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Summary

Wheat is the most important crop in Australia in terms of the gross value of production. However,
in Australia wheat yield is extremely variable from year to year among major production regions, such
as New South Wales (NSW), with its agricultural system being significantly affected by water stress
and ongoing climate change. To accurately quantify crop yield, and estimate greenhouse gas
emissions (GHG) at specific sites and regional scales, it is essential to link spatial information of
agro-resources and crop simulation model to assess crop growth in response to agricultural
management and environmental variation. The outcomes of this project will enhance the capability of
farmers and policy makers to adapt and manage farm outcomes in the face of climate

change/variability.

For this study, I extracted the historical daily climate data (1900-2010), known as SILO patched

point dataset (PPD, http://www.longpaddock.gld.gov.au/silo/ppd/index.php), for maximum and

minimum temperature, rainfall, and solar radiation at 894 weather stations evenly distributed across
the NSW wheat belt. Wheat yields at shire level during 1922-2000 (data in some shires were not
available in some years) across the NSW wheat belt were obtained from Fitzsimmons (2001).
Statistical methods were used to quantify the relationship between reported shire wheat yields and
climate factors during the wheat-growing season across the NSW wheat belt in eastern Australia from
1922 to 2000. I found that wheat yields were positively correlated to rainfall and minimum
temperature while negatively correlated to maximum temperature at a significant level (p<0.05).
Growing season rainfall is usually the main direct climatic driver affecting wheat yields variation in
this semi-arid area, but the indirect effects of temperature and solar radiation are also important. A
detailed understanding of how historical climate variation has impacted on wheat yield can provide
useful insights for the development of sustainable agricultural systems in the face of future climate

change.

I used the statistical downscaling and bias-correction method developed by Liu and Zuo (2012)
to generate realistic daily site-specific climate data from monthly GCM output on a coarse-resolution
grid. Briefly, monthly GCM output data (solar radiation, rainfall, daily maximum and minimum
temperature) from each of the selected GCMs were downscaled to the 894 observation sites using an
inverse distance-weighted interpolation method. Biases were then corrected using a transfer function
derived from interpolated GCM data and observed data for the sites. Daily climate data for each of
894 sites under two RCPs for 1900-2100 were generated by a modified stochastic weather generator
(WGEN) with parameters derived from the bias-corrected monthly data. The results show that wheat

growing season rainfall is projected to decrease under different future scenarios across the NSW
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wheat belt. Future climate projected an averaged warming of 2.1 °C for RCP4.5 and 3.8 °C for
RCP8.5 across this region in 2061-2100 compared to the baseline period 1961-2000.

A crop simulation model (APSIM) driven by statistical downscaling data was used to simulate
wheat productivity and water use efficiency under the CMIP5 multimodel ensemble projections
across the NSW wheat belt. Despite an acceleration of crop development and shortening of growth
duration together with declining growing season rainfall, GCMs projected that multi-model median
yields could increase by 0.4% (4704 kg/ha) for RCP4.5 and 7.3% (5027 kg/ha) for RCP8.5 by
2061-2100. These results show that drier area would benefit more from elevated CO, than wetter area
in the NSW wheat belt. Without the increase in CO, concentration simulated wheat yield decrease
rapidly under RCP4.5 by 2061-2100 and much more so under RCP8.5 compared to the present. The
simulated evapotranspiration (ET) decreased by 11.9% (282 mm) for RCP4.5 and 18.8% (260 mm)
for RCP8.5 over the whole wheat belt. Increasing yields combined with decreasing ET resulted in
simulated water use efficiency increasing by 11.4% (15.4 kg ha'! mm™) for RCP4.5 and 29.3% (17.8
kg ha' mm™) for RCP8.5. Wheat production in water-limited, low yielding environments appears to
be less negative impacted or in some cases even positively affected under future climate change and

elevated CO», compared to other growing environments in the world.

Agro-ecosystems have high spatial heterogeneity and temporal variation of productivity, arising
from the spatial and temporal variability of climate, soil texture/water, and management practices.
Furthermore, the projected yield increase in the future could be overestimated because the crop model
generally does not sufficiently account for yield reduction due to diseases, pests and weeds. I did not
explicitly consider certain aspects such as efficient management practices, breeding new crop
cultivars, which will obviously have a significant impact on wheat yield in the future. Therefore, these
current simulated results would provide a baseline for future adaptive strategies such as incorporating

new traits into new cultivars in new management systems not currently available.
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Chapter 1

Introduction

Australia has the world’s most variable climate (Stokes & Howden 2010) and climate variability
has significantly affected Australian agricultural production. Since 2000, the planting areas for crops
have decreased due to drought conditions. The production of wheat has decreased in all states except
Victoria and in 2009-2010, NSW production decreased by 23% to 5.3 million ton

(http://www.daff.gov.au/abares) compared to the decade prior to this period. With climate change and

likely increased climate variability in the near future, together with increasing frequency of extreme
events, such as droughts, floods and heat waves, crop yields are at risk of decline (Stokes & Howden
2010). However, the inevitable concomitant increased atmospheric CO, concentrations will increase
plant photosynthesis and possibly decrease transpiration (i.e. water-use) and this may increase crop
resistance to water stress (Lawlor & Mitchell 1991, Parry et al. 2004, Long et al. 2006). The diverse
effects of climate change/variability and CO, increase in the wheat-belt of New South Wales are
complex and poorly understood. Therefore, there is an urgent need for agricultural systems model to
synthesise this knowledge and extend it beyond experimental sites and testing years so that
agricultural resources can be optimized with the lowest risk under a changing climate across all sites

and times especially for determining optimal response strategies for the future.

This study will provide a mechanistic understanding of the interactive impacts of climate
warming, variable rainfall, and enriched atmospheric CO, concentration on wheat productivity over
NSW wheat-belt from baseline period to different future periods, and reveal spatial and temporal
patterns of water use and greenhouse gas emissions (GHG). As such, this project will provide answers

to the following important questions:

(1) How did climate variability alter wheat yield over the past 100 years?

(2) How will wheat yield respond to more frequent extreme climate events (e.g. more/less rainfall;
increased temperature extreme events like frost and heat stress) under diverse CO, emission

scenarios in the future?

The specific aims of this study are to:

(1) Reveal wheat yield change in response to climate change/variability in the NSW wheat-belt over
the past century at sites, shire and state scales using yield record and long term simulations by

Agricultural Production Systems Simulator (APSIM).
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(2) Evaluate the capacity of statistically downscaled data from [IPCC ARS multiple global circulation
models (GCM) projections to represent recent trends in extreme temperature events, to describe

the possible magnitude of the changes in the extreme climate events in the future.

(3) Quantify wheat development, crop yield and water-use under a changing climate over NSW

wheat-belt using APSIM model driven by statistical downscaling IPCC AR5 GCM projections.

1.2 Research background
1.2.1 Climate change and wheat yield in NSW

In the past decade (2003-2013), total annual wheat production in NSW ranged between 2477 and
104,488 kt and the harvested area varied annually ranging from 2995 to 4322 kha, resulting in the
yield produced per hectare varied greatly from 0.62 to 2.75 t/ha or in a range of more than four-fold

(http://www.daff.gov.au/abares). Across the entire wheat belt of NSW, the mean annual temperature and

rainfall varies from 13-20 °C and 200-700 mm, respectively, with large inter-annual variations.
Spatially, the climate is hotter from south to north and drier from east to west (Liu et al. 2014). How
much of the variations in wheat yield are caused by variation in climate are still unclear. Furthermore
future climate scenarios, generated from the outputs of different GCMs, predict a significant decrease
in winter rainfall in the south-western NSW by 2050 (CSIRO & BoM 2015), although with a slight
increase in summer rainfall in the northeast. This will be accompanied by an increase of 2-3 °C in
winter and spring maximum temperatures. As such it is expected that future wheat yield will be even
more variable in NSW due to changing climate. A detailed understanding of how historical climate
variation has impacted on wheat yield can provide useful insights for the development of sustainable

agricultural systems in the face of future climate change.

1.2.2 Modelling impacts of climate change on crop production

Crop models, such as APSIM (Agricultural Production Systems sIMulator) developed by the
Agricultural Production Systems Research Unit (APSRU) in Australia, are powerful tools for
diagnosing crop growth, predicting crop yield and evaluating environmental impacts at multiple scales
(Asseng et al. 1998, Keating et al. 2003). The management of agriculture resources is of paramount
importance because the world has an ever increasing demand for food, while trying to reduce
potential adverse environmental impacts. As a consequence, agricultural scientists have conducted
numerous demonstration projects worldwide using modelling to analyze strategies for maximising
crop production and minimizing adverse impacts. These agricultural system models include CERES

(Crop Environment Resource Synthesis) from the US (Allan et al. 1986), WOFOST (WOrld FOod
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STudies) from Europe (Diepen et al. 1989) and ORYZA2000 for lowland rice from IRRI (Bouman
2001). Many studies not only focused on simulating the individual effects of higher temperature
(Asseng et al. 2011), elevated CO, (Tubiello et al. 2007a), changed rainfall (Jamieson et al. 1998) but
also concentrated on how different aspects of climate change interact with each other (Van Ittersum et
al. 2003, Ludwig & Asseng 2006). However, the results or recommendations are, at best, site-specific
and time-dependent. Furthermore, a large uncertainty exists in predictions of future climate due to
human activities. Therefore, crop model integration into spatial analyses is needed for analysing the

impacts of the changing climate to crop growth at regional scales.

1.2.3 Climate change impacts and adaptations based on GCM downscaling data

Global climate change has been expected to threaten food supply, for example, through changing
patterns of rainfall, increasing incidences of extreme weather, which could lead to greater variability
of production, increased price volatility and changes in trade flows (Tubiello et al. 2007b, Lobell et al.
2008). GCMs are currently major tools in simulating climate change (Xu 1999, Mehrotra et al. 2013)
and are used in assisting the future food and fiber productions. These numerical coupled models
represent various earth systems including the atmosphere, oceans, land surface and sea-ice and offer
considerable potential for the study of climate change and variability (Fowler et al. 2007). Although
GCMs are recognized as the most appropriate tool to explore future climate change in response to
rising concentrations of anthropogenic greenhouse gases, they remain relatively coarse in spatial
resolution, even for the latest ARS GCMs projections no less than one hundred kilometers and are
unable to realistically simulate precipitation and other climate variables at regional and local scales (a
few kilometers). For example, assessments of future river flows (hydrological model) (Crosbie et al.
2011) or agricultural potential (crop model) (Zhang 2005) require daily data, such as temperature,
precipitation at catchments, or even station, field scales. Furthermore, archived daily sequences
simulated by GCMs are currently available only for specific periods (time slices) of a few decades (Li
Liu & Zuo 2012). Therefore, it is important to develop methods that make use of the available raw
GCM output to produce scenarios of higher temporal and spatial resolutions to develop the best

climate change adaptation strategies and policy development.

1.3 Significance

Agro-ecosystems have high spatial heterogeneity and temporal variation of productivity, arising
from the spatial and temporal variability of climate, soil types, and management practices. In order to
accurately quantify crop phenology, yield and water use efficiency under future climate change, and

estimate GHG emissions at sites and regional scales, it is essential to link spatial information of
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agro-resources and crop models to assess crop growth in response to agricultural management and
environmental variation. The outcomes of this project will enhance the capability of farmers and

policy makers to adapt and manage farm outcomes in the face of climate change/variability.

1.4 Proposed thesis outline

The proposed outline for this thesis is as follows:

e Introduction

e Literature review

e Effects of climate trends and variability on wheat yield variability in eastern Australia

e Multi-model ensemble projections of future extreme temperature change using a statistical

downscaling method in south eastern Australia

e Impact of climate change on wheat flowering time in eastern Australia

e Modelling changes in wheat yield under future climate conditions in relation to plant

available water capacity in eastern Australia

e Spatial changes of wheat phenology, yield and water use efficiency under the CMIPS5

multimodel ensemble projections in eastern Australia.

e Final conclusion



Chapter 2

Literature review

The objective of this section is to provide a comprehensive review of literature related to the
assessment of climate change impacts on crop productivity and adaptation options. It is intended to
provide useful background information for this PhD research in understanding the impacts of climate

change on agriculture and food security and to provide suitable adaptation options.

2.1 Climate change

In September 2013, the Intergovernmental Panel on Climate Change (IPCC) released its Fifth
Assessment Report by Working Groups I (AR5 WG [ ) (IPCC 2013). Among the key conclusions of the

report are the following findings:

* Warming of the climate system is unequivocal based on the facts that the atmosphere and ocean

have warmed, the amounts of snow and ice have diminished, sea level has risen, and the

concentrations of greenhouse gases have increased.

* Total radiative forcing is positive, and has led to an uptake of energy by the climate system.

The largest contribution to total radiative forcing is caused by the increase in the atmospheric

concentration of CO, since 1750.

* Continued emissions of greenhouse gases will cause further warming and changes in all

components of the climate system. Limiting climate change will require substantial and

sustained reductions of greenhouse gas emissions.

Australia’s annual mean temperatures have increased by about 0.9 °C since 1910 with significant
regional variations (Pearce et al. 2007). Daytime maximum temperatures have warmed by 0.8°C since
1910, while overnight minimum temperatures have warmed by 1.1 °C, and 2013 was Australia’s
warmest year on record, being 1.2 °C above the 1961-1990 average of 21.8 °C and 0.17 °C above the
previous warmest year in 2005 (CSIRO & BoM 2015). The climate later in the twenty-first century is
virtually certain to be warmer than at present. CMIP5 model projections indicate that average
temperatures in Australia will rise by about 1.0 to 5.0 °C by 2070; a long-term drying over southern
areas during winter, particularly in the southwest (IPCC 2013). The projections also indicate that
extreme events such as heat waves and droughts are likely to become more frequent and intensive

(Alexander & Arblaster 2009).
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2.2 Downscaling methods
2.2.1 Change factors (CFs)

In the last a few decades, a number of downscaling techniques have been employed to bridge the
gap between the resolution of climate models and local scales (Frei et al. 2003, Mearns et al. 2003,
Diaz-Nieto & Wilby 2005, Hewitson & Crane 2006, Charles et al. 2007, Benestad 2010, Mehrotra et
al. 2013). The most straightforward method for rapid impact assessment is to apply large-scale climate
change projections to local observed climate baseline-change factors (CFs) (Arnell 1992, Arnell &

Reynard 1996, Xu 1999, Anandhi et al. 2011).

Differences between the control and future GCM simulations are applied to baseline observations
by simply adding or scaling the mean climatic values to each day (Fowler et al. 2007). There are two
steps to produce climate scenarios in this simple method. First, estimate the mean changes in

precipitation and temperature using GCM simulated baseline and future climates (e.g., AT= +1, +2
and +3 °C and AP=0, +10%, *20%). Second, obtain local scaled future values by adding AT

and by multiplying the values by (1+AP) for temperature and precipitation, respectively (Xu 1999).

Although CFs can be rapidly applied to several GCMs to generate a range of climate scenarios,
there are some problems with this approach. For example, the procedure only scaled the means,
maxima and minima, ignoring climatic range and variability and assuming the spatial pattern of
present climate remains constant in the future. Furthermore the temporal sequencing of wet and dry
days is generally unchanged for precipitation, so CFs may not be helpful in circumstances where
changes in event frequency and spell lengths are important to the impact assessment (Diaz-Nieto &

Wilby 2005, Fowler et al. 2007, Anandhi et al. 2011).
2.2.2 Dynamical and statistical downscaling

Another two main methods, the dynamical downscaling method and statistical (empirical)
downscaling method, have been widely applied to translate the large-scale GCM output into a finer
resolution. The first is a dynamical downscaling approach embedding a higher-resolution climate
model within a GCM. The second approach is to use statistical methods to generate empirical

relationships between GCM-resolution climate variables and local climate.
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2.2.2.1 Dynamical downscaling

Dynamical downscaling nests a regional climate model (RCM) into GCMs to produce a higher
grid box resolution within the region of interest. An important advantage of this method is that RCMs
explicitly account for many of the physical process such as orographic features and spatially more
detailed depictions of gradients within the atmosphere than GCMs (Fowler et al. 2007, Yin et al.
2011). However, the dynamical method tends to inherit systematic biases from the driving GCM
models and is dependent upon the veracity of GCM outputs as boundary conditions and also strongly
depends on the presence and strength of regional scale forcing including such as orography, land-sea
contrast, vegetation cover (Wang et al. 2004). Dynamical downscaling is also highly computational
demanding and is as expensive to run as a global GCM (Wilby & Wigley 1997). Moreover, model
integrations have been restricted to ‘time slices’. For example, most RCMs are run only for a
time-slice from 2070 to 2100, which makes climate change impacts for other periods difficult to

assess (Fowler et al. 2007).

Nonetheless, this method has the ability to produce finer resolution information from GCM-scale
output that can resolve atmospheric processes on a smaller scale and may ultimately provide
atmospheric data for impact assessments that reflect the natural heterogeneity of climate at regional
scales (Wilby & Wigley 1997, Fowler et al. 2007). Because of the complex topography and diverse
climate regimes studies within the western U.S., Europe, and New Zealand, often report that more
skillful dynamical downscaling for capturing regional climate than in regions such as the U.S., Great
Plains and China where regional forcings are weaker (Kidson & Thompson 1998, Frei et al. 2003,

Leung et al. 2003a, Wang et al. 2004).

Dynamical downscaling produced more realistic estimates of hydrologic impacts in mountainous
regions such as the western U.S. derived from an ensemble of regional climate simulations (Leung et
al. 2003b). This approach also can provide improved simulation of meso-scale precipitation and
higher moment climate statistics (extreme climate such as intense precipitation, extreme high/low
temperatures and frost conditions, and diurnal, seasonal, and inter-annual variability) for the control
climate, and hence produce more plausible climate change scenarios for extreme events and climate
variability at the regional scale (Wang et al. 2004). Since human society has been more vulnerable to
changes in the frequency or intensity of extreme events (floods, droughts, heat waves) rather than
median climate states, so dynamical downscaling will remain an important method for providing

valuable needed information to assess climate change impact.
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2.2.2.2 Statistical downscaling

Many statistical downscaling techniques have been developed to translate large-scale GCM
output onto a finer spatiotemporal resolution. They are regression models, weather typing schemes
and stochastic weather generators. Regression models capture the relationships between the local
meteorological variables and the large scale atmospheric variables (predictors) (Wigley et al. 1990,
von Storch et al. 1993, Crane & Hewitson 1998, Huth 1999, Zorita & Von Storch 1999). Weather
typing schemes or weather classification methods group days into a finite number of discrete weather
types or “states” according to their synoptic similarity (Conway et al. 1996, Goodess & Palutikof
1998, Hewitson & Crane 2002, Bardossy et al. 2005). Weather generators are statistical models that
provide sequences of weather variables by simulating key properties of observed meteorological
records (i.e. daily means, frequencies, extremes, variance and covariance) (Semenov & Barrow 1997,

Wilks & Wilby 1999, Zhang 2005, Kilsby et al. 2007).

Statistical downscaling is based on some key assumptions that (i) predictor variables should be
characterized well by GCMs. (ii) the observed, empirical relationship is assumed to be stationary
under future climate conditions. If these assumptions hold, then it is possible to produce scenarios of
regional and smaller-scale climate from GCMs projections, that are both more reliable and of finer

resolution than the ‘raw’ GCM data (Wilby & Wigley 2000).

In comparison with dynamical downscaling, the main advantages of statistical downscaling are:
(1) it is comparatively cheap and computationally efficient; (2) it can be applied easily to point-scale
climatic variables from GCM output; (3) it is based on standard and accepted statistical procedures
and the statistical relationships can be explained rather easily; and (4) it can be easily transferable to
other regions and provide site-specific estimations (Fowler et al. 2007). Due to such advantages,
statistical methods have been widely used in the regional climate change impact assessments,
especially in the hydrologic response assessment (Hay & Clark 2003, Wood et al. 2004, Crosbie et al.
2011, Chen et al. 2012). However, this method also has disadvantages that need to be taken into
account in its practical applications. First, it generally requires long and reliable observed historical
time series for calibrating and validating the appropriate statistical relationship. Second, it depends
upon choice of predictors and GCM boundary forcing. Third, it assumes that statistical relationships

will be valid in the future, which is called stationarity in the predictor-predictand relationship.

New techniques have been introduced to improve the realism of downscaling data, such as Zhang
(2007) downscaled monthly GCM temperature and precipitation to the station level using transfer

functions and then used a Richardson-type weather generator to generate daily climate series based on
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spatially downscaled monthly GCM output. Liu and Zuo (2012) applied an inverse distance-weighted
(IDW) interpolation method to first downscale to specific sites through the monthly climate
projections from global climate models (GCMs), a bias correction procedure was then used to the
monthly GCM values of each site and daily climate projections for the site are generated by using a
stochastic weather generator, WGEN. These approaches bridge the spatiotemporal gaps between
coarse resolution projections of GCMs and fine resolution of data requirements of agricultural
systems models, which can further demonstrate the site-specific impact assessment of climate change

on water resources and crop production using hydrological model and crop growth model.

2.3 Climate change impacts on crop productivity

Crop development, growth and grain yields will greatly respond to increases in atmospheric CO;
concentration, higher temperatures, altered precipitation and solar radiation, increased frequency of
extreme temperature and precipitation events (Tubiello et al. 2007a, Yu et al. 2014). Solar radiation,
temperature and precipitation are closely related and affect crop yield in different ways. Consequently,
understanding these factors that determine yield is essential to predicting regional crop production,
altering new cultivars, improving crop management techniques, and adopting feasible strategies to
deal with climate change (Yu et al. 2014). When examining trends in historic grain yield data, it is
difficult to separate the effect of climate change on crop production from the effects of changes in
land use, cultivars and crop management. However, the use of simulation model makes it possible to
study the impact of changes in the climate while keeping other technology variables (like cultivars
and management) constant. Recent research has helped to better quantify the potential outcome of

these key interactions.

2.3.1 Climate warming

Average global temperature and regional temperature patterns resulting from increased
atmospheric concentrations of greenhouse gases are predicted to continue to rise, which have
important consequences for crop yield (Tao et al. 2006, Lobell 2007, Luo 2011). Crop growing season
is greatly affected by temperature (Porter & Gawith 1999, Sadras & Monzon 2006). For example, in
southern Spain, a shift in phenology of trees and crops has been observed due to increased
temperature from 1986 to 2008 (Garcia-Mozo et al. 2010). Estrella et al. (2007) found that the
majority of phenology events were significantly earlier with a mean advance of 1.1-1.3 days per

decade in Germany.

Increasing mean temperatures during the growing season have been reported to reduce grain
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yields due to a shorter growth period, reduce light interception and limit photosynthesis rates by
accelerating phenological development (Asseng et al. 2011, Teixeira et al. 2011). Lobell et al. (2003)
concluded that gradual temperature changes have had a measurable impact on both corn and soybean
yield trends in America. Peng et al. (2004) found a close linkage between rice grain yield and mean
minimum temperature based on records from continuous field experiments during 1992-2003 at the
International Rice Research Institute (IRRI). Rice yields declined by 10% for each 1 °C increase in
growing season minimum temperature. Tao et al. (2006) reported that the observed changes in
temperature affected the phenology and crop yields differently at different stations in China.
Furthermore, Lobell et al. (2007) found that diurnal temperature range (DTR=tmax-tmin) has a relatively

strong negative effect in Australia and Canada, while a positive effect in France for wheat.

Based on these studies, it can be found that continuous warming trend has had large impacts on
the development and production of field crops, but the size and extent of the impacts have differed
spatially and temporally (Tao et al. 2006). There is a clear and present need to synthesize crop yield
and climate data from different areas with more detailed information to predict impacts of climate

change on future food production (Lobell & Asner 2003).
2.3.2 Solar radiation (global dimming)

The amount of incident solar radiation governs the physiological and biophysical processes of
vegetation over land surface, such as canopy photosynthesis, and evapotranspiration (ET), as well as
the energy balance over diurnal/seasonal time frames (Yang et al. 2013). The global solar radiation
reaching the surface declined from the beginning of widespread measurements in the 1950s until the
mid-1980s while there was a partial recovery from the 1980s onward (Stanhill & Cohen 2001, Wild et
al. 2005). Numerous studies have substantiated the findings of significant decadal surface solar
radiation changes observed both at worldwide distributed terrestrial sites as well as in specific regions,
which show that dimming and brightening occurred in different areas and related to aerosol loading of
the atmosphere and the influences of aerosols on atmospheric transmittance (Cohen 2009, Norris &

Wild 2009, Wild 2009, Augustine & Dutton 2013).

Reductions in solar radiation and change in radiation composition are closely coupled to
evapotranspiration and water use efficiency (WUE) which could have significant effects on crop
development and growth (Stanhill & Cohen 2001, Zhang et al. 2011a). Black et al. (2006) showed that
the decrease in solar irradiance between 1955 and 2004 resulted in a significant decrease in calculated
gross primary productivity varying from 1.25 to 3.9 t C ha over the 50-year period. Chameides et al.

(1999) found a close correlation between decrease in solar radiation and rice yield at Nanjing of China

10
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using the CERES model. Yang et al. (2013) demonstrated that declining solar radiation from high
radiation levels had no effect on wheat yield but improved water use efficiency, while under low
radiation levels (mean wheat season solar radiation of 7.8 MJ m?) grain yields decreased

significantly.
2.3.3 Water stress

Water resources play a vital role in crop productivity and assessment of seasonal and long-term
water availability is not only of importance for sustaining human life, biodiversity and the
environment, but also helpful for farmers to determine agricultural water management (Kang et al.
2009). Water availability is under threat from the changing climate because of possible rainfall
decrease in some regions of the world (Wang et al. 2009d, Rowhani et al. 2011, Traore et al. 2013). In
the northern wheat-belt of Australia most of the water used by the wheat crop falls as rain before the
growing season, and is stored in the subsoil after fallowing while in southern Australia, although
fallowing adds to the water supply in some soils in some districts, most of the water used by wheat
comes from rain during April-October (French & Schultz 1984a, b). However, growing season rainfall
is highly variable and usually limits production especially in rainfed environments and climate change
is one of the greatest pressures on the hydrological cycle including the natural replenishment of

surface and groundwater resources.

Many studies have considered climate change impacts on water use efficiency as well as crop
productivity under different climate conditions. For example, Luding et al. (2006) studied the impacts
of predicted climate change on wheat systems in Western Australia and found that reductions in
rainfall could result in a considerable decrease in wheat yield while future climate change has been
predicted to increase the potential wheat yield in the wetter and cooler southern part of the wheat-belt.
Wang et al. (2011) demonstrated that the response of crop yield to future climate change is complex
and the extents of response depend on many other factors like climatic regions, crop types, soil types

and management practices over the Murray-Darling Basin in Australia.
2.3.4 Elevated atmospheric CO;

Increasing concentrations of CO> in the atmosphere are linked to a high probability of climate
change, characterized by increased surface temperatures, by changed global and regional patterns of
precipitation, and by climatic shifts in both mean and variability that could threat ecosystem functions
and human welfare (Tubiello & Ewert 2002). Elevated CO: concentrations stimulate photosynthesis,

leading to increased plant productivity and modified water and nutrient cycles (Kimball et al. 2001,

11
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Nowak et al. 2004). In particular, elevated CO» and associated climate change may greatly affect crop
production. Therefore, it is not surprising that hundreds of studies have been conducted to analyze

crop response to increased CO; concentrations above current levels.

Experiments under optimal conditions show doubling the atmospheric CO, concentration from
350 ppm to 700 ppm increases leaf photosynthesis by 30%-50% in C3 plant species including rice,
soybeans and wheat, and 10%-25% in C4 crop such as maize and sorghum, despite some
down-regulation of leaf photosynthesis by elevated atmospheric CO» concentrations (Tubiello et al.
2007b). Spring wheat grain yield increased by 10.4% (Hogy et al. 2009) and rice seed yield increased
7-15% (KIM et al. 2003, Long et al. 2006) in elevated CO, during previous FACE studies. Long et al.
(2006) found a much smaller CO, fertilization effect on yield using new FACE data than currently
assumed derived from chamber experiments and crop models forecast. Recent analyses of FACE
studies indicate that, at 550 ppm atmospheric CO, concentration, observed yields increase under
unstressed conditions by 26% for wheat in Australian dry land (O'Leary et al. 2015). However,
Tubiello et al. (2007a) reported that the response of crop yields to elevated CO, were similar across
FACE and non-FACE experimental data and results from most crop simulations were consistent with
the values from FACE experiments. They think any remaining differences in CO; response based on

FACE results would not significantly alter projections of world food supply in the 21st century.

