
A Logic for Approximate Reasoning
Author(s): Mingsheng Ying
Source: The Journal of Symbolic Logic, Vol. 59, No. 3 (Sep., 1994), pp. 830-837
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2275910
Accessed: 09/07/2009 20:25

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=asl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The
Journal of Symbolic Logic.

http://www.jstor.org

http://www.jstor.org/stable/2275910?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=asl


THE JOURNAL OF SYMBOLIC LOGIC 

Volume 59. Number 3. September 1994 

A LOGIC FOR APPROXIMATE REASONING 

MINGSHENG YING 

1. Introduction. Classical logic is not adequate to face the essential vagueness 
of human reasoning, which is approximate rather than precise in nature. The 
logical treatment of the concepts of vagueness and approximation is of increasing 
importance in artificial intelligence and related research. Consequently, many 
logicians have proposed different systems of many-valued logic as a formalization 
of approximate reasoning (see, for example, Goguen [G], Gerla and Tortora [GT], 
Novak [No], Pavelka [P], and Takeuti and Titani [TT]). As far as we know, all the 
proposals are obtained by extending the range of truth values of propositions. 
In these logical systems reasoning is still exact and to make a conclusion the 
antecedent clause of its rule must match its premise exactly. In addition, Wang [W] 
pointed out: "If we compare calculation with proving,... Procedures of calculation 
. . . can be made so by fairly well-developed methods of approximation; whereas ... 
we do not have a clear conception of approximate methods in theorem proving.... 
The concept of approximate proofs, though undeniably of another kind than ap- 
proximations in numerical calculations, is not incapable of more exact formulation 
in terms of, say, sketches of and gradual improvements toward a correct proof" 
(see pp. 224-225). As far as the author is aware, however, no attempts have been 
made to give a conception of approximate methods in theorem proving. 

The purpose of this paper is, unlike all the previous proposals, to develop a 
propositional calculus, a predicate calculus in which the truth values of proposi- 
tions are still true or false exactly and in which the reasoning may be approximate 
and allow the antecedent clause of a rule to match its premise only approximately. 
In a forthcoming paper we shall establish set theory, based on the logic introduced 
here, in which there are ILI binary predicates E,, A E L such that R(e, E,) = 
where E stands for c1 and 1 is the greatest element in L, and x c, y is interpreted 
as that x belongs to y in the degree of A, and relate it to intuitionistic fuzzy set 
theory of Takeuti and Titani [TT] and intuitionistic modal set theory of Lano [L]. 
In another forthcoming paper we shall introduce the resolution principle under 
approximate match and illustrate its applications in production systems of artificial 
intelligence. 

It is very difficult to realize fast and real-time response in a classical artificial 
intelligence system which can reason. One of the main reasons for this difficulty 
is that the process of searching for applicable rules, which must match exactly the 
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present database, consumes too much time (cf. Nilsson [N, Chapters 2 and 3]). If 
we comply with H. A. Simon's principle of bounded rationality and only desire 
that the applied rule match closely enough to present database, then lots of time 
may be saved. Therefore, the reasonings admitting approximate match possibly 
become effective tools to add the mechanism of fast and real-time response into 
classical artificial intelligence methodology, and the results in this paper have good 
prospects of applications in artificial intelligence. 

?2. Propositional calculus with approximate reasoning. Let T = {F }, where 
F is a 0-ary operation and X is a binary operation; let X be the set of propositional 
variables; and let P(X) be the propositional algebra of the propositional calculus 
on X, i.e., the free T-algebra on X (cf. Barnes and Mack [BM, p. 12]). In addition, 
let L be a complete and infinitely distributive lattice, and let R be an L-valued 
similarity relation on X, i.e., a mapping from X x X into L such that R(p,p) 1, 
R(p, q) = R(q, p), and R(p, q) A R(q, r) < R(p, r) for any p, q, r E X. Thus, R 
induces naturally an L-valued similarity relation R on P(X) which is an extension 
of R, i.e., RIxxx = R, and fulfills the following conditions: for anyp, q, r E P(X), 

(1) A Fp) I= 
i 

{ 
= 

lPF, 

_R~p. R if r =P'#q' 
(2) Rp => p') A 

= { PP)/(q, q ) i =p=.q, 
2 otherwise. 

