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Abstract

Faculty of Science

School of Physics and Advanced Materials

Doctor of Philosophy

Development and Implementation of Environmental Photoelectron Yield

Spectroscopy

by Toby William Shanley

Environmental photoelectron yield spectroscopy (EPYS) is a novel, low vacuum, surface

analysis technique that probes the electronic structure of solid-gas interfaces. Unlike

its conventional, ultra high vacuum counterparts that interrogate ideal surfaces in non-

realistic conditions, EPYS enables real-time characterisation of dynamic surface pro-

cesses in semi-realistic, reactive gaseous environments. This capability is a requirement

for the technological progress and fundamental understanding of processes in nanotech-

nology, materials physics, chemistry and bio-sciences.

The system has been built and implemented from the outset of its existence at UTS.

This project has contributed to the development of EPYS, and further developed a

number of novel applications. Specifically, its application in elucidating the nature of

four, fundamentally different physical phenomena is demonstrated. The thesis describes

the origins of EPYS in ultra high vacuum photoelectron emission spectroscopy and the

theoretical groundwork on which it is based. It also details the EPYS development,

and demonstrates applications of the EPYS in the analysis of gas ionisation cascades,

subsurface defects, surface termination, and adsorbate coverage.

The value of this study is partly in the instrumentation development itself, but also in

the demonstration of its application in studies of material systems responding to their

environments.



Acknowledgements

I am grateful for the guidance and support that my supervisors, Milos Toth, Matthew

Phillips and Igor Aharonovich have granted me during my studies. Their knowledge,

creativity and approach to both research and supervision enabled me, not only to see

this project to completion, but gave me the opportunity to do so with enjoyment and

great satisfaction.

I am indebted to the technical staff of the Microscopy Analysis Unit and the University

workshop: Geoff McCredie; Katie McBean; Mark Berkahn; Greg Delsanto; Greg Evans

and the late Paul Fanos for their persistent advice and patient assistance.

To my colleagues, the post graduate students, thank you for the many enlightening

conversations. One was never without good company in the lab.

I must finally thank my friends and family, who have supported and encouraged me

throughout this period. In particular, I am thankful for the help that my father, Chris,

has afforded me, and deeply grateful for the love and companionship of my partner

Sarah, who has endured me kindly. Thank you.

iv



Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

List of Figures ix

Abbreviations xvii

Contributing Publications xix

Non-Contributing Publications xx

1 Introduction 1

1.1 Project objectives and methodology . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background and literature 3

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Photoelectron emission spectroscopy in modern surface science . . . . . . 4

2.3 Photoelectron spectroscopy (PES) in ultra high vacuum . . . . . . . . . . 5

2.3.1 History and development . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Photoemission yield spectroscopy (PYS) . . . . . . . . . . . . . . . . . . . 8

2.4.1 General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Theory of threshold determination . . . . . . . . . . . . . . . . . . 12

2.5 Surface characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Atmospheric photoelectron yield spectroscopy . . . . . . . . . . . . . . . . 22

2.7 Townsend gas capacitance model . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Limitations of existing knowledge . . . . . . . . . . . . . . . . . . . . . . . 24

3 EPYS development 25

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Sample stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Light delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.1 System response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



Contents vi

3.7 Gas delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Automation and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Application of EPYS: gas cascade amplification 41

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Gas amplification model . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Positive feedback and breakdown . . . . . . . . . . . . . . . . . . . 43

4.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 ESEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 EPYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Dependence of amplification on pressure . . . . . . . . . . . . . . . 51

4.5.2 Dependence of amplification on detector bias . . . . . . . . . . . . 52

4.5.3 Ultimate amplification efficiency and dielectric breakdown . . . . . 53

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Application of EPYS: characterisation of subsurface defects and sen-
sitivity to ambient gas 56

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Intrinsic point defects in ZnO . . . . . . . . . . . . . . . . . . . . . 58

5.2.1.1 Oxygen vacancies . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1.2 Zinc vacancies . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2.1 Near band edge luminescence . . . . . . . . . . . . . . . . 61