Modelers and plant physiologists alike recognize that the impacts of elevated CO», as measured
in experimental settings and subsequently implemented in models, may nonetheless overestimate
actual field and farm-level responses, because of many limiting factors such as pests, weeds, nutrients,
competition for resources, soil water and air quality, which are neither well understood at large scales,
nor well implemented in leading models. Future crop model development should therefore strive to
include these additional factors to allow for more realistic climate-change simulations. In the
meantime, studies projecting future yield and production under climate change should do so by
incorporating sensitivity ranges for crop response to elevated CO, to better convey the associated

uncertainty range (Tubiello et al. 2007b).

2.3.5 Increased frequency of extreme events

The effects of increased climate variability on crop production under climate change are likely to
increase production losses beyond those estimated from changes in mean variables alone (Tubiello et
al. 2007b). Yield damaging climate thresholds spanning periods of just a few days for crops include
absolute temperature levels linked to particular developmental stages like flowering and seed

formation stage (Wheeler et al. 2000, Wollenweber et al. 2003, Asseng et al. 2011). For example

12
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spring wheat grain yield declined by 350 g/m? with a 10°C increase in maximum temperature at 78
days after sowing (50% anthesis) and a 40% reduction in the number of grains per year in a field
experiment (FERRIS et al. 1998). Rice spikelet sterility was positively related to the maximum
temperature during the 20 days before and after anthesis (Tao et al. 2006). Maize exhibits reduced
pollen viability for temperatures above 36°C (Porter & Semenov 2005).

GCM outputs indicated that the surface temperature and precipitation might become more intense
in the future, and short-term natural extremes such as storms and floods, droughts, heat waves,
inter-annual and decadal climate variations as well as large-scale circulation changes such as the El
Nino Southern Oscillation all have adverse effects on crop production. For example, El Nino-like
conditions increase the probability of farm incomes falling below their long-term median by 75%
across most of Australia’s cropping regions, with impacts on gross domestic product ranging from
0.75% to 1.6% (Potgieter et al. 2002, Tubiello et al. 2007b). Europe experienced a particularly
extreme climate event during the summer of 2003, with temperatures up to 6°C above long-term
means and precipitation deficits up to 300 mm. A record crop yield drop of 36% occurred in Italy for

corn grown in the Po valley where extremely high temperatures prevailed (Ciais et al. 2005).
2.3.6 Interactions of climate variables (temperature and rainfall) and CO; increase

Changes in temperature, rainfall, and atmospheric CO, concentration together can have
significant impacts on crop productivity (Challinor & Wheeler 2008, Chavas et al. 2009). Scenarios
for future global and regional climate change will include elevated atmospheric CO», but could also
mean warmer average air temperatures and increased water deficit in rainfed agriculture due to
changes in rainfall amount and distribution (Asseng et al. 2004). High temperature during the critical
flowering period of a crop may lower otherwise positive CO, effects on yield by reducing grain
number size, and quality while increased temperatures during the growing period may also reduce

CO; effects indirectly, by increasing water demand (Howden et al. 2007).
2.3.6.1 Year patterns of climate impacts

Time series of crop yields comprise of two components. One is the increase in yield as a result of
crop management improvement, including improved cultivars, fertilization development and biocide
application. The other is the variation in yield caused by climatic variability (Yu et al., 2001). To
evaluate the impact of climate on crop yields, the technologically driven yield increase must be
eliminated by removing the yield trend from times series. To do this the first-difference method has

been widely used to remove the possible confounding effects of non-climatic factors (Lobell et al.,
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2003, 2005, 2007; Tao et al., 2008; Zhang et al., 2010). It creates a series of yield differences
differentiating the yields of 2 successive years. Thus the effects of variations in climatic variables on
crop yield variations can be identified without directly removing the technologically driven trend

towards yield increase.

2.3.6.2 Process-based crop models

These effects of climate change on growth processes in the context of natural climatic and soil
variability, and a large range of crop management options (e.g. N management) make it extremely
difficult to foresee and quantify any consequences of future climate change on crop production
(Asseng et al. 2004). A widely used approach to this prediction problem is process-based models that
simulate crop growth and development. Many studies not only focused on simulating the individual
effects of higher temperature, elevated CO,, changed rainfall but also concentrated on how different

aspect climate change interact each other (Van Ittersum et al. 2003, Ludwig & Asseng 2006).

For example Asseng et al. (2011) showed that observed variations in average growing-season
temperature of +2 °C in the main growing regions of Australia can cause reductions in wheat
production of up to 50% when rainfall, radiation, genotype and cropping practices were kept constant
between years. Ludwig et al. (2006) studied how higher temperature (2, 4 and 6 °C) elevated CO;
(525 and 700 ppm) and five different rainfall scenarios affected wheat yield using APSIM-Nwheat.
Yield increased with higher CO; especially at drier sites while higher temperatures had a positive
effect in the cooler and wetter region. Potgicter et al., (2013) assessed the impact changes in
temperature and rainfall associated with low and high CO, on modelled wheat yields in response to
emission scenarios projected for the periods 2020 and 2050, they found that taking into account CO,
fertilizations effects attenuated the yield reductions associated with increased temperatures and

reduced rainfall by 2020, 2050.

However, large uncertainty exists in climate impacts on yield using crop simulation models,
especially the uncertainty related to model structure. In recent years, a number of studies, as part of
the Agricultural Model Inter-comparison and Improvement Project (AgMIP), have examined the
differences through systematic crop model inter-comparison (Asseng et al. 2013, Martre et al. 2015).
Palosuo et al. (2011) simulated winter wheat yield and its variability in different climates of Europe
with a comparison of eight crop growth models (APES, CROPSYST, DAISY, DSSAT, FASSET,
HERMES, STICS and WOFOST) and concluded that application of crop simulation models with
restricted calibration leaded to a high degree of uncertainty about climate impacts on yield and yield

variability. Nevertheless, the wide range of projected impacts on agriculture is associated with both
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the uncertainty in climate projections (i.e. GCM projections and GHG emission scenarios) and the
structural (or parameterization) differences between crop models (Osborne et al. 2013, Monier et al.
2016). Some studies pointed out GCMs being the main source of the uncertainty in magnitude, spatial
pattern and even sign of projected change (Hawkins & Sutton 2009, Kassie et al. 2015). They
partitioned the variation of future climate change to three main factors, namely the internal variability
of climate system, the choice of GCMs (model uncertainty or response uncertainty) and the
greenhouse gas emissions pathway (scenario uncertainty). Different GCMs can provide different
future climate projections for a particular region. The real climate system is highly complex and it is
impossible to adequately describe its processes with an individual climate model. Authors of model
evaluation studies have stated that no single model can be considered ‘best’ and recommend using
results from a range of climate models. Therefore, the use of many GCMs was important to sample
the uncertainties in future climate projections that arise from differences in model structure and

parameterization, as well as internal climate variability (Lobell et al. 2015).

2.3.6.3 Statistical models

Another method is statistical models in which historical data on crop yields and climate variables
are used to calibrate relatively simple regression equations (Lobell & Burke 2010a). They are
particularly useful when data are insufficient to calibrate more complicated process-based models.
Many efforts have been made to empirically investigate climatic effects on crop yield by relating
climate change observations to census yields from long-term site-specific field observations to
regional, national and global scale (Tao et al. 2006, Lobell et al. 2008, Zhang et al. 2010, Teixeira et al.
2011).

In spite of these efforts, there are some arguments about effects of increased temperature on crop
production. For example, Lobell (2007) found negative effects of increased diurnal temperature range
(DTR) for rice yields, which contradicts the positive effect of DTR inferred by Peng et al. (2004).
More interesting, Sheehy et al. (2006) reinvestigated Peng’s claim of the yield decline with the IRRI
dataset Peng et al. (2004) used and argued against and pointed toward covariation of rising minimum
temperature and reduced solar radiation, thus, a decrease in solar radiation could also explain the
reduction in yield (Zhang et al. 2010). Low solar radiation could be associated with high minimum
temperature, high rainfall and low harvest index (Sheehy et al. 2006). Zhang et al. (2010) reported
positive and negative yield correlation with temperature can be seen as a proxy of radiation or rain
effects via correlation with them, suggesting a relative weak temperature effect on change in rice
yields. Consequently, separating the contributions of solar radiation, rainfall and temperature to yield

cannot be achieved using simple correlation because of co-linearity problem between predictor
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variables (e.g. temperature and precipitation, temperature and radiation) (Lobell & Burke 2010b).

2.3.7 Adaptation to climate change

Adaptation to climate change will require changes in genotype (G) and management (M) to
match the climate-induced changes in environment (E) (Soussana et al. 2010). For rainfed crops in the
dry areas, evidence shows that variation due to E far outweighs the variation of grain yield that is due
to M or G, or the interactions between these factors, and between these factors and E (Anderson

2010).

Asseng et al. (2012) found that changes in climate and CO, concentration last century have, in
combination, had little or no impact on wheat yields in Western Australia using APSIM-Nwheat
model while other changes have had much larger effects, including changes in crop cultivars, crop
production technologies and farming systems, including increased fertilizer use, herbicides for weed
management, reduced tillage, improved machinery allowing earlier sowing, retention of crop residues,
and the use of ‘break’ crops, largely for management of root diseases. Anderson et al. (2005) showed
that about 70% of yield improvement has come from improved management and about 30% from
improved cultivars of wheat through experiments comparing old and modern management, old and
modern cultivars. Jiang et al. (2003) grew a set of historical cultivars of winter wheat released over 50
years in China managed in the same environment and found that the cultivars differed by only 36%
while recorded grain yield increased eightfold during this period, indicating that agronomic practices
were the most important factors for grain yield. Yu et al. (2012) carried out the modeling analysis on
contributions of cultivar improvement during the past three decades, which showed that rice cultivar
improvement was the top most important contributor to the enhance rice production in China with

cultivar (38.9%), climate (4.4%), management (9.3%).

The contributions to yield improvement of the genotypexmanagementxenvironment (GXMXE)
are varied in different regions for different crops. Therefore, this will require the development of
regional adaptation strategies (e.g. innovative water harvesting and conservations methods, sowing
dates, cultivar choice, crop rotation) as well as the development of drought and heat tolerant cultivars,

which can counter the likely negative impact of climate change (Potgieter et al. 2013).
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Chapter 3*

Effects of climate trends and variability on wheat yield
variability in eastern Australia

Abstract

Identifying climatic drivers that dominate crop yield variations at a regional scale is important for
predicting regional crop production. In this study, a statistical method was used to quantify the
relationship between reported shire wheat yields and climate factors during wheat-growing season
across the New South Wales (NSW) wheat belt in eastern Australia from 1922 to 2000. The results
show that 8.5-21.2% of the observed wheat yield increase over the last 78 years is due to changes in
climate. In the eastern slopes of NSW, growing season maximum and minimum temperatures and
number of heat stress days (>34 °C) were identified to be dominant climatic factors affecting wheat
yield, accounting for 36% of yield variation. In the northern region, maximum temperature,
pre-growing season rainfall (December to April) and the number of frost days (<2 °C) accounted for
41% of yield variation. In the southern region, rainfall, temperature, the number of frost and heat
stress days accounted for 47% of yield variation, while in southwest NSW, rainfall was the main
factor accounting for 31% of yield variation. Frost was less important in the eastern slopes because
farmers manage frost occurrence by sowing late and using late-flowering cultivars. However, frost
had more impact on yield variation in the northern parts of the wheat belt as farmers sow earlier and
select short-season cultivars to avoid heat stress. Understanding the impact of climate variations on

crop yield is important for developing sustainable agricultural production under future climate change.

Keywords: climate variation, wheat yield variability, NSW wheat belt, first difference
3.1 Introduction

Inter-annual variability of crop yields is largely determined by climate variables such as
temperature, rainfall, and solar radiation (Chen et al. 2004, Rowhani et al. 2011, Trnka et al. 2012,
Traore et al. 2013). These climate factors are closely related and affect grain yield in different ways
for different crops; moreover, climate-yield relationships are also region-dependent (Lobell & Asner
2003, Lobell et al. 2005, Tao et al. 2008, Ludwig et al. 2009, Zhang et al. 2010, Potgieter et al. 2013).
For example, Zhang et al. (2010) found that solar radiation was the primary climate variable to cause

inter-annual variations in rice yield in southern China, based on experimental data during the period

*: This chapter has been published in Climate Research 64:173-186, 2015.
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of 1981-2005. In Mexico, most of the wheat yield variability can be attributed to cool nighttime
temperatures during the wheat-growing season, which explained approximately 69% of yield
variation in irrigated systems (Lobell et al. 2005). Lobell et al. (2007) reported that growing season
temperatures accounted for at least 29% of year-to-year variation of grain yields for six of the most
widely grown crops globally. However, in rain-fed conditions, the variation in seasonal rainfall is the
major climate factor to affect yield variation (Seif & Pederson 1978, Cooper et al. 2008, Traore et al.
2013). Therefore, it is important to identify the major climate factors that cause yield variation and
quantify their effects on yield for specific crops in specific regions. This can provide a foundation to
understand regional crop production and variability and can help to develop feasible strategies for

adapting to future climate change (Lobell et al. 2007).

Wheat is the most important crop in Australia in terms of the gross value of its production.
However, Australian wheat yield is extremely variable from year to year across major production
regions (Potgieter et al. 2002). In the past decade (2003-2013), New South Wales (NSW) annual
wheat production ranged between 2,477 and 10,488 kt. Harvested area varied from 2,995 to 4,322 kha
with wheat yields varying from 0.62 to 2.75 t/ha (http://www.daff.gov.au/abares). Although advances

in technology and improved cultivars have been identified to contribute to yield increase, much of the
variation in Australian wheat yields is related to growing season rainfall variability. For example, in
South Australia approximately 65% of wheat yield variation has been reported to be associated with
the variability of rainfall during April-October, with rainfall during winter months (June to August)
being more effective to produce high yields than that during other times (Cornish 1950). However,
Seif and Pederson (1978) found that spring rainfall, from 3 weeks before flowering to 2 weeks after,
contributed to 86% of the variation in yield in the central west of New South Wales. Extreme weather
events, such as frost and heat stress, affect wheat yields and represent a significant risk that needs to
be managed to maintain profitable production (Asseng et al. 2011, Zheng et al. 2012). Several studies
have investigated the climate effects on wheat in Australia using the yield data at a regional level
(Potgieter et al. 2002, Hansen et al. 2004), state level (Yu et al. 2014), and national scale (Nicholls
1997). However, there have been few comprehensive studies of the climate-yield relationship at a
district or shire level, which can provide a higher spatial resolution of yield and climate, including
diverse compositions of solar radiation, rainfall, and temperature. Moreover, the results of recent
studies on the impact of climate trends in Australia have been contradicting. For example, Nicholls
(1997) concluded that 30% to 50% of Australian wheat yield increase during the period 1952-1992
was caused by temperature increase. In a multiple linear regression model with three climate variables,
Nicholls (1997) found that increase in minimum temperature caused wheat yield increase with small

contributions from rainfall changes. However, Godden et al. (1998) and Gifford et al. (1998) argued
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that Nicholls’s conclusion was not justified and overestimated the effects of climate trends on wheat
yields. Gifford et al. (1998) suggested that the response of wheat yield to climate variation is more
specific to regional conditions and growing season climate variability and many other factors

contribute to the change in yields.

Statistical models that rely on past observations of climate and crop yields have been widely used
to evaluate the impacts of climate change on crop performance (Lobell & Burke 2010a). They are
particularly useful when data are insufficient to calibrate dynamic process-based models. The main
requirement of statistical models is long time series data for historical climate and crop yields. Among
statistical approaches, the multiple linear regression method is traditionally used because it can
explain the relative contributions of different climate factors to crop yield with relatively simple
multiple linear regression equations (Lobell et al. 2005, Sheehy et al. 2006, Lobell et al. 2007, Lobell
& Burke 2010b, Rowhani et al. 2011). However, a multiple linear regression method is limited by
excluding collinearity among climate factors when consider individual predictor effects (Sheehy et al.

2006, Lobell & Burke 2010b).

In this study, I systematically investigated climate-yield relationships and the effects of climate
variation on wheat yields in four geographical-climate regions at shire scale across the NSW wheat
belt in eastern Australia during 1922-2000. Stepwise regression analysis was used to identify the most
relevant climate variables for yield variation, and empirical regression models were then developed to
quantify the effect of climate trends on yield. The objectives of this study were to: 1) provide a
quantitative understanding of the relationship between wheat yield and climate in the past few
decades; 2) identify the major climatic drivers for yield variation and 3) analyze the impact of climate

trend on wheat yields.
3.2 Materials and methods
3.2.1. Study area

The New South Wales (NSW) wheat belt is geographically located in 66 shires of the state in
eastern Australia. It has an area of 360,000 km?, accounting for 45% of the state land area of 809,444
km? (Liu et al. 2014). Here wheat is mainly grown under rain-fed conditions. The crop can be sown in
autumn or early winter (May to July) to ensure that flowering will take place after the last frost, and
maturity will occur before any summer humidity across the wheat belt, depending on local climatic

conditions (rainfall) and soil types.
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Fig. 3.1 Spatial distributions of 466 weather stations (A) and four regions including 66 shires (B) over
the NSW wheat belt used in this study.

Wheat usually flowers in early to mid-spring, and matures in late spring to early summer.
Although the sowing date and mature date vary, May to November is typical growing season for
wheat in eastern Australia (Gomez-Macpherson & Richards 1995). The wheat belt is characterized by
variable topography and climate conditions (Fig. 3.1A). Topographically, the eastern part of the wheat
belt is occupied by hills, known as “slopes”, with elevation above 500 m. The other areas are mainly
occupied by plains. Climatically, the wheat belt has a broad range of variable environments (Fig. 3.2).
It is warm and dry in the northern and southwestern plains, where growing season rainfall (GSR) is
less than 250 mm and growing season mean temperature (GST) is above 14.0 °C. In the southern
plains, GSR is about 300 mm and GST is about 12.5 °C. In the eastern slopes, the GSR is more than
400 mm with GST being lower than 12 °C. Accordingly, I divided the wheat belt into four regions
based on the climate and topography characteristics obtained from the topographical landscape of a
Digital Elevation Model (DEM): the eastern slopes (I), northern plains (II), southern plains (III) and
southwestern plains (IV) (Table 3.1, Fig. 3.1B).
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Table 3.1 Time period of sixty-six selected shires and number of weather stations for each shire
included in this study. Region I included 20 shires in the east of NSW wheat belt; region II included
12 shires in the north; region III included 31 shires in the south and region IV included three shires in

the southwest.

Region ID?*  Shire Stations g:rlilg q Region ID  Shire Stations p];lr?:)fi
\ 29 Holbrook 7 1922-1996 11 32 Jerilderie 5 1922-2000
25 Gundagai 4 1922-1996 17 Corowa 6 1922-2000
27 Harden 2 1922-2000 55 Urana 4 1922-2000
65 Yass 7 1922-1996 19 Culcaim 3 1922-2000
Boorowa 4 1922-2000 36 Lockhart 6 1922-2000
Blayney 5 1922-1996 56 Wagga 11 1922-2000
21 Evans 6 1922-1996 46  Narrandera 9 1922-2000
52 Rylstone 3 1922-1996 35 Leeton 4 1927-2000
40 Mudgee 8 1922-1996 5 Bland 9 1922-2000
38 Merriwa 7 1922-2000 13 Coolamon 6 1922-2000
44 Muswellbrook 5 1922-1996 33 Junee 10 1922-2000
53 Scone 7 1922-1996 54 Temora 3 1922-2000
43 Murrurundi 7 1922-2000 16 Cootamundra 5 1922-2000
51 Quirindi 8 1922-2000 11 Conargo 8 1922-2000
48 Nundle 1 1922-1996 47 Narromine 10 1922-2000
50 Parry 4 1922-2000 20 Dubbo 3 1922-2000
37 Manilla 1 1922-1996 61  Wellington 7 1922-2000
31 Inverell 10 1922-2000 66 Young 6 1922-2000
2 Barraba 5 1922-1996 49 Pparkes 9 1922-2000
30 Hume 6 1922-2000 9 Cabonne 11 1922-2000
I 58 Walgett 25 1966-2000 I8 Cowra 6 1922-2000
39 Moree plains 13 1922-2000 60 Weddin 6 1922-2000
64 vallaroi 7 1922-2000 22 Forbes 2 1922-2000
15 Coonamble 12 1922-2000 63 Windouran 6 1922-1996
45 Narrabri 14 1922-2000 41 Murray 5 1922-2000
26 Gunnedah 11 1922-2000 10 Carrathool 7 1922-2000
14 S consbaabre ? 1922-2000 42 Murrumbidgee 7 1922-2000
23 Gilgandra 5 1922-2000 34 Lachlan 15 1922-2000
59 Warren 9 1958-2000 24 Griffith 7 1927-2000
7 Bogan 8 1958-2000 57 Wakool 8 1922-2000
12" Coolah 7 1922-2000 v 1 Balranald 8 1960-2000
4 Bingara 4 1922-1996 62  Wentworth 5 1968-2000
11 3 Berrigan 4 1922-2000 28 Hay 14 1961-2000

2 The ID number corresponds to those in Fig. 1B.
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Fig. 3.2 Spatial distributions of growing season mean temperature (GST) (A) and rainfall (GSR) (B)
over the NSW wheat belt during 1922-2000.

3.2.2 Climate and yield data

For this study, I extracted the historical daily climate data (1922-2000), known as SILO patched

point dataset (PPD, http://www.longpaddock.qld.gov.au/silo/ppd/index.php), for maximum and

minimum temperature, rainfall, and solar radiation at 466 weather stations evenly distributed across
the NSW wheat belt (Fig. 3.1A). Wheat yields at shire level during 1922-2000 (data in some shires
were not available in some years) across the NSW wheat belt were obtained from Fitzsimmons (2001)

(Table 3.1).

To obtain climate variables that characterize the climate conditions of each shire, the daily
maximum and minimum temperatures, rainfall, and solar radiation during 1922-2000 were assembled
from the weather stations located within the shire (Table 3.1) to produce shire-average daily climate
data. I then averaged the calculated daily climate data for the main growing season from May 1 to
November 30 to obtain shire-scale climatic variables of the wheat-growing season. Number of days
with Tmax >34 °C (boundary to define heat stress) and number of days with Tiin <2 °C (boundary to
define frost) (Asseng et al. 2011, Liu et al. 2011, Barlow et al. 2015) during the wheat-growing season

were calculated for each shire.

3.2.3 De-trending method

The year-to-year variations of crop yield are largely driven by climate (Yu et al. 2001, Chen et al.
2004, Porter & Semenov 2005), but studies have shown that crop management improvements
including improved cultivars, fertilization development, and biocides application have contributed to
crop yield increase in the past decades (Anderson et al. 2005, Asseng & Pannell 2012, Yu et al. 2012).

To evaluate the impact of climate variation on crop yield, the yield increase driven by technological
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improvement needs to be excluded. A first-difference method has been widely used to remove the
possible confounding effects of non-climatic factors (Nicholls 1997, Lobell & Asner 2003, Tao et al.
2008, Zhang et al. 2010). This approach can minimize the influence of management factors, allowing
the ability to examine the response of crop yields to climatic variables from year to year (Lobell &
Field 2007, Trnka et al. 2012). First difference is defined as the difference of a parameter between two

successive years:

AX, =X, - X, i=1,2,...n (3.1
Where AX, is the first difference of the parameter for ith year; X, is the parameter value for the ith
year; and X, is the parameter value for the (i-/)th year. The first differences of maximum

temperature (A7, ), minimum temperature (A7 . ), rainfall (AR ), solar radiation (AS ), number of

ax in

frost days (Tmin <2 °C, AF"), number of heat stress days (Tmax > 34°C, AH ) and wheat yield (AY )

for the growing season during the period of 1922-2000 were calculated. Then AY , AT AT

max ° min?

AR, AS, AFand AH were used to evaluate the effects of variation in climate factors on yield.
3.2.4 Stepwise regression analysis

Stepwise regression analysis is particularly useful to identify major climatic variables to affect
crop yield variations (Yu et al. 2001, Liu et al. 2010b). It evaluates all climate variables for their
potential contributions to crop yield variation and excludes variables not statistically significant in the
multiple regression model (P<0.01). Procedures to wuse stepwise regression are relatively
computationally efficient and have advantages to allow to use a small subset of least correlated
variables without losing a significant portion of the explanatory power of the data, thus minimizing
the effects of multicollinearity on the regression model (Huang & Townshend 2003). The stepwise
regression analysis combines both forward selection and backward elimination methods to establish a
regression model. Firstly, the procedure starts a forward selection by trying out one explanatory
variable at a time and includes it in the regression model if it is statistically significant (P<0.01). The
second step involving in the stepwise procedure will use backward elimination method to retest the
coefficients of the added variables and delete these variables if the test judges them to be insignificant.
Because the addition of one variable can lead to a change in the performed p value associated with
another variable, the third step in the stepwise process will reselect the variables by allowing a
variable to enter the equation at one step, deleting the variable at a later step and allowing the variable
to reenter at an even later step (Dielman 2001). Finally, the stepwise regression procedure terminates

when no more variables can be justifiably entered or removed from the model.
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In this study we use stepwise method to select significant climate variables with statistical
software SAS (version 9.2). The multiple liner regression model without intercept (intercept forced to

zero, to avoid trend effect) (Nicholls 1997) was:

AY =a AT, +a AT . +a,AR+ a,AS + a,AF +a,AH (3.2)

a,, a,, a,, a,, a, and a represent the regression coefficients to be fit.

3.3 Results
3.3.1 Variability of climate and wheat yield

Fig. 3.3 shows the variations of climate variables during the wheat-growing season from 1922 to
2000 in four regions. Growing season maximum temperature (GSTmax) had the biggest variability in
the eastern slopes (region I) due to a large range of latitudes in this region, ranging from 13.2 to 23.5
°C with a mean of 18.3£2.1 °C (Fig. 3.3A). For the northern and southern plains (region II and III,
respectively), there were similar amplitudes of the variations in GSTmax, but the northern plains had
the highest mean GSTmax of 21.5°C. GSTwmax had the least variability (£0.6 °C) ranging from 18.4 to
21.3°C with a mean of 20.0°C in the southwestern plains (region IV). For growing season minimum
temperature (GSTmin) (Fig. 3.3B), the patterns of their variations were similar to GSTmax. In eastern
slopes GSTwin varied between 1.6 and 8.2 °C with a mean of 5.1+1.2 °C, and the mean value of

GSTmin was highest in the southwestern plains, with the value of 7.4+0.6 °C.

The largest variability of growing season solar radiation (GSS) (Fig. 3.3C) occurred in the
eastern slopes, ranging from 2,738 to 3,961 MJ m? yr' with a mean of 3,294+232 MJ m™ yr'', while
the southwestern plains had the smallest variability from 3,040 to 3,567 MJ m™ yr' with a mean of
3,243+103 MJ m? yr''. The largest averaged GSS value was 3,600 MJ m? yr'! in the northern plains.

Growing season rainfall (GSR) ranged between 97.6 and 935.1 mm with a mean of 407.1£141.4
mm among all the years and shires in the eastern slopes (Fig. 3.3D). The median GSR was 400 mm,
75% of years and shires had more than about 300 mm in this region. The northern and southern plains
had a similar rainfall range with a mean of 302.5+117.8 and 307.2+115.2 mm in growing season,
respectively. Notably, the southwestern plains received less than half of GSR of eastern slopes ranging
between 46.2 and 376.9 mm with a mean of 199.8+65.9 mm. Rainfall was less than 290 mm in 90%

of years and shires in this region.
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Fig. 3.3 Mean growing season maximum temperature (GSTmax, A), minimum temperature (GSTmin, B),
solar radiation (GSS, C), rainfall (GSR, D), number of frost (GSF, E) and heat stress days (GSH, F)
from 1922 to 2000 in four regions. The horizontal line inside boxes indicates the median value,
box-boundaries are the 25th and 75th percentiles, whiskers are the 10th and 90th percentile and

triangles indicate outliers.

