Considering the improvements of the smart hospital bed, the operator-

following function is a safe, efficient and innovative solution for dealing with the 

problem of transporting a patient. It not only minimises bed switching but also 

reduces manual handling tasks and nursing injuries. Without human control in its 

steering system, unexpected risks caused by humans in the patient transport can be 

substantially decreased. Moreover this solution enables hospital staff to completely 

focus on patient-care activities when the bed follows an autonomous navigation robot. 

Research related to the operator-following function of the smart hospital bed has 

been absent in the literature.  

To enable the operator-following ability, an operator detection algorithm 

must be developed for the smart bed system. Popular approaches consisting of the 

vision system and the laser range finder have been employed for designing operator 

detection algorithms. Technically, the vision system usually suffers from huge 

computational complexity and its performance can be easily affected by the settings 

of the camera and uncertainties (Chen Tun et al. 2011). Moreover, the vision based 

algorithms are fragile against the lighting condition (Hiroi, Matsunaka & Ito 2012). 

On the other hand, the laser range finer not only deals with the lighting problem of 

the vision system but also has many other advantages such as high accuracy of 

measurement, low computational cost, high resolution and reliability (Hiroi, 

Matsunaka & Ito 2012; Yoo & Woojin 2011). As a result, the laser scanner is utilised 

by many researchers to implement the following task.  

In the section 2.3.1, various LRF based operator detection algorithms were 

reported including the bounding box, IAV, Kalman filter and Adaboost methods. 

Despite these methods being successfully implemented on the mobile system for 

detecting moving objects, they still have several drawbacks. Chung et al (2012) show 

that the disadvantage of the bounding box and IAV algorithms is their low accuracy. 

The Kalman filter approach has the drawback of the computational cost (Hiroi, 

Matsunaka & Ito 2012). Meanwhile, the Adaboost method is sensitive to noisy data 

and outliers.  
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Operator-following strategy is also involved when developing the operator-

following function for the smart hospital bed. The operator-following strategy is 

divided into various types consisting of moving toward the operator, following the 

operator with a fixed distance, moving side-by-side with the operator or 

simultaneously tracking the operator in a crowded environment and avoiding 

obstacles. Each following strategy is implemented by a corresponding control 

algorithm which generates appropriate linear and angular velocities for the bed 

system. Generally, most operator-following behaviours can be successfully achieved 

by utilising the PID method since it is simple and effective.   

Due to variation of system uncertainties, an advanced low-level control 

algorithm is an indispensable part of the operator-following control algorithm for the 

smart hospital bed. Since no research related to low-level control has been done on 

the smart hospital bed, this chapter has reviewed various advanced dynamic control 

strategies with respect to wheeled mobile robot and wheelchair systems. The popular 

advanced low-level control strategies consist of nonlinear control methods, sliding 

mode control method and intelligent control strategies. In general, most of these 

approaches may not be suitable for the smart hospital bed. 

The first reason lies in the construction of the dynamic model. Most 

researchers utilise two common ways for calculating the system dynamics. One of 

these is the utilisation of the Euler-Lagrange formulation. Technically, the 

parameters of this dynamic formulation are difficult to obtain to an exact degree. Due 

to this, control solutions based on this dynamic equation are only suitable for 

simulation purposes. The alternative method is the employment of model 

approximation and identification techniques to reach the dynamics. Nevertheless, 

these techniques are only proper for particular control structures. Moreover, these 

techniques require complicated computational algorithms for their implementation, 

therefore confining them to real-time application.   

The second reason is that most advanced control approaches do not treat the 

wheeled mobile system as a multivariable system. The coupling effect of the 

multivariable control problem is neglected in most reported studies. Accordingly, 



 
 

33 

 

these control approaches may not be optimal when they are applied to the smart 

hospital bed.  

One of few works regarding a wheeled mobile system as a multivariable 

system was presented by Nguyen et al (2007). In their study, the researchers utilised 

a TDD decoupling technique to reduce coupling effects and simplify a multivariable 

system into a series of independent scalar systems. Moreover, Nguyen et al used an 

effective experimental procedure to approximate the dynamic model of the wheeled 

mobile system. However, the obtained dynamic model was not optimal since the 

researchers restricted the range of voltage inputs when implementing the parameter 

verification procedure.   

From the discussion above, this thesis will focus on developing advanced 

assistive control strategies to support the smart hospital bed during patient 

transportation. Firstly, two operator detection algorithms which have not been 

published in relevant literature are investigated and developed for the smart hospital 

bed. Then, two multivariable low-level control strategies are proposed and designed 

for the smart hospital bed to deal with the coupling effect problem and to drive actual 

velocities to track desired velocities. Both methods treat the smart hospital bed as a 

multivariable system with uncertainties. Finally, an advanced operator-following 

control strategy is implemented to enhance the bed performance during its operation. 

This is a novel control strategy with respect to the operator-following solution.  
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CHAPTER 3  . OPERATOR DETECTION 

METHODS FOR THE TRACKING FUNCTION OF 

SMART HOSPITAL BEDS 

3.1        INTRODUCTION 

The operator-following function is considered to be an effective and 

innovative solution for smart hospital beds in terms of patient transportation. This 

solution allows the smart hospital bed to travel to the destination by following a 

clinical staff member or an autonomous navigation robot. As a result, unpredictable 

accidents caused by the hospital employee can be substantially reduced.   

To achieve this goal, an operator detection method is required for the smart 

hospital bed since it allows the bed to classify the operator in the space including the 

target and various non-target objects. In the literature, many studies show that an 

operator can be successfully detected by a laser scanner due to its advantage of high 

accuracy and reliability. Accordingly, two operator detection algorithms based on a 

laser ranger finder are investigated and developed in this chapter.  

The first algorithm, a Gaussian Distribution Method (GDM), is one of the 

efficient classification techniques dealing with the one-class problem: the target class 

and non-target class. In this method, a training data set of the target class is modelled 

as a Gaussian distribution. Then the classifier is based on a threshold condition of a 

Mahalabonis distance between a testing point and the training data set. If the 

Mahalabonis distance is bigger than the threshold value, the testing object is 

classified as the non-target. Otherwise, the testing object is the target.     

The second algorithm, a Neural Network (NN) classification method, is a 

classification technique based on an Artificial Neural Network (ANN) theory. The 

ANN is known as a computational model constructed by a network of highly 

interconnecting processing elements operating in parallel (Kumar & Kumar 2013). It 

has many advantages such as the capability of adaptive learning, self-organisation 
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and real time operation. Through a training process, a neural network has the ability 

of classifying any data with arbitrary accuracy.   

The chapter is organised as follows. Firstly, a system structure of the smart 

hospital bed utilised throughout this study is briefly introduced in section 3.2.  In the 

next section, two proposed operator detection methods consisting of the GDM and 

the NN classification method are described. Section 3.4 provides an operator-

following strategy for the smart hospital bed. Then, section 3.5 presents several 

experimental results to measure the effectiveness of the proposed methods. Finally, 

discussion can be found in the last part of this chapter. 

3.2 SMART HOSPITAL BED STRUCTURE 

To validate the proposed algorithms in this doctoral research, a smart hospital 

bed developed by the UTS Centre for Health and Technologies through a 

collaboration with the Royal Institute of Technology, Stockholm is employed. 

Technically, the bed consists of a bed frame, a sensor system, a central control 

system, a power supply system, motors and actuators, wheels and an air mattress. 

The appearance of the bed is shown in Figure 3.1. 

3.2.1 Bed frame 

The bed frame of the smart hospital bed is divided into three main parts 

including an upper frame, support lifts and a lower frame. The specifications of each 

component are described as follows. 

- Upper frame:  Similar to many other hospital beds, the bed surface includes 4 

sections which are the head, bottom, thigh and calf parts. Six linear actuators 

mounted under the bed surface are responsible for adjusting the upper frame to 

various positions such as lying face up in a horizontal position, a seated position, 

leg elevation position, back elevation position, knee brake position, back and leg 

elevation position and a back elevation with knee brake position.    

- Support lifts: In order to support a patient to easily get in or out of bed, three 

lifting columns are integrated into the smart hospital bed to raise or lower the bed 
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height. Each of them has an electric actuator with a chain drive inside for 

performing its enlarging and abridging movements. Combining the motion of 

these lifts also places the patient in several special positions, for instance: the 

Trendelenburg position, the reverse-Trendelenburg position, the left or right tilt 

position.  

- Lower frame: This component is designed as a rectangular base to protect the 

central control system, wheel system, direct current (DC) motors and the power 

supply system mounted inside.   

 

Figure 3.1:   The smart hospital bed system 

3.2.2 Sensor system 

The smart bed has a measuring sensor system including two incremental 

optical encoders, a digital type dual-axis inclinometer LCA326T and a laser range 

finder URG-04LX as shown in Figure 3.2.   

- Incremental optical encoders: the incremental optical encoders are attached to 

both driving wheels. Each of these encoders generates two square waves in 

incremental quadrature mode which provide the instantaneous velocity 

information of the driving wheels (Chao et al. 2015). Through a converting 

procedure, these velocities are transformed into the linear velocity and angular 

velocity of the smart hospital bed.  
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-  Inclinometer: being mounted under the bed surface, the digital type dual-axis 

inclinometer LCA326T with low-cost plays a role in terms of measuring an angle 

of inclination of the bed surface with two dimensions. Based on the measuring 

information of this sensor, the bed surface is precisely adjusted to the desired 

position. Technically, this sensor has a maximum measuring range of [-90o,90o], 

a 0.01o resolution, and it consumes low power. 

- Laser range finder: the laser URG-04LX is utilised as the main sensor to provide 

the distance information of obstacles for the smart hospital bed due to its 

advantages such as high accuracy and resolution, and low power consumption. 

The laser is located in the middle front section of the hospital bed. Technically, 

this sensor can operate up to 10Hz (scanning rate), with a 240o field-of-view, a 

0.36o resolution, an accuracy of 1% of the measurement, and a maximum radius 

of 4m. These specifications of the sensor are very appropriate for the smart bed 

system since the laser sensor is able to give all the information required about the 

obstacles in front of the bed. This information supports the bed when travelling 

within the hospital, for instance: following a target, obstacle avoidance and local 

path planning.    

 

Figure 3.2:   The sensor system: the encoder (Encoder 2016), 
the inclinometer (Rion 2011) and the LRF (Hokuyo 2009) 

3.2.3 Control devices  

The control devices consist of a KTA-198 board, a motor controller, a 

Phidget 8/8/8 board and a central processing unit as displayed in Figure 3.3. Details 

of each part are described below: 

- KTA-198 board: this device is used to control actuators attached to the bed frame. 

As each controller board can control two actuators, 4 boards are required to 
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control all actuators attached to the smart hospital bed. The KTA-198 controllers 

acquire the position data of actuators and transmit them to the central processing 

unit via the RS232 connection. Depending on the desirable bed position, the 

KTA-198 boards receive commands from the central processing unit to adjust the 

position of the actuators. 

- Motor controller: RoboteQ HDC2450 is utilised as a wheel motor controller for 

the bed system. The controller is responsible for receiving feedback data from 

encoders and transferring this information to the central processing unit via the 

serial interface, USB interface or Wifi connection. Besides this, it also receives 

motor commands from the central processing unit and sends control signals to the 

DC motors.      

- Phidget 8/8/8: in order to sense the environment, the smart bed is equipped with a 

Phidget sensor interface board to obtain parameters from various sensors such as 

temperature, humidity, pressure. This is a USB based controller with 8 analog 

inputs, 8 digital inputs and 8 digital outputs. Besides this, it communicates to the 

central processing unit via a USB port.  

- Central processing unit: there are various options to design the central processor 

for instance: a micro controller board (Keil MCB2300), a mini-computer (MAC 

mini) or a laptop. In this study, the laptop with model Dell Inspiron 5110 and 

LabWindows 2010 software with the Real-time module are utilised to implement 

all proposed algorithms.  

 

Figure 3.3: The central control system: the KTA 198 board (Oceancontrols 2009), the 
motor controller (RoboteQ 2015), the Phidget 8/8/8 board (Phidgets 2012) and the laptop 

3.2.4 Power supply system  

The power supply system of the bed includes two 12 volt batteries in series 

and a separate 12 volt battery. The two 12 volt batteries in series supply the power to 
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DC motors and linear actuators. On the other hand, the separate 12 volt battery 

provides the power for the other electronics including the central control system, 

sensor system and air mattress. A power switch system and an emergency stop 

button are located on one side of the bed. 

3.2.5 Motors and actuators  

The smart hospital bed is equipped with two DC motors distributed by NPC 

Robotics and nine linear actuators developed by Linak. Each DC motor is attached to 

each driving wheel and powered by 24 volt and 20 amp duty. Among the actuators, 

three of them (models BL1) are mounted inside the support lifts while the others 

(three models LA31, one model LA34 and two models LA30) are attached under the 

bed surface. Movements of the linear actuators are combined together to adjust the 

smart hospital bed to various positions. The two 12 volt batteries in series are also 

utilised to provide power to the linear actuators. Figure 3.4 illustrates the motors and 

actuators employed in the bed system.  

 

Figure 3.4:   The DC motor (NPC 2011) and actuators (Linak 2016) 

3.2.6 Wheels 

The bed system has two driving wheels, each of which has a diameter of 320 

mm placed at the middle side of the lower frame and this is attached to its own DC 

motor. With the purpose of preventing the smart hospital bed from falling over, 

multidirectional free wheels are added. Each of the multidirectional wheels consists 

of 16 free-turning rollers which are positioned around the wheel periphery. With this 

type of passive wheel, the bed has the capacity to move in any direction while the 

driving wheels are rotating. Technically, the smart bed will go in a straight line if 

both the driving wheels are driven in the same direction and speed. In the case of 
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both steering wheels moving with the same velocity in different directions, the bed 

will rotate about the central point of the axis. Otherwise, depending on the speed of 

the rotation and its direction, the bed can turn left or right with various linear and 

angular velocities. The wheel system employed in the bed is shown in Figure 3.5.  