5.2.2.2 Defect luminescence . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Sensitivity to NH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Sensitivity to NH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 Sensitivity to NH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Application of EPYS: in-situ study of surface functionalisation 79

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Nitrogen-vacancy centre in diamond . . . . . . . . . . . . . . . . . 80

6.2.2 Hydrogen and fluorine terminated diamond . . . . . . . . . . . . . 82

6.2.2.1 Hydrogen terminated diamond . . . . . . . . . . . . . . . 82

6.2.2.2 Fluorine terminated diamond . . . . . . . . . . . . . . . . 84

6.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Contents vii

6.3.1 Thermally activated fluorination . . . . . . . . . . . . . . . . . . . 87

6.3.2 Electron beam induced fluorination . . . . . . . . . . . . . . . . . . 87

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Application of EPYS: monitoring adsorbate coverage 95

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.1 CO oxidation reaction . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.2 CO on platinum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.7 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Conclusion 110

A Townsend gas capacitance model 112

B EPYS Standard Operating Procedure 119

B.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2.1 Venting EPYS Chamber . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2.2 Removing/Loading samples into EPYS Chamber . . . . . . . . . . 120

B.2.3 Pumping EPYS Chamber . . . . . . . . . . . . . . . . . . . . . . . 120

B.2.4 Operating EPYS Chamber . . . . . . . . . . . . . . . . . . . . . . 121

B.2.4.1 Introducing Gas . . . . . . . . . . . . . . . . . . . . . . . 121

B.2.4.2 Set-up Light Delivery . . . . . . . . . . . . . . . . . . . . 122

B.2.4.3 Set-up Detector Voltage and Begin Measurement . . . . . 123

B.2.4.4 Finish Measurement . . . . . . . . . . . . . . . . . . . . . 124

B.3 Heating and Cooling Sample Stage . . . . . . . . . . . . . . . . . . . . . . 124

B.3.1 Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.3.2 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.4 Calibrate Light Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.4.1 Gathering System Response . . . . . . . . . . . . . . . . . . . . . . 128

B.5 Troubleshoot LabView – Instrument Communication Errors . . . . . . . . 128

B.5.1 Monochromator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.5.2 Beam Chem Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.6 Troubleshoot Hardware Failure . . . . . . . . . . . . . . . . . . . . . . . . 129

B.7 Data Processing and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.7.1 EPYS Spectral Analysis in Igor Pro . . . . . . . . . . . . . . . . . 131

B.8 Using the EPYS Chamber for DC Plasma Treatment . . . . . . . . . . . . 131

Bibliography 132



List of Figures

2.1 Representation of the photoelectron emission process. Together, the di-
agrams compare the initial energetic positions of electrons within a solid
to the final energy distribution of free photoelectrons, when excited by
a monochromatic light source of energy hv. on the x and y axis respec-
tively, N(E) represents the number of of electrons, while E represents the
energy of electrons; EF represents the Fermi level within the sample; VS

is the energy required for an electron to escape the material surface; �w
is the incident photon energy; EK is kinetic energy of free photoelectrons
in vacuum; ΦS is the surface work function; and ΦA is the energy of a
free electron in vacuum reference to EF. The difference between ΦS and
ΦA is due to a dipole at solid-vacuum interface. . . . . . . . . . . . . . . . 6

2.2 Diagram of energy versus density of states showing the relationship be-
tween the density of states of electrons within the valence band, the energy
of excitation, and the total number of photoelectron emitted from a sur-
face. The yield is the integral of the density of states between EVAC and
hv below the EVAC. This expression for the yield must also be scaled by
the probability of an excited carrier’s transport to, and escape from the
surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Intersection of the ‘optical surface’ and the ‘escape surface’ from [67]. The
region bound by these surfaces contain the k values for which the prob-
ability of excitation may be calculated. As electron energy E decreases,
the circle of intersection shrinks to kd, the momentum corresponding to
photoelectron emission threshold energy. . . . . . . . . . . . . . . . . . . . 13

2.4 Summary of Ballantyne’s results for the threshold determination of PES
from semiconductors and metals [55]. Notably, the yield from most semi-
conductors was predicted to increase linearly with the cube root of in-
cident photon energy, and the yield from most metals was predicted to
increase linearly with the square root of incident photon energy. . . . . . . 15