The occurrence probability of frost (GSF) and heat stress (GSH) varied greatly across the NSW
wheat belt during the period of 1922-2000 (Fig. 3E, F). The number of frost days was the highest (63
days) in the eastern slopes occurring during the wheat-growing season in more than 50% of years and

shires due to lower temperature (Fig. 3.2A). The number of frost days in the northern plains (44 days)
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was slightly more than that in the southern plains (41 days). However, frost days occurred least in the
southwestern plains (23 days). By contrast, heat stress days during the wheat-growing season in the
northern plains and southwestern plains occurred approximately 5 days in more than 50% of years and
shires due to higher temperature (Fig. 3.3F). The eastern slopes and southern plains had fewer heat
events due to the relatively lower temperature during the wheat-growing season. Spatially, the number
of heat days occurred gradually more from south to north and from east to west, which was opposite

to the occurrence of frost days (Fig. 3.4).

days
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Fig. 3.4 Spatial distributions of the number of frost days (<2 °C) (A) and heat stress days (>34 °C) (B)
during wheat growing season over the NSW wheat belt during 1922-2000.

Observed wheat yields at all four regions varied greatly from year to year (Fig. 3.5). Wheat
yields had the largest variability in the southern plains, ranging from 0.20 to 3.12 t ha"' with a mean of
1.39+0.66 t ha™. In the eastern slopes, yields varied from 0.44 to 3.32 t ha™ with a mean of 1.39+0.63
t ha”'. The northern and southwestern plains had lower amplitudes of variations in yield, but yields in
the southwestern plains had a higher mean value of 1.37+0.48 t ha™. Compared with climate variables,
the yield variation among the four regions was relatively small, indicating that crop yields were not

only affected by climate but also influenced by crop management.
3.3.2 Wheat yield-climate relationships

Inter-annual wheat yield (AY ) response to climate variation is consistent across four regions

(Fig. 3.6). AY is positively correlated to AR and AT

min

while negatively correlated to AS,

AT, ., AF and AH . The correlation coefficient of the first difference of wheat yield with the first

difference of rainfall was 0.55, minimum temperature was 0.24, solar radiation was -0.51, maximum
temperature was -0.54, number of frost days was -0.36, and number of heat stress days was -0.37 on
average in the four regions. All of these coefficients were statistically significant at level of p<0.05.

These results suggest that higher rainfall and minimum temperature resulted in higher yield, while
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higher maximum temperature and solar radiation could lead to lower yield in rain-fed conditions, frost

and heat stress had negative effects on wheat yield across the whole wheat belt.

Table 3.2 shows the correlation coefficients of six climate variables AR, AS, AT AT

AF', and AH at each region. Rainfall was positively correlated to minimum temperature but
negatively correlated to maximum temperature and solar radiation, number of frost days, and number
of heat stress days. For the four regions together, the correlation coefficient of the first difference of
rainfall with the first difference of solar radiation, maximum temperature, minimum temperature,
number of frost days and number of heat stress days was -0.76, -0.65, 0.51, -0.58 and -0.51,
respectively. All of these relationships were statistically significant at the level of p<0.01. Drought
years in the wheat belt tended to be less cloudy with higher solar radiation and maximum temperature,
but had lower minimum temperature. Higher solar radiation days were always accompanied by lower
rainfall over the NSW wheat belt which explains why higher solar radiation could result in lower

yield.
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Fig. 3.5 Averaged wheat yields in four regions during the period of 1922-2000. Prior to 1960
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Table 3.2 Pearson correlation matrix of different climate variables in four regions. All the variables

used are still highly correlated with each other despite using the difference method.

AR AS AT .. AT, AF AH

(mm)  (MJm?) (°C) (°C) (days) (days)
Region I
AR (mm) 1 -0.75%* -0.63%* 0.57%* -0.67%* -0.50%*
AS (MJm?) - 1 0.68%** -0.54%* 0.59%* 0.58%*
AT, (°O) - - 1 -0.02 0.27%* 0.63%*
AT, (°O) - - - 1 -0.86%*  -0.17**
AF (days) - - - - 1 0.27%*
AH (days) - - - - - 1
Region I1
AR (mm) 1 -0.80%*  -0.63%* 0.52%* -0.62%* -0.55%*
AS (MJm?) - 1 0.71%* -0.46%* 0.53%* 0.60%*
AT, (°O) - - 1 0.11%* 0.20%* 0.71%*
AT, (°C) - : - 1 -0.80%* -0.03
AF  (days) - - - - 1 0.17%*
AH (days) - - - - - 1
Region II1
AR (mm) 1 0.74%% 0.72%% 0.49%* -0.62%* -0.56%*
AS (MJ m?) - 1 0.75%* -0.41%* 0.47%* 0.57%*
AT, (°O) - - 1 0.00 0.31%* 0.63%*
AT, (°C) - - - 1 -0.80%* -0.14%%*
AF  (days) - - - - 1 0.31%*
AH (days) - - - - - 1
Region IV
AR (mm) 1 20.75%% -0.62%* 0.44%* -0.40%* -0.43%*
AS (MJm?) - 1 0.82%* -0.16 0.19% 0.49%*
AT . (°C) - - 1 0.19% 0.05 0.52%*
AT, (°C) - - - 1 -0.76%* -0.08
AF  (days) - - - - 1 0.17
AH (days) - - - - - 1

**significant at p<0.01; *significant at p<0.05.
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Fig. 3.6 Correlation of first difference of wheat yield (AY ) and first difference of growing season

maximum (A7, ), minimum temperature (A7 . ), rainfall (AR ), solar radiation (AS ) and number

ax in

of frost (<2 °C) (AF') and heat stress days (>34 °C) (AH ) in four regions. Best-fit regression line

and correlation coefficients r are shown. **significant at p<0.01; *significant at p<0.05.

Table 3.3 shows the regression analysis for wheat yields and climate factors. In the eastern slopes
of the NSW wheat belt, wheat yield variation was primarily dominated by growing season minimum
temperature, maximum temperature, and number of heat stress days which contributed to 36% of
wheat yield variation. In the northern plains, wheat yield variation significantly correlated with
growing season maximum temperature, number of frost days, and pre-growing season rainfall
(December to April). These climate variables could explain 41% of yield variation. In the southern
plains, the major climate factors determining yield were growing season rainfall, maximum and
minimum temperature, and number of frost and heat stress days. These factors contributed to 47%
variation in wheat yield. However, as the main factor, rainfall caused 31% of wheat yield variability in
the southwestern plains. When the effects of variations in climate factors on wheat yield were
considered in the whole NSW wheat belt, the year-to-year variability in yield was dominated by
growing season rainfall, maximum temperature, minimum temperature, and number of frost days,

which accounted for 41% of yield variation over the past few decades.
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3.3.3 Effects of climate trend on wheat yield

Table 3.4 shows the trends in major climatic drivers and their effects on yield increase. The
estimated yield change was calculated as the percentage of climate-trend yield change accounting for
observed yield increase from 1922 to 2000 according to the regression model in Table 3.3. In the
eastern slopes, growing season maximum temperature showed a small decreasing trend by 0.0080 °C
yr'!' (p<0.05) during 1922-2000. Minimum temperature significantly increased by 0.011 °C yr'
(p<0.01) and number of heat stress days decreased but not significantly. These three major climatic
drivers resulted in 14.8% yield increase. In the northern plains, growing season maximum temperature
decreased by 0.0064 °C yr!' (p>0.05), pre-growing season rainfall increased by 0.88 mm yr! (p>0.05)
and the number of frost days decreased significantly by 0.16 days yr' (p<0.01), which could explain
yield increase of 21.2%. In the southern plains, decreasing maximum temperature (-0.0078 °C yr',
p<0.05) and other climatic drivers changed but not significantly led to 8.5% yield increase. However,
growing season rainfall increased by 0.59 mm yr' (p>0.05) accounting for a yield increase of 9.3%
(2.3 kg ha™! yr'') in the southwestern plains. For the four regions together, recent climatic trends had a

positive effect on wheat yield increased by 8.5-21.2% over the last few decades.

3.4 Discussion

In this study, the year-to-year first-difference method was used for de-trending wheat yield to
remove technology effects. This method is easier to calculate compared with other de-trending
methods such as robust regression technique (Finger 2010, Newlands et al. 2014), which is superior in
handling data with outliers. A stepwise regression model was applied to identify significant or major
climate variables (p<0.01) affecting wheat yield variation in four contrasting climatic regions across
the NSW wheat belt. However, this method does not explicitly address predictor collinearity in the
regression model. When multicollinearity exists it will affect the regression coefficient estimates, but
it does not affect the ability to obtain a good fit of regression (higher R?) and the quality of forecasts
or predictions from the regression (Dielman 2001). Namely, multicollinearity does not reduce the
predictive power or reliability of the model as a whole. Hence, if the regression model is used strictly
for forecasting or for an overall estimation of climate effects as in our study, the multicollinearity may
not be problematic, but if the contribution of individual variables is estimated it should be cautiously

applied in interpreting results.
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Table 3.3 The regression coefficients of stepwise regression analysis (p<0.01) between first difference

of wheat yield (AY ') and climatic variables including growing season temperature (A7, ,AT . ),

max °

rainfall (AR ), solar radiation (AS), number of frost (<2 °C,AF’) and heat stress days (>34 °C,

AH ) and pre-growing season (December to April) rainfall (ARp ) in each region I, II, III, IV and the

e

whole NSW wheat belt during the period 1922-2000. The 99% confidence intervals (lower limit and

upper limit) are shown in brackets.

Climate drivers I II 11 v NSW
AR (105 0.45
(10 mm) - ; 070(035/L1)  39Q4/53) g5
AS (M m?) i i i i i
AT 0 2029 2029 2023 ] -0.28
max (-0.34/-025)  (-0.34/-025)  (-0.27/-0.19) (:0.31/-0.25)
\ 0.18 0.099 0.099
AL, O (0.14/0.22) - (0.03/0.17) - (0.049/0.15)
R 0.40
AR,y (107 mm) - (0.02/0.77) ) ; )
13 035 -0.37
-2 _ -
AF (10 days) (-1.6/-0.96)  (-0.62/-0.07) (-0.58/-0.15)
1.9 15
-2 - - -
AH (102days) (3.4/035) (-2.3/-0.68)
R> 0.36 0.41 0.47 0.31 0.41
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Table 3.4 Trends in observed wheat-growing season climatic drivers and their estimated impacts on
yield change (%) according to the regression model in Table 3.3 at four regions across the NSW wheat

belt during 1922-2000.

Climate drivers I II 111 v
AT, (Cyr) -0.0080* -0.0064 -0.0078* -
AT (Cyr) 0.011%% - 0.0015 -
AR (mmyr') - - 0.72 0.59
AR, (mmyr') - 0.88

AF  (days yr') - L0.16%* 0.086 -
AH (days yr') 200002 . 0.012 -
Estimated yield 14.8% 21.2% 8.5% 9.3%

change

**trends are significant with p<0.01; *trends are significant with p<0.05.

Inter-annual variability of crop yields is well known to depend on climate factors (Chen et al.
2004). The results presented here show that wheat yields in the NSW wheat belt were positively
correlated to growing season rainfall and minimum temperature but negatively correlated to
maximum temperature, which is consistent with a previous study conducted for wheat in Australia (Yu
et al. 2014). However, Lobell et al. (2005) showed that growing season minimum temperature was the
major factor to contribute to yield increase and had a negative effect on wheat yield variation for
irrigated systems in Mexico, which was different from our results in rain-fed environments. In
southern Mali cotton production was particularly affected by rainfall distribution (Traore et al. 2013).
Zhang et al. (2010) found that irrigation water availability in different regions played a key role in
determining a switch of dominant climatic drivers (solar radiation or rainfall) to affect rice yields
variation in China. In the eastern Australian wheat belt, which is located in a semiarid region with the
climate becoming warmer from south to north and drier from east to west, seasonal rainfall was the

major direct factor that affects crop sowing date, water supply and consequently yields. If only
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considering a single climatic factor, about 31% of yields variability can be attributed to rainfall
variation during the wheat-growing season (May to November) across the wheat belt (Fig. 3.6), which

is consistent with previous studies (Cornish 1950, Seif & Pederson 1978, Stephens et al. 1994).

It should be noted that there are interactive impacts of rainfall, temperature and solar radiation on
yield variation (Gifford et al. 1998). For example, growing season solar radiation had a negative effect
on wheat yield variation due to strong negative correlation between rainfall and radiation in the
present study (Table 3.2). Here I assumed that solar radiation effects on yield can be attributed to
rainfall variation, suggesting an indirect rainfall impact on variability in wheat yields, which was
different to temperature as a proxy of radiation and rainfall effects on rice yields in China (Zhang et al.

2010).

Water stress caused by low rainfall and high evaporative demands is the major limitation on
wheat yield in many parts of the wheat belt (except the eastern slopes) (French & Schultz 1984b,
Turner & Asseng 2005, Ludwig & Asseng 2006). It should be noted that in region I and II, the
growing season rainfall (AR ) was not selected into the multi-linear equations (Table 3.3). However,
this doesn’t mean that rainfall had no significant impacts on the year-to-year wheat yield variations
(see the high correlation with rainfall in Fig. 3.6). Rainfall was not identified as a significant factor to
affect wheat yield variation probably because the impacts of rainfall were almost accounted for by the
maximum temperature due to the coherence between them, i.e. maximum temperature was negatively
related to rainfall in a highly significant level (P<0.01, Table 3.2). Moreover, in the eastern slopes, the
wheat-growing season received over 400 mm of rainfall, which roughly meets the wheat water
demand from May to November for most of years. Therefore, yields were less correlated to rainfall,
and growing season rainfall was not selected as major climate factor to limit wheat yield in this region.
Compared with the eastern slopes, there were more drought impacts in the other three regions because
of lower rainfall during most growing seasons (Fig. 3.7). It is worthwhile to note that the non-growing
season rainfall can contribute to stored soil water at the end of summer in the northern plains, which
can be used for water uptake of the crop (Angus et al. 1980). In such cases, pre-growing season
rainfall can be an important factor on wheat yield variability, and wheat growth appears to be less
relying on growing season rainfall. This is similar to southern Queensland where wheat is
predominantly grown on stored water in fine-textured soils with high water-holding capacity (Angus
et al. 1980). Most of the water transpired is from the store accumulated in the preceding summer,
when rainfall ranges between 300 and 400 mm (December to April). Therefore, the contribution of
rainfall to yield variation shifts from winter dominated in the southern plains to summer dominated in

the northern plains across the NSW wheat belt.
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In addition to rainfall, other climate factors such as maximum and minimum temperature also
had significant impacts on wheat yields variation in eastern Australia. In particular, extreme weather
events such as frost and heat stress can have a large impact on yield variation (Asseng et al. 2011). For
dry land wheat in Australia, the damage from early spring frost is a major constraint to yields
(Marcellos & Single 1975, McDonald et al. 1983). High temperatures can increase the rate of grain
filling and above 30°C can result in an acceleration of leaf senescence, which leads to a reduction in
yield (Lobell et al. 2012). An earlier study showed that the optimum sowing and flowering dates were
determined by the incidence of early spring frosts and high spring temperatures in the NSW wheat
belt (McDonald et al. 1983). Although farmers select cultivars for a targeted flowering window, such
selection is often based on an average with limited success (Liu et al. 2010a). The results presented
here show that frost was less important in the eastern slopes but more important in the northern parts
of the NSW wheat belt. This can be at least partially attributed to the fact that most farmers in the
eastern slopes manage frost occurrence well by sowing late and using late flowering cultivars to
minimize frost risk. However, this also can increase heat stress risk due to delaying the flowering date.
Fortunately, the occurrence of heat stress in the eastern region is less frequent than other regions;
hence, farmers can extend the wheat flowering dates far later than in other regions. In regions with a
high frequent occurrence of heat stress, such as the northern plains, farmers have to sow earlier and
plant short-season cultivars to avoid heat stress. In turn, this increases the frost risk at anthesis. In
Australia, wheat yields can be severely damaged by frost and heat stress when occurring during
flowering (Godden et al. 1998, Asseng et al. 2011). Farmers in Australia have traditionally been
concerned about frost and heat risks but it is often hard to manage them well in extreme cases. One of
these extreme cases is late frost. For example, NSW wheat was badly damaged in 2002 when frost
occurred in late October (28 October). The year-to-year mean growing season temperature variation
can be about 2 to 3 °C. For example, in 2013, the winter temperature was about 2 °C higher than the

long-term average, but frost still occurred (http://www.bom.gov.au/climate/). Wheat yields were badly

damaged in many areas as the higher temperature accelerated crop growth development with early

flowering and widespread frost damage.

Several reports have shown that the recent climate trend has had significant impacts on crop
yields (Tao et al. 2008, Lobell et al. 2011, Traore et al. 2013). Nicholls (1997) concluded that 30-50%
of the observed yield increase was due to an increase in minimum temperature and decrease in the
diurnal temperature range resulting in less frost damage in Australia. This contribution of climatic
trends to Australian wheat yield increase was considered to be overestimated and attracted serious
criticism (Gifford et al. 1998, Godden et al. 1998, Anderson et al. 2005). The correlation of yield

variation with minimum temperature was not significant at 5%, and the equation showed, contrarily,
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that rainfall had a negative effect on wheat yield variation. Mean annual minimum temperature had a
larger contribution to yield increase only because it increased mostly since 1952 to 1992 (by 1.02°C)
in Nicholls’s study. The results from stepwise regression described here demonstrate that 8.5-21.2%
of the observed wheat yield increase over the last 78 years in the NSW wheat belt was due to climatic
trends. Unlike the relative short period of data used by Nicholls (1997), I used nearly twice the length
of shire data and calculated climate variables during the wheat-growing season. In addition I applied
stepwise regression analysis to select significant climate variables in the regression model. Each
leading variable in the multiple regression equation had a significant level (p<0.01). The climate
trends contribution estimated by this method was less than that of Nicholls (1997). It is certain that
management changes over time, meaning that new cultivars, the development of new land with
different soil characteristics, and changes in land use all affected yield increases across the NSW

wheat belt during the past decades.
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Fig. 3.7 Seasonal and annual rainfall for four regions in the NSW wheat-belt. May-November,
June-November and July-November rainfall as possible growing season rainfall were calculated as
wheat sowing date varies depending on time of initial rainfall at start of the season. The values above

the bar are the percentages that seasonal rainfall accounts for annual rainfall.

These results show that the yield variation in the NSW wheat belt was mainly affected by
variability of growing season rainfall and temperature while solar radiation was not a major climate
driver (Table 3.3). Climate change scenarios suggest that eastern Australia is likely to become warmer
and drier in the future (Pearce et al. 2007). Although the positive effect of higher CO» concentration is
likely to benefit rain-fed crop production by improving water-use efficiency (KIM et al. 2003, Asseng
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et al. 2004, Ludwig & Asseng 2006), this effect may not be sufficient to outweigh the negative effect
of increasing temperature and decreasing rainfall (Piao et al. 2010). Farmers in NSW can adapt to
rainfall variability. For example, they often will not sow a wheat crop in drought years with late starts
of the growing season or only sow in some areas with sufficient stored soil water. Wheat phenology is
expected to accelerate with global warming in the future resulting in a shorter growing period. Later
maturing cultivars could be used to mitigate the shortening of the phenology and enable to capture
enough solar radiation for biomass accumulation (Zheng et al. 2012). To some extent earlier maturing
cultivars can avoid severe terminal drought, but the risk of heat stress around flowering will still
increase due to higher temperature, potentially resulting in substantial yield losses for heat sensitive
cultivars in the future (Semenov & Shewry 2011). Therefore, new wheat cultivars with improved
water-use efficiency and heat resistance will be needed to better adapt to reduced water availability
and increased heat stress. Breeding for such traits is particularly important if the projections of rainfall
reductions are realized and the frequency of high-temperature days will further increase in the future

(Asseng & Pannell 2012).

3.5 Conclusions

In the eastern Australia wheat belt, wheat yields were positively correlated to growing season
rainfall and minimum temperature while negatively correlated to maximum temperature at a
significant level (p<0.05). Recent climatic trends have contributed 8.5-21.2% to the observed wheat
yield increase in different climatically regions. Rainfall is usually the main direct climatic driver
affecting wheat yields variation in the NSW wheat belt, but it also indirectly affects temperature and

solar radiation.

In the eastern slopes, growing season temperatures and number of heat stress days were major
factors affecting yield variation. In the northern parts of the wheat belt, major climatic drivers for
yield variation were growing season maximum temperature and pre-growing season (December to
April) rainfall and number of frost days. In the southern region, growing season rainfall, temperatures,
number of frost and heat stress days had major contribution to yield variation. In the southwestern
plains, growing season rainfall was the main direct climate factor to determine yield variation.
Understanding these effects of climate variations on crop yield is important for developing sustainable

agricultural production to adapt to future climate change.
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Chapter 4°

Multi-model ensemble projections of future extreme
temperature change using a statistical downscaling method

Abstract

Projections of changes in temperature extremes are critical to assess the potential impacts of climate
change on agricultural and ecological systems. Statistical downscaling can be used to efficiently
downscale output from a large number of general circulation models (GCMs) to a fine temporal and
spatial scale, providing the opportunity for future projections of extreme temperature events. This
chapter presents an analysis of extreme temperature data downscaled from 7 GCMs selected from the
Coupled Model Intercomparison Project phase 5 (CMIP5) using a skill score based on spatial patterns
of climatological means of daily maximum and minimum temperature. Data for scenarios RCP4.5 and
RCP8.5 for the New South Wales (NSW) wheat belt, south eastern Australia, have been analysed. The
results show that downscaled data from most of the GCMs reproduces the correct sign of recent trends
in all the extreme temperature indices (except the index for cold days) for 1961-2000. An
independence weighted mean method was used to calculate uncertainty estimates, which shows that
multi-model ensemble projections produce a consistent trend compared to the observations in most
extreme indices. Large warming occurs in the east and northeast of the NSW wheat belt by 2061-2100
and increases the risk of exposure to hot days around wheat flowering date, which might result in
farmers needing to reconsider wheat cultivars suited to maintain yield. This analysis provides a first
overview of projected changes in climate extremes from an ensemble of 7 CMIP5 GCM models with

statistical downscaling data in the NSW wheat belt.

Keywords: Warm indices; Cold indices; GCMs; Observations; Independence weighted mean;

Australia
4.1 Introduction

Anthropogenic contributions have already significantly influenced global and regional climate
(Stott et al. 2004, Sillmann & Roeckner 2008, Lewis & Karoly 2013). It is estimated that the global
mean surface temperature has risen by 0.85 °C during the last century (IPCC, 2013) and Australia’s
climate has warmed by 09 °C since 1910 (State of the Climate 2014,

http://www.bom.gov.au/state-of-the-climate/). Shifts in the mean of climatic distributions can result in

very large percentage changes in the frequency of extremes such as heatwaves, which could have a

critical impact on human society (Fischer & Schir 2010), natural ecosystems (Welbergen et al. 2008)

*: This chapter has been accepted for publication in Climatic Change, 2016.
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and agricultural crops (Asseng et al. 2011, Zheng et al. 2012).

In recent years, a number of studies have attempted to identify observed changes in extreme
temperature events across the globe (Alexander et al. 2006, Perkins et al. 2012, Donat et al. 2013) as
well as in Australia (Alexander & Arblaster 2009). These have shown statistically significant
increases in occurrences of hot days and warm nights and decreases in occurrences of cool days and
cold nights over the past few decades. Changes in extreme temperatures have the potential to impact
crop growth and development, such as accelerating phenological development and leaf senescence, as
well as grain yield. Extreme heat events around flowering and grain filling periods and untimely frost
in spring cause serious damage to wheat production in Mediterranean climates like that of eastern
Australia (Zheng et al. 2015). For example, heat stress during the reproductive phase can lead to
reductions in wheat grain production of up to 50% (Asseng et al. 2011). The greatest yield losses

(about 50%) can be found when heavy frosts occur in early October (Boer et al. 1993).

Future changes in extreme temperature have been projected by different general circulation
models (GCMs) (Tebaldi et al. 2006, Sillmann & Roeckner 2008). However, GCM output data are at
spatial resolutions of hundreds of kilometres, and so are often too coarse to be used directly in
regional scale analysis or resolve small-scale climate processes. This mismatch is a major obstacle for
assessing the site-specific impacts of climate change on agricultural systems (Zhang 2005, Macadam
et al. 2014). Three methods have been used to overcome this obstacle. First, scaling is a relatively
straightforward procedure whereby the changes in future climate projected by GCMs, relative to a
baseline period, are applied to observed data for the same baseline period. Often, this method does not
account for any changes in climate variability (Prudhomme et al. 2002, Diaz-Nieto & Wilby 2005).
Dynamical downscaling is used to achieve higher spatial resolutions by nesting regional climate
models (RCMs) within GCM output fields. However, RCMs are computationally expensive and
running RCM simulations for a region of interest for which suitable RCM output does not already
exist can be a significant investment of resources (Fowler et al. 2007). Alternatively, statistical
downscaling (Liu & Zuo 2012) applies statistical transfer functions to GCM output to estimate daily
point-scale meteorological series. This method is easily transferable to different regions and provides
site-specific estimations under a range of greenhouse gas emission scenarios so long as reliable
observations of the climate variable of interest are available (Tolika et al. 2008, Ahmed et al. 2013,
Jeong et al. 2013a, b). However, statistical downscaling method relies on empirical relationships

between observational data and data from GCM simulations.

GCMs are a standard tool for deriving projections for future climate change. However, the real

climate system is highly complex and it is impossible to adequately describe its processes with an
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individual climate model. Authors of model evaluation studies have stated that no single model can be
considered ‘best’ and recommend using results from a range of models (Tebaldi & Knutti 2007).
There are different ways to combine results from multiple GCMs, such as Bayesian methods or
weighting (Robertson et al. 2004, Tebaldi et al. 2005, Yang et al. 2012). Weighted averages (Giorgi &
Mearns 2002), where weights are determined by examining the historical relationship between
simulations and observations, perform better than simple averages, where each model is weighted
equally (i.e. multi-model mean). However, the difficulty is in quantifying model skill and deriving
model weights accordingly based on model performance. Using the multi-model mean (weighted
equally) is the most common and widely used approach (Knutti et al. 2010). There is some evidence
that the “mean model” result, obtained by averaging over the ensemble of models, provides an overall
best comparison to observations for climatological mean fields (Lambert & Boer 2001). However, the
multi-model mean approach is clearly not appropriate for all types of evaluation, such as variability
estimates or extremes, as multi-model mean datasets have significantly less spatial and temporal
variance than datasets from individual models or from observations (Bishop & Abramowitz 2013).
The use of multi-model averages to estimate climatological means works best when each model
provides an independent estimate (Jeong & Kim 2009). However, modelling groups share literature,
data sets, parameterisations and even sections of model code, so there are several reasons to suspect a
lack of statistical independence of every climate prediction in the suite of models used (Abramowitz
2010, Bishop & Abramowitz 2013). Bishop and Abramowitz (2013) derived weights (independence
weighted mean method, IWM) that explicitly account for model dependence defined using covariance
of model errors, and I used this approach in this study to synthesize extreme temperature events
projected from different GCMs. The optimal weights were estimated to find the linear combination of
an ensemble of model simulations that minimizes mean square difference (MSD) between GCM

simulated and the observations.

This study focuses on the analyses of two 40-year simulations: the first examines the time period
1961-2000 (referred to as ‘present’), the second the period 2061-2100 (referred to as ‘future’). The
analysis examines temperature extremes in statistically downscaled GCM data and demonstrates the
application of the independence weighted mean approach to extreme temperature data from 7
skill-selected GCMs, out of 28 GCMs downscaled. Rather than developing a detailed physical
explanation for the changes in extreme temperature events, the purpose of this paper is to evaluate the
capacity of statistically downscaled data to represent recent trends in extreme temperature events, to
describe the possible magnitude of the changes in the extreme climate events in the future and to

provide detailed spatial information on changes in future extreme climate events. The study area is the
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NSW wheat belt in south eastern Australia, where extreme temperature events have already become a

significant challenge for grain producers (Wang et al. 2015b, Zheng et al. 2015).

4.2 Materials and methods

4.2.1 Study area and observed climate data

The detailed climate and topography of this study area are described in chapter 3. The eastern
part of the wheat belt consists of slopes with elevation above 500 m and the other areas are mainly

plains. It is warm and dry in the northern and southwestern plains but cooler and wetter in the east.