 

Figure 3.5:   The wheel system 

3.2.7 Air mattress 

The hospital bed is equipped with an Alternating Pressure Therapy/Low Air 

Loss Mattress system developed by Lumex. The mattress system is not only efficient 

for preventing and treating stages 1 – 4 of pressure ulcers but also convenient for 

long-term bedridden patients. In order to provide the best therapy and comfort for 

each type of patient, the hospital bed staff can adjust the pressure and alternating 

cycle time of the mattress. Providing 6 options of mattress pressure and an optional 

static mode enables the mattress to meet all the requirements of the patient. Figure 

3.6 presents the air mattress integrated into the bed system.  

 

Figure 3.6:   The air mattress 
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3.3 OPERATOR DETECTION METHODS 

3.3.1 Feature extraction 

This stage aims to determine features of the objects including the target and 

non-target objects in front of the smart hospital bed. In order to achieve this goal, the 

environmental data obtained from the laser range finder are represented as a set of 

points before being divided into different clusters by a threshold value. Finally, three 

features are derived from each remaining cluster. 

3.3.1.1 Data acquisition 

As discussed in Section 3.2, the laser range finder is mounted at the front of 

the hospital bed. It provides the environmental information around the hospital bed. 

These scanning data are represented as a set of points in the polar coordinate system 

 whose origin is the location of the sensor. Setting the laser as a reference 

point, points of the range scan are converted into the Cartesian coordinate system as 

follows:  

                                                                                            (3.1) 

where ,  is the position of the points of the laser scan in the Cartesian 

coordinate system. 

3.3.1.2 Clustering 

The purpose of the clustering phase is to separate the set of points into a set 

of point clusters that are related to different objects detected by the laser range finder. 

In order to do this, a threshold condition is employed and defined as follow:  

                                                                            (3.2) 

where  is the distance between two consecutive scan points,  is 

the threshold distance parameter. This condition means that if the distance between 
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two consecutive scan points is smaller than a specific threshold, these points are in 

the same cluster otherwise each point belongs in a different cluster.  

Procedures 3.3.1.1 and 3.3.1.2 are demonstrated in Figure 3.7 (a, b) with the 

angular resolution and scanning angle of the laser scanner set at 1.05o and 180o, 

respectively. It can be seen in Figure 3.7.a that points in a purple circle (cluster B) 

represent the same object since the distance between two consecutive scanning 

points is smaller than a threshold distance value. Paralleling the purple circle, points 

in a brown circle (cluster A) depict the same object. Figure 3.7.b shows the laser 

scanning data after clustering with an employment of  chosen at 36mm.  

 

(a) 

 

(b) 

Figure 3.7:   Laser data processing procedure: 
(a) Data acquisition, (b) Clustering  
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3.3.1.3 Feature determination 

After clustering, three features of each remaining cluster are shown in Figure 

3.8 and determined below:   

 G is the girth of the cluster, which is defined by the following equation: 

                                                                                                (3.3) 

 W is the distance between the start and end point of the cluster and defined by 

the following equation:  

                                                                                                         (3.4) 

 H is the biggest distance between one point of the cluster to the line of the 

start and end point of the cluster:  

                                                                                           (3.5) 

      where a, b, c are parameters of the line equation through the start and end 

points of the cluster. 

 

. 

Figure 3.8:  Feature determination 
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3.3.2 Gaussian distribution method 

The GDM is a one-class classification method based on the Mahalabonis 

distance condition to identify the target. In order to do this, the target class is firstly 

modelled as a Gaussian distribution. Then a new point is identified as a target or a 

non-target by applying the Mahalabonis distance as follows:  

                                                                         (3.6) 

The classifier is defined as:  

                                                                    (3.7) 

The mean  and the covariance matrix ∑ are the sample estimation of data 

. The threshold  is set according to the target error. 

Aiming to investigate the correlation between three features G, W, H of the 

operator,  samples of the operator are collected. From these, two respective normal 

data sets  and  of features  and  are set up. 

Utilising equation (3.7) in 2D space, the Mahalabonis distances are given by:  

                                                       (3.8) 

                                                          (3.9) 

   ;   and             (3.10)            

                ;  and                        (3.11) 

The classifiers are defined as:  

                                                          (3.12) 
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                                                            (3.13) 

From the equations (3.12) and (3.13), the object is identified as a target if and 

only if  and .    

3.3.3 Neural network classification method 

 

Figure 3.9: Neural network structure 

The second operator detection method is based on the neural network 

classification. Values of three features (W, G, H) derived from the feature extraction 

procedure are normalised and then utilised as the inputs of the neural network 

classifier. This neural network has a multilayer feed-forward neural network 

structure with one input layer, one hidden layer and one output layer, which is shown 

in Figure 3.9. Details of the artificial neural network are described in Appendix A. 
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3.3.3.1 Neural network structure 

The structure of the neural network has 3 input nodes which are 3 feature 

parameters of each object obtained from the feature extraction procedure. The output 

layer has one node which indicates the state of the target or non-target. The target 

represents the operator while the non-target denotes obstacles. It can be seen from 

Figure 3.9, the output of the proposed NN is given as follows:  

                                                      (3.14) 

where:  

-  and  are inputs and an output of the neural network, respectively.  

- k represents the number of the hidden nodes 

-  is the weight between jth node of the hidden layer and the output node 

-  is the weight between the jth hidden nodes and ith node of the input layer 

-  and  are the biases for jth node of the hidden layer and the output node, 

respectively 

-  is the activation function utilised in the hidden layer and the output layer, 

shown as follows:  

                                                                                 (3.15) 

3.3.3.2 Initialisation 

In an effort to make a comparison between performances of different neural 

networks, the same initialisation is applied for all networks. In this study, the weight 

initialisation method introduced by Nguyen & Widrow (1990) is employed. In theory, 

this algorithm chooses values in order to distribute the active region of each neuron 

in the layer evenly across the layer’s input space. It generates initial weight and bias 

values for a layer so that the active regions of the layer’s neurons will be distributed 

at roughly over the input space (Mondal & Mandal 2014). Compared with the 

random weights and biases initialisation, the weight initialisation method of Nguyen 

& Widrow reduces the number of wasted neurons and increases the speed of the 

training works.     
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3.3.3.3 Training algorithms 

The training procedure is implemented to find optimal parameters for the 

neural network model. In this study, the Levenberg-Marquardt (LM) algorithm is 

utilised since it is a fast and effective training algorithm. In theory, the Levenberg-

Marquardt method increases the convergence speed of the error back propagation 

learning process by locating the local minimum of the training process based on the 

estimation of the second directional derivative of the error function.  

For the application of operator detection in this study, the overall data set 

including the target data part and non-target data part is divided into three sets, a 

training set, validation set, and a testing set. The validation set is utilised as an early 

stopping strategy to guarantee that the ANN does not over-train whereas the testing 

set is employed for testing the generalisation of the neural network.  

Besides the LM algorithm, three other training algorithms are employed for 

comparing the performances with the proposed approach. These training methods 

consist of: Scaled Conjugate Gradient, Resilient back-propagation and the Gradient 

descent with momentum and adaptive learning rate. These are called SCG, RP and 

GDX, respectively.  

(a) Levenberg-Marquardt 

Similar to the quasi-Newton methods, the LM algorithm is designed to 

approach the second-order training speed without the requirement of the Hessian 

matrix calculation (Hosseini, Amini & Saradjian 2003). When the performance 

function has the form of a sum of squares (as is typical in training feed-forward 

networks), then the Hessian matrix can be approximated as: 

                                                   (3.16) 

and the gradient can be computed as 

                                                     (3.17) 

where  is the Jacobian matrix that contains the first derivatives of the network 

errors with respect to the weights and biases, and  is a vector of network errors. The 

TH J J

Tg J e

J

e



 
 

48 

 

Jacobian matrix can be computed through a standard back-propagation technique that 

is much less complex than computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian 

matrix in the following Newton-like update: 

                                                                  (3.18) 

When the scalar is zero, this is just Newton’s method, using the approximate 

Hessian matrix. Newton’s method is faster and more accurate near an error minimum, 

so the aim is to shift towards Newton’s method as quickly as possible. Thus,  is 

decreased after each successful step and is increased only when a tentative step 

would increase the performance function. In this way, the performance function will 

always be reduced at each iteration of the algorithm. 

(b) Scaled Conjugate Gradient (SCG) 

The scaled conjugate gradient (SCG) algorithm is based on conjugate 

directions, but this algorithm does not perform a line search at each iteration. The 

SCG algorithm is a variation of a standard conjugate gradient algorithm (Depenau 

1995). The major idea of the conjugate gradient algorithm is that it, up to second 

order, produces non-interfering directions of search. This means that minimisation in 

one direction dt followed by minimisation in another direction dt+1 implies that the 

error has been minimised over the whole subspace spanned by dt and dt+1. The search 

directions are given by: 

 

                                           (3.19) 

where  is overall error, wt is a vector containing all weight values at time step t and 

is 

                                (3.20) 

In the standard conjugate gradient algorithms the step size єt is found by a 

line search which can be very time consuming because this involves several 
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calculations of the error and the first derivative. The step size is estimated by a 

scaling mechanism thus avoiding a time consuming line search. The step size is 

given by: 

                                              (3.21) 

where st is 

  ,            0 < ≤ 1                         (3.22) 

єt is the step size that minimises the second order approximation to the error function. 

st is the one sided difference approximation of E’’(wt)dt. λt is a scaling parameter 

whose function is similar to the scaling parameter found in the Levenberg-Marquardt 

method.  

(c) Resilient back-propagation (RP) 

The Resilient Back-Propagation algorithm (RP) is a learning heuristic for 

supervised learning in feed-forward artificial neural networks (Cavdar & Aydin 

2015). This method aims to eliminate the harmful effects of the magnitudes of the 

partial derivatives. In this method, only the sign of the derivative is utilised to 

determine the direction of the weight update; the magnitude of the derivative has no 

effect on the weight update (Kishore, Sunand & Rajesh babu 2012).  The weight 

update is given by:  

                                                                                      (3.23)  

    

where  is overall error;  is a vector containing all individual update values of 

weights, which solely determines the size of the weight update. The  is defined 

below:  
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                                                                        (3.24) 

with   

It can be seen from the equations 3.23 and 3.24, the adaption rule works as 

follows: every time the partial derivative of the corresponding weight  changes its 

sign between two consecutive iterations, which indicate that the last update was too 

big and the algorithm has jumped over a local minimum, the update-value  is 

decreased by the factor . If the derivative retains its sign, the update-value is 

slightly increased in order to accelerate convergence in shallow regions of the error 

surface (Anastasiadis, Magoulas & Vrahatis 2005). 

(d) Gradient descent with the momentum and adaptive learning rate (GDX) 

The Gradient descent with momentum and adaptive learning rate is an 

improvement on the standard gradient descent algorithm. The weight update is given 

by:  

                                                                                         (3.25) 

                                                                                                 (3.36) 

where  denotes the learning rate;  is overall error.  is a momentum 

parameter which must be determined by trial and error. Momentum simply adds a 

fraction  of the previous weight update to the current one. When the gradient keeps 

pointing in the same direction, this will increase the size of the steps taken towards 

the minimum. When the gradient keeps changing the direction, the momentum will 

smooth out the variations (Singh & Gupta 2010).  

3.4 OPERATOR-FOLLOWING STRATEGY 

In the literature, various operator-following behaviours have been reported 

such as following at a fixed distance, moving toward the target, following side by 

side with the target or combining target-following and obstacle avoidance. 
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Depending on each situation, an appropriate control algorithm will be designed for 

the system. In this study, the idea of the operator-following function is keeping a 

setting at a constant distance between the operator and the smart hospital bed. 

Meanwhile, the direction of the smart bed constantly faces the operator.  

To achieve this goal, the smart hospital bed needs to be able to control its 

linear velocity and angular velocity. The distance between the hospital bed and the 

operator is controlled by the linear velocity in order to maintain the desired distance. 

The angle between the heading direction of the smart hospital bed and the direction 

of the operator in relation to the hospital bed local coordinate is controlled by the 

angular velocity of the smart hospital bed.  

Two typical PID controllers are employed to control the bed’s linear velocity 

and angular velocity. The information of the operator obtained from the operator 

detection algorithm is utilised for calculating the inputs of the two PID controllers. 

The following equations describe the PID controller that is applied to the smart 

hospital bed. 

                                                                            (3.27) 

                                                                         (3.28) 

with                                               

                                                                                                       (3.29) 

                                                                                                          (3.30) 

                                                                       (3.31) 

                                                                                            (3.32) 

where ,  and  are parameters of the linear velocity controller; ,  and 

 are parameters of the angular velocity controller;  ,  denote the actual 
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distance between the hospital bed and the target and the desired tracking distance, 

respectively. P is the position of the laser range finder.  is the distance between the 

operator and the laser scanner. (O,X,Y), (  and (P,  are the global 

coordinate system, the local coordinate system of the hospital bed and the local 

coordinate system of the laser scanner, respectively.  represents the length of the 

smart hospital bed.  and  are defined in Figure 3.10.  

                  
   Figure 3.10:   The hospital bed system and the target for tracking 

3.5 EXPERIMENTAL RESULTS 

In this section, experiments have been divided into two major parts. Section 

3.5.1 contains several experiments which are implemented to estimate the 

performance of the two proposed operator detection algorithms. A comparison 

between the accuracy rate of the two proposed approaches is also executed in this 

part. By comparing the results, the best algorithm is employed for the experiment in 

the next section. Section 3.5.2 shows the experimental results of the smart hospital 

bed when it follows an operator.  

In relation to the operator following function of the smart hospital bed, the 

operator can be a hospital staff member or an autonomous navigation robot. In recent 
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years, the autonomous navigation robot has been widely used within the hospital 

environment to support clinical staff in transportation tasks. In the future, this kind of 

robot can replace hospital staff to collaborate with the smart bed to transport the 

patient. Accordingly, in this study, an autonomous navigation robot called Turtlebot 

is utilised to implement the experiments related to the operator-following task. 

Details of this robot are shown in Appendix B.  