2.5 Density of states derived from PYS data on the Si (111) 2×1 reconstructed
surface. The solid lines represent the total density of states and the dashed
lines represent densities of individual states. Trace 1) is plotted against
the logarithmic axis on the left and trace 2) is plotted against the linear
axis on the right. The spectra revealed the presence of inter-bandgap,
dangling bond states at the Si surface. . . . . . . . . . . . . . . . . . . . . 16

viii



List of Figures ix

2.6 Comparison between PYS data and the electronic band structure it rep-
resents. (a) PYS spectra of GaAs(111): the solid line is the photoelectron
yield and the dashed line is the derivative of the yield which represents the
density of states. The lower dashed line is the derivative plotted against
a linear vertical axis (right side). (b) the derivative of the yield plotted
on a band diagram to highlight how energetic positions correspond to
photoemission thresholds [70]. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 PYS spectra from Ristein et. al. showing photoelectron emission from
inter-bandgap states at 4.4 eV, and enhanced photoelectron emission
strength for NEA diamond attributed to exciton-phonon induced free
electron generation at 5.485 eV. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 PYS spectra from Ristein et al. of single crystal type IIb diamond (111)
and (100) surfaces after exposure to hydrogen plasma [75]. The sharp
increase at 5.54 eV marks the exciton absorption edge, and confirms a
NEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Experimental setup of an atmospheric PYS system developed by Honda
et al. [57]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Atmospheric PYS spectra of Phthalocyanine films upon repeated expo-
sure to air and evacuation of the vacuum chamber. Honda et al. identified
two separate photoelectron emission thresholds, and observed an increase
in the ionisation potential upon exposure to air [57]. . . . . . . . . . . . . 21

2.11 Atmospheric PYS spectra collected by Nakayama el al. showing an in-
crease in the ionisation potential of single crystalline ruberene during
photo-oxidation [81]. The increase in the ionisation potential was at-
tributed to generation of polar oxide molecules and reversible physisorp-
tion of H2O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Photograph of the complete EPYS instrument. . . . . . . . . . . . . . . . 27

3.2 Photographs of the EPYS system showing: (a) The EPYS chamber,
wrapped in foil to enable uniform heating of the inner side walls, with
a TMP connected to the front 8” port and a variety of feedthroughs for
electrical connections and gas delivery; (b) The top flange that hosts the
majority of feedthroughs and a sapphire window that is positioned above
the sample and detector; (c) Light being directed through the sapphire
window onto the sample inside the chamber. The diameter of the irradi-
ated spot is 5 mm; (d) The vacuum side of the top flange which consists
of an annular GED held in place with a Macor ring and a gas injection
needle pointing towards the centre. . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Photograph of the (a) back and (b) front of the EPYS chamber. . . . . . 30

3.4 Schematic of the EPYS system showing: (i) a high voltage power sup-
ply connected to the detector; (ii) a Keithley electrometer that measures
the current through the sample stage generated by the cascading photo-
electrons; (iii) the controllable-flow pumping outlet for operating in low
vacuum; (iv) the chamber window through which UV light is passed to the
sample; (v) the detector; (vi) the controllable flow inlet from gas delivery
lines; (vii) the sample stage, electrically grounded through the electrome-
ter; (viii) the sample heater; and (ix) the current supply for temperature
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Schematic of the chamber used in the EPYS instrument. . . . . . . . . . . 32



List of Figures x

3.6 Diagram of the EPYS detector-sample geometry with the excitation source
directed through the centre of the detector, onto the sample. Neutral gas
molecules between the sample and detector are ionised by photoelectrons
moving under the influence of an electric field. . . . . . . . . . . . . . . . 35

3.7 Diagram of the path of light from the deuterium lamp, focused into a
Czerny-Turner monochromator with a CaF2 lens, then collimated and
re-focused with CaF2 lenses onto the delivery optic fibre. . . . . . . . . . . 36