The Australian Climate Observations Reference Network-Surface Air Temperature
(ACORN-SAT) dataset contains quality-controlled daily maximum and minimum temperature data
for 112 stations, (Trewin 2013). Previous studies have calculated extreme indices from these data (e.g.
Alexander et al., 2006; Alexander et al., 2007; Donat et al., 2013) and in particular have used methods
such as angular distance weighting to create gridded values which can be compared to GCM output
(e.g. Alexander and Arblaster, 2009). However, there are only about 10 ACORN-SAT sites with
temperature records of 100 years or more in the NSW wheat belt and they are not distributed evenly
across the region (Trewin 2013). In this study, to maximise the number of stations used, daily
temperature data for 1889-2014 were used from the 894 meteorological sites in the NSW wheat belt
extracted from the SILO (Scientific Information for Land Owners) patched point dataset (PPD,
http://www.longpaddock.qld.gov.au/silo/ppd/index.php) (see Fig. 4.1) (Jeffrey et al. 2001).

Inhomogeneities are present in many climatic time series, for example whenever a station location is
moved, a recording instrument is changed, a new method of data collection is employed, or an
observer changes (Vincent 1998, Lund & Reeves 2002, Trewin 2010). These are corrected in the
ACORN-SAT dataset. Temporal homogeneities in the SILO annual mean maximum and minimum
temperature data for 894 sites used in this study were tested by applying a revision of the two-phase
regression model in this study (Lund & Reeves 2002). This of course does not mean that these
stations can be guaranteed to be free from data artefacts but we assume that if present these are

random and so will be averaged out in the analysis process.
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Fig. 4.1 The NSW wheat belt in south eastern Australia and location of 894 weather stations used in this
study.

4.2.2 GCM selection

Data from 28 GCMs (see Table 4.1) from the Coupled Model Intercomparison Project phase 5
(CMIP5) were used. Details of these models can be found at
http://cmip-pemdi.llnl.gov/cmip5/docs/CMIPS5_modeling_groups.pdf. The GCM output used consisted of

monthly surface air temperature data. To identify the relatively satisfactory GCMs in simulating the
climatological temperature to downscale over eastern Australia, Taylor’s method was used to select GCMs
after characterizing model performance from correlation and standard deviations (Taylor 2001). These two
statistics were combined in a single diagram, resulting in a good visualization of model performance. This
approach has been widely used and is practical for a small number of models (Sui et al. 2014, Wang et al.
2015b). Skill scores based on modified equation defined in Taylor’s method were determined to consider
spatial correlation and standard deviation between model simulated patterns and observations:
G 4(1+R)? 1)

9 ﬁz 2
<0r+0f) (1+Ry

where S is the skill score; R is the spatial correlation coefficient in climatological mean values between
the simulations and observations; R, is the maximum correlation coefficient attainable (here we use
0.999); of and o, are the standard deviations of the simulated and observed spatial patterns in

climatological means, respectively.
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Table 4.1 List of 28 GCMs under RCP4.5 and RCP8.5 future climate scenarios used in this study for
statistical downscaling outputs of 894 sites over the NSW wheat belt (Liu & Zuo 2012).

Model ID Name of GCM Abbr. of GCM  Institute ID Country
01 BCC-CSM1.1 BCl BCC China

02 BCC-CSM1.1(m) BC2 BCC China
03 BNU-ESM BNU GCESS China

04 CanESM2 CaE CCCMA Canada
05* CCSM4 CCS NCAR USA

06* CESM1(BGC) CEl NSF-DOE-NCAR USA

07* CMCC-CM CM2 CMCC Europe
08 CMCC-CMS CM3 CMCC Europe
09%* CSIRO-MK3.6.0 CSI CSIRO-QCCCE Australia
10% EC-EARTH ECE EC-EARTH Europe
11 FIO-ESM FIO FIO China
12 GISS-E2-H-CC GE2 NASA GISS USA

13% GISS-E2-R GE3 NASA GISS USA

14 GFDL-CM3 GF2 NOAA GFDL USA

15 GFDL-ESM2G GF3 NOAA GFDL USA

16 GFDL-ESM2M GF4 NOAA GFDL USA

17 HadGEM2-AO Ha5s NIMR/KMA Korea

18 INM-CM4 INC INM Russia
19 IPSL-CM5A-MR P2 IPSL France
20 IPSL-CM5B-LR IP3 IPSL France
21 MIROCS5 MI2 MIROC Japan

22 MIROC-ESM MI3 MIROC Japan

23 MIROC-ESM-CHEM Mi4 MIROC Japan

24 MPI-ESM-LR MP1 MPI-M Germany
25 MPI-ESM-MR MP2 MPI-M Germany
26% MRI-CGCM3 MR3 MRI Japan

27 NorESMI1-M NEI1 NCC Norway
28 NorESM1-ME NE2 NCC Norway

*Represents the models chosen for analysis.

Equation (4.1) was applied to calculate skill scores for the 28 GCM simulations using climatological
temperatures for the 50-year average of the reference period 1961-2010. Skill scores were calculated for
monthly maximum and daily minimum temperatures averaged across winter (June-July-August, JJA),
spring (September-October-November, SON), summer (December-January-February) and autumn

(March-April-May, MAM) and the entire year (Fig. 4.2). The 7 GCMs (i.e., CCS, CE1, CM2, CSI, ECE,
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GE3 and MR3) that achieved a skill score greater than 0.55 for both maximum and minimum temperatures

during the different seasons and the entire year were selected for use in the subsequent analysis (Table 4.1).
4.2.3 Climate projections

Monthly mean daily maximum and daily minimum air temperature data for 1900-2100 were
extracted from GCM simulations in the World Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project phase 5 (CMIP5) dataset (Taylor et al. 2012). The simulations
considered began in the 1800s and continued through the 21st century, with greenhouse gas emissions
being consistent with a range of different Representative Concentration Pathways (RCPs) (Van
Vuuren et al. 2011). In this chapter, simulations of two different RCPs, RCP4.5 and RCP8.5, are
considered. They are identified by their approximate total radiative forcing in 2100 relative to 1750:
4.5 W m™ for RCP4.5 and 8.5 W m™ for RCP8.5. In RCP4.5, annual greenhouse gas emissions peak
around 2040 and then decline. In RCP8.5, annual greenhouse gas emissions continue to increase
throughout the 21st century. These two scenarios were selected because they more closely represent
current conditions of radiative forcing and emissions and have more raw monthly GCMs projected
temperature data for statistically downscaling. 1 considered radiative forcing and CO, emission
prescribed by two Representative Concentration Pathway scenarios (RCP4.5 and RCP8.5) (Van
Vuuren et al. 2011). These closely represent current conditions of radiative forcing and emissions and
have more monthly GCM temperature data in the CMIP5 archive than the other RCPs. The monthly
gridded data simulated by the GCMs were statistically downscaled to the meteorological observation
sites using the method described by Liu and Zuo (2012). This method has been used in recent climate
change impact studies (Yang et al. 2014, Anwar et al. 2015). It is capable of generating realistic time
series of daily data from monthly gridded GCM. It corrects biases in the GCM data and, in contrast to
dynamical downscaling, is sufficiently computationally efficient to be applied to multiple GCMs with

ease. Hence the method facilitates the sampling of uncertainties in future climate changes.

The statistical downscaling method used in this study is different from many other statistical
downscaling methods that need data involving atmospheric circulation or sea surface temperature as
predictors. This method used GCM monthly climate data and historical observed data for the variables
of interest. It can be easily applied to anywhere if a reliable daily historical climate record is available.
The downscaling process consists of two parts: spatial downscaling and temporal downscaling.
Spatial downscaling involves downscaling monthly GCM projections of maximum and minimum
temperature from GCM grid cells to monthly values for each of the sites of interest, in this case 8§94
sites in the NSW wheat belt, using an inverse distance-weighted (IDW) interpolation method and then

bias correction is applied by transferring the resulting monthly site data using functions obtained from
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analysing observed and GCM data for a historical training period, in this case 1961-2000. Daily
maximum and minimum temperature sequences for each site are then downscaled from the spatially

downscaled monthly GCM projections using the WGEN stochastic weather generator.

WGEN (Richardson & Wright 1984) generates these climate variables using serial-correlation

(matrix A) and cross-correlation coefficients (matrix B):

Xi(j) = AXi—1 () + Be; () (4.2)
where X;(j) is a matrix including three climate variables (maximum temperature, minimum
temperature and radiation) for day i. €; is a vector of independent random components. A and B are
matrices that are calculated by:

A= MMy? (4.3)
BBT = My — MyMy*MT (4.4)

where the elements of M, are the correlation coefficients between these three variables on the same
day and those of M; are the lag-1-day correlation coefficients. In the original version of WGEN, only
one set of elements for matrix A and B were given and applied across the whole country of USA
(Richardson and Wright 1984). The same matrix A and B were applied in other countries when
WGEN was used because there were no reports on an analytic solution to matrix B in the literature.
Liu and Zuo (2012) first provided a derivation of the elements of the matrix B so that the WGEN
model can be applied to downscale to a site with parameters derived specifically from the site.
Therefore, the parameters involved in generating daily values in Liu and Zuo (2012) are based on the
site-specific relations derived from locally observed data and GCM projections so that the underlying

relationships that determine the daily temperature distribution vary depending on sites and GCMs.
4.2.4 Climate extremes indices

Several measures of extreme temperatures were used, as recommended by the
CCI/WCRP/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI)

(http://etccdi.pacificclimate.org/indices_def.shtml). A set of 11 temperature indices was selected for

this study, 8 recommended by ETCCDI and 3 that have been calculated for this study because of their
impacts on wheat specifically (Table 4.2). These indices are calculated from daily maximum,
minimum temperature and have been developed to assess changes in intensity, duration and frequency
of extreme temperature events (Zhang et al. 2011b). Some are threshold indices defined as the number
of days on which a temperature falls above or below a fixed threshold. As meteorological observed

temperature data were measured by standard instruments located in a Stevenson screen at a height of
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about 1.25 m above the ground (Liu et al. 2010a), the meteorological recorded temperature is
generally higher than that at the ground. Thus, frost days (FD2) occur for a wheat crop when daily
minimum temperatures are lower than 2 °C (Wang et al. 2015b). Hot days (HD) occur when daily
maximum temperatures are higher than 30 "C. The 30 °C threshold was used as part of a standard
climatological index that is applicable to more places across the globe than just Australia (Orlowsky
& Seneviratne 2012), though we recognise that further work using thresholds demonstrated to be
important for wheat growth in NSW would be valuable. Other indices are absolute indices
representing maximum or minimum values within a year. These include maximum daily maximum
temperature (TXx), maximum daily minimum temperature (TNx), minimum daily maximum
temperature (TXn), minimum daily minimum temperature (TNn). The remainder are percentile-based
indices, and include occurrence of cold nights (TN10p), occurrence of warm nights (TN90p),
occurrence of cold days (TX10p) and occurrence of warm days (TX90p). They are calculated as the
number of days on which temperature falls above or below the 90th or the 10th percentiles for each
climate model at each site. The percentiles are calculated relative to the time of the year, centred on a
5-day window for each calendar day and using a 1961-2000 reference period (Klein Tank & Kdnnen
2003, Vincent et al. 2005, Zhang et al. 2011b). Extreme temperature range (ETR) has also been
computed as the difference between TXx and TNn to provide a measure of extreme temperature

variability. All of the indices were calculated as annual values.
4.2.5 Multi-model ensembles and model dependence

The idea that the performance of a forecast can be improved by averaging or combining results from
multiple models is based on the fundamental assumption that errors tend to cancel if the models are
independent, and thus uncertainty should decrease as the number of models increases (Tebaldi & Knutti
2007). However, the CMIP5 GCMs cannot be considered to be fully independent. Here I used a novel
dependence weighted mean method to account for model dependence to calculate a multi-model mean for
each extreme temperature index. Extreme temperature indices were calculated first, and then annual values
of each index after secondary bias correction were used to fit the optimal weights based on 7 selected
GCMs during the period 1900-2010 (7x111 data points). The independence measure technique was
developed by Bishop and Abramowitz (2013) which used the covariance in model errors as the basis for a
definition of model dependence. Here I briefly summarize the main points of their approach for

completeness. The below is model error covariance matrix A derived from Bishop’s method:

XL -y —y)T
- =

A (4.5)

) o LT
where x/ = [x{, xé, x,j(, xlj{] ; x,]c is the extreme temperature index for the jth time step of sth GCM
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model; y/ is the jth time step observed extreme temperature index; (1,...,J,...,J) are time steps of
annual index values and (1, ..., k, ..., K) for GCM models. In this case, J=111 and K=7.

Next, optimal weights (w) are derived from the error covariance matrix (A) of different GCM models
to minimize the mean square difference (MSD) between multi-model ensemble and the observations (see

Bishop and Abramowitz (2013) for details):

= A1 4.6
W=1ma 11 (4-6)
where w = [wy, Wy, ..., Wy, ...,WK]T, wy, is the kth model coefficient in the linear
combination; 17 =[1,1,...,1].
. , K .
pul=wlix/ = Z WX, (4.7)
k=1

where ,ug is the multi-model ensemble of extreme temperature index for the jth time step.

4.2.6 Secondary bias correction

The Liu and Zuo (2012) downscaling procedure used in this study is somewhat effective at
correcting the biases in the monthly GCM. However, the bias correction approach used in the
downscaling procedure is largely limited to correcting stationary biases in the GCM output and cannot
fully account for biases that are non-stationary during the training period. Therefore, the downscaled
daily data for a period that might be different from the training period and may have residual biases in
some cases. In order to minimise the impact of these on outputs of a biophysical model, Yang et al.
(2016) applied a simple additional bias correction (delta approach) called secondary bias correction to
the outputs of model simulations forced with the downscaled data. We observe the same effects in the
extreme indices in our study and apply a similar solution. The extreme indices were first calculated
from the statistical downscaled GCM daily data and then corrected by the secondary bias correction

for each site.

Vi=Y,~ X —%o ) (4.8)
where Y/ is GCM simulated value after correction, Y; is GCM simulations for 1900-2100, X is
GCM simulated mean value for a historical baseline period 1900-2010, X, is the corresponding

observed mean value over the same historical period.

4.2.7 Multi-model means

I investigated two different methods of calculating multi-model mean values of the indices.
Indices were first calculated for individual GCMs and were then averaged together. Both the

arithmetic mean (AM) and IWM were calculated and compared.
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Table 4.2 Definitions of 11 extreme temperature indices used in this study. All indices are those
recommended by ETCCDI (Zhang et al. 2011b), except HD, FD2 and ETR which are specifically

calculated for this study as indices of relevance to agriculture.

ID Index Definition Units
Annual maximum value of daily maximum
TXx Warmest daily Tmax °C
temperature
Annual maximum value of daily minimum
TNx Warmest daily Tmin °C
temperature
) Annual minimum value of daily maximum
TXn Coldest daily Tmax °C
temperature
Annual minimum value of daily minimum
TNn Coldest daily Tmin °C
temperature
HD Number of Hot days Frequency of daily maximum temperature >30 °C days
FD2 Number of Frost days Frequency of daily minimum temperature <2 °C days

Number of days in a year with daily maximum
TX90p Warm days days
temperature >90th percentile

) Number of days in a year with daily minimum
TN90p Warm nights i days
temperature >90th percentile

Number of days in a year with daily maximum
TX10p Cold days days
temperature <10th percentile

] Number of days in a year with daily minimum
TN10p Cold nights i days
temperature <10th percentile

Difference between highest daily maximum and
ETR Extreme temperature range ) o ) °C
lowest daily minimum temperature during the year
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Fig. 4.2 Taylor diagram (Taylor, 2001) displaying normalized pattern statistics of climatological annual and
seasonal (a) maximum temperature and (b) minimum temperature in south eastern Australia between 28
GCMs and observation for the reference period of 1961-2010. Each number represents a model ID (see
Table 4.1). Orange, red, green, blue and black rectangles show simulations of MAM (March-April-May,
autumn), DJF (December-January-February, summer), JJA (June-July-August, winter), SON
(September-October-November, spring) and annual means, respectively. The correlation coefficient
between a model and the reference is given by the azimuthal position of the model, with oblique solid lines
showing different coefficient values. The radial distance from the origin is the normalized standard
deviation of a model, with cambered dotted lines showing values of 1.5 and 2.5. Normalized centered root
mean square difference between a model and the reference is their distance apart, with cambered solid line
showing value of 1.0. The green solid lines are isolines of measure of skill as defined by equation (4.1) in

(Taylor, 2001).

4.3 Results
4.3.1 Comparison between observed and downscaled extreme indices

The observed and downscaled values for each index from 1961 to 2000 averaged across the
NSW wheat belt are shown in Fig. 4.3. There was an increasing trend for observed warm indices
(TXx, TNx, TX90p, TN90p, HD) while there was a decreasing trend in cold extremes (TX10p, FD2)

during the historical period 1961-2000. In all cases, changing trends were calculated using ordinary
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least square (OLS) regression and trend significance was calculated at the 5% level using Student’s T

test.

Table 4.3 shows trends and significance for the observations and each GCM for the 11 indices. It
is noteworthy that, of the 11 indices, only TN90p (warm nights) showed a significant increase
(p<0.05) in the observations and 6 of the 7 models exhibited a statistically significant increase in
TN90p (Table 4.3). Although, observed trends in other indices were not significant, the majority of
the GCM models obtained the correct sign of trend for each extreme temperature indicator except
TN10p (cold nights), when averaged across the region. At least 6 of 7 models produced trends in
seven indices (TNx, TX90p, TN90p, TXn, TNn, FD2, ETR) of the same sign as the observed trends. 5
of 7 models agreed with the observations in terms of sign of trend in TX10p and 4 of 7 models
displayed a consistent trend with the observations in TXx. While the sign of the extreme temperature
trends in the downscaled daily data generally matched the trends for the observations, the magnitude
of change varied between different GCMs and was different from the observed values. No single
GCM was consistently ‘best’ at reproducing the observed magnitude of trends across all extreme
temperature indicators and some GCMs overestimated or underestimated the observed trends in some

of the temperature extremes indices during 1961-2000 (Table 4.3).

Both the observed and GCM-based extreme temperature indices show large inter-annual
variability over historical period 1961-2000, especially for model GE3 (Fig. 4.3 and Table 4.3). The
GE3 indicated no significant trends (p<0.05) in these 11 extreme temperature indices. However, the
IWM and AM simulations from 7 GCMs had less variability in the baseline time series than
individual models and observations due to its averaged nature, leading to a significant trend in 6 of 11
extreme temperature indices. In addition, the observed and the IWM simulations had a good
consensus in the magnitude of the trend in TN90p (Table 4.3). For example, observed TN90p
increased by 3.42 days per decade while IWM indicated TN90p rose by 3.24 days per decade during
the period 1961-2000.

Root-mean-square error (RMSE) values were calculated for both the AM and IWM, using
area-averaged values and comparing against observations. For each index, individual GCMs usually
had larger RMSE values than the AM (Table 4.4). Meanwhile, the RMSE of IWM for all 11 eleven

temperature indices was lower than that of AM.
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Fig. 4.3 The observed (black line) and each GCM simulated including multi-model independence weighted
mean (IWM, red line) time series of extreme temperature indices from 1961 to 2000 averaged across the

NSW wheat belt.
4.3.2 Multi-model ensemble projections of temperature extremes

Fig. 4.4 shows spatial changes in multi-model ensemble simulated (IWM) extreme temperature
indices between 1961-2000 and 2061-2100 for RCP8.5 using inverse distance weighted (IDW)
interpolation. In addition, the temporal evolution in temperature indices averaged across the NSW

wheat belt from 1900 to 2100 under RCP4.5 and RCP8.5 for the IWM results is shown in Fig. 4.5.

50



Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method

Table 4.3 Observed and GCMs simulated trends for the 11 extreme temperature indices calculated
over 1961-2000. Standard errors for trends for individual models are shown in brackets. Boldface

signifies trends that are significant at 5% level. Units as Table 4.2 (per decade).

GCM TXx TNx TX90p TNO90p HD TXn TNn TX10p TN10p FD2 ETR

0.13  0.07 1.68 341 0.67 0.8 0.12 145 273 281 025
CCS  (#0.10)  (£0.09) (£1.75) (x1.35) (£1.57) (£0.09) (20.08) (x1.64) (£1.24) (£1.21) (0.13)

0.07 0.21 3.88 3.07 1.40 0.17 0.17 260  -250 332 -0.10
CEl  (£0.09) (£0.08) (£1.83) (£1.02) (£1.43) (£0.08) (£0.06) (£1.45) (£1.09) (£1.09) (+0.11)

0.11 0.05 4.21 3.02 2.56 0.21 0.17 301 <321 -3.05  -0.06
CM2  (20.11)  (#0.09) (£1.35) (£1.13) (£1.42) (£0.10) (£0.06) (£1.44) (x1.16) (£1.03) (£0.11)

2001 002 0.28 3.58 001 -003 022 1.64 260  -416 023
CSI (20.09)  (0.09) (£1.30) (£1.00) (£127) (£0.09) (£0.05) (£1.38) (20.95) (£0.97) (£0.12)

0.11  0.00 3.90 3.63 0.83 0.19 0.08 173 226 2227 -020
ECE  (#0.12) (£0.10) (x1.91) (£1.11) (£1.77) (20.09) (£0.07) (£1.68) (*1.19) (£1.12) (+0.15)

0.03 0.02 178 1.67 0.67  0.04 0.06 1.70 0.88 0.86  -0.03
GE3  (#0.10) (£0.09) (£1.68) (£1.30) (+1.58) (£0.10) (£0.08) (£1.46) (£1.42) (£131) (£0.14)

0.01 0.12 0.44 1.96 0.76  0.04 0.04 015  -028  -077  -0.03
MR3  (£0.10) (£0.09) (£1.48) (£0.86) (£1.58) (£0.09) (£0.08) (£1.40) (£0.90) (£1.06) (+0.13)

0.01 0.07 2.24 3.24 0.36 0.11 0.11 0.02  -041 2,03 -0.12
WM (0.04) (£0.04) (20.58) (£0.46) (£0.57) (£0.04) (£0.02) (£0.68) (£0.77) (£0.49) (+0.05)

0.00 0.06 2.91 3.01 0.38 0.1 0.13 080 -1.81  -246  -0.13
AM  (£0.04) (£0.03) (£0.59) (+0.42) (£0.56) (£0.04) (£0.02) (+0.57) (£0.45) (£0.40) (0.04)

0.05 0.01 1.70 3.42 0.67 0.07 0.10 042 029 183 -0.06
Obs (£0.20) (£0.16) (£1.58) (£1.28) (£1.68) (#0.13) (20.11) (£1.31) (£1.31) (£1.36) (+0.22)

4.3.2.1 Warm extremes

Fig. 4.4a-e indicates increases in the warm extremes across the NSW wheat belt between
1961-2000 and 2061-2100. The spatial changes in daily maximum Tmax (TXx) and Tmin (TNx)
for RCP8.5 are presented in Fig. 4.4a and b. The increase was more pronounced in the northeast for
TXx (in a range of 4.4-5.1 °C) and in the south for TNx (in a range of 4.3-5.2 °C). As demonstrated
in Fig. 4.5a and b, the time series of TXx and TNx show similar features, characterized by increases
and, before the year 2050, no distinguishable differences between the two scenarios. In the last 40

years of the 21st century, area-averaged TXx increases by around 2.4 °C for RCP4.5 and 4.1 °C for

51



Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method

RCP8.5 compared to 1961-2000. The corresponding increases for TNx are approximately 2.3 °C and
3.9 °C for RCP4.5 and RCPS.5, respectively.

Warm days (TX90p) and warm nights (TN90p) also exhibit increases across the wheat belt
and the spatial patterns are presented in Fig. 4.4c and d. The most striking increase is found in the
north and east for TX90p (over 120 days). In contrast to TX90p, the rise in TN90p is noteworthy
in the northeast with more than 130 days. Fig. 4.5c and d show that TX90p and TN9Op have
consistent increases over the 21st century for both RCP4.5 and RCP8.5. At the end of the 21st century,
TX90p increases dramatically by around 168.2% for RCP4.5 and 314.8% for RCP8.5 compared to
the 1961-2000. TN90p increases by approximately 208.6% and 414.7% for RCP4.5 and RCP8.5,

respectively.

The number of hot days (HD) increases by between about 23.0 to 72.0 days across the region (Fig.
4.4e). The increase is more significant in the northeast with a range of 62-72 days. As shown in Fig.
4.5e the temporal evolution of HD shows a consistent increase under RCP8.5, which is similar to
other warm extreme indices. The increase in HD is around 34.7% for RCP4.5 and 58.9% for RCPS8.5
compared to the 1961-2000 at the end of the 21st century.

Table 4.4 Root mean square error (RMSE) between the multi-model arithmetic mean (AM),
independence weighted mean (IWM), each GCM and observed values for the 11 temperature indices

during 1961-2000.

TXx TNx TX90p TN90p HD TXn TNn TX10p TN10p FD2  ETR

OMS 0y (O (days)  (days) (day)  (O)  (O) (days) (days) (days) ()

CCS 1.74 1.29  16.89 13.92 1648 1.37 0.99 17.49 15.69 12.87 1.67
CEl 1.58 1.20  18.07 9.94 16.10 1.23 0.98 17.25 13.27 12.79 1.65
CM2  1.59 1.20  15.49 13.49 1585 1.26 0.97 14.55 13.43 12.78 1.76
CSI 1.52 1.28 1331 12.85 13.76  1.19 0.85 11.98 12.08 12.05 1.60
ECE 1.76 1.40  20.35 12.61 1890 1.20 0.97 17.11 15.27 12.71 1.82
GE3 1.65 1.29 16.83 13.95 16.21 1.24 0.90 15.10 10.36 11.62 1.84
MR3 1.55 1.26  14.90 11.97 13.99 139 0.98 14.10 11.96 13.41 1.58
AM 1.48 1.11 12.52 10.08 12.16 1.11 0.82 11.59 10.45 9.97 1.47
IWM 140 1.07  12.28 9.57 11.82 1.05 0.79 10.45 8.52 9.77 1.42
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Fig. 4.4 Changes in multi-model ensemble (independence weighted mean, IWM) simulated extreme

temperature indices during the period 2061-2100 compared to 1961-2000 under RCP8.5.

4.3.2.2 Cold extremes

The spatial distribution of simulated changes in the cold extremes is shown in Fig. 4.4fj. Fig.

4.4f-g show increases across the region for daily minimum Tmax (TXn) and daily minimum Tmin
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RCP4.5 and 3.0 °C for RCP8.5 by the end of the 21st century (Fig. 4.5f). The increase in TNn is
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days (TX10p) and cold nights (TN10p) show a decreasing trend in the future, which is consistent
with warming. Fig. 4.4h shows very large decreases in the occurrence of TX10p in the north, of
24-27.4 days. The magnitude of decreases in the area average by the end of 21st century is 73.4% for
RCP4.5 and 89.7% for RCPS8.5 (Fig. 4.5h). For TN10p, there is a larger decline mainly in the north,
of 27-30.6 days (Fig. 4.41). The area average of TN10p declines by 70.9% for RCP4.5 and 88.2% for
RCP8.5 by the end of the 21st century (Fig. 4.51). The results show that there are no longer any cold
days and cold nights (as defined with respect to the 1961-2000 period) under high emission RCP8.5
by the end of the century.

The occurrence of frost days (FD2) generally decreases across the region (Fig. 4.4j) over the 21st
century, by about 8.4 to 69.5 days. The largest decrease is in the east (50-69.5 days) and the smallest
in the west (8.4-20 days). As shown in Fig. 4.5j, the area average of FD2 shows a consistent drop
under the two RCPs in the 21st century, of around 48.8% for RCP4.5 and 68.0% for RCP8.5
compared to the 1961-2000 period.

4.3.2.3 Extreme temperature range

Extreme temperature range (ETR) shows an increase consistent with greater increases in daytime
maxima (spatially averaged 4.1°C in TXx Fig. 4.4a) compared to night-time minima (spatially
averaged 2.2°C in TNn, Fig. 4.4g). The largest increase is found in the south and a small increase can
be seen in the north (Fig. 4.4k). The time series of area averaged ETR shows a consistent increase
but with large fluctuations, and there is a small difference between results for the two scenarios in the
21st century (Fig. 4.5k). The amount of ETR increase by the end of the century is approximately 1.3
°C for RCP4.5 and 1.8 °C for RCP8.5.