Furthermore, we may give an L-valued relation R on 2P(X) as follows: for any 
A. B C P(X), 

R(A,B)= A VR(pq). 
qGBpCA 

LEMMA 2.1. Let p = p(x1,..., Xn) C P(X), where the propositional variables 
XI. , Xn all occur in p and the propositional variables occurring in p are all among 
X ., Xn. Then 

R{,pA') { n=l R (xi, X') if p' = p (x......X/), 
{ otherwise. 

PROOF. Induction on the length l(p) of p. O 
DEFINITION 2.2. Let v = Vl U X2 U X3, where 

={p #t (q # p) :p,q c P(X)}, 

f =(p =-(q =, r)) =- ((p q) (p =>,r)): p, q, r cP(X)} 
{r P p> : P P(X)}, 

andUp=p pOFforanypEP(X). LetACP(X)andwEP+(X) = U P(X) 
Then the degree d (A, w) to which w is a deduction from A is defined by induction 
on l(w). 
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(1) If l(w) =1, then 

d (A. w) = V{(w:p): p e s U A}. 

(2) If w = wI .. w, then 

d(A.w) = V{ i(wnp): p e ?UA} 

V {d(A.w ...wi) Ad(A. wI wj) AR(wi.p) A R(wj.q): iUj < n, 

p = q => wn. and p, q e P(X)}. 

DEFINITION 2.3. Let A C P(X) and q e P(X). Then the degree Ded(A, q) to 
which A syntactically implies q is defined by 

Ded(A.q) = V{d(A.w): Wl(w) = q. q C P (X)}. 

DEFINITION 2.4. Let A C P(X) and q e P(X). Then the degree Con(A q) to 
which A semantically implies q is defined by 

Con(A, q) = V{R( U A. B): B C P(X). Btq}, 

where B t q means that B semantically implies q in two-valued propositional 
calculus. 

THEOREM 2.5 (The Soundness and Adequacy Theorem). Let A C P(X) and 
q e P(X). Then Con(A, q) = Ded(A, q). 

PROOF. With soundness and adequacy of P(X) in two-valued propositional 
calculus (see Barnes and Mack [BM, Theorems 111.2.1 and 13]) it suffices to show 
that 

Ded(A. q) = V{A&(, U A, B): B q}. 

where A H p stands for "A syntactically implies p in two-valued propositional 
calculus". 

(1) If p q e P(X) and there exist x . x,17,y1,. y,17 e X such that = 

p(X1 . x,21) and q = P(Y I ..., y,1), then we say p is similar to q. Let w = 
WI ... We P+(X), wn = q, and A C P(X). Then we have 

d(Aw)=Vd'(A W.-) 

by simple induction on n = 1(w), where z is a function, n e domain(z) C 

{1 . n} and for each m e doman(z) :(m) says either w,2, is similar to w', e 
,WU A or 

( wi is similar to r # w,, 

wj 1s similar to r. 

and 
d'(A, w z) = A{R(P s) z asserts p is similar to s}. 

Now given such A. w, and z, for each m e domain(z) if z(m) says w,2, is similar 



A LOGIC FOR APPROXIMATE REASONING 833 

to we 'c s U A, then do nothing. On the other hand, in case (*) as above insert 
between wi and wi+1 in w 

1. (Wi => ((w; X= ws) => ws)) == ((wi X= (wi X= ws)) (wi (r Xwe,)) 
(similar to an axiom), 

2'. wi X ((wi wi) #> wi) axiom, 
3'. (wi # (w# ws)) > (w1 # (r > w,2)) (mp, 1'. 2'), 
4'. wi X (wi X= wi) axiom, 
5'. Wi (r X= w,11 ) (mp, 3', 4 ), 
6'. r X* w,,, (mp, wi ^ 5 ). 