3.5.1 Operator detection performance  

The quality of two proposed operator detection algorithms is tested in this 

section. Two data sets were collected from the laser range finder. The first data set  

included 200 samples of the Turtlebot. On the other hand, the second data set  

contained 750 samples of the Turtlebot and 1500 samples of the non-Turtlebot 

objects. The non-Turtlebot objects consisted of a trash can, a recycling bin, a carton 

box, human legs, a flower pot and a warning column. The second data set  was 

divided into three parts which are a training set, validation set, and testing set and 

these randomly selected with proportions of 35%, 35%, and 30% out of the overall 

data, respectively. In total, there were 2450 samples in the two data sets. The 

distribution of the two data sets is presented in Figure 3.11.  

 

Figure 3.11:   Distribution of the two data sets   
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To measure the performance of the classification results, sensitivity (or true 

positive rate) and specificity (or true negative rate) were used and given as follows:  

                                                                                            (3.33) 

                                                                                (3.34) 

where TP (True Positive) is the number of target events which are correctly classified 

as target; FN (False Negative) is the number of target events which are wrongly 

classified as non-target; TN (True Negative) is the number of non-target events 

which are correctly classified as non-target; FP (False Positive) is the number of non-

target events which are wrongly classified as target (Nguyen, Steven & Nguyen 

2014).  

3.5.1.1 Gaussian distribution method results  

This experiment was implemented to estimate the efficiency of the Gaussian 

Distribution Method in terms of detecting an operator. To do this, the first data set  

was utilised as a training data set for developing two classifiers and .  

In terms of geometry, conditions 3.12 and 3.13 can be explained as follows:  

- In coordinate system, a boundary  is created to cover the training data 

set . 

- In coordinate system, a boundary  is created to cover the training data 

set .  

Considering a testing object with 3 features , if the position of 

the point  is in the boundary  and the position of the point is in 

the boundary  , the testing object is the target.  

To illustrate our proposed method in geometry, a DDtools toolbox was 

utilised to build the boundaries  and . Figures 3.12 and 3.13 show the 

construction of the boundaries  and  with the different threshold values, 
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respectively. Changing the threshold  from 0.2 to 0.05 with a step of 0.05, four 

respective contours (1, 2, 3, 4) were obtained.  

 

                 Figure 3.12:   The Boundary  with  = 0.2, 0.15, 0.1, 0.05 

 

               Figure 3.13:   The Boundary  with  = 0.2, 0.15, 0.1, 0.05 

It can be seen from the Figures 3.12 and 3.13 that the performance of the 

classifiers is dependent on the appropriate value of the thresholds  and . For 

testing the efficiency of the proposed method, the testing set of the second data set  

was employed. After extensive experiments, both thresholds  and  were chosen 

at 0.06. Table 3.1 depicts the average testing result and best performance of the 

proposed learning methods with respect to sensitivity and specificity over 30 runs.  
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GDM Sensitivity Specificity 

Average testing result 89.2% 81.4% 

Best performance 91% 88.5% 

Table 3.1:   Experimental results of the Gaussian Distribution Method 

3.5.1.2 Neural network classification method results  

The aim of this experiment is to estimate performance of the neural network 

classification with various learning algorithms. To do this, the second data set  was 

employed for the training and testing process. Training parameters including the 

maximum epoch and minimum gradient were chosen delicately. In particular, the 

maximum epoch was 1000. In addition, the minimum gradient was 0.0001 and a goal 

was set for 0.001.  

For a comparison of the performances, four training algorithms, Levenberg-

Marquardt (LM), scaled conjugate gradient (SCG), resilient back propagation (RP) 

and gradient descent with momentum (GDX), were utilised to train the neural 

network model. Table 3.2 presents the average (mean) training, validation and testing 

results of the proposed learning methods with respect to sensitivity and specificity 

over 30 runs. In addition, the best performance of neural network based operator 

detection using four algorithms is reported in Table 3.3. It can be seen from tables 

3.2 and 3.3, the NN-LM achieves the best performance when comparing with three 

other learning algorithms.  

Method 
Training Validation Testing 

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) 

NN-LM 91.24 90.58 91.15 86.37 91.65 88.56 

NN-SCG 89.84 87.68 88.45 87.76 88.55 86.4 

NN-RP 88.45 85.34 87.28 86.5 87.75 85.6 

NN-GDX 89.76 88.24 89.6 87.46 88.25 85.24 

Table 3.2:   Mean values of training, validation and testing results utilising four algorithms 
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Method 
Hidden 

nodes 

Training Validation Testing 

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) 

NN-LM 5 93.45 92.18 92.43 88.64 92.41 89.8 

NN-SCG 4 91.83 88.56 92.16 90 91.13 88.81 

NN-RP 6 91.3 90.26 86.13 89.49 90.58 90.26 

NN-GDX 5 91.63 89.12 90.03 89.52 89.38 86.85 

Table 3.3:   Best performance of NN based operator detection using four algorithms 

3.5.1.3 Comparison of two proposed classification methods 

Table 3.4 shows the comparison between the performance of the GDM 

classifier and the neural network classifier. Compared to the performance of the 

neural network classification method using Levenberg-Marquardt, the GDM 

obtained worse testing results. The best performance of 91 % sensitivity and 88.5% 

specificity of GDM are lower than that of the neural network classification method 

(92.41% and 89.8%).  

Method 
Mean values of  testing results Best performance of testing results 

Sens (%) Spec (%) Sens (%) Spec (%) 

NN-LM 91.65 88.56 92.41 89.8 

GDM 89.2 81.4 91% 88.5 

Table 3.4:   Comparisons of mean values and best performances of testing results for two 
proposed classification algorithms 

3.5.2 Operator following performance  

The experiment in this section was implemented to estimate the performance 

of the smart hospital bed when it followed a target without an employment of a low-

level controller. In order to do this, the neural network model with the best 
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performance obtained from the previous experiment was utilised as the operator 

identifier for the smart hospital bed. In addition, two PID controllers were utilised as 

two path-following controllers to minimise errors of distance and angle while the bed 

tracked the operator. The parameters of the two PIDD controllers were 

experimentally chosen as

 . Figure 3.14 illustrates the target-following task of the smart hospital 

bed. 

In Figure 3.14:  

- Points O, P denote starting positions of the smart hospital bed and the operator, 

respectively. 

- The circle represents the operator while the rectangle depicts the smart hospital 

bed.  

- From P to C the operator moves with  and  

- From C to F velocities including  and  are 

introduced to the operator. 

- From F to K the operator travels with  and . 

- From K to N velocities consisting of  and  are 

applied on the operator.  

- From N to P the operator moves with a linear velocity of 0.4 (m/s) and keeps the 

angular velocity at zero.  

- Additionally, path NC is an uphill path; meanwhile path FK is a downhill path.  

- Images I, II, III, IV illustrate the operator-following task of the smart hospital bed 

at 4 positions including (O,P); (D,E); (G,H) and (L,M), respectively.  

- During the operator-following, the bed system carries an 85 kg person.  
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Figure 3.14:   Demonstration of the operator-following task  
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Experimental results of the operator-following task are shown in Figure 3.15, 3.16 

and 3.17.  

 

Figure 3.15:   Trajectory of the hospital bed and operator  

 

Figure 3.16:   Linear velocity of the hospital bed and operator 
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Figure 3.17:   Angular velocity of the hospital bed and operator 

3.6 DISCUSSION 

The Gaussian Distribution Method is a simple one-class classification, based 

on calculating Mahalabonis distances between testing points and a training target 

data set to classify target and non-target objects. In table 3.1, the average testing 

results of the GDM based operator detection approach are 89.2 % and 81.4 % for 

sensitivity and specificity, respectively. The deviation between the average testing 

result and the best performance of the sensitivity is 1.8% whereas that of the 

specificity is 7.1%. This means that the GDM based operator detection algorithm is 

reasonably efficient but could still be improved.   

In terms of the average testing result, it can be seen from Table 3.2 that the 

NN-LM learning algorithm provides the best sensitivity and specificity (91.65% and 

88.56%) compared with the other three algorithms containing SCG, RP and GDX 

whose sensitivity and specificity are (88.55% and 86.4%), (87.75% and 85.6%) and 

(88.25% and 85.24%), respectively. On the other hand, results reported in Table 3.3 

show that using the LM algorithm with the 5 hidden nodes produces the best 

classification in which the training results of 93.45% sensitivity and 92.18% 

specificity are gained and the testing set leads to 92.41% sensitivity and 89.8% 

specificity.     
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In a comparison of the performance of the GDM classifier with that of the NN-

LM classifier, it can be observed from table 3.4 that the average testing results of the 

NN-LM classifier are more than those of the GDM classifier with amounts of 2.45% 

sensitivity and 7.16% specificity. In addition, the best performance of the NN-LM based 

operator detection method is also more than that of the GDM based operator detection 

method with amounts of 1.41% sensitivity and 1.3% specificity. Moreover, the deviation 

between the best performance and mean value of the specificity of testing results in the 

GDM classifier is larger than that of the NN-LM classifier. Therefore, the neural 

network classification method provides the better performance than that of the GDM 

classification approach 

It can be observed from the results of section 3.5.2 that the performance of 

the smart hospital bed during the operator-following is acceptable but could still be 

improved. One way to enhance the operator-following performance of the bed 

system is to apply a low-level controller to its operator-following control strategy. 

The low-level controller has an advantage in terms of dealing with uncertain factors 

of the bed system such as internal system uncertainties, environmental conditions, 

and frictions between surface and tyre. Consequently, the operator-following control 

strategy using the low-level controller provides the robustness of the overall system.  
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CHAPTER 4  . AN OPTIMAL MULTIVARIABLE 

PID CONTROL STRATEGY FOR SMART 

HOSPITAL BEDS 

4.1 INTRODUCTION 

The experimental results presented in the previous chapter (section 3.5.2) 

have demonstrated that the operator-following performance of the smart hospital bed 

can be affected by uncertain factors. In fact, there are various uncertain factors 

impacting the bed system such as internal system uncertainties, coupling effects, the 

friction between the bed tyre and the surface and the variation of the centre of gravity. 

These factors lead to the instability and inefficiency of the overall bed system during 

its operation. As a result, it is necessary to develop a low-level control for dealing 

with system uncertainties.  

Treating the smart hospital bed as a multivariable system with uncertainties, 

its dynamic model is required for designing a low-level controller. Due to the 

variation of uncertain dynamics, it is difficult to calculate an exact hospital bed 

dynamic model. Therefore, with an assumption of bounded uncertainties, three 

models consisting of a lower bounded model, a nominal model and an upper 

bounded model have been employed for representing the dynamics of the smart 

hospital bed. Parameters of the three dynamic models can be derived from a 

parametric identification process.   

In the control design stage of the multivariable system, there have been 

various control methods such as a centralised control method, decentralised control 

method and decoupling control method. Due to the advantage of reducing a 

multivariable system to a series of independent scalar systems, the decoupling 

technique is integrated into the proposed control approach. Thanks to this technique, 

the design procedure and its computational complexity are simplified.  
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Owning the ease-to-use and real-time property, Proportional-Integral-

Derivative control has been widely utilised to develop tracking controllers. In this 

chapter, the major work focuses on designing an Optimal Multivariable PID Control 

strategy for the smart hospital bed system. This control algorithm is based on a 

Triangular Diagonal Dominance decoupling technique introduced by Nguyen et al 

(1979). The proposed control strategy contains two design stages. First, a decoupler 

with a TDD property is constructed to reduce the multivariable control problem of 

the smart hospital bed into a series of independent scalar control problems. Secondly, 

an Optimal PID controller is designed for each independent scalar system. Since the 

proposed approach combines the TDD decoupling approach and PID control design, 

it is called the Optimal Multivariable PID Control (OMPIDC) approach.  

The chapter is organised as follows. In section 4.2, a dynamic multivariable 

model of the smart hospital bed system is obtained, including the presence of 

transportation lag. Section 4.3 describes the Optimal Multivariable PID Control 

approach in detail. In the next section, various experiments are provided to estimate 

the performance of the proposed control approach. Finally, a discussion can be found 

in the last part of this chapter. 

4.2 MULTIVARIABLE DYNAMIC MODEL  

As mentioned in section 3.2, the smart hospital bed contains two steering 

wheels and four free multidimensional wheels. Each driving wheel is placed at the 

middle side of the lower frame of the bed so that both of them are in the same axis. 

Meanwhile, the four free wheels are mounted in the four corners of the hospital bed 

base. Motion and orientation of the steering wheels are achieved by two DC motors 

directly connected to them. 

4.2.1 Mathematical model 

The smart hospital bed system is shown in Figure 4.1.  
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Figure 4.1:  The smart hospital bed system 

In Figure 4.1,  and  denote the radius of the driving wheels and the 

distance between these wheels, respectively. Point  represents the centre of mass of 

the hospital bed. Since the smart hospital bed has a symmetrical structure, the 

position of the point  is also the position of point  depicting the origin of the 

local coordinate frame of the bed.  is the global coordinate frame where 

 is the local coordinate frame attached to the hospital bed.  indicates the 

angle between the heading direction of the bed system and the  axis.  

  According to the study of Das et al (2006), the full dynamic equation of the 

smart hospital bed dynamics can be described as follows:    

                                                                  (4.1) 

where ,  denote the bed mass and the bed inertia, respectively.  is the input 

torque to the right steering wheel whereas is the input torque to the left steering 

wheel.  is the bounded uncertainties vector.  is the first 

derivative of the velocities of the bed system including the linear velocity  and the 

angular velocity .  
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Ignoring the inductance of the motors, the equation governing the right and 

left DC motors of the bed system can be given as:  

                                                                                                        (4.2) 

where  is the torque vector in which is the torque generated by the 

right motor and  is the torque generated by the left motor.  and  represent 

torque constants of the right motor and the left motor whereas  and  indicate the 

current flowing in the coils of the right and left motors, respectively. 

                                                                                       (4.3) 

where and  denote resistances of the right and left motors, respectively. 