4.4 Discussion

In this study, observed TN10p (cold nights) showed a non-significant increase due to large
inter-annual variability. However, most GCMs projected a significant decrease in TN10p. The trends
of some extreme temperature indices (e.g. TNx) in the downscaled data for some individual GCMs
(e.g. model GE3) were opposite to observed values (Table 4.3). These results are possibly linked to
the temporal downscaling procedure and/or unforced variability. Like many other statistical
downscaling methods, this method relies on empirical relationships between observational and GCM
simulated data (Liu & Zuo 2012). Although WGEN parameters derived from observations are
improved in this method, extreme events may not be realistically represented in the output. Even
though secondary bias correction was applied to correct multi-year averages for temperature

indicators, each GCM simulated extreme climate indices still had large differences with the
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observations (Fig. 4.3). Differences may be reduced by improving the WGEN parameters with fine
scale outputs of dynamically downscaled results, rather than using coarse scale GCM data, in
combination with historical records. Confidence in projections of future changes in climate extremes
can be improved by combining extremes data from multiple models, assuming that errors tend to be

cancelled if models are independent.

General findings and results in detecting changes in temperature extremes over the whole
continent of Australia have been presented in recent studies (Collins et al. 2000, Alexander et al. 2007,
Perkins & Alexander 2013). My results show that the significant trend in TN90p was particularly
well simulated by 6 out of 7 GCMs analysed. An increase in warm nights would arise through the
local impact of the enhanced greenhouse effect. The result is consistent with the results of the
Alexander and Arblaster (2009) study of Australian climate extremes. However, Alexander and
Arblaster (2009) focused on projections of temperature extremes across Australia to the end of the
21st century on the grid scale of the GCM, which is generally too coarse a scale to accurately estimate
changes in extreme events in a specific region such as the NSW wheat belt. Moreover, that study used
the arithmetic ensemble mean and consequently uncertainties due to the dependence of different
GCMs remained. In contrast to previous work, this study strives to construct more spatially detailed

scenarios of future climate extremes over a specific region using the IWM method.

Temperature extremes have the potential to affect wheat growth. The occurrence of extreme high
temperature during sensitive stages of crop development, such as near flowering and /or during early
grain filling, could reduce grain yield due to its direct effect on grain number and grain mass
(Talukder et al. 2014), while a continuous period of extreme high temperature could result in large
yield losses (Asseng et al. 2011, Lobell et al. 2015). Many experiments have been carried out to assess
the effect of heat stress on wheat yield. For example, Nuttall et al. (2013) studied wheat growth under
heat stress conditions (heat shock in the Australian dryland environment) and the results show that
heat stress (37 °C for 3 days) imposed six days after anthesis caused a 12% reduction in grain number
and a 13% reduction in grain yield. In the climate projections for the 21st century, the higher emission
scenario RCP8.5 has a higher rate of increase for warm extremes and decrease for cold extremes than
RCP4.5 (Fig. 4.5). Consistent with a warming trend, we find the potential for more frequent hot days,
and more warm days and nights, decreases in the number of frost days, and fewer cold days and
nights in the future. These results, based on standard climatological extreme indices, suggest that
wheat crops may experience more severe heat stress but decreases in frost risk in the eastern part of
the NSW wheat belt. Further work using indices tailored to correspond to crop physiological
processes would be required to confirm and quantify the effect of this on yields and other relevant

aspects of wheat production. Since the sensitivity of wheat to temperature extremes varies over the
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growing season, such indices would likely include consideration of extremes in different periods

within the year.

The eastern area is occupied by slopes and has broad climate variability due to larger latitudes
(Wang et al. 2015a). Most farmers in this region manage frost occurrence well by sowing late and
using late flowering cultivars to minimize frost risk. However, as frost days are projected to decrease
in frequency and hot days are projected to increase, this will increase the risk of exposure to hot days
around the flowering date. Grain growers need to choose suitable cultivars and sow in autumn or early
winter, which can allow flowering to occur during the period with minimum stress of frost and heat.
In addition, extreme temperature can accelerate leaf senescence (Asseng et al. 2011), which
potentially leads to yield loss. Therefore, it is important to breed some cultivars capable of coping
with an increased frequency and magnitude of heat stress around flowering and grain filling. Although
frost days are projected to decrease in the future, it will be equally important to maintain tolerance to

low temperatures when sowing earlier in the year.

Estimates of future changes in temperature extremes are essential information for stakeholders
and policymakers. Although this analysis contributes to this effort, there are many uncertain factors in
assessing changes in extreme indices at the regional scale. For example, the strong effects of ENSO
on Australian climate, which can improve predictability on seasonal timescales can also enhance
inter-annual variability, making attribution on climate time scales more difficult for GCM projections
(Arblaster et al. 2014, King et al. 2014). More work on generating projections from more advanced,
higher resolution GCMs with advanced multi-model ensemble methods, as well as on analysing
uncertainties related to model structure and internal parameters and improving downscaling and bias
correction techniques (Jeong et al. 2015a, Jeong et al. 2015b), are needed for a better understanding of

future changes in extremes over the NSW wheat belt.

4.5 Conclusion

The downscaling procedure used in this study was effective at correcting the bias associated with
the site-based monthly GCM values by relating observed historical climate data to that simulated by
GCMs. The SILO daily time series of meteorological data at point locations were used as a basis for
spatial downscaling and bias correction of 7 skill-selected CMIP5S GCMs. We evaluated the ability of
the downscaled data from each of the 7 GCMs to reproduce trends in values of extreme temperature
indices over eastern Australia over the period 1961-2000. In general, most GCM models captured the
sign of historical observed trends in temperature extremes, but no one model was consistently good at

reproducing all indices. The observed and the multi-model ensemble projections agreed well in the
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magnitude of warm nights trend for the period 1961-2000 across this region. Despite less inter-annual
variability in temperature extremes, the independence weighted mean method simulations had a lower
RMSE with observations compared to the unweighted mean. Moreover, future projections show that
more warm days (TX90p), warm nights (TN90p) and hot days (HD), less cold nights (TN10p) and
frost days (FD2) will occur in the east and northeast of the NSW wheat belt in the future by
2061-2100. Exposure to extreme heat stress can severely damage crop production. Therefore,
breeding for improved heat tolerance should remain a priority for the eastern Australian wheat

industry.
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Chapter 5°

Impact of climate change on wheat flowering time in
eastern Australia

Abstract

The flowering time of wheat is strongly controlled by temperature and is potentially highly sensitive
to climate change. In this study, I analysed the occurrence of last frost (days with minimum
temperature under 2°C) and first heat (days with maximum temperatures exceeding 30°C) events of
the year to determine the optimum flowering date in the wheat belt of New South Wales (NSW),
eastern Australia. I used statistically downscaled daily maximum and minimum temperature data from
19 Global Climate Models (GCMs) with a vernalizing-photothermal model in order to simulate future
flowering dates and the changes in frost and hot days occurrence at flowering date (+/- 7 days) for two
future scenarios for atmospheric greenhouse gas concentrations (RCP4.5 and RCP8.5) in 2040s
(2021-2060) and 2080s (2061-2100). Relative to the 1961-2000 period, the GCMs projected increased
daily maximum and minimum temperatures for these future periods, accompanied by reduced frost
occurrence and increased incidence of heat stress. As a consequence, by the 2080s, simulations
suggest a general advance in spring wheat flowering date by, on average, 10.2 days for RCP4.5 and
17.8 days for RCP8.5 across the NSW wheat belt. Winter wheat flowering dates were delayed by an
average of 2.4 days for RCP4.5 and 14.3 days for RCP8.5 in the warmest parts of the region (the
northwest) due to reduced cumulative vernalization days (requiring cool conditions). In the cooler
regions (the northeast, southeast and southwest), flowering date occurred earlier by 6.2 days for
RCP4.5 and 6.7 days for RCP8.5 on average. Moreover, in the western parts of the wheat belt the
delay of winter wheat flowering date was about 9.5 days longer than that in the eastern parts. As a
result of phenological responses to increasing temperatures, current wheat cultivars may not be

suitable for future climate conditions, despite reduced frost risk.

Keywords: wheat phenology, vernalizing-photothermal model, climate change, NSW wheat belt, frost

days, hot days
5.1 Introduction

Global average surface temperatures have increased over the past century, and the warming trend

in the last 50 years has been 0.18°C per decade. The Intergovernmental Panel on Climate Change

*: This chapter has been published in Agricultural and Forest Meteorology 209:11-21, 2015.
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(IPCC) Fifth Assessment has projected that the increase in global mean temperature by 2018-2100will
likely be 1.8+0.5°C for RCP4.5 and 3.7+0.7°C for RCP8.5, relative to 1986-2005. In Australia, mean
temperature has been increasing by approximately 0.09°C per decade during the last century and by
0.19°C per decade for the latest 40 years (Murphy & Timbal 2008). There has been an increased
intensity and frequency of hot daytime temperatures since the 1990s (Bureau of Meteorology and

CSIRO, 2014; http://www.bom.gov.au/state-of-the-climate). The annual mean temperature in

Australia is projected to increase up to 2.3+0.5 °C for RCP4.5 and 4.2+0.9 °C for RCP8.5 scenarios
by the year 2080-2099 compared with the climate of 1980-1999, leading to more frequent hot days
and less frequent cold days in the future (Irving et al. 2012).

Global climate changes are expected to have significant effects on crop growth and development
(Wheeler et al. 2000, Asseng et al. 2011). Changing phenology is one of the most important crop
responses to climate change (Wolkovich et al. 2012). Flowering is a critical stage of development in
the life cycle of most crops; it affects the chances of pollination and other crop processes, such as leaf
expansion, root growth, and nutrient uptake (Fitter & Fitter 2002), and determines seed number and
ripening (Craufurd & Wheeler 2009). The timing of flowering is a complex trait affected by a range
of environmental factors, such as photoperiod, ambient temperature, and vernalization (Halse & Weir

1970, Angus et al. 1981, Liu 2007, Springate & Kover 2014).

Temperature has been demonstrated as one of the most important factors for crop flowering dates.
For any given cultivar, increasing temperatures accelerate phenological development, so the timing of
anthesis becomes earlier (Craufurd & Wheeler 2009, Asseng et al. 2011). Earlier flowering of crops
has been observed worldwide during the last few decades, although the specific response of crop
phenology to recent climate change varies with location, season, and genotype (Chmielewski et al.
2004, Hu et al. 2005, Menzel et al. 2006, Tao et al. 2006, Estrella et al. 2007, Amano et al. 2010). For
example, Tao et al. (2006) observed that wheat anthesis became earlier by 2.86 days per decade from
1981 to 2000 at Tianshui in China. Hu et al. (2005) observed a consistent trend of earlier winter wheat
heading or flowering dates by 0.8-1.8 days per decade across six sites in the United States Great
Plains during the past 70 years. However, it is uncertain what magnitude the effects of an increase in
air temperature on wheat flowering will have because of the strong interaction that exists with
vernalization and photoperiodic responses (Miglietta et al. 1995). Vernalization is a physiological
process by which plants can acquire competence to flower by prolonged exposure to cooling
temperatures. Warmer temperatures during the vernalization period can delay dormancy or the
fulfilment of chilling requirements, which increases the length of the vegetative phase and delays the
onset of the reproductive stage (Rosenzweig & Tubiello 1996). Increased mean temperature may

increase the rate of crop development, but the effect may be reduced because of lack of vernalization
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(Butterfield & Morison 1992). This is particularly true for winter cultivars (Wang & Engel 1998, Liu
2007, Cook et al. 2012).

Wheat is normally grown under climatic conditions in Australia where the growing season is
limited by the period of effective rainfall (Halse & Weir 1970, French & Schultz 1984a). Wheat
flowering date is determined by a combination of sowing date and cultivar. Extreme weather events,
such as spring frost and heat stress, can have significant impacts on crop growth and yield (Asseng et
al. 2011, Sun & Huang 2011, Lobell et al. 2012). Therefore, the sowing time and cultivar are chosen
to minimize frost and heat stress risk around flowering (McDonald et al. 1983, Shackley & Anderson
1995, Zheng et al. 2012). Grain growers, particularly in the wheat belt of Australia, have traditionally
managed the potential loss from frost by sowing late or selecting a cultivar that flowers later
(Shackley & Anderson 1995). However, delaying planting to reduce the risk of frost can result in
higher losses than direct damage from frost because crops may face above-optimum temperatures
during grain filling and there is increased risk of crop exposure to heat stress and terminal drought
(Fuller et al. 2007). Therefore, optimum flowering periods need to be determined by analysing the
tails and distributions for both frost and heat stress (Zheng et al. 2012). These distributions, and

flowering dates themselves, will be affected by climate change.

There is a wide range of options for adapting cropping systems to climate change, and these may
help to maintain or even increase crop yields compared to those under current conditions (Tubiello et
al. 2000). Farmers can respond to changes in environmental conditions by choosing the most
favourable crops, cultivars, and cropping systems (Tubiello et al. 2000, Asseng & Pannell 2013).
Assessment studies should indicate which strategies have a good chance of success and which specific
conditions represent a threshold for adaptation (Tubiello et al. 2000). For example, a threshold for
advanced days in flowering date should identify when some wheat cultivars might not maintain yields
because of a shortened growing season. However, many factors determine how crops respond to
climate change. Crop models have been widely used to examine these responses. Meanwhile, these
models account for the effect of multiple environmental factors (e.g., vernalization and photoperiod)
and allow testing of multiple genotype-environment-management combinations (e.g., sowing date X

cultivar x environment x year) (Zheng et al. 2012).

The objectives of this study were to: 1) identify future changes in wheat flowering date in the
eastern Australian wheat belt; 2) identify the change in number of hot and frost days around wheat
flowering date with future climate change in this region. The study accounted for uncertainties in
future climate conditions by considering two scenarios for future atmospheric greenhouse gas

concentrations and future climate conditions simulated by 19 Global Climate Models (GCMs). The
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GCMs were selected for their skill at simulating temperatures throughout the wheat belt. The complex
effects of climate on flowering date with two contrasting wheat genotypes were determined by forcing

a vernalizing-photothermal model with statistically downscaled output from the GCMs.

5.2 Materials and methods

5.2.1 Study area and climate data

The study area is the New South Wales (NSW) wheat belt in eastern Australia. Data from 894
meteorological stations were used in this study (see Fig. 5.1). Daily temperature data at these stations
for 1961-2000 were extracted from the SILO patched point dataset (PPD,

http://www.longpaddock.qld.gov.au/silo/ppd/index.php). Annual mean maximum and minimum

temperature time series data from these 894 stations have been tested separately for inhomogeneities

using a revision of the two-phase regression model (Lund & Reeves 2002).

Fig. 5.1 The location of the 894 weather stations used in this study and the four regions of the NSW
wheat belt considered: I: Northeast (NE); II: Northwest (NW); I1I: Southeast (SE) and IV: Southwest
(SW).

The gridded temperatures from each GCM were first spatially interpolated to the study sites
using an inverse distance weight interpolation method. Skill scores defined according to equation (4)
(Taylor 2001) were used to identify the relatively satisfactory GCMs in simulating the climatological
temperature over the NSW wheat belt. Equation (4.1) in chapter 4 was used to calculate skill scores
for the 28 GCM simulations using climatological temperatures for 1961-2000. Skill scores were
calculated for daily maximum and daily minimum temperatures averaged across the wheat-growing

season (March 1 to November 30) and the entire year (Fig. 5.2). The 19 GCMs that achieved a skill
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score greater than 0.4 for both maximum and minimum temperatures during the growing season and

the entire year were selected for use in all subsequent analyses.

Using the method described by Liu and Zuo (2012), I downscaled gridded monthly
temperature data from the 19 skill-selected GCMs to daily data for the 894 study sites. This method is
based on a stochastic weather generator. Briefly, the gridded monthly GCM outputs were first
interpolated to the specific sites using an inverse distance weight interpolation method. Then a bias
correction procedure was applied to the monthly GCM values of each site (Liu & Zuo 2012). Daily
climate data for the site were generated by a modified WGEN (Richardson & Wright 1984) with
parameters determined from historical data and the monthly bias-corrected data.

(a) Maximum temperature (b) Minimum temperature

mAnnual
mGrowing season

mAnnual

g2 01 00 01 go mGrowing season

1
000 025 050 075 REF 125 150

Standardized deviations (normalized) dized deviations lized)

Fig 5.2 Taylor diagram (Taylor 2001) displaying normalized pattern statistics of 1961-2000 climatological
mean (a) daily maximum temperature and (b) daily minimum temperature in eastern Australia for GCMs
against observations. Each number represents a model ID (see Table S1). The black squares represent
annual temperatures, and the red squares represent growing season temperatures (March 1 to November
30). The standard deviations for the GCMs have been normalized by the standard deviation of the
reference observations (REF). The normalized standard deviation of a model is the radial distance from the
origin to the points, with cambered dotted lines showing values of 1.0 and 1.5. The correlation coefficient
between a model and the reference is given by the azimuthal position of the model, with oblique solid lines
showing different coefficient values (-0.2, 0.2, 0.6 and 0.9). The green solid lines are isolines of measure of

skill defined by equation (1).
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5.2.2 Vernalizing-photothermal model

The time for wheat flowering can be simulated with a model that can represent the interaction
between cold vernalization and temperature promotion, together with a photoperiod effect. The model
should also identify whether the crop requires vernalization and should quantitatively measure the
duration of vernalization required. Based on these general hypotheses, Liu (2007) developed a
non-linear vernalization module incorporated into the thermal and photothermal additive models for
modelling the time of flowering. The approach differed from that used in other wheat phenological
models, which commonly simulate the development rate as a multiplicative function with a

three-stage linear vernalization response (Ritchie 1991, Cao & Moss 1997, Wang & Engel 1998).

In this study, the vernalizing-photothermal model was used to simulate wheat flowering date for
historical and future climate data with spring (Cunningham) and winter (Wylah) cultivars that can be
sown across the NSW wheat belt with different sowing dates for different regions (Matthews et al.
2014). The phenology model and parameterisation procedures are explained in detail by Liu (2007).

Briefly, the daily rate of progress toward flowering 7; is given as follows:
= bO + blf(Vi’ Vf)Tl + bZPi (51)

In this equation, r; = 0; T; is the mean temperature; P; is the photoperiod of the day; and by, by
and b, are genotypic coefficients. V; is the cumulative vernalization days, which accumulate a
value of 1 if the temperature is optimal or 0 if the temperature is outside the appropriate range. Vr is
a genotypic characteristic. The larger V is, the longer the requirement for vernalization. 2V is
defined as the duration required for completion of vernalization. If V; = 0, no vernalization is
required, f (Vi, Vf) = 1. The flowering date is the day when the summation of daily developing rates

(1;) is greater or equal to 1.0 in the model.

Field observations of sowing and flowering dates for the two cultivars were collected from field
experiments conducted from 2002 to 2006 at 15 locations in the NSW wheat belt to determine the
parameters for equation (5.1) and for evaluating the prediction of flowering dates for spring and
winter wheat using the vernalizing-photothermal model. In the experiment, cultivars were sown at
five different sowing times from early April to early July in each year at each location. Each cultivar
was sown as a separate block in each sowing time in a single one-meter long row with 25-cm row
space. Air temperature data were recorded at each location with electronic data recorders sampling at
30-minute intervals to determine the daily maximum and minimum temperature. The date when 50%

of ears in each row had commenced flowering was recorded.
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Least-squares multiple regressions were used to determine the parameters for the two cultivars
from the field observations for the different sowing dates, locations and years (Liu, 2007). I also
applied a cross validation (Liu, 2007) so that the predictability of the model for the two cultivars used
in this study was independently validated with the observed data. Table 1 shows the fitting parameters
of the vernalizing-photothermal model for spring (Cunningham) and winter (Wylah) wheat cultivar.
Fig. 5.3 displays the fitting and cross validation of the model for the number of days from sowing to
flowering. The spring wheat flowering dates predicted by the model were consistent with the
observational data (Fig. 5.3a), with the root mean square error (RMSE) of 6.93 days (N=40, R?=0.87)
for validation of fitting and 7.56 days (N=40, R?=0.84) for cross-validation. RMSE for winter wheat
was 6.92 days (N=122, R*=0.93) and 7.06 days (N=122, R*=0.92) (Fig. 5.3b).

Table 5.1 Parameters for the two wheat genotypes for the vernalizing-photothermal model used in

this study.
Parameters
Wheat genotypes
SORP by by b, z
Spring (Cunningham)
-21.0357 0.650004 2.017451 0.00
Winter (Wylah) -6.03995 0.709042 0.633144 12.71

5.2.3 Climate analysis

5.2.3.1 Optimum sowing date for current climate

Observed daily minimum and maximum temperatures for 1961-2000 were used to analyse the
occurrence of frost and heat events. For each growing season and each site, the last frost day was
defined as the last day of the year with a minimum air temperature below 2°C (Liu et al. 2011); the
first heat day was defined as the first day after July 1 with a maximum air temperature greater than
30°C (Porter & Gawith 1999, Asseng et al. 2011). Years with no frost and/or heat days were assigned
the minimum last frost day (April 11) and maximum first heat day (December 31) across all sites
(Zheng et al. 2012). The probabilities of occurrence of last frost and first heat days were calculated to
determine historical flowering date for the period of 1961-2000. The optimum flowering date was
defined as the date halfway between the date of 10% risk of last frost and the date of 10% risk of first
heat day (i.e., the low-risk flowering window). The development of two cultivars was simulated using

the vernalizing-photothermal model for different sowing dates at 1-day intervals (from March 1 to
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August 1) at each site. Using the optimum flowering dates, we identified the optimum sowing dates

for spring and winter wheat at each site.
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Fig. 5.3 Comparison of observed and the phenological model predicted days from sowing to
flowering for spring (a) and winter (b) wheat. The root mean square error (RMSE) for spring wheat
was 6.93 days (N=40, R?=0.87) for validation of fitting and 7.56 days (N=40, R*=0.84) for
cross-validation. RMSE for winter wheat was 6.92 days (N=122, R*=0.93) and 7.06 days (N=122,
R?=0.92). The solid black line corresponds to the linear regression for parameter fitting, and the red

dashed line corresponds to cross validation.

5.2.3.2 Simulation for future climate scenarios

The daily maximum and minimum temperature downscaled from the 19 selected GCMs were
used to drive the vernalizing-photothermal model to investigate changes in flowering date by 2040s
(2021-2060, near future) and by 2080s (2061-2100, far future) under the RCP4.5 and RCP8.5
scenarios. The optimum sowing dates for two cultivars for each site determined by downscaled
historical climate data from each GCM were used as future sowing dates to simulate flowering date
change using the vernalizing-photothermal model. Moreover, | calculated the number of hot days
(daily maximum temperature exceeding 30°C) and frost days (daily minimum temperature under 2°C)
occurring at anthesis dates (+/- 7 days) to investigate changes in the occurrence of temperature
extremes during flowering. Future changes for flowering date and the number of frost and hot days
were calculated as downscaled future (2040s and 2080s) values minus downscaled historical

(1961-2000) values.
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5.2.3.3 Spatial analysis

Results were generated for four regions of the NSW wheat belt, including the Northeast (NE, 1),
Northwest (NW, II), Southeast (SE, I1I), and Southwest (SW, IV) (see Fig. 5.1). I used the Climate
Change Adaptation Strategy Tool (CCAST) to calculate regional results from values calculated for the
894 study sites. Developed by Liu et al. (2011), CCAST is a stand-alone GIS framework that analyses
climate change impacts, defines the agricultural and geographical areas most sensitive to climate
change, and identifies appropriate adaptation responses (Liu et al. 2011). Once a target index was
selected (for example, a change in flowering date), spatial analysis was performed to obtain a pattern
of changes across a region. Here, the 50th percentile of the selected index across all the sites in the
specific region was calculated as a spatial regional value using inverse distance weighted (IDW)

interpolation.

5.3 Results

5.3.1 Projected changes in temperature

Table 5.2 presents trends in annual mean daily maximum and minimum temperature statistically
downscaled from 19 GCMs over the NSW wheat belt from 2020 to 2100 under scenarios RCP4.5 and
RCP8.5. For annual maximum and minimum temperature, all the models show a positive trend for
both future climate scenarios. However, the projections show apparent differences between scenarios
RCP4.5 and RCP8.5. The trend for RCP8.5 was much larger than that of RCP4.5, owing to the
different evolution of radiative forcing in the future. Under RCP4.5, the trends of annual maximum
temperature ranged between 0.07°C and 0.34°C per decade across the 19 GCMs with an ensemble
mean trend of 0.17°C per decade. For scenario RCP8.5, the ensemble mean rate of increase in annual
maximum temperature was 0.45°C per decade, more than double that of RCP4.5. For the annual
minimum temperature, the mean trend for RCP8.5 was 0.47°C per decade. In contrast, RCP4.5

predicted a lower mean warming rate of 0.16°C per decade.

RCP4.5 and RCP8.5 are considered as two cases of different evolution in greenhouse gas
concentrations. The RCPs represent a range of 21st century climate policies. For RCP4.5, radiative
forcing stabilizes by 2100, but for RCP8.5 it does not peak by year 2100 due to high greenhouse gas
emissions. In the present study, the two scenarios produced similar temperatures for the NSW wheat
belt until the middle of the 21st century based on the median value from the 19 GCMs (Fig. 5.4). In

the time series of annual maximum and minimum temperature during the period 1961-2100 across the
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NSW wheat belt, distinguishable differences between the two scenarios do not occur until the year

2040, considering the ensembles of projections.

The annual mean temperatures for RCP4.5 and RCP8.5 projected by the 19 GCMs for the 2040s
and 2080s differed between the four regions of the wheat belt (Fig. 5.5). The projected temperature in
the 2040s showed large differences between the four regions. By the 2040s, the highest simulated
temperature was found in northwestern parts of NSW wheat belt (region NW, II) with ensemble
median temperatures of 20.5°C for RCP4.5 and 20.8°C for RCP8.5. The lowest simulated annual
temperatures appeared in the southeast (region SE, III), 17.0°C for RCP4.5 and 17.2°C for RCP8.5.
The simulated annual mean temperature of the 2080s was similar to the results of the 2040s, with
highest temperature in region NW (21.0-22.6°C) and lowest temperature in SE (17.6-19.3°C) for
RCP4.5 and RCPS8.5. However, the projected changes of temperature and the dispersion between the
two scenarios turned out to be larger in the 2080s. By the 2080s, region NE (I) and SE were projected
to warm the most, with an ensemble median warming of 2.9°C; region SW (IV) was projected to

warm the least, with an ensemble median warming of 2.7°C.

5.3.2 Optimum sowing and flowering dates for historical climate data

Optimum flowering date was determined as the date halfway through the low-risk period for
extreme temperature, between 10% risk of last frost and 10% risk of first heat day (e.g., for Wagga
Wagga in Fig. 5.6). To identify optimum sowing dates, simulations were performed with sowing at
1-day intervals from March 1 to August 1. The optimum sowing dates for each site for the two wheat
cultivars were identified from the simulations, given the optimum flowering date. For example, based
on the patterns of frost and heat stresses for Wagga Wagga (Fig. 5.6), the optimum flowering date was
October 13; the optimum sowing date for spring wheat (Cunningham) was May 27; and the optimum

sowing date for winter wheat (Wylah) was May 22.

Fig. 5.7a and b show the spatial distribution of optimum sowing dates for spring and winter
wheat based on observed historical climate data for 1961-2000. The sowing date became later in the
year from west to east across the NSW wheat belt, and the winter cultivar was sowed earlier than the
spring cultivar by an average of 26 days. The optimum flowering date also became delayed in the year

from west to east (Fig. 5.7¢).

5.3.3 Changes in flowering date for future climate scenarios

The results from these simulations indicate that the future climate changes considered will have a
large impact on wheat flowering date. Fig. 5.8a shows changes in spring wheat flowering date for the

2040s and 2080s relative to the baseline period (1961-2000) for the four regions in the NSW wheat
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belt. The time of spring wheat flowering is clearly advanced in future climate scenarios due to

increasing temperature.