Do something similar after wj to get r so that w,,, now correctly follows from 
r X= w,21 and r. Thus, we form an expansion w* of w (and a corresponding z*) 
so that 

d'(A. w. z) = d'(A, w A 

while for steps in w * which z * says are justified by Modus Ponens truly are justified 
by Modus Ponens (without resort to similarities). Let B be the set of formulae in 
W* which are justified by being similar to elements of a U A. Then z* provides 
the required (standard) proof of q from B and 

d'(A, W*, Z*) =A{NRT( s): Z* asserts p is similar to s E v U A} 

< R(sl U A.B). 

Therefore, 

Ded(A. q) < V{Ak(5 U A, B): B Hq}. 

(2) We want to show that 

R(,/U A. B) < Ded(A, q) 

provided B H q. In fact, if B H q, then there exists a proof w of q from B. Since 
Ded(A., q) > d (A. w), it suffices to show that d (A. w) > R (sX U A, B). We proceed 
by induction on 1(w). If 1(w) = 1, then q = w E v U B. If q E X, then 

d(AW)= V R(q p) > R(q q) = 1 
pGOUA 

and if q E B, then 

d(A.W)= V R(q p) >R(5UA. B). 
pGOUA 

Assume w = w ... w and the conclusion always holds for u with 1(u) < n. 
We want to show that the conclusion holds also for w. If Wn c a U B, it is as 
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above. If there exist i,] <n such that w= w1 # 

w., 
then from (2) in Definition 

2.2 we obtain 

d(A.w) > d(A*w, .. -wi) A d(A.W w, ..WJ). 

By the induction hypothesis and noticing that B H wi and B H wj, it is known 
that 

d (A. w, wi) > k(,WU A. B). d (A. , ..wj) > k(slU A, B). 

and 

d(A. w) >R(s UA,B). Li 

COROLLARY 2.6 (The Deduction Theorem). Let A C P(X), and let p, q E P(X). 

Then Ded(A,p #> q) = Ded(A U {p}, q). 
PROOF. From (1) in the proof of Theorem 2.5 it suffices to show that 

V {V d'(Aw*Z*): WL(w) = p => q} 

V {Vd/(A U p} w'*, z'*): wf) q} 

However, the above equality is immediate from the (standard) Deduction Theorem 
(see Barnes and Mack [BM, Theorem 111.2.4]). LI 

?3. Predicate calculus with approximate reasoning. Let V be an infinite set of 
individuals, let - be a set of predicate symbols, and let ar: - -* N be the arity 
function on A, and let P = P(V. ) be the full predicate algebra on (V. i), i.e., 
the free algebra on the set {r(x I . X.. a,,-(r.)): r E A, xi E V (i 1 . . . ar(r))} of 

type {F. ==} U {(Vx): x E V}, where F is an 0-ary operation, # binary and each 
(Vx) unary. In addition, let Rn be an L-valued similarity relation on Wn= {r E 
-: ar(r) = n} for any n E N. Then they induce an L-valued similarity relation 

R on P and an L-valued relation R on 2P. R is given as in the second section, 
and R is defined as follows: 

(1) For any rl. r2 E - and xl,.... (,. x 
2.... x2 EV, 

11 
i 

ar(r2) 

R(ri (xI,., xa,.,.) r2(Xi2 ... C,.,9) 

RarI- (,ri)(rl r2) if ar(rl) ar(r2) and xi = x (i 1. ar(rj)), 
{ otherwise. 

(2) For any cp E P, 

7k(F~~V{I if pLF. -R(F. (0) = {0i 

(3) For any pq',0 P, 

R((p X Ad 0) 
A if 

0= A =qI, 0 otherwise. 
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(4) For any A, yii E P, 

R((Vx)p, -e) i4R('P, "P'(x/y)) if q = (Vx)p'. 
0 otherwise. 