Counter electromotive force coefficients of the right and left motors are represented 

by and .  and  are the respective right and left motors’ velocities.  

The relationship between the motors’ velocities and the driving wheels’ 

velocities is given by:  

                                                                                                       (4.4) 

Additionally, the relationship between the torques of the motors and the 

torques of the driving wheels are calculated as:  

                                                                                                         (4.5) 

The linear and angular velocity of the hospital bed system can be obtained 

from the velocities of the steering wheels, shown as follows:  

                                                                                                    (4.6) 

                                                                                                   (4.7) 

Utilising equations 4.1 to 4.7, the dynamic equation of the hospital bed 

system, consisting of motor dynamics can be given as:  
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    (4.8) 

where  ;  ;   

Due to variation of dynamic uncertainties, it is difficult to calculate precisely 

the parameters of the equation (4.8). As a result, without loss of generality, the 

dynamic equation (4.8) of the smart hospital bed system is expressed as the 

following equation:   

                                         (4.9) 

where   and  are reference inputs. and  denote the element of 

system transfer matrix  and system uncertainty, respectively.   

                               +                  (4.10) 

with                                              .                     (4.11) 

Assuming that the system uncertainty  is bounded, the hospital bed 

dynamic model can be represented by three dynamic models consisting of a lower 

bounded model, a nominal model and an upper bounded model, shown as follows:  

                                              (4.12) 

                                        (4.13) 

                                                   (4.14) 
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4.2.2 Parametric identification process 

In this section, parameters of the hospital bed dynamic models in equation 

4.12 to 4.14 are derived from a parametric identification process. The idea of this 

method is first to measure the responses of the hospital bed system with respect to 

various step inputs and then to identify the varying ranges of the system parameters.  

Applying this parametric identification process on the smart hospital bed, the 

varying ranges of the hospital bed system parameters were estimated as follows: 

                                (4.15) 

                            (4.16) 

                            (4.17) 

                             (4.18) 

To obtain the parameters of the nominal dynamic model, the following 

equations were employed:  

                                                                                     (4.19) 

                                                                                       (4.20) 

                                                                                       (4.21) 

where  is the number of experiments.  

According to the boundary values of the model parameters in (4.15 – 4.18), 

the approximate dynamic model of the hospital bed system can be represented by 

three models including a lower bounded model, a nominal model and an upper 

bounded model, and illustrated as follows:  
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                                                 (4.22) 

                                                        (4.23)  

                                                 (4.24) 

In the equation (4.11), the time delay part  can be replaced by the 

following first order form:  

                                                                                                      (4.25) 

This approximation is utilised for simplifying the control design process in 

the state space. As a result, three dynamic models of the smart hospital bed are 

rewritten as below:  

                                               (4.26) 

                                                      (4.27)  

                                               (4.28) 

The step response of the smart hospital bed dynamics is shown in Figure 4.2.  
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Figure 4.2:  Step response of the smart hospital bed dynamics 

4.3 OPTIMAL MULTIVARIABLE PID CONTROL STRATEGY 

In theory, the aim of the Nguyen et al ’s decoupling technique is to determine 

a stable and proper pre-compensator so that the compensated system has a special 

property which is called the Triangular Diagonal Dominance (TDD) (1979). With 

this characteristic, only diagonal elements of the transfer function matrix are taken 

into consideration for the closed-loop control design. In other words, the TDD 

decoupling technique offers an effective solution to transform a multivariable control 

problem into a collection of independent scalar control problems.  

In this section, an Optimal Multivariable PID Control strategy with two 

design stages is proposed for the smart hospital bed. In the first stage, a pre-

compensator with TDD property is constructed to decrease the crossing interaction 

between system’s inputs and outputs to an acceptable low level. Through the 

obtained pre-compensator, the multivariable control design problem is simplified 
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into two independent scalar control design problems. In the second stage, an Optimal 

PID controller is developed for each independent scalar control problem. The 

structure of the Optimal Multivariable PID Control is illustrated in Figure 4.3. 

 

Figure 4.3:  Optimal Multivariable PID control scheme 

4.3.1 Stage 1: Triangular Diagonal Dominance decoupling 

Consider a smart hospital bed whose transfer function matrix is given by a 

proper square  plant . In order to utilise a decoupling technique at this stage, 

the nominal model of the smart hospital bed is adopted. The aim of this design stage 

is to seek a pre-compensator so that the compensated system is in TDD form. 

According to Nguyen et al (1979), a pre-compensator matrix  can always be 

constructed such that:   

                                                                                (4.29) 

where  is triangular 

Apply the following steps to construct the pre-compensator : 

Step 1: Move the lowest degree element in the first row to the  position. 

Step 2: Subtract a multiple of the first column from the second column to make sure 

that  

In order to utilise the diagonal elements of the  for the closed-loop 

control design stage, the compensated plant  must satisfy all conditions of 

the TDD property which are depicted as follows: 

- The  is stable 

-  is in minimum phase   
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-  

- The off-diagonal part of the pre-compensated matrix  is stable 

- Any unstable pole in the off-diagonal part of  occurs in only one off-

diagonal entry and this also occurs in the same row or same column, with at least 

the same multiplicity 

After checking Nguyen et al ‘s TDD conditions, if the is not , 

the two following steps are utilised:   

Step 1: Calculate  such that  is proper and after 

cancellation, proper.   

Step 2: Calculate  such that  is triangular, because  is 

diagonal and   is triangular. 

If  is , the off-diagonal elements do not affect the stability of the 

system. In other words, the multivariable system is simplified into two independent 

scalar systems.   

4.3.2 Stage 2: Optimal PID control  

Through the TDD decoupling technique, the two obtained velocity 

subsystems contain a linear velocity subsystem and an angular velocity subsystem. 

For each subsystem, an independent PID controller is developed to let a velocity 

output track a desired reference input. In this study, a combination of a Root Locus 

technique and a Least Square optimisation algorithm is utilised to obtain optimal PID 

gains for the proposed controllers. A general control scheme for velocity control 

loops is shown in Figure 4.4.   

 

Figure 4.4:  Optimal PID control method for a velocity subsystem 
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A mathematical description of the PID controller is given as follows:   

                                                                               (4.30) 

In the equation 4.30, the proportional term  provides an overall control 

action proportional to the error signal through constant gain factor. The integral term 

 decreases steady state errors through low-frequency compensation whereas the 

derivative term  enhances transient response through high-frequency 

compensation (Campo 2012).  

4.3.2.1 Initialising PID parameters  

As the optimisation algorithm needs initial parameters for the first iteration, a 

tuning method is implemented to obtain parameters for a PID controller.  In theory, 

Root Locus technique based PID tuning is a design method in which the compensator 

transfer function is designed such that the response gets the desired shape. The 

compensator transfer function is designed with the help of Root Locus plots. First, 

the desired parameters are added in the Sisotool and accordingly the region of 

stability is highlighted in the step response plot. By adding poles and zeros in the 

root locus plot the desired shape of loop is achieved within the highlighted region 

(Bhowate & Deogade 2015).  

4.3.2.2 Least Square Optimisation 

One way to optimise the PID controller is to minimise the error between the 

output  and input  for all time steps from  (initial instant of time) to  (final 

instant of time) with the variables which are the parameters of the PID controller 

(Velasco et al. 2008). This can be done by utilising the Least Square Optimisation 

algorithm:  

                                     (4.31) 

where, 

                                                                    (4.32) 
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with  = number of time steps from  to . 

4.4 RESULTS 

Firstly, the OMPID controller was designed for the smart hospital bed which 

was described in the previous chapter. After obtaining the controller, several real-

time experiments were implemented for evaluating the controller’s performance.  

4.4.1 OMPID controller design  

From the section 4.2.2, the obtained nominal model of the smart hospital bed 

was utilised to design the OMPID controller.  

4.4.1.1 Stage 1: TDD decoupler  

Utilising the TDD decoupling technique (Nguyen & Anderson 1979), the 

following steps were made in order to construct a desirable compensator H(s): 

                                                                                    (4.33) 

Step1: In the first row, the element (1,1) already has the lowest degree (  

Step 2: Subtract a multiple of the first column from the second to ensure 

. 

                  

where: 

 and   

Thus, the pre-compensator  was given as  

                                                               (4.34) 



 
 

75 

 

According to the equation 4.29, the decoupled transfer function matrix 

corresponding to the nominal model of the smart hospital bed was obtained as 

follows:  

                              (4.35) 

After checking the Nguyen et al conditions for the TDD property, the 

obtained transfer function matrix  is a TDD.  

Next, the TDD property of the decoupled models corresponding to the upper-

bounded model and the lower-bounded model was checked. To do this, their transfer 

functions  and  were given as follows:  

                                                                                      (4.36) 

                                                                                      (4.37) 

             (4.38)     

                      (4.39) 

It can be seen from the two equations 4.38 and 4.39, the off-diagonal 

elements (1,2) of both matrices  and  have very small values of 0.008 and 

0.0008, respectively. In addition, their off-diagonal elements (2,1) are stable and 

proper. Therefore, the decoupled transfer function matrices of the upper bounded 

model and the lower bounded model can be approximated as two TDD matrices. 

This means that the smart hospital bed system under the influence of uncertainties 

can be successfully decoupled by utilising TDD decoupling techniques. Figure 4.5 

shows the open-loop response of the decoupled hospital bed system. 



 
 

76 

 

  

  

Figure 4.5:  Decoupled models with TDD decoupling technique 

In the transfer function matrices ,  and , the elements (2,2) 

are still complicated for the closed-loop control design stage. In order to simplify the 

decoupled systems ,  and  into the approximated form, a 

cancelling pole-zero pairs procedure with suitable tolerance was applied for their 

elements (2,2). The obtained results are shown as follows:  

                                             (4.40) 

                           (4.41)   

                     (4.42) 
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4.4.1.2 Stage 2: Optimal PID controllers  

After being decoupled by the pre-compensator , only diagonal elements 

of the compensated system were necessary for the closed-loop control design 

procedure. With the purpose of developing two OPID controllers for two subsystems 

 and , the nominal decoupled model of the smart hospital bed 

was adopted. For the smart hospital bed described in the previous chapter, the desired 

performance of the two subsystems was chosen as follows:  

- Settling time  

- Rise time  

- System overshoot  

- System error converges to zero or acceptable tolerance 

(a) Linear velocity subsystem  

First, the Root Locus technique was utilised to obtain initial PID parameters. 

Figure 4.6 illustrates the Root Locus plots for the linear velocity subsystem.  

 

Figure 4.6:  Root Locus plots for the linear velocity subsystem 

It can be seen from Figure 4.6 that the white region is the desired area so that 

the design requirements of settling time and system overshoot are satisfactory. After 

extensive simulations, the initial PID parameters were chosen as 

Applying the Least square optimisation, the optimal PID 
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parameters were obtained as . Figure 4.7 depicts 

step responses of controllers of initial and optimal parameters.  

 

Figure 4.7:  Closed-loop step responses of controllers with initial and optimal parameters 

for the linear velocity subsystem 

(b) Angular velocity subsystem  

 

Figure 4.8:  Root Locus plots for the angular velocity subsystem 

Paralleling the controller design of the linear velocity subsystem, the Root 

Locus technique was also employed to obtain the initial PID parameters. Figure 4.8 

illustrates the Root Locus plots for the angular velocity subsystem. The initial PID 

parameters were chosen as Through the Least 

square optimisation, the optimal PID parameters were derived: 
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. A comparison between the step responses of controllers with initial 

and optimal PID parameters is shown in Figure 4.9.  

 

Figure 4.9:  Closed-loop step responses of controllers with initial and optimal parameters 
for the angular velocity subsystem 

4.4.2 Experimental results  

In order to test the quality of the proposed control approach, real-time 

experiments were implemented on the smart hospital bed. The control algorithms 

were programmed in Labwindows 2010 with the Real-time module. The sampling 

time  was chosen as 0.1(s). There are three experiments which have been carried 

out in this section.  

4.4.2.1 Experiment 1 

The aim of this experiment is to compare the closed-loop performance of the 

controlled system with the open loop performance of the bed at the same reference 

step input. For the open loop, in the first case, the referent values of the linear 

velocity ( ) and the angular velocity (  were directly 

introduced to the smart hospital bed. In the second case, the new values of the linear 

velocity   and angular velocity (  were applied on 

the bed system. The corresponding outputs were measured for 10 seconds. For the 

closed-loop, the desired values of the linear and angular velocities in the first case of 

the open loop were utilised as inputs of the OMPID controller. Outputs of this 
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controller were introduced to the smart hospital bed. In the next step, this procedure 

was repeated with the controller’s inputs which were the referent velocities in the 

second case of the open loop. System outputs were also measured for 10 seconds. In 

all cases, the smart hospital bed carried a 75kg person and moved on a granite 

surface, as demonstrated in Figure 4.10. Figure 4.11 illustrates the performance of 

the open-loop and closed-loop. 

 

Figure 4.10:  The smart hospital bed travels on the granite surface 

  

  

Figure 4.11:  The open loop and closed-loop response of the hospital bed system                      
with  
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4.4.2.2 Experiment 2 

The second experiment was implemented to show the performance of the 

controlled system at various referent inputs when the smart hospital bed loaded with 

a 75kg person travelled on the granite surface. The referent value of linear velocity 

was firstly introduced while simultaneously keeping angular velocity reference at 

zero. Secondly, linear velocity reference was kept at zero while introducing a 

referent value of angular velocity. System outputs were then measured for both 

cases. Figures 4.12, 4.13, 4.14 and 4.15 present the actual system outputs with 

, , 

 and  respectively. 

Element (1,1) represents the response linear velocity loop whereas element (2,2) 

represents the response of the angular velocity loop. The coupling effects in the 

smart hospital bed dynamics are described as the responses of elements (1,2) and 

(2,1). Corresponding to each case of the desired velocities, the simulation 

performance of the proposed controller was plotted to compare it with the real 

performance of the OMPID controller.   