3.8 Normalised intensity spectrum of light that is incident on the sample. . . 38

3.9 Diagram of the EPYS gas delivery system. MFCs are used to control
the flow of pressurised gaseous sources, while a manual needle valve is
adequate for liquid sources like H2 and C3H6O. . . . . . . . . . . . . . . . 39

4.1 Schematic illustration of (a) an ESEM setup and secondary electron am-
plification in a gas ionisation cascade, (b) an EPYS vacuum chamber and
(c) the EPYS measurement process. In both methods, emitted electrons
are accelerated by an electric field between the sample and a detector
anode, and are multiplied by ionising gas molecules. The EPYS chamber
consists of a pumping system (not shown), gas inlet and outlet, specimen
stage, heater, gas cascade detector, and an optical window. (d) Shows
Lewis diagrams representing the number of valence electrons contribut-
ing to the interaction cross sections of H2O, NH3 and CH3CH2OH . . . . 45

4.2 Gas-amplified electron emission current measured versus pressure using
ethanol, NH3 and H2O. (a) In ESEM, the current is a sum of two compo-
nents (Iδ+η) that correspond to cascade-amplified, low energy (� 20 eV)
secondary electrons and high energy (keV) backscattered electrons. (b)
In EPYS the current (Ip) is generated purely by low energy (� 7 eV)
photoelectrons. The detector anode bias was 400 V in both cases. . . . . . 46

4.3 Gas-amplified electron emission current (IΣ) and (Iδ+η) measured versus
ESEM detector anode bias using ethanol, NH3 and H2O, at gas pressures
of (a) 0.1 Torr, (b) 1 Torr, and (c) 5 Torr. The maximum Iδ+η reached at
the onset of dielectric breakdown of each gas is shown for each pressure
on the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Gas-amplified photoelectron emission current (Ip) measured versus EPYS
detector anode bias using ethanol, NH3 and H2O, at gas pressures of (a)
0.1 Torr, (b) 1 Torr, and (c) 5 Torr. The maximum current reached at
the onset of dielectric breakdown of each gas is shown for each pressure
on the plots. The three amplification regimes (i, ii and iii) labelled on the
plots are discussed in the main text. . . . . . . . . . . . . . . . . . . . . . 49

4.5 Images taken at high and low magnification in (a) and (b): H2O, (c) and
(d): NH3, (e) and (f): ethanol vapour. The sequences verify that little
to no carbon deposition occurs during electron beam irradiation in the
presence of ethanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Charge states and transition levels of intrinsic point defects in ZnO. The
charge states depend on value of the Fermi level. Figure adapted from
Janotti and van der Walle [172]. . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Formation energies of native point defects in ZnO calculated by Janotti
et al. [175]. The formation energies are plotted as a function of the
Fermi level position in oxygen (left) and zinc (right) rich conditions. The
different slopes of the traces represent different charge states. . . . . . . . 60



List of Figures xi

5.3 Characteristic cathodoluminescence profile from ZnO at room tempera-
ture showing the near band edge emission at 3.37 eV and defect related
emission arising from inter-bandgap radiative recombination pathways. . . 61

5.4 SEM images of nanorods thermally annealed in (a) O2 environment (b)
Zn vapour environment. The mean diameter and hexagonal structure
of the nanorods remains unchanged; however, a slight reorientation with
respect to the substrate can be observed. (c) As-grown nanorods (inset
highlights high density hexagonal 〈0001〉 growth) and (d) shows XRD
patterns of as-grown, O2 annealed and Zn annealed nanorods. Changes
in the relative peak heights arise from a reorientation of the nanorods
with respect to the substrate. Data collected by Suranan Anantachaisilp. 66