LEMMA 3.1. Let (p = (p(PI,...,P,) E P, where Pl,...,P, E S. Assume 
Pl.... ., P, all occur in (a and allpredicate symbols occurring in p are among P1...., 
P,. Then 

7k(Rp(p') =f{ Ai=I Rar(P,)(PiP') if P' = P(P. PI) 
0 otherwise, 

where P . . ., P' E -? and (p' e P is obtained by replacing Pi in (p with P< for any 

DEFINITION 3.2. Let a? = U5= vi, where S,, V2, and W3 are as in Definition 
2.2, 

4 ={(Vx)(p # q) p (p< (Vx)q): p,q E P. x 0 var(p)}. 

505 = (VlX)P x =~> P W: P x) E P. Y E V}1, 

var(p) is the set of free variables occurring in p. Let A C p and w E P,= U?= P' n. 
Then the degree d (A, w) to which w is a deduction from A is defined by induction 
on l(w). 

(1) If (w)= 1, then 

d(Aw) V{R(w,p): p C vQ UA}. 

(2) If w =wI. wn, then 

d(A,w) =V{fR(wn-p): P Cv U A} 

VVfd(A,w, .. wi) A d(A. , .. 
-wj) A R(wi p) A R(wj, q): 

i j<n, p=q =wandpqWP} 

V V~d(B.Wkj Wkt, A\ R-(Wkl, q): ki < ..< kl <n. q E P 

Wn = (Vx)q, B C A, and x f var(B)}, 

where var(B) = UpEB var(p). 
REMARK. In usual (two-valued or many-valued) logical systems, we only dis- 

cuss proofs (deductions) in which the antecedent clause of a rule must match the 
premise exactly (see, for example, Barnes and Mack [BM, Definitions 11.4.1 and 
IV.3.2], where Modus Ponens and Generalisation are used in the sense of exact 
match). In Definitions 2.2 and 3.2, however, we give up the condition of exact 
match and deal with general w e P' (X) or w e P+ (V. -) instead and the degree of 
match of premises and antecedent clauses of rules are considered in the evaluation 
of the degree to which w is a deduction. 

THEOREM 3.3 (The Soundness and Adequacy Theorem). Let A C P and q E P. 
Then Con(A, q) = Ded(A, q), where Con(A. q) is defined as in Definition 2.4 (now, 
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B t q stands for "B semantically implies q in two-valued predicate calculus") and 
Ded(A. q) is as in Definition 2.3. 

PROOF. Given the soundness and adequacy of two-valued Pred( V, _W) (see 
Barnes and Mack [BM, Theorems IV.4.7 and 16]) it suffices to show that 

Ded(A. q) = V{&(W U A, B): B H q} 

where B H q means that B syntactically implies q in two-valued predicate calculus. 
The idea of (1) in the proof of Theorem 2.5 still works by making the following 
change: z is now more complicated since it has to specify subproof, i.e., we must 
consider the additional case: 

"W71 =(Vx)A(x) is justified because wka is similar to A)(x) 

and x can be quantified over". 

In this case we insert into the proof between wka and wk,+ 
1'. (Vx)wk,(x) (=p, say; generalisation, wk,), 

2'. (p #> ((p #> p)) X p(p X= (p X= p)) X= (p X= (Vx)>(x))) (similar to an 
axiom), 

7'. p > (Vx){(x). 
Conversely, we only need to add the following paragraph at the end of (2) in the 
proof of Theorem 2.5. 

If there exist k1 . k1 < n and C C B such that kI < < k1, x , var(C), 
wk, wk1 is a proof of wk1 from C and wn = ( Vx)Wkl, then from (2) in Definition 
3.2 and the induction hypothesis, we have 

R(s UA. B)<R(sl UAC)<d(AWki... Wkl)< d(A w). L 

REMARK. We also have the Deduction Theorem for the predicate calculus (cf. 
Corollary 2.6). 

Acknowledgment. I am very indebted to the referee for invaluable comments, 
criticisms, and suggestions which considerably simplify the proofs of the main 
results and improve the original version of Theorem 3.3. 
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