  

  

Figure 4.12:  The closed-loop response of the hospital bed dynamics being controlled by OMPID 
control with  
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Figure 4.13:  The closed-loop response of the hospital bed dynamics being controlled by OMPID 
control with  

  

  

Figure 4.14:  The closed-loop response of the hospital bed dynamics being controlled by OMPID 
control with  
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Figure 4.15:  The closed-loop response of the hospital bed dynamics being controlled by OMPID 

control with  

Tables 4.1 and 4.2 present the output performance of the two velocity closed-

loops when the bed system travels on the granite surface.  

    

0.4 1.6 2.1 15 

0.6 1.6 3.3 14 

0.8 1.7 2.7 12 

1 1.8 2.8 13 

Table 4.1:    Output performance of the linear velocity subsystem (on the granite surface) 
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0.4 2.1 3.4 11 

0.6 2 3 17 

0.8 1.4 2.6 15 

1 1.5 2.3 13 

Table 4.2:    Output performance of the angular velocity subsystem (on the granite surface) 

4.4.2.3 Experiment 3 

The final experiment was conducted for estimating the bed performance on 

various surfaces while carrying an 85kg person. Two different environmental 

conditions including a carpet surface and a cement surface were chosen to implement 

this experiment. For each environment, the experimental procedure in experiment 2 

was repeated to acquire the system outputs. Figure 4.16 illustrates the smart hospital 

bed travelling on the two different surfaces. Figure 4.17 demonstrates system outputs 

of the hospital bed when it travelled on the carpet surface in the cases of 

 and  . After extensive 

experiments, tables 4.3 – 4.6 summarise the actual output performances of the linear 

velocity closed-loop and the angular velocity closed-loop when the bed system 

moved on different surfaces with various referent velocity inputs.  

  

Figure 4.16:  The smart hospital bed travels on various environmental conditions: 

left image: carpet surface, right image: cement surface 
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Figure 4.17:  System outputs of the smart hospital bed being controlled by OMPID control with 

 in the case of travelling on the carpet surface 

The hospital bed travelling on the carpet surface 

    

0.4 1.9 2.8 12 

0.6 2.2 3.0 11 

0.8 2.3 3.1 11 

1 2.3 3.3 13 

Table 4.3:    Output performance of the linear velocity subsystem (on the carpet surface) 
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0.4 2.5 4.2 13 

0.6 2.8 4.3 14 

0.8 2.7 4.4 16 

1 2.5 4.4 13 

Table 4.4:    Output performance of the angular velocity subsystem (on the carpet surface) 

The hospital bed travelling on the cement surface 

    

0.4 1.6 2.3 13 

0.6 1.6 2.9 17 

0.8 1.7 2.8 16 

1 1.8 2.8 18 

Table 4.5:    Output performance of the linear velocity subsystem (on the cement surface) 

    

0.4 2.4 3.2 14 

0.6 1.8 2.9 18 

0.8 1.3 2.7 17 

1 1.4 2.5 19 

Table 4.6:    Output performance of the angular velocity subsystem (on the cement surface) 
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4.5 DISCUSSION 

In the first stage of the OMPID control design, the TDD decoupling 

technique is utilised to deal with the crossing effect between sub-systems in the smart 

hospital bed model. Based on the nominal dynamic model of the hospital bed system, 

the pre-compensator  is obtained. The graphs in Figure 4.5 show that the 

interaction between the system’s inputs and outputs of the hospital bed is effectively 

reduced by the decoupler . Due to this, the multivariable problem of the smart 

hospital bed is simplified into two independent scalar problems.  

For each independent scalar system, the Optimal PID control methodology is 

applied to develop an OPID controller. In order to obtain PID controllers, an exact 

model of the hospital bed system is required therefore its nominal model is adopted 

for the design stage. The initial parameters of the OPID are firstly obtained by the 

Root Locus technique then optimised by the Least Square optimisation algorithm to 

achieve the optimal performance which is verified through the simulation study. 

The real-time experiments are conducted for estimating the effectiveness of 

the proposed OMPID approach. In the first experiment, the proposed control 

algorithm effectively reduces the interconnection between the control variables of the 

hospital bed system. The comparison results between the open-loop and closed-loop 

responses of the bed system show that the OMPID controller is successfully 

implemented on the smart hospital bed system since the actual velocities are almost 

centred around the set-point. However, large overshoot and oscillations of fairly 

significant amplitude can be seen in the output responses.  

In the second experiment, the quality of the proposed controller is tested at 

various referent velocity inputs in both the simulation and real-time implementation. 

It can be seen from Figures 4.12 to 4.15 that the OMPID control approach achieves 

good performance for reducing the coupling effect. The obtained linear velocity 

controller enables the system error of the linear velocity subsystem to converge to 

zero in all cases. Conversely, the system error of the angular velocity subsystem 

fluctuates with significant amplitude around the set-point. From the results reported 

in the two tables 4.1 and 4.2, both the linear velocity controller and angular velocity 
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controller still face the problem of large overshoot. One reason to explain this 

problem is that the development of the OMPID controller is based on the nominal 

model of the smart hospital bed. Since the smart hospital bed is a multivariable 

system with uncertainties, system parametric variations affect the tracking 

performance of the controlled system. This explanation is confirmed through the 

output responses of the bed system in the section 4.4.2.3.     

In the final experiment, the smart hospital bed loaded with an 85kg person 

travelled in two different environmental conditions. The graphs in Figure 4.17 show 

that the coupling effect is decreased to acceptable levels and the performance of the 

controlled system is stable. However, the results summarised in tables 4.3 to 4.6 

indicate that the overshoot is still more than expected. In the case of moving on the 

carpet, large overshoot, long rise time and settling time can be seen in output 

responses. For a more robust performance of the smart hospital bed, we will discuss 

a neural network control strategy in the next chapter.  
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CHAPTER 5  . INTELLIGENT MULTIVARIABLE 

CONTROL STRATEGIES  

5.1 INTRODUCTION 

In the previous chapter, the dynamic model of the smart hospital bed was 

obtained by approximating it as a linear dynamic model with uncertainties. The 

derived model shows that the hospital bed is a coupled multivariable system with two 

inputs and two outputs. An Optimal Multivariable PID Control approach was 

proposed and developed for the smart hospital bed. This approach is a combination 

of a TDD decoupling technique and an Optimal PID control design. Despite 

experimental results pointing out that the coupling effect problem is successfully 

reduced by the utilisation of the OMPID control, a large overshoot can be seen in 

system outputs. Moreover, system uncertainties affect the overall system when the 

hospital bed travels in different environmental conditions.  

In this chapter, an advanced operator-following control strategy is introduced 

and developed for the smart hospital bed. The design integrates a neural network 

based operator detection algorithm, a PID based operator-following strategy and an 

intelligent multivariable low-level control method. First, the advanced operator-

detection enables the smart hospital bed to identify the operator with a high accuracy. 

Then, two PID controllers are designed for generating referent velocities. Finally, the 

advanced low-level controller is developed to provide robust performance for the 

smart hospital bed under the effect of system uncertainties.  

  The proposed intelligent multivariable low-level control strategy is derived 

from a combination of a two-phase diagonal decoupling technique and an optimal 

neural network control design. In this combination, the decoupling technique is an 

extension of the Triangular Diagonal Dominance decoupling technique introduced in 

the previous chapter. Through the proposed diagonal decoupler, the hospital bed 

multivariable system is simplified into two independent scalar systems with 

uncertainties. Based on the advantages of the neural network, including the ability to 
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map nonlinear functions and robustness in the presence of noise, an optimal neural 

network controller is developed for each independent scalar subsystem to deal with 

the parametric uncertainty problem of the hospital bed system.  

The chapter is organised as follows. Firstly, the advanced operator-following 

control strategy for the smart hospital bed is presented in section 5.2. Then, section 

5.3 describes an optimal multivariable neural network control algorithm in detail. In 

the next section, the controller design and various experiments are provided to 

estimate the performance of the proposed control approaches. Finally a discussion 

can be found in the last part of this chapter. 

5.2 ADVANCED OPERATOR-FOLLOWING CONTROL STRATEGY 

With the aim of supporting the smart hospital bed during patient 

transportation, an advanced operator-following control strategy is proposed. This 

strategy enables the smart hospital bed to follow an operator (such as a clinical staff 

member or an autonomous navigation robot) at a desired distance. In addition, the 

direction of the smart bed constantly faces the operator. The structure of the 

proposed control approach contains a neural network based operator detection 

algorithm, an operator-following strategy and an advanced low-level control method, 

as shown in Figure 5.1.  

Recently, a laser range finder (LRF) capable of radially measuring the 

straight-line distance in one plane has been miniaturised so it can be mounted on the 

hospital bed easily. The directivity of the LRF is very strong and its accuracy and 

resolution are also high compared with the ultrasonic sensor and the infrared ray 

sensor. Good use has been made of these characteristics of the LRF, and many 

researchers apply LRF to operator detection and tracking operations. Despite various 

algorithms having been proposed to detect the target by using a LRF, none of the 

studies have been related to the neural network classification to identify the operator. 

Due to the neural network being equipped with so many desirable properties 

including experience based learning, the ability to generalise and the ability to map 
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nonlinear functions, a neural network classifier is integrated into the proposed 

advanced control strategy. 

  

 

Figure 5.1:   Advanced operator-following control strategy 
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5.2.1 Neural network based operator detection  

In order to enable the neural network classifier to detect the operator, a 

feature extraction procedure is first implemented to remove redundant information 

from the laser data and then determine the feature parameters of the target and non-

target objects which are represented by the remaining data. These feature parameters 

are utilised as inputs for the neural network classifier. The details of the proposed 

feature extraction procedure are described in section 3.3. 

To apply the proposed neural network classifier in real-time implementation, 

it is first trained to obtain the optimal network structure and its optimal weights. In 

Chapter 3, four different training algorithms were introduced and implemented on 

the smart hospital bed. Experimental results in section 3.5.1 showed that the 

Levenberg-Marquardt training algorithm achieved the best performance when 

detecting the operator. As a result, the LM algorithm is chosen for the training 

process when developing the neural network classifier for the advanced operator-

following control strategy. After extensive training, the optimal neural network 

structure and its optimal weights are derived from the best performance of the 

training process. In our study, the average result and best performance of the NN-LM 

based operator detection algorithm are presented in table 5.1 as follows.  

NN-LM Training Validation Testing 

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) 

Average result 91.24 90.58 91.15 86.37 91.65 88.56 

Best performance 93.45 92.18 92.43 88.64 92.41 89.8 

Table 5.1:   Results of NN-LM based operator detection algorithm 

5.2.2 Operator-following strategy  

Through the neural network based classifier, the operator is identified. Its 

position is employed for calculating the distance and angle errors between the smart 

bed and the operator. As discussed in section 3.4, our aim is to guarantee that the 
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smart hospital bed follows the operator with a fixed desired distance and the 

direction of the smart bed constantly faces the operator. This means that the distance 

and angle errors converge to zero during the bed’s operation. To achieve this, two 

PID controllers are employed and are shown as follows:  

                                                          (5.1) 

                                                      (5.2) 

where  and  denote the distance error and angle error between the hospital bed 

and the operator, respectively; ,  and  are gains of the linear velocity 

controller and ,  and  are gains of the angular velocity controller. The 

details of the proposed operator-following control strategy are presented in Chapter 3 

(section 3.4). After obtaining the linear velocity and angular velocity values from the 

two PID controllers, these velocities are utilised as the reference inputs of the low-

level controller.  

5.2.3 Neural multivariable low-level control  

For other wheeled mobile systems such as wheeled mobile robots, or 

powered electrical wheelchairs, referent velocities obtained from the operator-

following controller are often introduced directly to the mobile system since the 

researchers assume that dynamic factors do not significantly affect the mobile system. 

However, the smart hospital bed system is a highly nonlinear system therefore the 

assumption of neglecting system dynamics is impractical. In fact, there are various 

dynamic factors impacting on the system such as internal system uncertainties, 

environmental conditions (hard platform, glass, high friction way) and even the 

obvious case of a patient lying on the bed (especially with heavy patients, over 200 

kilos). These factors affect the performance of the smart bed during its operation. 

Therefore, in order to enhance the hospital bed performance while following the 

operator, the reference velocities are introduced to a neural multivariable low-level 

controller. This advanced low-level controller can cope well with the uncertain 

dynamic parameters of the hospital bed system. The details of the intelligent 

multivariable low-level control algorithm are shown in the next section.  
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5.3 OPTIMAL MULTIVARIABLE NEURAL NETWORK CONTROL  

The optimal multivariable neural network control approach is a combination 

of a two-phase diagonal decoupling technique and an optimal neural network control 

design. In the first design stage, the pre-compensators are utilised to fully eliminate 

the crossing effects between the control inputs and outputs of the multivariable 

system. After decoupling, the obtained model of the hospital bed has a diagonal 

structure. In addition, the hospital bed system is decomposed into two independent 

single variable systems consisting of the linear velocity  subsystem and angular 

velocity  subsystem. Based on the work of Nguyen T. N. (2009), an optimal 

neural network controller is developed for each independent scalar subsystem. The 

optimal multivariable neural network control structure with two design stages is 

presented in Figure 5.2.  

 

Figure 5.2:   Optimal multivariable neural network control structure for a smart hospital bed 

5.3.1 Stage 1: Two-phase diagonal decoupling technique   

In theory, this technique aims to construct pre-compensators so that the 

compensated system has a diagonal structure. Firstly, the triangularisation phase 

takes responsibility for seeking the first pre-compensator so that the compensated 

system has a triangular structure with the TDD property. Then, the diagonalisation 

phase plays the role of searching for the second pre-compensator so that the 

compensated system has a diagonal structure. Details of the two-phase diagonal 

decoupling technique are described as follows:  
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Triangularisation phase 

Consider a smart hospital bed whose transfer function matrix is given by a 

proper square  plant . The aim of this phase is to find the first pre-

compensator  so that the compensated plant  has a 

triangular structure. This triangular structure is obtained with the use of the TDD 

decoupling technique in chapter 4.  

Diagonalisation phase  

In this phase, a theorem introduced by Nguyen et al (2014) is utilised to 

search the second compensator so that the compensated plant is diagonal.  