5.5 Cathodoluminescence spectra of ZnO nanorod samples. The yellow trace
is a CL profile from as-grown ZnO nanorods and is dominated by the
YL at 1.9 eV. The red trace is a CL profile from O2 annealed nanorods
and shows a large defect emission in the RL band (1.7 eV) and a smaller
contribution from the GL (2.5 eV). The green trace is a CL profile from
Zn vapour annealed nanorods (magnified by 4) and exhibits GL defect
emission and a relatively strong NBE emission. Data collected by Suranan
Anantachaisilp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 EPYS spectra of ZnO nanorods. The red trace shows an EPYS spectrum
from as-grown nanorods, the green trace is from O2 annealed nanorods
and the blue trace is from Zn vapour annealed nanorods. Both thermally
treated samples (O2 and Zn vapour annealed) exhibited a significantly
greater photoelectron emission current than as-grown nanorods. While
as-grown and O2 annealed nanorods both began to emit photoelectrons at
4.5 eV, the Zn vapour annealed nanorods exhibited a lower photoelectron
emission threshold at 4.2 eV. . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Electrical conductance sensitivity of ZnO nanorods to gaseous NH3 for (a)
as-grown; (c) O2 annealed; and (e) Zn vapour annealed samples. Figures
(b), (d) and (f) show the corresponding ratio of the chance in conduc-
tivity as a function of NH3 concentration. Data collected by Suranan
Anantachaisilp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 EPYS spectra from as-grown ZnO nanorods collected in an environment
transitioning from argon into gaseous NH3. The blue traces were collected
initially in a dry, argon environment, and the pale red traces were collected
in a NH3 environment. Inset shows the spectra on a log-linear scale. As
the partial pressure of NH3 increases, the photoelectron emission thresh-
old decreases. The gaps in the spectra are periods during which NH3 is
introduced to the chamber: spectra were not collected during this period
as the detector bias had to be adjusted to compensate for the changing
amplification medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 EPYS spectra from oxygen annealed ZnO nanorods collected in an en-
vironment transitioning from argon into gaseous NH3. The blue traces
were collected initially in a dry, argon environment, and the pale red traces
were collected in a NH3 environment. Inset shows the spectra on a log-
linear scale. As the partial pressure of NH3 increases, the photoelectron
emission threshold decreases. . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Figures xii

5.10 EPYS spectra from zinc annealed ZnO nanorods collected in an environ-
ment transitioning from argon into gaseous NH3. The blue traces were
collected initially in a dry, argon environment, and the pale red traces
were collected in a NH3 environment. Inset shows the spectra on a log-
linear scale. As the partial pressure of NH3 increases, the photoelectron
emission threshold decreases. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.11 Band diagrams for the as-grown, oxygen annealed and zinc annealed ZnO
samples. The Fermi level sits higher with respect to the conduction and
valence bands in oxygen annealed and zinc annealed samples, and the
zinc annealed ZnO exhibits greater downward band bending due to the
presence of Vo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 The diamond crystal lattice structure (left) containing a NV defect and
the electronic structure of the NV– in diamond (right) [211]. . . . . . . . 80

6.2 Characteristic photoluminescence spectra of the NV– (red) and NV0

(blue) defects in diamond. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Electrical conductivity data from Maier et al. [248] showing the change
in surface conductivity when hydrogen terminated diamond is exposed to
air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Top: Schematic of the hydrogenated diamond surface in contact with a
H2O overlayer taken from Maier et al. [248]. Bottom: Evolution of the
band bending during the electron transfer process at the interface between
diamond and the H2O overlayer. . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Photograph of the confocal photoluminescence setup used in this study.
The lens in the foreground focuses excitation light into a 0.5 μm2 spot on
the sample, and also collects the photoluminescence from the sample. . . 86

6.6 A schematic of the confocal photoluminescence setup used in this study. A
532 nm excitation laser is directed onto the sample, and its x-y position at
the sample surface scanned using a piezoelectric scanning mirror. Emitted
and reflected light returns along the path of the excitation laser until
they are separated at a dichroic mirror. The photons generated by the
sample are allowed to pass through the dichroic mirror, where they are
detected by avalanche photodiodes for panchromatic mapping, and/or a
spectrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Normalised photoelectron yield spectra of H-terminated diamond (ac-
quired in a H2 environment) and F-terminated diamond (acquired in NF3

vapour). The latter were generated by thermal (solid line) and electron
beam (dashed line) induced fluorination. . . . . . . . . . . . . . . . . . . . 89