Table 5.2 Projected trends in annual mean daily maximum and daily minimum temperature (°C per
decade) statistically downscaled from 19 GCMs for RCP4.5 and RCP8.5 during the period 2020-2100
in the NSW wheat belt. Standard errors for trends for individual models are shown in brackets. For the
multi-model mean trends, numbers in brackets are standard deviations across all GCMs. All trends are

significant with p<0.05.

Model Maximum temperature Minimum temperature

ID RCP4.5 RCP8.5 RCP4.5 RCP8.5
Trend R? Trend R? Trend R? Trend R?
02 0.07(x0.028)  0.07 0.36(£0.031)  0.63 0.07(x0.026)  0.07 0.43(£0.029) 0.74
05 0.19(£0.029)  0.35 0.55(£0.035)  0.75 0.13(£0.025)  0.27 0.45(+£0.025)  0.81
06  0.14(x0.029) 0.24 0.49(x0.039)  0.67 0.12(+0.018)  0.37 0.40(+0.021)  0.83
07 0.20(+0.032)  0.34 0.62(+0.028)  0.86 0.23(+0.024)  0.53 0.67(x0.021)  0.93
08 0.27(x0.037)  0.39 0.65(£0.041)  0.76 0.26(+0.026)  0.57 0.65(£0.030)  0.86
09 0.34(x0.030)  0.62 0.56(+0.028)  0.84 0.21(+x0.019)  0.61 0.60(£0.018)  0.93
10 0.15(x0.036)  0.17 0.39(+0.048)  0.46 0.22(+0.025)  0.50 0.53(+0.027)  0.83
12 0.14(x0.027)  0.26 0.36(+0.025)  0.72 0.12(=0.021)  0.30 0.42(+0.020)  0.84
13 0.15(x0.029)  0.26 0.27(£0.026)  0.58 0.17(x0.019)  0.49 0.36(+0.019)  0.83
14 0.29(x0.039)  0.42 0.49(+£0.040)  0.66 0.26(+£0.022)  0.63 0.55(+0.021)  0.89
15 0.10(x0.033)  0.10 0.36(x0.034)  0.59 0.07(+0.025)  0.09 0.41(+0.024)  0.79
16 0.12(+0.038)  0.11 0.36(+0.038)  0.54 0.13(+0.032)  0.18 0.41(+£0.030)  0.69
18 0.16(+£0.025)  0.33 0.29(+£0.027)  0.59 0.06(+£0.022)  0.09 0.22(+0.021)  0.58
19 0.20(x0.027)  0.42 0.55(+0.023)  0.88 0.18(+0.018)  0.58 0.52(+0.022)  0.87
21 0.18(+0.036) 0.24 0.42(+0.036)  0.62 0.17(+0.028)  0.32 0.53(+0.026) 0.84
24 0.15(+0.042) 0.14 0.48(+0.045)  0.59 0.13(+0.023)  0.30 0.45(+0.025)  0.80
25 0.13(+0.038)  0.14 0.46(+0.040)  0.63 0.14(+0.021)  0.36 0.44(+£0.027)  0.76
26 0.15(x0.030)  0.25 0.38(+0.034)  0.61 0.17(x0.016)  0.57 0.48(+0.019)  0.89
27 0.17(x0.026)  0.35 0.47(x0.029)  0.77 0.11(+0.021)  0.25 0.36(+0.018)  0.84
Mean 0.17(x0.07)  0.27 0.45(+0.11) 0.67 0.16(+0.06)  0.37 0.47(x0.11) 0.82
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Fig. 5.4 Projected changes in annual mean daily maximum (a) and daily minimum (b) temperature
during the 21st century under RCP4.5 and RCP8.5 relative to the 1961-2000 for the NSW wheat belt.
The heavy black curves represent the median value from the 19 GCMs, calculated for each year. The
top and bottom bounds of shaded area are the 90th and 10th percentile of the annual value from the 19

GCMs simulations.
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Fig. 5.5 Simulated annual mean temperature from the 19 selected GCMs under RCP4.5 and RCP8.5
in the 2040s and 2080s in the four regions over the NSW wheat belt. The dotted lines represent the
mean temperature for the period 1961-2000. Box plots are constructed from results from 19 GCMs.
Box boundaries indicate the 25th and 75th percentiles; the black line within the box marks the median;

whiskers below and above the box indicate the 10th and 90th percentiles; and crosses indicate

outliers.

70



Impact of climate change on wheat flowering time in eastern Australia

240 ST 1.2 240 12
Low risk window (a) Spring wheat Low rigk window (b) Winter wheat

220 110 220 1.0
Lo L
. 200 2 . 200 o
5‘ 1 08 E E\ 0.8 =
8 180 | last frost g o 180}  astiost E
% 160 —— firstheat {| 0.6 g % 160 | et 0.6 g
= ] = o
g 140 Rfmlim Sownng da 1 % g 140 [Optimum sowring dat 04 %
3 120} 1oz E & 120; 02 E
L - (6] I T T T ————77 6]

100 /10% n3 of last frost and first heat day | 0.0 100 0% rish of last frost and first heat day| 0.0

80 Optimum Flowering date 80 r Optimum Flowering date
240 260 280 300 320 340 360 240 260 280 300 320 340 360
Flowering date (Doy) Flowering date (Doy)

Fig. 5.6 Spring (a, Cunningham) and winter (b, Wylah) wheat optimum flowering and sowing dates
determined by the occurrence of extreme temperature events for Wagga Wagga during the period
1961-2000. Probabilities of last frost days (blue line) and first heat days (red line) are calculated as the
percentiles of last frost and first heat days from 1961 to 2000. The green line shows the variation in
flowering date for different sowing dates. The 10% risk of last frost and first heat day is given to
determine low-risk flowering window (horizontal dashed line). The grey shading shows the low-risk
period for flowering and the corresponding sowing window. The optimum flowering date is the
middle date of the low-risk flowering window (vertical solid line). The optimum sowing date is

determined by the corresponding optimum flowering date (horizontal solid line).

The time to flowering was shortened with rising temperature for all four regions, and the effect
was more pronounced where temperatures increased the most. The largest shift in flowering date was
found in region NE, especially under the high-emission RCP8.5 scenario, followed by region NW; the
smallest changes in flowering date were found in regions SW and SE. By the 2040s, spring wheat
flowering date was expected to become earlier by an ensemble median of 6.8 days for RCP4.5 and 8.4
days for RCP8.5 across the NSW wheat belt. However, the impact of further temperature increases
leads to a greater effect on the time of flowering. By the 2080s, flowering date shifted earlier by an
ensemble median of 10.2 and 17.8 days for the two scenarios across the wheat belt. The difference in
the size of the effect between the two scenarios is larger for the 2080s than for the 2040s. This is
related to large differences in temperatures between RCP4.5 and RCP8.5 after about 2040 (Fig. 5.4).

Fig. 5.8b shows the changes in winter wheat flowering date for the two future climate scenarios.
Flowering date advances under RCP4.5 and RCPS8.5 by both the 2040s and 2080s for all regions
except region NW; ensemble median changes under RCP4.5 are 6.8 (NE), 7.3 (SE), and 4.6 (SW)
days, and 6.8 (NE), 9.1 (SE) and 4.1 (SW) days under RCP8.5. Increasing temperatures accelerated

the growth rate of winter wheat and thereby advanced the flowering date. However, it is noteworthy
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that the date of flowering for winter wheat was delayed by higher temperature in the warmest region
(region NW). On average, winter wheat flowering date shifted 2.4 days later for RCP4.5 and 14.3
days later for RCPS.5.

Fig. 5.9 displays the sensitivity of wheat flowering date to annual mean temperature change in
the four regions of the NSW wheat belt based on two scenarios from 19 GCMs with two time periods
(2040s and 2080s). Spring wheat flowering date showed a negative response to an increase in mean
annual temperature (Fig. 5.9a) in all four regions. For regions NE, NW, and SW, a 1°C increase in
temperature resulted in an earlier shift for flowering date by approximately 4.9 days. A smaller
change occurred in region SE, 4.0 days°C™'. However, winter wheat had a negative correlation
between flowering date and temperature only for region SE, the coolest region (Fig. 5.9b); in this
region, a 1°C increase in mean temperature resulted in an earlier shift for flowering date by 2.2 days.

The warmest region (region NW) showed delays in flowering date by 11.7 days°C™".
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Fig. 5.7 Maps of optimum sowing date for spring wheat (a), winter wheat (b), and optimum flowering

date (c), based on observed historical climate data during the period of 1961-2000.
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Fig. 5.8 Simulated changes in flowering date for spring (a) and winter (b) wheat in the 2040s and
2080s relative to the period 1961-2000 for four regions in the NSW wheat belt. Box plots are
constructed from results from 19 GCMs. Box boundaries indicate the 25th and 75th percentiles; the
black line within the box marks the median; whiskers below and above the box indicate the 10th and

90th percentiles; and crosses indicate outliers.

5.3.4 Changes in number of hot and frost days at flowering date

The risk of heat stress during flowering was found to be more severe in the future than at present.
Fig. 5.10a shows increases in the number of hot days (maximum temperature exceeding 30°C) around
spring wheat flowering (flowering date +/- 7 days) under RCP4.5 and RCP8.5 in 2040s and 2080s at
the four regions of the NSW wheat belt. By the 2040s, changes in the number of hot days were almost
all less than 1 day for both RCP4.5 and RCPS.5. By the 2080s, the increase in the occurrence of hot
days at flowering date was the most in region NW (ensemble median change of 1.6 days for RCP4.5
and 3.5 days for RCP8.5) followed by region NE (ensemble median change of 1.5 days for RCP4.5

and 3.0 days for RCP8.5); the smallest increase in the number of hot days was found in region SW
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(ensemble median change of 1.2 days for RCP4.5 and 2.5 days for RCP8.5). The results for winter
wheat are similar (Fig. 5.10b), although for region NW increases in the number of hot days by the
2040s exceed 1 day for most of the GCMs (ensemble median changes of 1.1 days for RCP4.5 and 1.7
days for RCP8.5).

The number of frost days with daily minimum temperature below 2°C occurred around wheat
flowering date (+/- 7 days) reduced by less than one day for both future scenarios relative to the
1961-2000 period due to climate warming (Fig. 5.11). By 2040s decreased number of frost days was
less than 0.1 for spring wheat for both RCP8.5 and RCP4.5 at the four regions (Fig. 5.11a). By 2080s
the highest decrease in the occurrence of frost days was in region NW (ensemble median change of
0.3 days for RCP4.5 and 0.4 days for RCPS.5); the lowest decrease in the number of frost days was
found in region SW (ensemble median change of 0.2 days for RCP4.5 and 0.3 days for RCP8.5). The

results for winter wheat are analogous to spring wheat (Fig. 5.11b).
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Fig. 5.9 Relationship between simulated changes in wheat flowering date and annual mean
temperature change in four regions of the NSW wheat belt for spring (a) and winter (b) wheat. The

effect of a change in temperature (AT) was fitted using linear regression.
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Fig. 5.10 Changes in average number of hot days with daily maximum temperature exceeding 30°C
during flowering (flowering date +/- 7 days) for spring (a) and winter (b) wheat under RCP4.5 and
RCP8.5 by the 2040s and 2080s, relative to the 1961-2000 period for four regions in the NSW wheat
belt based on downscaled data from 19 GCMs. Box boundaries indicate the 25th and 75th percentiles;
the black line within the box marks the median; whiskers below and above the box indicate the 10th

and 90th percentiles; and crosses indicate outliers.

5.4 Discussion

In this study, the combination of downscaled GCM output and the phenological model were used
to assess the effects of climate change on wheat flowering dates across the NSW wheat belt. The
overall response of wheat phenology to changes in temperature in the four regions considered is an
obvious result of the temperature-driven development model. Compared with the baseline, if farmers

do not change the cultivars grown and do not improve management practices, the simulations of
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future climate scenarios indicated that climate change would shorten the growing period for spring
wheat due to an advance in flowering date. The warmer climate would speed development and lead to

a reduction in the number of days in the vegetative period for spring wheat.
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Fig. 5.11 Changes in average number of frost days with daily minimum temperature under 2°C during
flowering (flowering date +/- 7 days) for spring (a) and winter (b) wheat under RCP4.5 and RCP8.5
by the 2040s and 2080s, relative to the 1961-2000 period for four regions in the NSW wheat belt
based on downscaled data from 19 GCMs. Box boundaries indicate the 25th and 75th percentiles; the
black line within the box marks the median; whiskers below and above the box indicate the 10th and

90th percentiles; and crosses indicate outliers.

Winter wheat flowering dates also changed but these change varied by region. In the warmest
region, the NW, flowering dates were delayed due to higher temperature resulting in unsuccessful
vernalization, especially by the 2080s under the high-emission RCP8.5 scenario (Fig. 5.8b). In the

coolest region, the SE, flowering date occurred earlier (Fig. 5.8b). I found that simulated flowering
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date would advance by an ensemble median of 10.2 days for RCP4.5 and 17.8 days for RCPS8.5 for
spring wheat averaged across the entire wheat belt in the 2080s. In contrast, flowering date for winter

wheat would advance by 4.8 days under RCP4.5 and delay by 1.0 days under RCP8.5 in the 2080s.

Although simulated wheat flowering date became earlier or delayed (Fig. 5.8), the number of hot
days with maximum temperature exceeding 30°C during flowering date (+/- 7 days) in 2040s and
2080s increased due to climate warming, especially for the RCP8.5 (Fig. 5.10). Simulated number of
frost days with minimum temperature below 2°C during flowering (+/- 7 days) decreased slightly in
2080s for RCP8.5 (Fig. 5.11). It should be noted that hot days occurred most and frost days occurred
least in the warmest region, the NW, under high emission (RCP8.5) in the future, which is consistent
with the results of Zheng et al. (2012). They found that a greater number of regions would become
“frost-free” and the first heat day of wheat season was earlier by 4-41 days in Australian wheat belt in
the future climate. Consequently, the timing and frequency of frost and heat events were predicted to

differ depending on the location and future scenario considered.

Simulated spring wheat flowering date changes displayed a strong correlation with annual mean
temperature change. The results show that increased temperature had a negative effect on spring
wheat flowering date with -4.7 days°C™ (Fig. 5.9a), which roughly compares to previous estimates
(Sadras & Monzon 2006, Tao et al. 2006, Estrella et al. 2007, Zheng et al. 2012, Yang et al. 2014). It
is noteworthy that there was a significantly delayed response of winter wheat flowering time to mean
temperature increase in the NW region (Fig. 5.9b). Many recent studies have suggested that plants
were not advancing in their spring phenological behaviours (leaf unfolding and flowering) because
they responded more to lack of winter chill than increased spring heat (Cook et al. 2012, Pope et al.
2013, Wang et al. 2014). The requirement of thermal time for wheat development was not being met
because the number of cumulative vernalization days was shortened due to climate warming and
became insufficient to fulfil the vegetation chilling requirement. The cumulative vernalization days
for winter wheat reduced by an ensemble median of 20 and 30 days averaged across the NSW wheat
belt for RCP4.5 and RCPS.5, respectively (Fig. 5.12a and b). As a result, flowering date was delayed
under the two RCP scenarios in region NW (Fig. 5.8b), where annual temperature was the highest
(Fig. 5.5). Interestingly, the NW region exhibited a stronger positive response to temperature than
regions NE and SW; while in the coolest region, the SE, there was a negative relationship between
flowering date change and mean temperature (Fig. 5.9b). This indicates that higher temperatures in
the warmest region restricts winter wheat vernalization, which delays the growing season in the future

and increases the risk of exposure to hot days around flowering date (Fig. 5.10b).
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Fig. 5.12 Maps of simulated changes in cumulative vernalization days for winter wheat with an
ensemble median of 19 GCMs during the period 2020-2100 under RCP4.5 (a) and RCPS8.5 (b),
relative to 1961-2000.

The analysis presented here demonstrated changes in anthesis processes that agree with the
findings of other studies (Sadras & Monzon 2006, Wang et al. 2009¢, Zheng et al. 2012). However,
when driving the phenology model with statistically downscaled daily data from different GCMs,
there are many uncertainties, including the choice of GCMs with the best performance to downscale.
Most previous model validation studies used conventional statistics to measure the similarity between
observed and modelled data (Taylor 2001, Min & Hense 2006, Reichler & Kim 2008). For example,
in this study, [ used Taylor’s method to select GCMs after characterizing model performance from
correlation and standard deviations. These two statistics were combined in a single diagram, resulting
in a good visualization of the model. The projected wheat-growing season and annual maximum
temperature from 28 GCMs during the period 1961-2000 all passed the skill score (0.4), except
BNU-ESM, which shows better simulated results than the minimum temperature (19 of 28 GCMs
passed 0.4) across the entire NSW wheat belt. This approach, however, is only practical for a small
number of models and/or climate quantities (Reichler & Kim 2008). More uncertainty can come from
the GCMs themselves (different spatial resolution), statistical downscaled method (bias correction),
and the independence of simulated different GCMs (Bishop & Abramowitz 2013, Evans et al. 2013);

these uncertainties were not considered when using multi-model ensemble median value.

Ambient temperature, photoperiod and vernalization are major environmental factors affecting
crop flowering time (Wang & Engel 1998, Brooking & Jamieson 2002, Liu 2007). Other factors such
as water and nitrogen stress together with temperature will have large effects on crop photosynthesis

or respiration and thereby resulting in yield loss and/or gain. Therefore, as the wheat phenology
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module in APSIM and CERES-Wheat both assume that crop development is determined by
photoperiod and temperature (Keating et al. 2003, Lobell & Ortiz-Monasterio 2007), the phenological
model used in this study is based on a non-linear vernalization module incorporating thermal and
photothermal additive models for the time of flowering. It is an effective approach for determining
phenological parameters from field experiment data and separating the confounding effects of
temperature and vernalization in phenological development (Liu 2007). However, like all other
commonly-used phenological models, uncertainty exists in the model results as the values of the

model parameters are determined by fitting limited field observations.

Increasing temperatures during the 21st century will have large consequences on crops. Some
cultivars will benefit from a warmer climate, while others will disappear (Piao et al. 2010). Our
simulated results indicate that continued warming of the NSW climate will have serious consequences
for some wheat cultivars grown there. For spring wheat, accelerated phenology could reduce yield and
fitness because earlier flowering could constrain vegetative development, leading to a lower amount
of radiation being intercepted and affecting soil water extraction. For winter wheat, flowering date
will be delayed due to lack of necessary vernalization in the model. Fortunately, switching to different
cultivars may be able to compensate for the negative impacts of climate change (Liu et al. 2010b).
Adopting wheat cultivars that require weaker or zero vernalization in the future may be a good
strategy in some areas. Our results demonstrate that in the western parts of the wheat belt (regions
NW and SW) flowering date for winter wheat delayed more than in the eastern parts (regions SE and
NE) (Fig. 5.8b). Therefore, limiting sowing of winter cultivars in the western plains may be one

strategy to mitigate the impacts of future climate change in the wheat belt.

The present study clearly demonstrates the need to consider changes in both genotype and
sowing date in climate change impact studies. In some of my simulations, which did not consider
adaptation, the magnitude of impact was strongly related to the change in temperature because of the
associated reduction in growing season duration. In this study, the optimum sowing dates based on
downscaled historical climate data (1961-2000) for each GCM were used as future sowing dates to
simulate future flowering changes. Optimum sowing date was only determined by the
vernalization-photothermal model according to the optimum flowering date calculated by the low-risk
window of frost and heat stress. The effect of rainfall on sowing date was ignored and so was crop
response. This may be significant, as the timing of the first autumn rains in eastern Australia can be
highly variable. In fact, optimum flowering date will change due to global warming resulting in
increased number of hot days with maximum temperature exceeding 30°C (Fig. 5.10) and decreasing
number of frost days with minimum temperature below 2°C (Fig. 5.11) around flowering date (+/- 7

days ) in future climate conditions. Sowing dates may advance as a consequence of earlier flowering
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date to minimize frost and heat stress at anthesis dates in the future (Zheng et al. 2012). In reality,
farmers have already sowed earlier, and wheat yield has improved in recent decades, particularly
because of the adoption of new planting practices and cultivars (Gomez-Macpherson & Richards 1995,
Stephens & Lyons 1998). Moreover, sowing early at the break of season is now possible because of
the use of herbicides to maintain soil water conditions and minimum tillage techniques that preserve

soil water (Anderson & Smith 1990, Zheng et al. 2012).

As a result of phenological responses to increasing temperatures, current wheat cultivars may not
be suitable for future climate conditions due to a shorter growth cycle and exposure to extreme high
temperatures during flowering date, despite reduced frost risk. The growing season and extreme
events risk might determine the plant-able year for current wheat cultivars. Different cultivars will be
limited by different climatic thresholds. For example, in the vernalizing-photothermal model, if the
cumulative vernalization days are < 2v; (approximately 25.4 days), winter wheat cannot complete
vernalization, affecting the time of the transition from vegetative to reproductive development and
leading to a potentially high-yield penalty. In contrast, spring wheat does not require vernalization. In
the future, our current long-season wheat cultivars will have a growth period similar to the current
medium-season cultivars (Zheng et al. 2012); our current medium, short-season, and winter cultivars
may disappear due to warming in the next few decades. Late-maturing cultivars will be needed to
maintain the current crop cycle duration, to provide for the use of resources (radiation, CO,, water,
and nutrients) of long-season cultivars, and to allow earlier sowing (Zhang et al. 2006, Zheng et al.
2012). For some regions, it is important to breed long-season cultivars capable of coping with an
increased frequency and magnitude of heat stress around flowering and grain filling. In some regions,
it will be equally important to maintain tolerance of low temperatures (spring frost) when sowing
earlier. Breeding is often slow (e.g., 10-12 years to develop a new crop cultivar, 20 years or more to
develop a new cultivar to the point of commercial production) (Asseng & Pannell 2013), so it is
urgent to examine adaptation of wheat genotypes to future climate. This also points to the need to
consider the effects of climate change on crops and incorporate those findings into future breeding
programmes. That is why it is useful to study the results of crop simulation models with different
phenotypic characteristics combined with climate data representing different climate change

scenarios.
5.5 Conclusions

The flowering date of wheat is strongly controlled by temperature and is potentially highly
sensitive to climate change. The results of simulations presented in this chapter suggest a general

advance in spring wheat flowering date between 1961-2000 and the 2080s, on average, by 10.2 days
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for RCP4.5 and 17.8 days for RCP8.5 across the NSW wheat belt. Changes in flowering dates for
winter wheat were also simulated, but these varied in sign by region. In the warmer sub-region,
flowering dates delayed by an average of 2.4 days for RCP4.5 and 14.3 days for RCPS8.5 due to higher
temperature resulting in unsuccessful vernalization. In the cooler regions (NE, SE, SW) flowering
dates occurred earlier by 6.2 days for RCP4.5 and 6.7 days for RCP8.5 on average. Moreover, in the
western parts of the wheat belt the delay of winter wheat flowering date was about 9.5 days longer
than that in the eastern parts. Thus limiting sowing of winter cultivars in the western plains may be
one strategy to mitigate the impacts of future climate change in the wheat belt. It should be noted that
the number of hot days with maximum temperature exceeding 30°C during flowering date (+/- 7 days)
increased while simulated number of frost days with minimum temperature below 2°C decreased due
to climate warming. Therefore, sowing dates may advance as a consequence of flowering date change
to minimize frost and heat stress at anthesis dates in the future. Late-maturing cultivars with increased
heat-stress resistance will be needed to maintain the current crop cycle duration, to provide for the use

of resources (radiation, CO,, water, and nutrients) of long-season cultivars in eastern Australia.
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Chapter 6*

Modelling changes in wheat yield under future climate
conditions in relation to plant available water capacity in
eastern Australia

Abstract

Increasing heat and water stress are important threats to wheat growth in rain-fed conditions. Using
climate scenario-based projections from the Coupled Model Intercomparison Project phase 5 (CMIPS),
I analysed changes in the probability of heat stress around wheat flowering and relative yield loss due
to water stress at six locations in eastern Australia. As a consequence of warmer average temperatures,
wheat flowering occurred earlier, but the probability of heat stress around flowering still increased by
about 3.8% to 6.2%. Simulated potential yield across six sites increased on average by about 2.5%
regardless of the emission scenario. However, simulated water-limited yield tended to decline at wet
and cool locations under future climate while increased at warm and dry locations. Soils with higher
plant available water capacity (PAWC) showed a lower response of water-limited yield to rainfall
changes except at very dry sites, which means soils with high PAWC were less affected by rainfall
changes compared with soils with low PAWC. These results also indicated that a drought stress index
decreased with increasing PAWC and then stagnated at high PAWC. Under the high emission
scenario RCP8.5, drought stress was expected to decline or stay about the same due to elevated CO,
compensation effect. Therefore, to maintain or increase yield potential in response to the projected
climate change, increasing cultivar tolerance to heat stress and improving crop management to reduce
impacts of water stress on lower plant available water holding soils should be a priority for the genetic

improvement of wheat in eastern Australia.

Keywords: GCMs; heat stress; water stress; wheat yield; APSIM model; PAWC
6.1 Introduction

Global Climate Models from the Coupled Model Intercomparison Project phase 5 (CMIPS)
multi-model dataset point to a significant increase in mean temperature and marked shifts in the
distribution of rainfall patters (IPCC 2013). In a warmer future climate, most GCMs also predict a
substantial increase in the frequency and severity of extreme weather events. Changes in climate and
extreme weather events are likely to affect agricultural crops (Porter & Semenov 2005, Gornall et al.

2010, Moriondo et al. 2011, Barlow et al. 2015).

*: This chapter has been submitted for publication.
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The occurrence of extreme high temperature during sensitive stages of crop development, such as
the period around anthesis, could reduce grain yield due to its direct effect on grain number and grain
weight (Stone & Nicolas 1994, Wollenweber et al. 2003, Talukder et al. 2014). The individual grain
mass and the grain set can be substantially reduced if a cultivar, sensitive to heatstress, is exposed to
even a short period of high temperature around flowering (Talukder et al. 2010). For example, in a
field experiment on the combine effects of CO, and temperature on the grain yield Nuttall et al. (2013)
showed that a temperature of 36 to 38 “C around flowering (6 days after anthesis) could result in a
high number of sterile grains (grain number reduced by 12%) and therefore 13% grain yield loss. A
modelling study for the main wheat growing regions in Australia showed that variations in average
growing-season temperature of 2 °C caused reductions in grain production of up to 50% (Asseng et al.
2011). Therefore, mitigating the impacts of heat stress on crop yield is one of crucial tasks for

securing food under a future changing and variable climate.

Numerous simulation studies, linking projected climate data from climate models to crop models,
have assessed the effects of heat and drought stress in combination or isolation on crop yield under
future climate change in rainfed cropping systems (Semenov & Shewry 2011, Gourd;i et al. 2013,
Deryng et al. 2014, Lobell et al. 2015). Using climate projections from the CMIP3 multi-model
ensemble with LARS-WG weather generator, Semenov and Shewry (2011) demonstrated that
droughts would not increase vulnerability of wheat in Europe. It is noteworthy that relative yield
losses from water stress were likely to decrease due to earlier maturity avoiding terminal drought
stress. Lobell et al. (2015) found that the significant direct damage to wheat crop from heat stress was
increasing and estimated that aggregate yield impacts of heat stress might equal drought impacts for
wheat by the mid-21st century. The combination of increasing CO, and associated climate changes
was likely to gradually reduce the drought exposure in northeast Australia. However, previous
analyses modelling the effect of water stress on wheat have been limited to using single soil type at
specific sites. Furthermore, there are many uncertainties in these projections due to uncertainty in
future greenhouse gas emissions. Finally, linking crop simulation models to projected climate data for
the future from climate models at specific locations is not straightforward. Indeed, the spatio-temporal
scale mismatches between GCMs and crop simulation models must be bridged through downscaling

methods.

It is well-know that under the same climatic conditions, soil characteristics are the key to
sustaining agricultural production. Soil can provide a buffer to store water and supply it to the crop
and therefore minimize the effects of severe drought. However, the soil’s ability to support crop
growth is largely dependent upon its water-holding and supply capacity. Soils with larger plant
available water holding capacity (PAWC) are generally higher yielding as high PAWC can lead to

83



Modelling wheat yield change under future climate conditions in relation to plant available water capacity

more water use and reduce water leakage below the crop root zone, resulting in increased rainfall use
efficiency and decreased offsite impacts (Morgan et al. 2003, Wong & Asseng 2006, 2007, Wang et al.
2009a). Wong and Asseng (2006) showed a linear increased of measured wheat yield with soil PAWC
of the top 100 cm of the soil profile in West Australia, which was consistent with crop model
simulated results from Wang et al. (2009a). However, soil PAWC does not change the crop water use
efficiency, but change the availability of water to crops (Wang et al. 2009a). Although efforts have
been made to evaluate the impact of PAWC on crop yields, little evidence is available to prove how

water stress responds to soil PAWC as a result of climate change.