Given the row-normalised matrix A(s) of the triangular matrix  as follows:  

                                                                                     (5.3) 

where  

if the row-normalised matrix A(s) of the triangular matrix is stable then there exists a 

pre-compensator E(s) such that  

                                                                                     (5.4) 

with is proper and diagonal and E(s) is found as  

                                  (5.5) 

where  is a diagonal polynomial matrix chosen so that  is stable 

and proper. 

5.3.2 Stage 2: Optimal neural network control design   

Through the two-phase diagonal decoupling technique, the smart hospital bed 

system is simplified to two independent scalar systems including a linear velocity 

subsystem and an angular velocity subsystem. For each independent scalar system, 

the optimal neural network control algorithm is applied to let the output track the 
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desired reference input. The optimal neural network control scheme for each velocity 

subsystem is presented in Figure 5.3.  

 

Figure 5.3:   Optimal neural network control structure 

One way to design the neural network controller is through utilisation of the 

state space model of the velocity subsystem. After being decoupled, the velocity 

subsystem remains nonlinear. Therefore, its state space model is expressed as 

follows:  

                                                     (5.6)   

where:  

-  denotes the system state. 

-  represents the control input.  

-  denotes the system matrix, the input matrix and the output matrix, 

respectively. 

-  and  are the uncertainty matrices. 

Assume that  and  are bounded, the discrete dynamic state space model 

(5.6) of the velocity subsystem can be represented by three state space models 

including a nominal state space model, an upper bounded state space model and a 

lower bounded state space model, shown as follows:  

                                                                   (5.7) 

                                                                     (5.8) 
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                                                                        (5.9) 

In the proposed control scheme, an optimal neural network controller is a 

feed-forward multiplayer neural network with a structure including one input layer, 

one hidden layer and one output layer. The structure of the optimal neural network 

controller is presented in Figure 5.4.  

 

                      Figure 5.4:   Neural network control structure 

Computation of output control  

It can be seen from Figure 5.4, the output of the neural network controller at time  

is computed as follows:  

                                                                (5.10) 

                                                                                      (5.11) 

                                                             (5.12) 

where: 
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-  is  node of the input layer  

-  is the weight between  node of input layer and  node of a hidden 

layer. 

-  is the bias of  node of the hidden layer.  

- is the weight between  node of the hidden layer and the output node.  

- is the bias of the output node.  

-  represent the number of the input and hidden nodes, respectively.  

- denotes the discrete time index.  

-  is the activation function of hidden layer, as shown in the equation below: 

                                                                                                        (5.13)                        

Weight updating rules   

The system error is given by:  

                                                                     (5.14) 

The control law is designed to enable the system error  to converge to zero, 

or at least to an acceptable tolerance with a desired finite time of . To do this, 

firstly, the cost function of the neural network controller is defined as follows:  

                                            (5.15) 

Subsequently, in order to minimise the cost function E, it is necessary to change the 

weights of the neural network controller to the direction of a negative gradient. 

Utilising the Gradient Descent algorithm, the resulting functions are:                                     

                             (5.16)   

                                  (5.17)    

                           (5.18)         

                                (5.19) 
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where  and  are learning rates of the output layer and hidden layer weights, 

respectively.  

For a given neural network control structure, the last term of the equations (5.16) to 

(5.19) can be easily calculated by the following equations:  

                   (5.20)  

                                                     (5.21) 

           (5.22)       

               (5.23) 

The third term in equations 5.16 – 5.19 is designated as the Jacobian of the velocity 

subsystem, shown as follows:  

                                                                                                     (5.24) 

Utilising the state space equation 5.4 and applying the following chain, it is then easy 

to calculate the plant Jacobian directly from the velocity subsystem.                   

                                               (5.25) 

The second and the fourth terms in equations 5.16 – 5.19 can be directly calculated 

as follows:  

                                                                                            (5.26) 

                                                                                                       (5.27) 

Finally, the updating rules for the neural network controller are:  

                                                                            (5.28) 

                                                                                  (5.29) 

                                                                               (5.30) 
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                                                                               (5.31)  

In these equations, the terms , , ,  are derived from 

equations 5.16 – 5.27.                        

Training algorithm 

- Step 1: Initialisation  

 All weights of the intelligent controller consisting of , , ,  are 

initialised to very small values.  

 The learning rates   are chosen at small positive values.  

 Set the iteration number k = 0. 

 Set E(0) so that it is greater than the maximum tolerable error  this 

being set to a relatively small value. 

 Set the maximum iteration   

 Set the maximum tolerable error  

- Step 2: Forward propagation  

 Find error value  between the referent input  and the 

output response  of the velocity subsystem.  

 Set inputs for the neural network by passing the system error through the 

tapped delay line block.  

 Calculate the control signal using the following equation:  

 (   

               with:  

 

  

 Apply the obtained control signal to the velocity subsystem.  

- Step 3: Backward propagation  

 Utilise equation 5.15 to find the cost function value . 

 Update new weights of the neural network for the next iteration using the 

equations from 5.16 to 5.31.  

- Step 4: Stopping criteria  
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 The training process will stop and go to step 5 if  

 Otherwise,  and go to step 2.  

- Step 5: Finish training  

 Stop training and save the optimal weights of the neural network at the last 

iteration.  

5.4 RESULTS 

To validate the proposed intelligent control approaches, the neural 

multivariable controller was firstly designed for the smart hospital bed. Accordingly, 

various experiments were implemented in real-time to estimate the efficiency of the 

obtained intelligent controller and the advanced operator-following control strategy.   

5.4.1 OMNN controller design  

5.4.1.1 Stage 1: Two-phase diagonal decoupler  

In order to design pre-compensators so that the compensated model has a 

diagonal structure, the nominal model of the smart hospital bed was utilised. 

According to the methodology introduced in section 5.3, two phases consisting of a 

triangularisation phase and diagonalisation phase were required in the diagonal 

decoupling design.   

Triangularisation phase  

Chapter 4 provided full details of the TDD decoupling procedure for the 

hospital bed system. The obtained TDD decoupler was given by:  

                                                                                    (5.28) 

The compensated plant P(s) was calculated as follows:  
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                                                                                   (5.29)               

    

(5.30) 

Diagonalisation phase 

             (5.31) 

                                                                                      (5.32) 

Clearly,  is stable and proper, therefore the pre-compensator E(s) was obtained 

as follows:  

                                                                 (5.33) 

As a result, the nominal compensated model for the smart hospital bed was depicted 

as follows:  

                                                                                         (5.34) 

  =      

(5.35) 

Therefore, by using the two pre-compensators H(s) and E(s), the compensated model 

has a diagonal structure.  

Next, the DD property of the decoupled upper-bounded model and decoupled 

lower-bounded model was checked. To do this, their transfer functions  and 

 were presented as follows:  

                                                                                         (5.36) 
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                                                                                          (5.37) 

  

 (5.38) 

               

(5.39) 

The step response of the decoupled system ,  and  were 

presented in Figures 5.5.   

  

  

Figure 5.5:  Opened-loop of the decoupled transfer matrices ,  and  using 

the diagonal decoupling technique 
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It can be seen from the two equations 5.38 and 5.39 that the off-diagonal 

elements of both transfer functions have very small values of 0.005 and 0.0009. 

Moreover, the off-diagonal transfer functions are stable and appropriate. As a result, 

the two pre-compensators H(s) and E(s) reduce the multivariable control problems 

into two independent scalar problems.  

5.4.1.2 Stage 2: Optimal neural network controllers 

Two neural controllers being independently designed for the linear velocity 

closed-loop and the angular velocity closed-loop are denoted as and , 

respectively. The desired performance of the two subsystems was chosen as follows:  

- Settling time  

- Rise time  

- System overshoot  

- System error converges to zero or acceptable tolerance 

 for the linear velocity subsystem 

The element (1,1) of the decoupled hospital bed dynamic model represented 

the transfer function of the linear velocity subsystem. Since the dynamic model of 

the smart hospital bed was expressed by three models including a lower bounded 

model, a nominal model and an upper bounded model, the decoupled dynamic model 

was also represented by three corresponding decoupled models ,   and 

. Therefore, three transfer functions for the linear velocity subsystem were 

given by:  

                                                                            (5.40) 

                                                                  (5.41) 

                                                                    (5.42) 

In order to design the neural network controller for the linear velocity 

subsystem, its transfer functions were transformed into the discrete time dynamic 
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state space with a sampling time Ts = 0.1 (s). Equations 5.43, 5.44 and 5.45 

represented the nominal transfer function, lower bounded function and upper 

bounded function of the linear velocity subsystem in a discrete state space form, 

respectively.  

                                       (5.43) 

                                      (5.44) 

                                           (5.45) 

According to the equations 5.24 and 5.25, the plant Jacobian calculations for 

the three equivalent models were obtained as follows:  

                                                                                       

                                                                                (5.46) 

                                                                                   

After doing extensive simulations and experiments, the optimal neural 

network structure for the  of the linear velocity subsystem was (3,5,1) which 

corresponded to three input nodes, five hidden nodes and one output node. The 

training procedure described in section 5.3.2 was utilised for training the proposed 

neural network controller. During the training process, the learning rates  and  

were chosen as relatively small. These optimal values were chosen as   and 

 = 0.005. The constant  was chosen as 2.  

In order to improve the generalisation property of the neural network 

controller, three decoupled models of the linear velocity subsystem were 

alternatively utilised in the training procedure. Additionally, an extensive number of 
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training epochs with various values of the input reference were conducted. The 

training epoch consisted of 100 iterations, equivalent to 10 seconds with sampling 

time Ts = 0.1s.   

After the training procedure, optimal weights were obtained as follows for the 

neural network controller:  

                                 (5.47) 

     

where , , ,  are weights and biases for the hidden-output and input-

hidden layers of the  .  

In order to estimate the performance of the obtained neural network controller 

, the step reference input was introduced. Figure 5.6 shows the output 

responses of three linear velocity closed-loop systems equivalent to the nominal 

model, lower bounded model and upper bounded model.   

 

Figure 5.6:   System outputs of three representational sub-systems (1,1), P1DD(1,1) and  

P2DD(1,1) these being controlled by  
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  for the angular velocity subsystem 

The transfer function of the angular velocity subsystem is expressed by the 

element (2,2) of the decoupled hospital bed dynamic model. Similar to the linear 

velocity subsystem, the three transfer functions representing the angular velocity 

subsystems were as follows:   

                                                             (5.48) 

                                                     (5.49) 

                                                         (5.50) 

Also utilising the discrete state space model with a sampling time of Ts = 0.1 (s) to 

design the neural network controller, three corresponding discrete state space models 

of the angular velocity subsystem were shown as follows:  

                            (5.51) 

                           (5.52) 

                                  (5.53) 

In accordance with the equations 5.24 and 5.25, the plant Jacobian for the 

three corresponding models was calculated as follows:  

                                                                                       

                                                                             (5.54) 
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The training procedure introduced in section 5.3.2 was also utilised to train 

the neural network controller for the angular velocity subsystem. After extensive 

simulations and experiments, the neural network structure (3,5,1) was employed for 

the angular velocity controller . The training parameters were chosen as 

follows:  

- The learning rates  and  were chosen as 0.01 and 0.015, respectively. 

- The constant  was chosen as 4. 

- Training epoch included 100 iterations.  

 With the aim of improving the generalisation property of the neural network 

controller, three decoupled models of the angular velocity subsystem were utilised 

during the training process. In addition, similar to the training work of the linear 

velocity controller, an extensive number of training epochs with various values of the 

input reference were conducted in the training work of the angular velocity controller.  

After the training procedure, optimal weights for the neural network 

controller were obtained as follows:  

                           (5.55) 

     

where , , ,  are weights and biases for the hidden-output and input-

hidden layers of the  .  

For testing the performance of the obtained neural network controller 

, the step reference input was introduced. Figure 5.7 presents the system 

outputs of three angular velocity closed-loop systems corresponding to the nominal 

model, lower bounded model and upper bounded model.   
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Figure 5.7:   System outputs of three representational sub-systems (2,2), P1DD(2,2) and  

P2DD(2,2) these being controlled by  

5.4.2 Experimental results  

In order to verify the proposed control approaches, four real-time experiments 

were implemented in this section. The first experiment involved comparing results 

between the closed-loop responses of the system controlled by the intelligent 

multivariable low-level controller and those controlled by the OMPID controller. 

Like the experiments 2 and 3 of the previous chapter, experiments 2 and 3 of this 

chapter were conducted for testing the quality of the proposed low-level controller 

when the smart hospital bed carried a person and travelled in different environmental 

conditions at various velocities. In the final experiment, the operator-following task 

was implemented to estimate the performance of the advanced operator-following 

control strategy.  

5.4.2.1 Experiment 1 

In this experiment, the smart hospital bed loaded with a 75kg person moved 

on a granite surface. In the first case, the linear velocity reference is set at  

while simultaneously keeping the desired value of the angular velocity at . 

In the second case, the desired value of the linear velocity is kept at  while 

setting the angular velocity reference at . The closed-loop step responses 
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of the hospital bed system were observed and measured in both cases. Figure 5.8 

presents a comparison of the bed performances controlled by the two proposed 

control approaches. 

  

  

Figure 5.8:   Comparison between OMNN control approach and OMIPD control approach 

5.4.2.2 Experiment 2 

In this experiment, the environmental condition was kept as in experiment 1. 