6.8 (a) Schematic illustration of nanodiamonds before, during and after elec-
tron beam irradiation in NF3 vapour. (b) SEM image of a cluster of
nanodiamonds. (c) PL spectra collected from virgin, H-terminated, and
irradiated nanodiamonds (solid lines). (d) PL map showing the sample
region that was irradiated by an electron beam. The dashed traces in (c)
show 5 additional spectra acquired from the virgin and irradiated sample
regions, illustrating the consistency of data collected from H-terminated
and irradiated nanodiamonds. . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.9 Simplified schematic of a diamond surface terminated with hydrogen and
fluorine. [ECB = conduction band minimum, EVB = valence band maxi-
mum, EF = Fermi level, EVAC = vacuum level, ξ = ionisation energy] . . 91



List of Figures xiii

6.10 Illustration of the activation of near-surface NV– defects in nanodiamonds
by irradiation with an electron beam in the presence of NF3. Electron
bombardment removes a protective water overlayer, and exposed bare hy-
drogen terminated diamond to NF3, which then undergoes a spontaneous
exchange reaction, fluorinating the nanodiamonds. . . . . . . . . . . . . . 92

7.1 Temporal evolution of reaction diffusion spiral waves. The fronts of the
waves are where a CO oxidation reaction is taking place with adsorbed
O– on Pt. The dark lines are O– covered and the white spaces are CO
covered [294]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Potential energy diagrams of the three chemisorbed states of CO on plat-
inum. The binding strength decreases with increasing coverage due to
adsorbate-adsorbate interactions. When there is less CO present, the
adsorbate molecule binds more strongly with the Pt atoms (hybridised
C-Pt bonds) and when there is more CO, the nature of the C-Pt bonding
changes, resulting in a more weakly bound state. . . . . . . . . . . . . . . 98

7.3 Speculative schematic of how coverage of COmolecules on platinum atoms
affects the CO-platinum bonding configuration (taken from Culver [296]).
(1) represents the most strongly bound state in the lowest coverage regime,
while (5) shows a weakly bound state situated between chemisorbed CO
molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Temperature-resolved EPYS spectra acquired while Pt was heated in a
CO environment. The blue traces were collected at ∼47◦C the temper-
ature was incrementally increased and recorded for each set of spectra
until reaching ∼380◦C, shown in red. After collecting spectra at 380◦C,
the temperature was decreased to 307◦C to check for reversibility. The
inset is a log-linear plot of the same data that highlights the shifting
photoelectron emission threshold. . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Temperature-resolved EPYS spectra acquired while Pt was cooled in a
CO environment. The light red traces were collected at ∼380◦C, the
temperature was allowed to decrease until reaching room temperature,
shown in blue. The temperature was measured only at the start and end
of this experiment due to the influence of measuring temperature on the
EPYS signal integrity. The inset is a log-linear plot of the same data that
highlights the decreasing photoelectron emission threshold. . . . . . . . . 102

7.6 Work function determined from the average of photoelectron emission
thresholds collected as a function of sample temperature. The existence
of different binding states can explain the nonlinear relationship between
the observed work functions and temperature. . . . . . . . . . . . . . . . . 103

7.7 (Top) A repeat experiment monitoring the photoelectron emission from
CO-covered Pt with increasing temperature in which O2 was injected at
∼370◦C. Upon O2 injection, the work function immediately decreased,
and then returned to its former CO covered state. (Bottom) The cor-
responding residual gas analysis of this experiment. The work function
slowly returns to its high temperature CO-covered state as O2 is depleted
via the CO oxidation reaction. . . . . . . . . . . . . . . . . . . . . . . . . 104