The New South Wales (NSW) wheat belt contains 29.3% of the Australian wheat planted area
and accounts for 28.7% of Australia’s wheat production (averaged by 2003-2014)

(http://www.abs.gov.au). It is among the most vulnerable regions in Australia due to its great reliance

on climate. Extreme events in the NSW wheat belt have been predicted to increase in frequency,
length and intensity by the end of the century (Alexander & Arblaster 2009, Lewis & Karoly 2013,
Wang et al. 2016). However, it is not yet clear what the extent of yield losses resulting from water
stress or heat stress will be under future climate change in this particular region. In addition, the lack
of daily temperature and rainfall data for future climate has been a major obstacle to demonstrate the
site-specific impact assessment of climate change on crop production. This study accounted for
uncertainties in future climate conditions by considering two scenarios for future atmospheric
greenhouse gas concentrations. I used a statistical downscaling method to downscale GCM
projections from the CMIP5 ensemble to a local scale. The use of statistical downscaling in climate
change studies allows exploration of the effect of changes in mean climate as well as changes in
climatic variability and extreme events (Ahmed et al. 2013, Wang et al. 2016). A wheat simulation
model was used to simulate impacts of climate change on wheat yield based on different soil types

across a range of wheat cropping regions in eastern Australia.

The objectives of this study were to (1) quantify change in the probability of heat stress around
flowering; (2) quantify the relative yield loss due to water stress across different soils. I focus on the
analyses of two 30-year simulations: the first examines the time period 1961-1990 (referred to as
‘present’), the second the period 2061-2090 (referred to as ‘future’), based on the latest greenhouse
gas emissions and GCM projections. Here I present the results of a study of the impacts of heat stress
and water stress on wheat yield involving 12 soil types for a great degree of soil variability and six

represented sites across the NSW wheat growing area.
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6.2 Materials and methods

6.2.1 Study sites, climate and soil data

The NSW wheat belt is located between the arid interior of Australia and the Great Dividing
Range to the east. The topography is characterized by plains in the west and slopes in the east. The
climate is Mediterranean (with winter-dominant rainfall) characterized by large inter-annual
variations in rainfall. Six sites, representing different agro-climatic zones within the wheat belt, were
selected for this study (Fig. 6.1). The principal characteristics of these sites are summarized in Table
6.1. The two northern sites (WA, MP) are relatively warm and the three western sites (WA, LA and

BA) are relatively dry. Sites to the south and east are cooler and wetter, respectively.

Daily climate data (maximum and minimum temperature, rainfall and solar radiation) for
1961-1990 for the six study sites were extracted from the SILO patched point observational dataset
(PPD, http://www.longpaddock.qld.gov.au/silo/ppd/index.php) (Jeffrey et al. 2001). Daily climate
data for 2061-2090 were also derived for each site from simulations of 28 different CMIP5 GCMs

(Wang et al. 2015b) of two different Representative Concentration Pathways (RCPs) (Van Vuuren et
al. 2011) (RCP4.5 and RCP8.5) using a statistical downscaling method. Briefly, monthly GCM output
data (solar radiation, rainfall, daily maximum and minimum temperature) from 28 GCMs were firstly
downscaled to the observed sites using an inverse distance-weighted interpolation method. Biases
were then corrected using a transfer function derived from interpolated GCM data and observed data
for the sites. Daily climate data for each site for 1900-2100 were generated by a modified stochastic
weather generator (WGEN) with parameters derived from the bias-corrected monthly data. The
detailed description of this method can be found in Liu and Zuo (2012). This method has been widely
applied in recent climate change impact studies in Australia (Wang et al. 2015b, Guo et al. 2016, Liu
etal. 2016).

Table 6.1 Average wheat growing season (April to November) temperature and rainfall (1961-1990) at

the six study sites.

Maximum Minimum  Mean Rainfall

Site Acronym Latitude  Longitude T (C) T(C) T(C) (mm)
Walgett WA -29.66 148.12 23.9 9.6 16.7 268.2
Moree Plains MP -29.50 149.90 23.0 9.0 16.0 331.8
Lachlan LA -33.10 146.85 20.6 7.8 14.2 287.3
Mudgee MU -32.60 149.60 19.4 5.6 12.5 450.5
Balranald BA -34.20 143.50 20.7 7.6 14.1 212.9
Wagga Wagga WW -35.05 147.35 18.1 6.6 12.4 396.8
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Soils vary widely in their soil water retention characteristics, ranging from shallow sandy soil,
with minimal capacity to retain soil water, to deep clay soils, with great capacity to retain soil water
(Table 6.2). Each study site has at least one soil type that is representative of the area. These 12 soils
were selected from the APSOIL database according to PAWC ranging from 72 to 293 mm, step by
approximately 20 mm (Liu et al. 2014). These soils provide a potential maximum rooting depth of the
wheat crop, which ranges from 120 to 180 cm. Although some of the soils may not be found at all the
six study sites, it was assumed that the spatial variation of the soils at any one site can give a range of
PAWC and therefore that the range represented by the soils in Table 6.2 is reasonable (Wang et al.
2009a). Soil hydraulic parameters are shown in Fig. 6.2.

Fig. 6.1 The six selected sites used in this study.

6.2.2 Wheat simulations

APSIM (Agricultural Production System sIMulator) version 7.7 (www.apsim.info) (Holzworth et

al. 2014) was used to evaluate the effect of future climate change on wheat yields at the six sites. The
APSIM model has been well-tested for many modern wheat cultivars and is able to sufficiently
simulate the behaviour of crops exposed to a wide range of conditions including those in the
Australian wheat belt (Asseng et al. 1998, Keating et al. 2003, Ludwig & Asseng 2006). It has been
widely used in studies of the effects of climate change on wheat productivity and water use in
Australia (Chenu et al. 2013, Lobell et al. 2015, Yang et al. 2016). The model is an appropriate tool
for determining potential yield which is defined as the yield of an adapted crop cultivar grown under

favourable conditions without growth limitations from water, nutrients, pests or diseases. A potential
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yield (¥p) calculated using the APSIM model in this study is defined as the yield of an adapted crop
cultivar when grown under favourable conditions without growth limitations of water, nutrients, pests,
disease or other non-climatic factors (Evans 1996). It is a benchmark for systems in semi-arid
climates with insufficient water supplies to avoid water stress. In this case, automatic irrigation (full
irrigation) in APSIM was set to eliminate water stress. The definition of water-limited crop yield (Y,,)
is similar to Y, but crop growth is limited by water supply. Water-limited yield is equivalent to

water-limited potential yield for rain-fed crops.

The Liu and Zuo (2012) downscaling procedure used in this study is somewhat effective at
correcting the biases in the monthly GCM. However, the bias correction approach used in the
downscaling procedure is largely limited to correcting stationary biases in the GCM output and cannot
fully account for biases that are non-stationary during the training period. Therefore, the downscaled
daily data for a period that might be different from the training period and may have residual biases in
some cases. In order to minimise the impact of these on crop model outputs, Yang et al. (2016)
applied a simple additional bias correction called secondary bias correction to the outputs of model
simulations forced with the downscaled data. In this study, crop simulation outputs Y,, and Y,, were
also corrected by a secondary bias-correction procedure according to Yang et al. (2016) in order to
minimise the impact of biophysical biases in the downscaling procedure on outputs of crop model

simulations.

Table 6.2 The 12 soils used in this study including soil type, soil depth, plant available water capacity
(PAWC).

Soil depth PAWC

No. Mainly distributed region Soil type (cm) (mm)
S1 Riverina Loam (Caldwell-Womboota 2 No616-YP) 150 72
S2 Upper Western Sandy Clay over Clay (Wirracanna site § No561-YP) 120 86
S3 Upper Western Clay (Wirracanna site 6 No563-YP) 120 111
S4 North West Slopes and Plains Grey Vertosol (Walgett No1016) 180 131
S5 North West Slopes and Plains Grey Vertosol (Pilliga No1014) 180 155
S6 Riverina Sandy Loam over Clay (Rand No211) 150 170
S7 Central West Slopes and Plains ~ Grey Vertosol (Forbes No546-YP) 150 188
S8 Central West Slopes and Plains  Clay over Sandy Clay (Eugowra No196) 180 209
S9 North West Slopes and Plains Grey Vertosol-Light Brigalow (Tulloona No102) 150 239
S10 Riverina Grey Vertosol (Urana No541-YP) 150 251
S11 North West Slopes and Plains Grey Vertosol-Heavy Brigalow (Tulloona No101) 150 266
S12 Riverina Wunnamurra Clay (Jerilderie No542) 180 293
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Fig. 6.2 APSIM soil parameters used to define plant available water capacity (PAWC) and values of

soil water reset for 12 soil types (S1-S12) used in this study. Sat is the saturated water content. DUL

represents the drained upper limit of soil water. Wheat LL stands for crop lower limit. LL15 is the
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15Bar lower limit of soil water. Soil water reset to wheat LL each year on 1 January.

Elevated levels of atmospheric CO; in the plant module of APSIM affects crop growth by
influencing RUE, transpiration efficiency and critical leaf nitrogen concentration. However, APSIM
has no facility to ingest time-varying values of CO; concentration. Therefore, a function was added to
APSIM whereby yearly atmospheric CO, concentrations were calculated using empirical functions of
calendar year during 1900-2100 (Liu et al. 2014). For RCP4.5 scenario, the atmospheric CO»

concentration was calculated by:

_ 0.000075326*y—0.16276 _ _ 3
[CO3)yeqr = 650.18 + sovuzazee T 0.00018747 * (y — 2045)3 (1)

For RCP8.5, it was fitted by:

_ 267.78-1.6188%y y-2010\3 y-1911)3
[COlyear = 10343 + s T +21.746 « (X500) +100.65 « () )

These equations set atmospheric CO» concentrations approximately equal to the multi-model mean
mid-range carbon cycle projections for RCP4.5 (520 ppm) and RCP8.5 (720 ppm) during study period
2061-2090 (Van Vuuren et al. 2011).

The difference in volumetric water content between drained upper limit (DUL) and wheat lower
limit (wheat LL) is calculated as plant available water capacity (PAWC), which represents the ‘bucket’
size for water stored by the soil that is available for use by a crop (Asseng et al. 2001, Yang et al.
2014). DUL is defined as the amount of water that a soil can hold after drainage has been significantly
slowed and wheat LL refers to the lowest water content at which a wheat crop can extract water. In
practice, high wheat yield has been associated with high PAWC in rain-fed conditions (Oliver et al.
2006, Wang et al. 2009a). With rainfall and surface evaporation being equal which depends on the
amount and frequency of rainfall, a soil with a low PAWC provides less water to a crop than a soil
with a high PAWC. This study focuses on the effect of PAWC on the impact of climate change on
wheat yields simulated by APSIM. Other soil parameters, such as soil pH, were set to the same value

between the 12 soil types considered.

In simulations presented in this chapter, the wheat sowing window was set from 1 April to 31
July (Zhao et al. 2013). Wheat was sown every year when cumulative rainfall in ten consecutive days
exceeded 25 mm, or when the end of sowing window was reached (Wang et al. 2009c). Two wheat

cultivars, Waagan and Bolac, were widely sown in NSW wheat belt (Matthews et al. 2014). To
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optimally use the available resources (light, temperature, water and nutrients), Bolac was selected for
sowing date between April 1 and May 20 (early start to season) and Waagan between May 21 to July
31 (late start to season). Sowing density was 120 plants m?, at a depth of 3 cm. Summer rainfall is
important in the northern NSW wheat belt. However, to exclude the “carry-over” effects from
previous seasons, simulations were reset on 1 January of every year, with soil organic carbon (OC)
reset to 1.2% and soil profile mineral N reset to 35 kg ha™' nitrate-N and 15 kg ha” ammonium-N in
the top of soil, rapidly declining with depth, with wheat stubble reset to 1000 kg ha™ and a soil C:N
ration of 12, soil water reset to wheat crop lower limit (Fig. 6.2) (Asseng et al. 2000, Oliver et al.
2010b). Each year, 100 kg ha™' N fertiliser was applied at sowing date and another 50 and 100 kg ha™
N fertiliser were added at the juvenile and initial flowering stage, respectively (Luo et al. 2009, Wang
et al. 2009c¢). The high level of N application used was to avoid any nitrogen stress of the crop so that
simulated wheat yield was a reflection of climate change rather than fertiliser management in the

APSIM model.
6.2.3 Heat and drought stress indices

In this study, heat stress around flowering date (Pysr) was defined as probability of the daily
maximum temperature exceeding 30 °C from 100 °Cd before flowering to 100 °Cd after flowering. I
mainly focused on extreme temperature during the short period surrounding anthesis in which grain
set is particularly sensitive to heat stress. A drought stress index (DSI) (Semenov 2009, Vanuytrecht
et al. 2014) was defined as:

_YW

Y
DSI = -

* 100% 3)

where Y,, and Y, are water-limited and potential grain yields. The greater the DSI, the higher the

water stress because DSI measures the percentage of the yield reduction from the potential yield due
to water stress.

6.3 Results

6.3.1 Projected changes in growing season temperature and rainfall

Fig. 6.3 shows changes in growing season (April to November) temperature and rainfall by
2061-2090, relative to 1961-1990, based on the downscaled data for the 28 GCMs for RCP4.5 and

RCP8.5. The data for all GCM simulations show warming for all six sites. The increases in
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temperature were greatest for the high-concentration scenario (RCPS8.5) than for the
low-concentration scenario (RCP4.5). Although the eastern sites (MP, MU and WW) have lower
mean temperatures (Table 6.1), the simulated temperature increases were more for these sites than for
the western sites (WA, LA and BA) (Fig. 6.3a). The largest warming occurred in MU, with
ensemble-mean warmings of 2.3 °C for RCP4.5 and 3.8 °C for RCPS8.5. In contrast, the lowest
increase was found in BA, with ensemble-mean warmings of 1.9 °‘C for RCP4.5 and 3.2 °C for

RCP8.S.

The changes in growing season rainfall showed large variations between GCMs, which indicates
large uncertainty. Some GCMSs projected increasing rainfall but most GCMs indicated decrease.
Changes in rainfall were more pronounced for RCP8.5 than for RCP4.5. Overall, projected rainfall at
northern sites (WA and MP) declined more than that at the remaining four sites. The greatest
ensemble-mean decreases in rainfall occurred in MP, 7.1% for RCP4.5 and 9.4% for RCP8.5, while
the smallest decreases were for MU, 3.2% and 4.5% for RCP4.5 and RCP8.5, respectively.

6.3.2 Change in days to flowering and probability of heat stress around flowering
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Fig. 6.3 Projected changes in wheat growing season (April-November) (a) mean temperature and (b)
rainfall in 2061-2090 relative to the baseline (1961-1990) under RCP4.5 and RCPS.5 using 28 GCMs
for six sites in the NSW wheat belt. Box boundaries indicate the 25th and 75th percentiles; the black
thin and thick lines within the box mark the median and mean, respectively; whiskers below and

above the box indicate the 10th and 90th percentiles.

APSIM simulated results indicate that the future climate changes could have a large impact on
wheat flowering. Fig. 6.4a shows change in days to flowering for 2061-2090 relative to 1961-1990
under RCP4.5 and RCPS8.5. The length of period from sowing to flowering was clearly shortened
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under future climate scenarios for all six sites due to increasing temperature. For RCP4.5, the
ensemble-mean days to flowering averaged across the six sites was shortened by 15.8 days. For
RCP8.5, the equivalent value is 23.8 days. The largest shift in days to flowering was found in MU
with an ensemble mean of 19.8 and 32.0 days for RCP4.5 and RCP8.5, respectively. The smallest
change in vegetative period occurred in WA, where the number of days was shortened by 12.0 and
17.7 days for RCP4.5 and RCP8.5, respectively. Fig. 6.5a shows days to flowering were negatively
correlated to growing season mean temperature. It was shortened by approximately 5.2-8.4 days for
each 1 °C rise in growing season mean temperature, depending on locations. Changes in days to
flowering in cool sites (MU and WW) were more sensitive to temperature change than in warm sites

(WA and MP).

Fig. 6.4b shows changes in the probability of heat stress (daily maximum temperature exceeding
30 °C within 100 "Cd of flowering). Although increases in temperature accelerate wheat development,
bringing forward flowering date, the risk of heat stress around anthesis is still severe in the future.
Overall, heat stress probability increased more under RCP8.5 than under RCP4.5 for all six locations.
Heat stress increased most at the two northern sites (WA and MP) for RCP8.5 due to higher
temperature and less shift in days to flowering than the other sites. In contrast, the smallest increase
was found at the cool MU and WW sites, which can be partly attributed to larger advances in
flowering date. Fig. 6.5b shows the relationships between simulated APysr and growing season
maximum temperature (ATy,q,). APysr Was positively correlated to AT,,,, across the six sites. The
response of APygsp to AT,,,, varied among locations. In the three western sites, on average, APygp
increased by 3.5% for each 1 °C increase in maximum temperature, which is higher than that in the
three eastern sites (on average, 2.2% °C™'). It is noteworthy that the largest response was found in the

warm site MP (3.0 % °C™") while the smallest response was observed in the cool site MU (0.5% °C™).
6.3.3 Changes in potential yield

Potential yields were simulated by APSIM under full irrigation conditions and thereby only
affected by changing temperature, solar radiation and atmospheric CO, concentration. Y, showed
small variations between the 28 GCMs for each soil type (Fig. 6.6). Soil conditions play an important
role in determining yield. However, the yield response plateaus at high PAWC values (greater than
about 210 mm). Ensemble-mean Y, based on the 28 GCMs increased by 2.7-6.0% for RCP4.5 and
2.5-5.8% for RCP8.5 for four sites (WA, LA, BA and WW). There was no large overall difference in
potential yield change between the two RCPs. However, Y, decreased by 2.0% in MP and by 0.8% in

MU under the high-concentration RCP8.5 scenario, which can be attributed to greater warming
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accelerating phenological development, resulting in less received solar radiation and nutrients to grow

over the course of the growing season.
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Fig. 6.4 Simulated change in days to flowering and probability of the occurrence of heat stress with
daily maximum temperature exceeding 30 “C around flowering (+ 100 °C days) (APygr) in 2061-2090
relative to baseline (1961-1990) under RCP4.5 and RCP8.5 using 28 GCMs for six sites in the NSW
wheat belt. Box boundaries indicate the 25th and 75th percentiles; the black thin and thick lines within

the box mark the median and mean, respectively; whiskers below and above the box indicate the 10th

and 90th percentiles.
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Fig. 6.5 Relationships between simulated change in days to flowering and change in growing season
(April to November) mean temperature (AT,,.q4n ) (a), change in heat stress around flowering date
(APysr) and change in growing season maximum temperature (ATy,q,) (b) across six sites in the
NSW wheat belt. The effect of a change in temperature was fitted using linear regression. ** indicates

the significant level of P<0.01.

93



Modelling wheat yield change under future climate conditions in relation to plant available water capacity

12000

10000

8000

Yield (kgrha)
3
8

4000

2000

(a) WA mE RCPAS5, Yw™=-126.26/+3.21 R*=0.97
B RCP85, Yw™=-14588/x+3 60 R*=0.98
[0 RCP4.5, Yp==8168/x+5 90 R*=0.93
B RCP85, Yp==-76.80/x+6 85 R*=0.94
— Baseline, Yw**=-110.49/x+3.01 R*=0.98

Baseline, Yp*=-69.15/x+6.65 R*=0.93

MTLLIELELEL

el
T

RCP4.5, Yw™=56.11/x+3.12 R=0.90
RCP8 5, Yw™=-65.75/x+3.42 R*=0.93

(c) LA =
[0 RCP4.5, Yp™™=-7524/x+7.56 R*=0.93
|

RCP8.5, Yp™=68 26/x+7 47 R*=0.93
Baseline, Yw**=-56 32/x+3 32 R*=0.91
Baseline, Yp**=6561/x+7.15 R*=0.92

ﬂ@@ﬂﬁ@@@@ﬂ@

TTLLLIELLE

RCP4.5, Yw=-4 73/x+1 44 R*=0 13

(e) BA = RCP85, Yw=-6 65/x+1 65 R*=0.23
[ RCP45, Yp*=78.56/x+6.86 R’=0.89
[ RCP85, Yp*=77.06/x+6.84 R*=088

— Baseline, Yw=-122/x+1.41 R*=0.01

— Baseline, Yp™=64 69/x+6 41 R*=0.90

FETTLILILLLE
EIEEEYETT.

12000

10000

8000

6000

Yield (kgiha)

4000

2000

0

[l RCP45, Yw™=-112 88/x+3 61 R*=0.96
B RCP85, Yw™=148.02/x+4.19 R?=0.96
[ RCP4.5, Yp™=-97 03/x+7.45 R*=0.94
|

(b) MP

RCP8.5, Yp*=91.01/x+7 35 R*=095
Baseline, Yw™=-106 03/x+3.67 R*=095
Baseline, ¥p™=-84 98/x+7.44 R*=0.94

MELLLEELLLL

T LLLLLLLLI

(d) MU [ RCP4.5, Yw*=-162.41/x+6 25 R’=0.96
B RCP85, Yw™=-166 50/x+6 41 R™=0.95
[0 RCP4.5,Yp~=7987/x+7.98 R*=0.87
B RCPB5, Yp==-6566/x+7 70 R*=0.88
— Baseline, Yw™=-160 95/x+6 46 R*=0 96

— Baseline, Yp™=-86_22/x+7 89 R*=0 88

-l LELE R L]

ﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂ

(f) WWW B RCP45, Yw==4974/x+4 79 R*=0 85
RCP8.5, Yw*=53 77/x+4.86 R=0 87
RCP4.5, Yp*=47.95/x+7 15 R*=0 89
RCP8.5, Yp™*=-42 14/x+7.11 R*=0.90
Baseline, Yw™=-68.35/x+5.17 R=0.91
Baseline, Yp**=-45.18/x+6.94 R°=0.83

L EEEEETE
TIELERERELE

| | HONE

60

L 1 1
90 120 150
PAWC (mm)

180 210 240 270 300 60

90 120 150
PAWC (mm)

180 210 240 270 300 60

90 120 150 180 210 240 270 300
PAWC (mm)

Fig. 6.6 APSIM simulated potential (Y,) and water-limited (Y,) wheat yield for the baseline
(1961-1990) and for 2061-2090 using 28 GCMs under RCP4.5 and RCP8.5 across plant available
water capacities (PAWC) for six sites (a-f) in the NSW wheat belt. Box boundaries indicate the 25th

and 75th percentiles; the black thin and thick lines within the box mark the median and mean,

respectively; whiskers below and above the box indicate the 10th and 90th percentiles. Regression

coefficients of the relationship between wheat yield (Y, and Y,,) and plant available water capacity

(PAWC, x) for baseline and two RCPs for six sites in the NSW wheat belt, as descripted by Y =

a/x + b. The fitted coefficients a and b are the order of magnitude of 10°. ** indicates the significant

level of P<0.01 for the regression model.
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Fig. 6.7 Relationships between APSIM simulated change in water limited yield (AY,,) and growing
season rainfall (AR ) for six sites in the NSW wheat belt. The effect of a change in rainfall was fitted

using linear regression. ** indicates the significant level of P<0.01.

6.3.4 Changes in water limited yield

In addition to temperature, radiation and CO; concentration, Y, is also limited by water supply,
and hence by rainfall and soil properties in APSIM model. Increasing yield with increasing PAWC
occurs when the crops need to use water stored deep in the profile. A high PAWC can provide a
buffer to crops, reducing the sensitivity to the temporal distribution of rainfall. The response of Y., to
PAWC differs due to the amount of growing season rainfall. Similar to Y, a curvilinear response to
yield can be seen in Y,,. At wet sites (e.g. MU), soils with higher PAWC have a greater water reserve
to meet crop water demand. By contrast, at dry sites (e.g. BA) there was no significant relationship
between yield and PAWC as wheat mostly survives from current low rainfall. Water storage in soils
with higher PAWC is not fully utilized due to incomplete profile wetting by limited growing season
rainfall. In addition, most rain-fed crops suffer at least short-term water deficit at some point during
the growing season, and thus the climate impacts are more variable for Y,, compared to Y,. There
were large variations in Y, between the 28 GCMs for each soil type (Fig. 6.6). Simulation results
showed that water limited yield is substantially affected by growing season rainfall (Fig. 6.7) and this
large variation is likely due to the large variation in rainfall changes between the GCMs. The highest
Y. occurred for the wet sites MU and WW (Fig. 6.6d and f) while lowest Y,, was found in dry site BA
(Fig. 6.6¢). There was an overall strong positive relationship between yield change and growing
season rainfall (R?=0.48) (Fig. 6.7). This suggests that growing season rainfall is the most important

yield determining factor at these six study sites. Moreover, the western dry sites have larger response
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to growing season rainfall than that of eastern wet sites. However, increasing PAWC resulted in low
response of Y, to rainfall except dry site BA (Fig. 6.8). In other words, soils with higher PAWC are

less affected by growing season rainfall compared with soils with lower PAWC.
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Fig. 6.8 Impact of plant available water capacities (PAWC) on the regression slope a (AY,, = aAR)
between change in APSIM simulated water-limited yield (AY,,) and change in growing season rainfall
(AR) for six sites in the NSW wheat belt. The slope a is % yield change per % rainfall change. **

indicates the significant level of P<0.01.

The ensemble-mean Y, value was higher for RCP8.5 than for RCP4.5 in the warm and dry sites
(Fig. 6.6a and e), which indicates that higher atmospheric CO, concentrations can offset the
increasing negative effects of decreased rainfall during the growing season and shortened growth
period in rain-fed conditions. There was an interaction between higher temperature, rainfall and
elevated CO». Rising CO, concentration is expected to decrease plant water stress due to improved
transpiration efficiency. Overall, changes in Y, depended on location and scenario. For example,
simulated Y, increased for the warm site WA, ensemble-mean changes of 3.6% and 15.2% for
RCP4.5 and RCPS8.5, respectively (Fig. 6.6a). Similarly, for the dry site BA, Y,, increased by 0.5% for
RCP4.5 and 14.7% for RCP8.5 (Fig. 6.6¢). Earlier flowering due to higher temperatures moves the
grain filling period to a cooler wetter part of the season which can increase grain yield by avoiding
severe summer drought. However, Y,, decreased in MU and WW because warmer growing season
temperatures reduce the length of the growth period so less nutrition and radiation are received, which

results in lower biomass production.
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Fig. 6.9 Impact of plant available water capacities (PAWC) on drought stress index (DSI) for six sites
in the NSW wheat belt. The effect of a change in PAWC was fitted by equation DSI = a/x + b. *
and ** indicate the significant level of P<0.05 and P<0.01, respectively.
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Fig. 6.10 Change in drought stress index (DSI) in 2061-2090 relative to baseline (1961-1990) under
RCP4.5 and RCPS.5 using 28 GCMs averaged across 12 soils for six sites in the NSW wheat belt.
Box boundaries indicate the 25th and 75th percentiles; the black thin and thick lines within the box
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mark the median and mean, respectively; whiskers below and above the box indicate the 10th and

90th percentiles.
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6.3.5 Changes in relative yield loss

Simulated results also indicate that PAWC had a significant impact on the relative yield loss.
However, the response of DSI to PAWC depended on location and soil type. For the dry site BA,
where water stress is relatively severe, DSI was high for all 12 soils (about 75%, Fig. 6.9¢) and there
was no relationship between DSI and PAWC. In contrast, a lower DSI was found at the wetter sites
MU and WW (Fig. 6.9d and f), which significantly decreases with increasing PAWC and plateaus at a
higher PAWC. As a result, increase in soil PAWC tended to reduce water stress at high rainfall sites.
Fig. 6.10 shows ADSI under RCP4.5 and RCP8.5 averaged across the 12 soils. For RCP4.5, simulated
ADSI increased with a mean value of 5.4%, 4.1% and 6.0% in LA, MU and WW, respectively.
However, for RCP8.5 ADSI is expected to decline or stay about the same across all six sites, except
WW. Despite a decrease in rainfall during the growing season, relative yield losses from water stress
are predicted to be smaller in the future than at present. Wheat can benefit from higher CO;

concentration in the atmosphere arising from high emission RCP8.5 in 2061-2090.