By introducing various step input values of the linear velocity and angular velocity, 

the system outputs of the smart hospital bed were measured and plotted. Figures 5.9, 

5.10, 5.11 and 512 show the system responses with 

, 

, , respectively. In each figure, the 

output of the linear velocity subsystem is represented by element (1,1) whereas the 

output of the angular velocity subsystem is represented by element (2,2). Elements 

(1,2) and (2,1) depict the coupling effects in the hospital bed dynamics.        
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Figure 5.9:   The closed-loop response of the hospital bed dynamics being controlled by 
OMNNC with  

  

  

Figure 5.10:   The closed-loop response of the hospital bed dynamics being controlled by 
OMNNC with  
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Figure 5.11:   The closed-loop response of the hospital bed dynamics being controlled by 
OMNNC with  

  

  

Figure 5.12:   The closed-loop response of the hospital bed dynamics being controlled by 

OMNNC with  
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Tables 5.2 and 5.3 were drawn up for analysing the output performance of the 

two velocities loop when the bed travelled on the granite surface, shown as follows: 

    

0.4 1.6 1.8 1 

0.6 1.7 1.8 2 

0.8 1.8 2.0 2 

1 1.9 2.1 2 

Table 5.2:    Output performance of the linear velocity subsystem (on the granite surface) 

    

0.4 1.5 1.7 3 

0.6 1.4 1.6 2 

0.8 1.4 1.7 1 

1 1.5 1.7 2 

Table 5.3:    Output performance of the angular velocity subsystem (on the granite surface)  

5.4.2.3 Experiment 3 

In the third experiment, the smart hospital bed loaded with an 85 kg person 

travelled on two different surfaces, a carpet surface and a cement surface. In each 

situation, various referent velocity inputs were introduced. Figure 5.13 shows the 

performance of the smart hospital bed when it moved on the carpet surface with two 

cases:  and . After 

extensive experiments, four summary tables 5.4 to 5.7 related to output responses of 

the linear velocity and angular velocity loop were obtained.  
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Figure 5.13:   Output responses of the smart hospital bed being controlled by OMNNC with 

 in the case of travelling on the carpet surface 

The hospital bed travelling on the carpet surfaces 

    

0.4 1.7 1.9 2 

0.6 1.8 2.0 3 

0.8 1.9 2.1 2 

1 1.8 2.2 2 

Table 5.4:    Output performance of the linear velocity subsystem (on the carpet surface) 
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0.4 1.7 1.9 3 

0.6 1.8 2.0 2 

0.8 1.8 2.0 2 

1 1.9 2.1 3 

Table 5.5:    Output performance of the angular velocity subsystem (on the carpet surface) 

The hospital bed travelling on the cement surfaces 

    

0.4 1.5 1.7 4 

0.6 1.6 1.9 3 

0.8 1.8 2.0 2 

1 1.8 2.1 3 

Table 5.6:    Output performance of the linear velocity subsystem (on the cement surface) 

    

0.4 1.5 1.7 3 

0.6 1.6 1.8 2 

0.8 1.7 1.9 4 

1 1.7 2.0 3 

Table 5.7:    Output performance of the angular velocity subsystem (on the cement surface) 
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5.4.2.4 Experiment 4 

The final experiment was conducted for validating the effectiveness of the 

advanced operator-following control strategy. Details of the experiment were derived 

from the experiment 3.5.2. The autonomous navigation robot (called Turtlebot) was 

still chosen as the operator. Experimental results of the operator-following task are 

shown below:  

 

Figure 5.14:   Trajectory of the hospital bed and operator 
 

 

Figure 5.15:   Linear velocity of the hospital bed and operator 
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Figure 5.16:   Angular velocity of the hospital bed and operator 

5.5 DISCUSSION 

For the smart hospital bed system, the proposed advanced operator-following 

control strategy provides an effective solution for enhancing the hospital bed 

performance when it follows an operator. In the proposed approach, an intelligent 

multivariable low-level controller is developed for guaranteeing the stability of the 

overall system under the effects of the parameter uncertainties. 

In the first design stage of the proposed low-level control approach, the 

diagonal decoupling technique significantly reduces the multivariable hospital bed 

dynamics. Through the pre-compensators, two independent velocity subsystems are 

obtained. For each velocity subsystem, there are three corresponding decoupled 

models consisting of the nominal model, the lower bounded model and the upper 

bounded model. These models are utilised alternatively in the training process for 

obtaining the optimal neural network controllers in the second design stage of the 

proposed control method. Figures 5.6 and 5.7 show that the two neural network 

controllers and , can guarantee the desired performance of the two 

sub-systems even in the presence of system uncertainties.  
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With the aim of validating the proposed intelligent low-level control method, 

the first real-time experiment is conducted by introducing step inputs to the hospital 

bed system. Output performance of the system controlled by the advanced low-level 

controller is compared with those of the OMPID control approach. The experimental 

results show that the proposed control approach not only reduces the coupling effects 

between control variables in the hospital bed system but also drives the actual 

velocities to track the desired velocities better than the OMPID control method.  

In the presence of system uncertainties, the effectiveness of the intelligent 

multivariable low-level control is also confirmed through the results of the 

experiments 2 and 3. The experiment 2 shows the hospital bed performance at 

various velocity step inputs in the case of travelling on the granite surface and being 

loaded with a 75kg person. On the other hand, the experiment 3 is conducted for 

estimating the quality of the proposed low-level controller when the smart hospital 

bed carries an 85kg person and moves in two different environmental conditions 

consisting of the carpet surface and the cement surface. It can be seen from Figures 

5.9 to 5.13 that the actual outputs of both velocities subsystems can track the 

reference velocities with small error. In addition, results reported in the six tables 5.2 

to 5.7 indicate that the performance of the neural network multivariable controller is 

satisfactory under the design conditions including the short rise time and settling 

time and small overshoot.  

The final experiment presents the operator-following performance of the 

smart hospital bed when applying the advanced operator-following control strategy. 

Compared with the experimental results in section 3.5.2, it can be observed that the 

hospital bed performance is improved.  
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CHAPTER 6  . CONCLUSION AND FUTURE 

RESEARCH DIRECTIONS 

6.1 CONCLUSION 

The objective of this thesis was to develop advanced assistive control 

strategies for the smart hospital bed. The proposed approaches were divided into 

three major aspects including the operator detection algorithm, the advanced low-

level control method and the advanced operator-following control strategy. These 

three aspects are crucial for developing the operator-following function of the smart 

hospital bed.   

Through the literature review, the research direction on the development of 

the operator-following solution for the smart hospital bed is practical and innovative. 

Compared with current patient transport solutions, the operator-following solution 

offers more benefits such as a reduction of the physical demands of nursing work and 

the risks associated with patient transportation. Another advantage is that following 

an autonomous navigation robot enables the hospital staff to completely concentrate 

on patient-care activities. In terms of developing advanced functions for the smart 

hospital bed, the work done in this doctoral study is unique.  

Chapter 3 was about the investigation and development of the operator 

detection algorithm for the smart hospital bed. This work was necessary for the bed 

system since it allowed the bed to identify the target which needs to be followed. The 

main contribution of this chapter was the design of two operator detection algorithms 

based on a single laser range finder. It enabled the smart bed to classify the operator 

in a complex space including the operator and various non-target objects. The 

algorithms consisted of the Gaussian distribution method and the neural network 

based operator detection method.    

 Experimental results showed that the proposed methods successfully 

detected the operator with high accuracy. The average testing results of the GDM 

based operator detection algorithm were 89.2% for sensitivity and 81.4% for 
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specificity whereas the best performance of this algorithm was 91% for sensitivity 

and 88.56% for specificity. Comparing the performance of the GDM classifier with 

that of the NN-LM classifier confirmed that the NN-LM classification approach 

detected the operator more accurately than the GDM classification approach. There 

were a sensitivity of 91.65% and a specificity of 88.56% in the mean testing results 

of the NN-LM classifier. In addition, the best performance of the NN-LM classifier 

was a 92.41% true positive rate and a 89.8% true negative rate.  

Chapter 3 also involved the operator-following performance of the smart 

hospital bed. This was conducted from a combination of the NN-LM based operator 

detection method and a PID based operator-following control strategy. Real-time 

implementation of the smart hospital bed showed that the bed system successfully 

detected and followed the target. The trajectory of the wheeled mobile system was 

acceptable when compared with that of the operator.    

Chapter 4 described the work for solving the dynamics problem of the 

hospital bed system. It commenced with a construction of an approximate 

multivariable dynamic model of the smart hospital bed. The obtained model was 

important for developing multivariable low-level control algorithms. Based on this 

model, an Optimal Multivariable PID control strategy was developed for the bed 

system. Technically, the OMPID approach combined the Triangular Diagonal 

Dominance decoupling technique and the Optimal PID control method. The TDD 

decoupling technique provided a very effective solution for reducing the 

multivariable control problem into a series of scalar control problems. Thanks to this 

technique, the design procedure and its computational complexity were simplified.  

After being decoupled, an OPID controller was developed for each independent 

scalar subsystem. 

 Real-time implementation of the smart hospital bed system revealed that the 

Optimal Multivariable PID controller effectively reduced the coupling effect between 

the control variable’s inputs and outputs. The real-time results also showed that the 

OMPID controller successfully drove the actual velocities to track the reference 

velocities in various environmental conditions. The mean rise time, settling time and 
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overshoot of the linear velocity subsystem were around 1.8s, 2.8s and 14% whereas 

those of the angular velocity subsystem were about 2s, 3.3s and 15%, respectively. 

Chapter 5 introduced the proposal and development of intelligent control 

algorithms for the smart hospital bed. One of the proposed control approaches was 

the optimal multivariable neural network control algorithm. The OMNN control 

method was developed for guaranteeing the stability of the overall bed system under 

the effect of uncertainties. This algorithm was a combination of a two-phase diagonal 

decoupling technique and an optimal neural network control design. Similar to the 

OMPID control approach, the OMNN control algorithm also required two design 

stages. To simplify the control structure, the first design stage focused on searching 

pre-compensators so that the resulting compensated system had a diagonal structure. 

After the diagonalisation, the hospital bed system was decomposed into two scalar 

sub-systems. In the second design stage, the optimal neural network control method 

was employed to develop independent controllers for two corresponding velocity 

subsystems. Unlike the OMPID method, the ONNC approach utilised three dynamic 

models consisting of the lower bounded model, the nominal model and the upper 

bounded model for developing the advanced controller. During the training 

procedure, these three dynamic models were alternatively employed for calculating 

the optimal weights of the neural network controllers. Accordingly, the obtained 

intelligent controller can deal with the variation of the dynamic parameters of the 

hospital bed system model.  

The effectiveness of the intelligent multivariable low-level control strategy 

was confirmed via the real-time smart hospital bed experiments. The experimental 

results showed that the OMNN controller significantly decreased the decoupled 

effect problem. In various environmental conditions, the results also demonstrated 

that the OMNN controller guaranteed the stability of the overall bed system and 

satisfied its performance. The average rise time, settling time and overshoot were 

around 1.7s, 1.9s and 2% for both velocity subsystems, respectively. Comparing the 

output responses of the system controlled by the OMNN controller with those 

controlled by the OMPID controller, the OMNN controller provided a better 

performance than the OMPID controller.   
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 The alternative control approach was the advanced operator-following 

control strategy which was derived from a mixture of a neural network based 

operator detection algorithm, PID controllers and an intelligent multivariable low-

level control method. In this method, the neural network based operator detection 

algorithm played the role of detecting the operator within the real environment. The 

Levenberg-Marquardt training algorithm was utilised to design the neural network 

classifier. The PID controllers took the responsibility of guaranteeing the desired 

distance and orientation between the smart hospital bed and the operator whereas the 

intelligent multivariable low-level controller enabled the bed to track its desired 

performance under the effect of uncertainties. Experimental results revealed that the 

operator-following performance of the smart hospital bed was enhanced when 

utilising the advanced operator-following control strategy.   

6.2 FUTURE RESEARCH DIRECTIONS 

Besides the proposed methodology described throughout this thesis, some 

further research directions should be concerned with improving the system 

performance in terms of transporting a patient. The first work is to integrate 

navigation and obstacle avoidance algorithms into the autonomous steering system of 

the bed. These will allow the bed to adapt to various situations during patient 

transport. Moreover, this autonomous steering system can be combined with the user 

intention for the purpose of developing a semi-autonomous mechanism which will 

enable the user to share a control task with a smart bed system. In clinical 

environments, this solution is valuable and convenient for the smart hospital bed 

since it allows the bed system to flexibly collaborate with the hospital staff, the 

autonomous navigation robot or a person with a disability in order to perform patient 

transportation. Moreover, it is also effective in several special cases such as avoiding 

high-speed obstacles which is in the unviewable field of the laser scanner or in lost 

tracking the operator.  

The second future research direction is to improve the hardware system for 

detecting the operator and obstacles. Despite the laser range finder’s ability to 

provide environmental information with high accuracy, resolution and reliability of 
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measurement, it can only scan the environment in a single plane with a 240o field of 

view. Owing to this, the laser scanner cannot detect objects placed behind the laser or 

below or above its scanning plane. A way to deal with this drawback is through the 

utilisation of a sensor fusion system. Various sensor fusion systems can be integrated 

into the smart hospital bed such as a combination of multiple cameras and laser 

scanners or a mixture of a sphere camera and a Light Detection And Range (LiDAR) 

device. These sensor fusion systems enable the smart hospital bed to observe the 

operating environment with a 360o field of view.  

In this doctoral study, the intelligent multivariable low-level control strategy 

is a combination of a diagonal decoupling technique and an optimal neural network 

control method. In recent times, deep learning has been attracting a great deal of 

attention from worldwide researchers. In theory, the number of hidden layers and 

neurons in the deep learning network are more than those of the conventional neural 

network. In addition, the deep learning network provides a powerful set of 

techniques for the learning process of a network. As a result, many large and 

complex problems which could not be figured out by the conventional neural 

network are able to be solved by deep learning methods. Despite deep learning being 

utilised in various applications consisting of pattern recognition and classification 

problems, research in its application to the field of automatic control has been largely 

lacking. Therefore, a significant contribution for future research could be the 

application of the deep learning framework on the high-level control and low-level 

control strategies of the smart hospital bed system.  
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APPENDIX A.  ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) are computational models inspired by the 

functioning of the human brain. They consist of simple but highly interconnected 

computing devices, each of which imitates the biological neurons (Alexakis et al. 

2003). In theory, neural network models are created by single neurons whose 

operation is modelled by mathematical equations. These individual neurons are 

connected together as a network. Each neural network has its learning laws according 

to which it is capable of adjusting parameters of the neurons. 