7.8 Distribution of binding states of CO on Pt taken from Nishiyama [299]. . 107

7.9 Desorption kinetics of CO chemisorbed on Pt taken from Nishiyama [299]. 107



List of Figures xiv

A.1 Simulated α(z) curve [86] for typical gas cascade detector operating con-
ditions (dgap =8.5 mm, p =5 Torr and V =500 Volts). Regions I to III
represent different ionisation efficiencies as electrons move through the
gap. Region 1: no ionisation by low energy electrons near the sample
surface; Region II represents increasing ionisation efficiency as electrons
are accelerated under the electric field; Region II: swarm conditions and
constant ionisation efficiency where energy gained under the influence of
an the electric field is equal to the energy loss from inelastic scattering
collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Gas cascade amplification A versus H2O pressure as a function of (a)
detector voltage at dgap = 5 mm and (b) sample-detector separation dis-
tance. Figure adapted from [310] . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Gas cascade amplification A versus (a) detector voltage at dgap = 5 mm
and (b) sample-detector separation distance calculated at four pressures:
2, 3, 4 and 5 Torr of H2O. Figure adapted from [310]. . . . . . . . . . . . 117



Abbreviations

AES Auger Electron Spectroscopy

APD Avalanche Photodiode

ARPES Angle Resolved Photoelectron Eemission Spectroscopy

BSE Backscattered Electron

CBM Conduction Band Minimum

CCD Charge Coupled Detector

CL Cathodoluminescence

DAP Donor Acceptor Pair

DAQ Data Acquisition

DOS Density Of States

ECB Energy of Conduction Band minimum

EF Energy of Fermi level

EV Energy of a free electron in Vacuum

EVB Energy of Valence Band maximum

EPYS Environmental Photoelectron (emission) Yield Spectroscopy

ESEM Environmental Scanning Electron Microscope

FWHM Full Width Half Maximum

GED Gaseous Electron Detector

GL Green Luminescence

LEED Low Eenergy Electron Diffraction

MFC Mass Flow Controller

NBE Near Band Edge

NEA Negative Electron Affinity

NV Nitrogen Vacancy

Oi Interstitial Oxygen

xv



Abbreviations xvi

PE Primary Electron

PEA Positive Electron Affinity

PES Photoelectron Emission Spectroscopy

PI Positive Ion

PID Proportional-Integral-Derivative

PL Photoluminescence

PMT Photomultiplier Tube

PYS Photoelectron (emission) Yield Spectroscopy

RGA Residual Gas Analyser

RL Red Luminescence

SE Secondary Electron

SEM Scanning Electron Microscope

SFG Sum Frequency Generation

SHE Standard Hydrogen Electrode

TDS Thermal Desorption Spectroscopy

TMP Turbo Molecular Pump

UHV Ultra High Vacuum

UPS Ultraviolet Photoelectron (emission) Spectroscopy

UV Ultraviolet

VO Oxygen Vacancy

VZn Zinc Vacancy

VBM Valence Band Maximum

WRG Wide Range Gauge

XANES X-ray Absorption Near Edge Structure

XPS X-ray Photoelectron (emission) Spectroscopy

XRD X-ray Diffraction

YL Yellow Luminescence

Zni Interstitial Zinc

ZPL Zero Phonon Line



Contributing Publications

• Localized Chemical Switching of the Charge State of Nitrogen-Vacancy Lumines-

cent Centers in Diamond, Toby Shanley, Aiden Martin, Igor Aharonovich, Milos

Toth, Applied Physics Letters 105, 063103, Published 11 August 2014

• Role of Gas Molecule Complexity in Environmental Electron Microscopy and Envi-

ronmental Photoelectron Yield Spectroscopy, Toby Shanley, Fadi Bonnie, John

Scott, Milos Toth, in submission

• Band Structure of Stoichiometrically dissimilar ZnO surfaces, Toby Shanley,

Suranan Anantachaisilpm Matthew Phillips, Milos Toth, in submission

xvii



Non-Contributing Publications

• Silicon Oxide Nanowire Growth Mechanisms Revealed by Real-Time Electron Mi-

croscopy, Miroslav Kolibal, Libor Novak, Toby Shanley, Milos Toth, Tomas

Sikola, Nanoscale 8 266-275, Published 26 November 2015

• Synthesis of Liminescent Europium Defects in Diamond, Andrew Magyar, Wen-

hao Hu, Toby Shanley, Michael Flatte, Evelyn Hu, Igor Aharonovich, Nature

Communications 5 3523, Published 24 March 2014

xviii


	Title Page
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Abbreviations
	Contributing Publications
	Non-Contributing Publications