The neuron 

The neuron is a program that learns concepts, i.e. it can learn to respond with 

True (1) or False (0) for inputs we present to it, by repeatedly “studying” examples 

presented to it. The structure of a single neuron is very simple. There are two inputs, 

a bias and an output. A simple schematic diagram is shown in figure A.1. 

 

Figure A.1:   An artificial neuron with one input and bias 
 

The scalars inputs pi are transmitted through connections that multiply their 

strength by the scalar weight wi to form the product wipi, again a scalar. All the 

weighted inputs wipi are added and to i i
w p we also add the scalar bias b. The 

result is the argument of the transfer function f, which produces the output a. The 

bias is much like a weight, except that is has a constant input of 1. Each of the inputs 

and the bias are connected to the main neuron by a weight. A weight is generally a 

real number between 0 and 1. When the input number is fed into the neuron, it is 

multiplied by the corresponding weight. After this, the weights are all summed up 
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and fed through a hard-limiter. Basically, a hard-limiter is a function that defines the 

threshold values for ‘firing’ the neuron. For example, the limiter could be: 

0 0
( )

1 1
x

f x
x

                                                (A.1) 

Actually, both wiand biare adjustable scalar parameters of the neuron and such 

parameters can be adjusted so that the network exhibits some desired or interesting 

behaviours. The way a neuron learns to distinguish patterns is through modifying its 

weights, the concept of a learning rule must be introduced. In the neuron, the most 

common form of learning is by adjusting the weights by the difference between the 

desired output and the actual output. Mathematically, this can be written: 

∆wi = xiδ                                                     (A.2) 

where                            δ = (desired output) - (actual output) 

Transfer function 

The transfer function also called activation function is a monotonically 

increasing, continuous, differentiable function, applied to the weight input of a 

neuron to produce the final output. In theory, there are different types of transfer 

functions which are utilised for designing the neural network. Several common 

activation functions consisting of Log-Sigmoid, Tan-Sigmoid and Linear transfer 

functions are shown as follows:  

- Log-sigmoid transfer function  

 

Figure A.2:  Log-sigmoid transfer function 
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                                           Math expression:    
                                     (A.3) 

The sigmoid transfer function is not only natural from the statistic point of 

view but is also good squashing functions for bounded activation (Duch & 

Jankowski 1999). Its output ranges over all values between 0 and 1 and makes a 

transition from values near 0 to values near 1. The sigmoid function is commonly 

used in back-propagation networks since it is easy to calculate its derivatives. 

- Tan-sigmoid transfer function 

 

Figure A.3:   Tan-sigmoid transfer function 
 

                                          Math expression:      
                                  (A.4) 

The tan-sigmoid transfer function also called hyperbolic tangent transfer 

function is related to a bipolar sigmoid which has an output in the range of -1 to +1. 

Technically, this function is a good trade-off for neural networks, where speed is 

more important than the exact shape of the transfer function (Dorofki et al. 2012).  

- Linear (purelin) transfer function 

                            

Figure A.4:  Linear transfer function 
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Math expression:    a = f(n) = n                                  (A.5) 

In fact, the relationship between input and output of most real models is 

nonlinear. However, in some cases, real models operated within nominal parameters 

have input/output behaviour that is close enough to linear. Purelin transfer function is 

utilised to represent the input/output relationship in this situation.  

Single-layer feed-forward network 

A layered neural network is a network of neurons organised in the form of 

layers. The right image of Figure A.5 shows a neuron with a single R-element input 

vector. In this neural network structure, the individual element inputs  

are multiplied by weights w11, w12, …, w1R and the weighted values are fed to the 

summing junction. Their sum is simply Wp, the dot product of the (single row) 

matrix W and the vector p. The net input to the transfer function f is n, the sum of the 

bias b and the product Wp. This sum is passed to the transfer function f to get the 

neuron’s output a, which in this case is a scalar. Note that if there were more than 

one neuron, the network output would be a vector (Demuth H. 2001).  

 

Figure A.5:   Single-layer network of S logsig neurons 
 
 

The input vector elements enter the network through the weight matrix W. 
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                                           (A.6) 

The row indices on the elements of matrix W indicate the destination neuron 

of the weight and the column indices indicate which source is the input for that 

weight.In other words, this network is strictly of a feed forward type. The 

designation “single-layer” refers to the output layer of computation nodes. The input 

layer of source nodes does not count, because no computation is performed there. 

A one-layer network with R input elements and S neurons are shown in figure 

A.5. In this network each element of the input vector p is connected to each neuron 

input through the weight matrix Wp. The ith neuron has a summer that gathers its 

weighted inputs and bias to form its own scalar output n(i). The various n(i) taken 

together form an S-element net input vector n. The sum, n, is the argument of the 

transfer function f. Finally, the neuron layer outputs form a column vector a. It is 

common for the number of inputs to a layer to be different from the number of 

neurons. A layer is not constrained to have the number of its inputs equal to the 

number of its neurons. 

Multi-layer feed-forward network 

Multi-layer network may distinguish itself by the presence of one or more 

hidden layers, whose computation nodes are correspondingly called hidden neurons 

or hidden units. The function of hidden neurons is to intervene between the external 

input and the network output. By adding one or more hidden layers, the network is 

enabled to extract higher-order statistics and is particularly valuable when the size of 

the input layer is large.  

Each neuron in the hidden layer is connected to a local set of source nodes 

that lie in its immediate neighbourhood. Likewise, each neuron in the output layer is 

connected to local set variations of the source signal. 

A network can have several layers. Each layer has a weight matrix W, a bias 

vector b, and an output vector a. To distinguish between the weight matrices, output 
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vectors and so on, for each of these layers, we will append the number of the layer to 

the names for each of these variables. For instance, the weight matrix and output 

vector for the first layer are denoted as W1 and A1, for the second layer these 

variables are designated as W2, A2 and so on. The network shown above has R1 

inputs, S1 neurons in the first layer, S2 neurons in the second layer, etc. It is common 

for different layers to have different numbers of neurons. A constant input 1 is fed to 

the biases for each neuron. 

 

Figure A.6:  Two-layer tansig/purelin network 
 

The outputs of each intermediate layer are the inputs to the following layer. Thus 

layer 2 can be analysed as a one-layer network with S1 inputs, S2 neurons, and an 

S1xS2 weight matrix W2. The inputs to layer 2 is a1, the output is a2. All the vectors 

and matrices of layer 2 can be treated as a single layer network on its own. This 

approach can be taken with any layer of the network. The layers of a multi-layer 

network play different roles. A layer that produces the network output is called an 

output layer. All other layers are called hidden layers (Demuth H. 2001). Multi-layer 

networks are quite powerful. For instance, a network of three layers is used 

extensively in back-propagation neural network. Normally, no more than three layers 

are required in neurons like feed-forward networks, because a three-layer network 

can generate complex decision regions. 

Backpropagation 

Backpropagation was created by generalising the Widrow-Hoff learning rule 

to multi-layer networks and nonlinear differentiable transfer function created 

backpropagation (Mishra & Sawarkar 2012). Input vectors and the corresponding 
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output vectors are used to train the network until it can approximate a function, 

associate input vectors with specific output vectors, or classify input vectors in an 

appropriate way as defined. Networks with biases, a sigmoid layer, and a linear 

output layer are capable of approximating any function with a finite number of 

discontinuities. Standard backpropagation is a gradient decent algorithm, as is the 

Widrow-Hoff learning rule, in which the network weights are moved along the 

negative of the gradient of the performance function. The term backpropagation 

refers to the manner in which the gradient is computed for nonlinear multi-layer 

networks. There are numbers of variations on the basic algorithm which are based on 

other standard optimisation techniques, such as conjugate gradient and Newton 

methods. 

The backpropagation neural network is a feed-forward network that usually 

has hidden layers (Hasnain S.K.U 2001). The activation function for this type of 

network is generally the sigmoid function. Since the activation function for these 

nodes is sigmoid function above, the output from each node is given by:  

( )k k
i iF a                                                    (A.7) 

where ia is the total input to node i, which is given by: 

1

n
k K
i ij j i

j
w a                                              (A.8) 

Weight ijw is the weight of the connection form node j to node i. Now, as for 

perception, we will minimise the error in the network by using the gradient descent 

algorithm to adjust the weights. So the change in the weight from node j to node i is 

given by: 

K

K ij
ij

EW
W

                                                 (A.9) 

where KE is the mean square error for the Kth pattern. The error for a hidden node i is 

calculated from the errors of the nodes in the next layer to which node i is connected. 

This is how the error of the network is back propagated.  
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So, putting them all together, the change for the weight ijw , where node i is in 

a hidden layer, is given by: 

1

1

1

1

'

1

p

p

k k
k ij i j

N
k k k
k n ni j

n

N
k k k k
i i n ni j

n

w

F a w

w

                                 (A.10) 

The changes in the weights of the network, which allow the network to learn, 

are now totally defined. This generalised delta rule for backpropagation neural 

networks defines how the weights between the outputs layer and the hidden layer 

change, and how the weights between other layers change also. This network is 

called backpropagation because the errors in the network are fed backward, or back 

propagated, through the network.  

Generalisation is perhaps the most useful feature of a backpropagation 

network. Since the network uses supervised training, a set of input patterns can be 

organised into groups and fed to the network. The network will “observe” the 

patterns in each group, and will learn to identify the characteristics that separate the 

groups. Often, these characteristics are such that a trained network will be able to 

identify the correct groups, even if the patterns are noisy. The network learns to 

ignore the irrelevant data in the input patterns.  
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APPENDIX B.   AUTONOMOUS NAVIGATION ROBOT 

- TURTLEBOT 

Turtlebot bot is a low-cost robot with open source software. It was created by 

Willow Garage by Melonee Wise and Tully Foote in November 2010 (Ackerman 

2013). The structure of the Turtlebot is divided into four parts and as shown in 

Figure B.1.  

 

             Figure B.1:   The Turtlebot 

Four parts of the Turtlebot include: 

- Part A: iRobot create, 3000 mAh Ni-MH Battery Pack, 300 degrees/second 

Signgle Axis Gyro, 12V 1.5Amp Power Board Supply (for powering the 

Kinect)  

- Part B: 3D sensor of Microsoft (Kinect XBOX 360)  

- Part C: Central process unit – ThinkPad X130e with the processor of AMD 

FUSION E300, a graphic card of AMD Radeon HD 6320 500MHz turbo up 

to 600MHz and an internal hard drive of 320Gb.  

- Part D: Turtlebot frame   
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Part A – iRobot Create 

In fact, the Turtlebot is a variant of the iRobot Create. This iRobot Create was 

manufactured by iRobot and introduced in 2007. It is explicitly designed for robotics 

developments and improves the experience beyond simply hacking the Roomba 

robot. The upside and bottom side of the iRobot Create are depicted in Figure B.2 

and B.3.  

 

Figure B.2:   Upside of the iRobot Create 

 

Figure B.3:   Bottom side of the iRobot Create 
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The iRobot Create robot has several differences from the Roomba robot. 

Instead of keeping the vacuum cleaner part of the Roomba, the developer replaces it 

by a 25 pin cargo bay connector. This device includes the same signals as the serial 

port on the side, as well as including several digital inputs and outputs and motor 

drive outputs. The cargo bay connector provides four digital inputs, an analog input, 

three digital outputs, three low-side driver outputs( useful for driving motor), a 

charging indicator, a power toggle, serial TX and RX, a 5V reference, battery ground 

and battery voltage. Figure B.4 shows details of the 25 pin cargo bay connector.  

 

                             Figure B.4:   The 25 pin cargo bay connector 

iRobot Create has many types of sensors which are divided into two groups, external 

sensors and internal sensors.  

External Sensors 

Caster wheel drop Right bumper Front right cliff 

Left wheel drop Wall  Front left cliff 

Right wheel drop Left cliff Play and select buttons 

Left bumper  Right cliff Ommidirectional IR receiver 

Internal Sensors 

Charging state Battery temperature Left wheel overcurrent 

Battery current  Battery Voltage Right wheel overcurrent 

Battery charge  Right wheel encoder Left wheel encoder 

Table B.1: Sensor system of the iRobot Create 
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Part B – Kinect XBOX 360 

The Kinect sensor manufactured by Microsoft is a flat black box sitting on a 

small platform. Differently from the original Kinect sensor, the Kinect sensor used in 

the Turtlebot is modified. The adapter is replaced by a powered board connecting to 

the 25 pin cargo bay connector. Technically, the Kinect sensor consists of three main 

parts: color VGA camera, depth sensor and multi-array microphone.  

- Color VGA camera: This video camera aids in facial recognition and other 

detection features by detecting three color components: red, green and blue. 

Microsoft calls this an "RGB camera" referring to the color components it 

detects. The name of this RGB camera is MT9M112 (1/4-Inch, 1.3 

Megapixel CMOS Image Sensor) and from Micron. 

- Depth sensor: two sensors including an infrared projector and a monochrome 

CMOS sensor work together to acquire the environmental information in 3D 

regardless of the lighting conditions. The infrared projector and the 

monochrome sensor called MT9V112 (1/6-Inch SOC VGA CMOS Digital 

Image sensor) and MT9M001(1/2-Inch Megapixel CMOS Digital Image 

Sensor), respectively.  

- Multi-array microphone: this is an array of four microphones that can isolate 

the voices of the players from the noise in the room. This allows the player to 

be a few feet away from the microphone and still use voice controls.  

Part C – Central processing unit 

The Turtlebot uses a computer laptop as its central processing unit. Robot 

Operating System (ROS) is the major operating system using for the Turtlebot. ROS 

provides libraries and tools to help software developers create robot applications. It 

also supports hardware abstraction, device drivers, libraries, visualizers, message-

passing, package management, and more.  
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Part D – Turtlebot frame  

Combining stainless sticks, iRobot Create and plates with 1 inch spacing hole 

pattern creates the Turtlebot whose shape is a four-layer cylinder. The bottom layer 

is the iRobot Create. The two next layers are designed for holding the computer 

laptop and the Kinect sensor. The top layer is used for the carrying application within 

indoor environments.  
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