6.4 Discussion

Previous studies have constructed climate scenarios by linearly manipulating historical weather
records with regional average GCM-simulated climate changes (Wang et al. 2009¢c, Asseng et al. 2013,
Potgieter et al. 2013). In this approach, the future variability of the climate is kept consistent with the
variability of the historical weather records (Ludwig & Asseng 2010). Namely, the variability for the
historical climate (still very large in a Mediterranean climate) and future climate scenarios is kept the
same. In this study, I used statistical downscaled data derived from the state-of-the-art CMIP5 GCMs
to generate future climate scenarios in which climate variability was allowed to change. This was

important as the focus of the study was on stresses to wheat crops resulting from climate extremes.

The analysis considered data derived from 28 different GCMs for six sites in eastern Australia.
The use of many GCMs was important to capture the uncertainty in future projections that arises from
uncertainties in model structure and parameterization (Lobell et al. 2015). Multi-model mean climate
changes from this method are consistent with recently developed climate change projections for
Australia. Under RCP4.5, the multi-model mean growing season mean temperature increased by 2.2
°C averaged across locations for the period 2061-2090 relative to 1961-1990. The equivalent value for
RCP8.5 was 3.6 °C. CSIRO and BoM (2015) projected annual mean temperature increases of 1.9 °C
for RCP4.5 and 3.9 °C for RCPS.5 in eastern Australia for the time period 2080-2099. Wheat growing
season rainfall decreased by 4.9% for RCP4.5 and 7.4% for RCP8.5 averaged across locations. These
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changes are also consistent with the findings of CSIRO and BoM (2015), which stated that climate

models projected a decrease in spring and winter rainfall in the late 21st century.

The results indicated that simulated potential yield increased for both RCPs in most study sites.
However, the difference in potential yields between the RCPs were small due to interactions such as
higher temperatures offsetting greater CO»-induced yield gains for RCP8.5 (Balkovi¢ et al. 2014,
Araya et al. 2015). The effects of climate change on water limited yield depended on location.
Rain-fed yield increased at warm and dry sites, which can be attributed to earlier flowering moving
the grain filling period to a cooler wetter part of the season and thus increasing grain yield in case of
terminal drought (Sadras & Monzon 2006, Moriondo et al. 2011). In contrast, yields decreased at wet
and cool sites because warmer temperatures accelerated phenological development, resulting in less
intercepted nutrition and radiation and consequently lower biomass production over the course of the
growing season. However, there were interacting effects of temperature, rainfall and CO;
concentration on wheat yields (Ludwig & Asseng 2006), which were not exhaustively explored in this

study.

APSIM phenological model differed from that used in previous study with the
Vernalizing-Photothermal model, which simulates the development rate as a non-linear vernalization
function incorporated into the thermal and photothermal additive models (Liu 2007). In APSIM, the
time to flowering and maturity is calculated as a multiplicative function with a three-stage linear
vernalization response, and wheat development is mainly controlled by the daily thermal time and
increased growing season temperature will increase the rate at which thermal time accumulates.
Therefore wheat will flower at the same day under water-limited or full irrigated conditions. APSIM
simulated results showed that, despite flowering date occurring earlier, the probability of heat stress
around flowering still increased by 2061-2090 for both RCPs, which were consistent with results with
the Vernalizing-Photothermal model. Therefore, future climate conditions would be likely to cause
more frequent wheat failure across this region. Additionally, higher temperatures reduce the length of
the growing season, which results in lower biomass production (Asseng et al. 2011, Stratonovitch &
Semenov 2015). It might be beneficial to develop cultivars with higher thermal requirements and later

maturity that are capable of coping with an increased heat stress around flowering.

The two cultivars were used in the same APSIM simulations to represent the fact that farmers
choose different cultivars in different years to minimize the chance of frost or heat stress during
flowering. The two cultivars were not simulated in separate simulations. Results reflect the single set

of cultivar-choice simulations and are not intended to compare different cultivars. In addition, the
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only difference between the simulated cultivars was in phenological response, and there were no

physiological differences.

PAWC is a key determinant of crop productivity (Asseng et al. 2001, Wang et al. 2009a, Yang et
al. 2014) and crops grown in a soil with high PAWC have a better chance of surviving drought
conditions than with a low PAWC (Yang et al. 2014). Good soils (i.e. high PAWC) can provide a
large buffer that moderates the impact of within-season variability in rainfall on yield (Wang et al.
2009a). High PAWC soils were less responsive to reductions in rainfall due to climate change. Our
results showed that at wetter sites, soils with high PAWC had larger simulated water limited yields.
Wheat yields increased with increasing PAWC and then the yield response stagnated at a high PAWC.
However, PAWC had little impact on the yield range at a dry site like BA due to water limitation. The
results presented here are partly consistent with findings of Wang et al. (2009a).

My simulation results showed DSI was higher at a dry site and PAWC also had little effect on
DSI due to lack of rainfall reaching deeper soil layers. In contrast, wetter sites had low DSI, which
decreased with increasing PAWC when water stored in the soil profile was available. The main
limitation imposed by climate change for wheat cropping system in the NSW wheat belt is rainfall.
Despite growing season rainfall decreasing under climate change for the six sites, relative yield losses
for the period of 2061-2090 compared to baseline were predicted to be small, especially for high
atmospheric greenhouse gas concentrations (RCPS8.5). This is consistent with results from Semenov
and Shewry (2011) in Europe, who demonstrated that drought would not increase vulnerability of
wheat. They suggested that climate warming could result in earlier wheat flowering and maturity
dates, which shift the grain filling period to a cooler and wetter part of the season, where soil water
deficit still stayed at the same level, and allows the crop to avoid severe summer drought. In many
Mediterranean and winter-dominant rainfall environments, grain yields are often limited by terminal
drought in which case early flowering can be an advantage. Although flowering earlier with
increasing temperature allowed the crop to escape increasing terminal drought (Semenov & Shewry
2011), higher atmospheric CO, concentrations under RCP8.5 compared to RCP4.5 can also offset the
increased negative effects of decreased rainfall and shortened growth period. Therefore, a successful
adaptation strategy in a drying region could be to develop an early flowering cultivar, but only up to a

point where shortened growing season does not limit yields, to mitigate the impacts of water stress.

Nevertheless, drought is the most significant environmental stress in agriculture worldwide and
improving yields in water-limited environments is a major goal of agronomy and plant breeding
(Oliver et al. 2010a, Soussana et al. 2010). The future impacts of drought on yield will depend on soil

types and the spatial and temporal patterns of climate change. An emerging threat for wheat
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production in eastern Australia may result from an increase in frequency and magnitude of heat stress
around flowering with potentially significant yield losses for heat sensitive wheat cultivars commonly
grown in the northern parts of the NSW wheat belt. However, it is important to realize that the present
study assumed no adaptive management strategies were put into practice in response to climate
change and this is clearly an unrealistic assumption. However, the study did provide a clear picture of
the adverse effects of climate change on wheat yield given no adaptive management strategies. In
reality, farmers would likely gradually adapt to climate change. Indeed, even under current climate
conditions, farmers often avoid sowing wheat crops in drought years with late starts to the growing
season or only sow in some areas with sufficient stored soil water (Gomez-Macpherson & Richards

1995, Wang et al. 2015a).

Changing the sowing window could be an ‘escape’ strategy for avoiding adverse impacts of heat
and water stress on yield. As the risk of frost strongly decreases when mean temperature increases
(Zheng et al. 2012, Wang et al. 2015b), it might be viable to expand the sowing window to take
advantage of some earlier planting opportunities. Moreover, the reduction in rainfall under future
climate scenarios in eastern Australia has mainly occurred during the winter and spring months but
not during autumn (CSIRO & BoM 2015), so farmers could benefit from the relatively wet autumns
by sowing earlier. Another strategy is developing different cultivars that are better adapted to future
climates. Having limited time and resources, crop scientists and breeders must select the most
appropriate traits for crop improvement and should, therefore, focus on the development of wheat
cultivars with higher thermal requirements (longer growing season), which are resistant to high
temperature around flowering. Additionally improved water use efficiency through, for example,
more efficient root systems and morphology in soils may provide some protection against excessive

drought in the future.

6.5 Conclusion

I conclude that despite accelerated phenological development and earlier in flowering date in a
warming climate across six sites in NSW, the probability of heat stress around flowering still
increased by about 3.8% for RCP4.5 and 6.2% for RCP8.5. The risk of heat stress around flowering
was especially high for warm sites under RCP8.5. Simulated potential yield across six sites increased
in average by about 2.5% regardless of the emission scenario. However, simulated water limited yield
tended to decline at wetter and cooler locations (MU and WW) under future climate while increased
at warmer and drier locations (WA and BA). Soils with high PAWC provided a larger buffer to store
water from variable rainfall and to supply it to crops during dry periods and therefore were less

affected by rainfall decreases compared to soils with low PAWC. Although projected growing season
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rainfall decreased, relative yield loss due to water stress was expected to decline or stay the same as a
result of increased CO, concentration and, to some extent, earlier flowering allowing wheat to avoid
severe summer drought. Therefore, to maintain or increase yield potential and respond to climate
change, increasing tolerance to heat stress and improving crop management to reduce impacts of
water stress on lower plant available water holding soils should be priorities for the genetic

improvement of wheat in eastern Australia.
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Chapter 7*

Spatial changes of wheat phenology, yield and water use
efficiency under the CMIPS multi-model ensemble
projections for eastern Australia

Abstract

The New South Wales (NSW) wheat belt is one of the most important regions for winter crops in
Australia, with its agricultural system being significantly affected by water stress and ongoing climate
change. Statistical downscaled scenarios from selected 13 GCMs with RCP4.5 and RCP8.5 were
combined with a crop simulation model to simulate wheat productivity and water use. It was found
that projected multi-model median yields could increase by 0.4% for RCP4.5 and 7.3% for RCPS8.5 by
2061-2100. Although the RCP4.5 showed a small decrease in median yield in the dry southwestern
parts of the wheat belt, the higher CO, concentration in RCP8.5 compensated some of the negative
effects resulting in 11.5% yield increase. These results show that drier area would benefit more from
elevated CO, than wetter arca. Without the increase in CO; concentration wheat yield decrease
rapidly under RCP4.5 by 2061-2100 and much more so under RCP8.5 compared to the present. A
decline in growing season length and a decrease in rainfall resulted in a reduction of crop water
consumption. As a consequence, simulated evapotranspiration decreased by 11.9% for RCP4.5 and
18.8% for RCP8.5 across the NSW wheat belt. Increasing yields combined with decreasing ET
resulted in simulated water use efficiency increasing by 11.4% for RCP4.5 and 29.3% for RCPS8.5.
Wheat production in water-limited, low yielding environments appears to be less negative impacted or
in some cases even positively affected under future climate and carbon dioxide changes, compared to

other growing environments in the world.

Keywords: GCMs; wheat yield; water use efficiency; evapotranspiration; APSIM
7.1 Introduction

Wheat is Australia’s most important grain crop. About 80% of wheat is exported and Australia

contributes around 15% of the world wheat trade annually (http://www.abs.gov.au/ausstats). Wheat is

the main winter crop sown between April and July in the New South Wales (NSW) wheat belt. This
region accounts for 27.5% of the Australian wheat planted area and 27% of total wheat production in
the country was harvested in this region (Australian Bureau of Statistics, 2013-14;

http://www.abs.gov.au/ausstats/abs@.nsf/mf/7121.0).

*: This chapter has been accepted for publication in Climate Research, 2017.
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Increasing greenhouse gas concentrations are expecting to increase Australia’s average surface
air temperature and alter the temporal and spatial patterns of rainfall. Wheat growing season (winter
and spring) rainfall is projected to decrease in most of the Australian continent under different future
scenarios (CSIRO & BoM 2015). The NSW and Australian Capital Territory Regional Climate
Modelling (NARCIiM) project (Evans et al. 2014) predicted that NSW mean rainfall could decrease
by 5%-20% for spring in 2060-2079 compared to 1990-2009. This is considered to be one of the most
serious problems related to climate change, as water availability is a primary factor determining crop

production in semi-arid dry land agricultural systems (Sinclair 2011).

There is increasing concern about a possible large impact of climate change on future Australian
wheat productivity. Previous studies have tried to assess the impact of projected future climate
changes on wheat phenology and yield using crop models driven by data derived from Global Climate
Models (GCMs) or Regional Climate Models (RCMs) (Luo et al. 2009, Wang et al. 2009¢, Yang et al.
2014, Anwar et al. 2015). For example, Luo et al. (2005) suggested that wheat yield in southern
Australia could decrease by about 13.5% to 32% under the most likely climate change scenario. Wang
et al. (2009¢) found that wheat yields at Wagga Wagga in eastern Australia could be approximately 1%
higher than recent yields around 2050 but 6% lower around 2070 under the SRES A1F1 scenario
(Nakicenovic & Swart 2000) for future greenhouse gas and aerosol emissions. Yang et al. (2014)
investigated the impact of future climate change on wheat productivity at six sites in the NSW wheat
belt. Simulations showed that flowering dates at all sites shifted earlier by an average of 11 days
between 1961-1990 and 2021-2040 under the SRES A2 emission scenario. The yield difference
between the future and recent period varied from +3.4% to -14.7%. However, the magnitude of the
climate change effect differed significantly between soil types and locations. Recent simulations have
also indicated that the negative effect of climate warming may be offset by increasing CO»
fertilization effect (Long et al. 2006, O'Leary et al. 2015, Fitzgerald et al. 2016). Therefore, a
comprehensive approach that accounts for CO, fertilization is needed to assess the impacts of future

climate on eastern Australia wheat productivity.

In addition to crop yield, future climate change may also impact the water balance of cropping
systems. Several studies have investigated the impact of future climate change on evapotranspiration
(ET) and water use efficiency (WUE) of wheat cropping systems (Asseng et al. 2004, Wang et al.
2009c, Wang et al. 2011a, Yang et al. 2016). Yang et al. (2016) described the impact of future climate
change on WUE in relation to plant-available water capacity based on 18 GCMs for 12 soil types at
six sites in eastern Australia. For all six sites, ET decreased by 7 to 28 mm while WUE increased by
0.7 to 1.3 kg ha mm™ by 2021-2040 relative to 1961-1990. Wang et al. (2009) found that under a
high warming scenario, WUE of wheat may increase from 7 to 20% by 2050 and from 8 to 33% by
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2070 at wetter sites in semi-arid southeast Australia, but decreased by 6-14% at drier sites, which

implies that changes in crop yield may not be proportional to changes in water use.

Although increasing evidence suggests that ongoing climate change has had measurable impacts
on crop development and productivity in Australia (Luo et al. 2003, Potgieter et al. 2013), future
impacts have large uncertainties and remain imperfectly understood in terms of mechanisms and
magnitude due to unpredictable aspects of climate change, such as the future amount of rainfall and
how it will be distributed during the growing season. Moreover most recent studies on the impact of
climate change on wheat cropping system in Australia use field-scale crop simulations (Anwar et al.
2015, Lobell et al. 2015, O'Leary et al. 2015, Zeleke & Nendel 2016). The method of using a
representative site for a large area or area that has complex spatial heterogeneity can lead to
significant errors (Wang et al. 2011b). Results for only a few locations may not represent the
characteristics of a region (van Bussel et al. 2016) and may not properly represent the spatial pattern
of climate change impacts. A reliable assessment of the spatio-temporal patterns of the impact of
climate change across the major wheat-growing areas of Australia is required, and this will be most

useful at a fine spatial scale.

In recent years, a number of studies, as part of the agricultural model intercomparison and
improvement project (AgMIP), have examined the differences through systematic crop model
intercomparison (Asseng et al. 2013, Martre et al. 2015). However, the wide range of projected
impacts on agriculture is associated with both the uncertainty in climate projections (i.e. GCM
projections and GHG emission scenarios) and the structural (or parameterization) differences between
crop models (Osborne et al. 2013, Monier et al. 2016). Some studies pointed out GCMs being the
main source of the uncertainty in magnitude, spatial pattern and even sign of projected change
(Hawkins & Sutton 2009, Kassie et al. 2015). They partitioned the variation of future climate change
to three main factors, namely the internal variability of climate system, the choice of GCMs (model
uncertainty or response uncertainty) and the greenhouse gas emissions pathway (scenario uncertainty).
Different GCMs can provide different future climate projections for a particular region. The real
climate system is highly complex and it is impossible to adequately describe its processes with an
individual climate model. Authors of model evaluation studies have stated that no single model can be
considered ‘best’ and recommend using results from a range of climate models. Therefore, the use of
many GCMs was important to sample the uncertainties in future climate projections that arise from
differences in model structure and parameterization, as well as internal climate variability (Lobell et al.

2015).

The main objective of this study was to explore the spatial impact of future climate change on
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wheat phenology, rain-fed yields, evapotranspiration and water use efficiency within the NSW wheat
belt. I conducted a comprehensive analysis on how wheat yields response to climate change based on
multimodel ensemble projections at sub-regional scale under future climate scenarios with and
without accompanying CO, concentration enrichment. The aim is to provide a scientific basis for
strategies to mitigate possible negative effects of climate change on the sustainable development of

agro-ecosystems in the NSW wheat belt.

7.2 Materials and methods

7.2.1 Study area and climate data

The NSW wheat belt (Fig. 7.1) is located in the NSW slopes-plains region some 100-200 km
inland, where annual rainfall ranges between 200 and 700 mm (Liu et al. 2014). It was classified into
four subregions with different climate characteristics in this study, including two northern subregions,
the Northeast (NE, I) and the Northwest (NW, 1), and two southern subregions, the Southeast (SE, I1I)
and the Southwest (SW, IV). During the 1961-2000 period, the spatially averaged growing season
(April to November) mean temperature was 13.4 °C ranging from 8.3 °C in some parts of the east of
the wheat belt to 17.1 °C in the northwest of the study area (Fig. 7.3a); growing season rainfall
averaged across the study area was 381 mm ranging between 172 mm in the extreme west, to 763 mm
in the extreme southeast (Fig. 7.3b). In general, the climate is hotter from south to north and drier

from east to west.
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Fig. 7.1 The distribution of the 894 weather stations (black solid circle) used in this study and the four
subregions of the NSW wheat belt considered: I: Northeast (NE); II: Northwest (NW); III: Southeast (SE)
and I'V: Southwest (SW). The green solid circles denote soil sites (121) used for this study including some

soil sites from Victoria and Queensland near NSW border.
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Daily solar radiation, maximum and minimum temperatures and rainfall data are available for

894 sites in the NSW wheat belt (Fig. 7.1). Data from 1900 to 2014 were extracted from the SILO

patched point dataset (PPD, http://www.longpaddock.qld.gov.au/silo/ppd/index.php) (Jeffrey et al.
2001). Relevant data were available from 28 GCMs contributing to the Coupled Model
Intercomparison Project Phase 5 (CMIPS) of the World Climate Research Programme. Different
GCMs can provide different future climate projections for a particular region. The use of many GCMs
was important to sample the uncertainties in future climate projections that arise from differences in
model structure and parameterization, as well as internal climate variability (Lobell et al. 2015). All
28 GCMs have performed a 20th century experiment with all anthropogenic and natural forcing and
future simulations of the RCP4.5 and RCPS8.5 scenarios for atmospheric greenhouse gas
concentrations (Taylor et al. 2012), resulting in 4.5 W m™” and 8.5 W m™ of forcing by the end of the
21st century respectively (Van Vuuren et al. 2011). I used monthly maximum temperature, minimum

temperature, solar radiation and rainfall data from the GCM simulations.

To identify GCMs with satisfactory performance at simulating the climatological temperature
and rainfall across the NSW wheat belt, Taylor’s method was used to select GCMs after
characterizing model performance using a skill score derived from correlations and standard
deviations between models simulated and observed spatial patterns in climatological means. As a
result, 13 out of 28 GCMs that achieved a skill score greater than 0.5 for both annual mean daily
minimum, daily maximum temperature and rainfall were selected for use in the subsequent analysis

(Fig. 7.2). A detailed description of the skill score can be seen in Taylor (2001).

Following several recent studies of the impact of climate change on crop growth and
development (Yang et al. 2014, Anwar et al. 2015, Wang et al. 2015b), I used the statistical
downscaling and bias-correction method of Liu and Zuo (2012) to generate realistic daily site-specific
climate data from monthly GCM output on a coarse-resolution grid. Briefly, monthly GCM output
data (solar radiation, rainfall, daily maximum and minimum temperatures) from each of the 13
selected GCMs were downscaled to the 894 observation sites using an inverse distance-weighted
interpolation method. Biases were then corrected using a transfer function derived from interpolated
GCM data and observed data for the sites. Daily climate data for each of 894 sites for 1900-2100 were
generated by a modified stochastic weather generator (WGEN) (Richardson & Wright 1984) with
parameters derived from the bias-corrected monthly data. In this study, climate data for 1961-2000

were used as a baseline climate to compare against projected future climate for 2061-2100.
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Fig. 7.2 Taylor diagram (Taylor 2001) displaying normalized pattern statistics of 1961-2000
climatological variables in eastern Australia for 28 GCMs against observations. Each number
represents a model ID (see Table 4.1). The blue squares represent annual minimum temperature, red
squares represent maximum temperature and black squares represent rainfall. The standard deviations
for the GCMs have been normalized by the standard deviation of the reference observations (REF).
The normalized standard deviation of a model is the radial distance from the origin to the points, with
cambered dotted lines showing values of 1.5 and 2.5. The correlation coefficient between a model and
the reference is given by the azimuthal position of the model, with oblique solid lines showing
different coefficient values (-0.2, 0.0, 0.2, 0.6 and 0.9). The green solid lines are isolines of measure

of skill defined by equation (1) in (Wang et al. (2015b)).

7.2.2 Crop modelling

The growth and yield of wheat were simulated using an Australian biophysical process model

known as APSIM (Agricultural Production System sIMulator) version 7.7 (www.apsim.info). The

APSIM model, including its Wheat, SoilN, SoilWater and Surface Organic Matter modules, has been
well-tested for many modern wheat cultivars and is able to accurately simulate the behaviour of crops
exposed to a wide range of Australian climatic, soil and management conditions (Asseng et al. 1998,
Keating et al. 2003, Luo et al. 2005, Ludwig & Asseng 2006). It simulates phenological process,
biomass accumulation and partitioning, leaf area index (LAI), as well as root, stem, leaf and grain
growths in daily time steps from sowing to maturity. The APSIM-Wheat model uses both radiation use

efficiency (RUE) and transpiration efficiency (TE) to calculate daily growth depending on various

108



Spatiotemporal changes of wheat yield and water use efficiency under the CMIPS multimodel ensemble projections

conditions. Crop development is primarily based on thermal time, whereas leaf and stem growth rates
are determined depending on phenological stages. Crop grain yield is a function of grain number,
grain-filling and carbohydrate remobilisation. A detailed description of the APSIM model structure
and processes are well documented in Keating et al. (2003) and Holzworth et al. (2014). The
minimum weather input requirement for APSIM includes daily solar radiation, rainfall, maximum and

minimum temperature.

7.2.3 Simulation settings

Elevated levels of atmospheric carbon dioxide (CO.) concentration in the plant module of
APSIM affects crop growth by influencing radiation use efficiency, transpiration efficiency and
critical leaf nitrogen concentration. Therefore, CO, concentration is an important variable required in
process-based crop growth models. Since APSIM cannot ingest time-varying values of CO;
concentration, a function was added to calculate concentration using an empirical equation as function
of calendar year in this study (Liu et al. 2014). The atmospheric CO, concentration for RCP4.5 and

RCPS8.5 in this study was calculated according to chapter 6.

Sowing time was controlled by a sowing rule, which involved a “sowing window” defined as the
period between 1 April and 31 July, taken from the NSW Department of Primary Industries sowing
guidelines (Matthews et al. 2014). Sowing occurred either on the first day within the sowing window
when cumulative rainfall over the previous ten consecutive days was greater than 25 mm, or on the
last day of the sowing window if this condition was not met prior to this (Wang et al. 2009¢). This
approach was intended to ensure that the crop was sown into moist soil. It allowed the exact date of
sowing to vary from year to year and location to location according to variations in the timing of
rainfall. However, since the sowing window did not change with time, this method does not represent
larger changes in the seasonality of sowing, such as might be implemented by farmers as an
adaptation to shorter growing seasons in a warmer climate. A time-invariant sowing window may not
be realistic if farmers choose to adapt in this way, but it removed a potentially complicating factor

from the study and aided interpretation of the results.

To optimally use the available resources (light, temperature, water and nutrients) and to minimise
the chance of frost or heat stress during flowering, one of two different cultivars was sown in any
given year. If the sowing date was before 20 May, the slow-maturing, long-season, Bolac cultivar was
planted. If the sowing date was between 20 May and 31 July, the fast-maturing, short-season, Waagan
cultivar was planted. The only difference between the simulated cultivars was in phenological

response, and there were no physiological differences. Existing APSIM-Wheat parameters for
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degree-day responses, sensitivity to vernalisation and photoperiod for calculating crop growth stages
were used for the different cultivars. For both cultivars, plants were sown every year at density of 120

plants m?, and at a depth of 3 cm.

For all simulations, soil organic carbon, C:N ratio, soil mineral N and soil water content were
re-set on 1 January of every year (Asseng et al. 2000, Manschadi et al. 2006). This was necessary to
exclude “carry-over” effects from previous seasons and ensure that information on the direct effects
of climate change on the crop could be assessed. Potential changes in the C:N ratio related to changes
in biomass production and changes in mineralization rates are not accounted for. Each year, 100 kg
ha' N fertiliser was applied at sowing date and another 50 and 100 kg ha™ N fertiliser were added at
the juvenile and initial flowering stage, respectively. The high level of N application used was to
avoid any nitrogen stress of the crop so that simulated wheat yield was a reflection of climate change
rather than fertiliser management.

At each site, wheat phenology, yield, soil water evaporation and crop transpiration during the
growth period for different scenarios were simulated. Water use efficiency (WUE,
kg ha™! mm™1) was defined as grain yield (Y, kg ha™') produced per unit of water-consumed

by evapotranspiration (ET, mm) (Zhang & Oweis 1999, Mo et al. 2009, Jalota et al. 2013).

ET = Es + Ep (7.1)
WUE =~ 7.2
=7 (7.2)

where Es and Ep were cumulative soil evaporation, crop transpiration (total water uptake from

profile) from sowing date to maturity, respectively.

7.2.4 Soil data

The APSIM framework incorporates the APSoil database from which users can select soils for
their simulations. APSoil contains soil water characteristics enabling estimation of plant available
water capacity (PAWC) for individual soils and crops. It covers many cropping regions of Australia.
There are 149 soil data sets from the APSoil database available for the NSW wheat belt (Dalgliesh et
al. 2006). Each soil file contains information including soil description, soil classification, site, region,
latitude, longitude and data source, which recorded the owner, project and experiment from which the
data were derived. Each soil also has soil attributes including pH value (pH), layer depth (Thick), bulk
density (BD), saturated water content (SAT), drained upper limit (DUL) and crop specified lower
limit (LL), from which PAWC can be calculated. Generally, crop yield are closely related to soil
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PAWC in semi-arid environments (Wang et al. 2009a, Yang et al. 2014). In order to minimise the bias
in spatial analysis due to using an unrepresentative soil for a geographic location, the nearest soil was
selected for each of 894 climate sites to simulate rain-fed potential yields (Liu et al. 2014). The spatial
distribution of the selected 121 soil types relevant to the NSW wheat belt is shown in Fig. 7.1.

7.2.5 Spatial analysis

A GIS database was developed and used to process and present simulation results. The database
contained climate information and crop model output. In detail, it included growing season mean
temperature, rainfall, simulated wheat phenology, wheat yield, the cumulative ET during the growing
period and WUE for each site. Using this database, point data for each site were interpolated to
generate maps for the entire NSW wheat belt using a climate change adaptation strategy tool (CCAST)
developed by Liu et al. (2011). There are many different kinds of methods for spatial interpolation.
For example Kriging method, although it also gives an estimate of error for each grid point, the
downside of this approach is the need to define a global or local variogram and selection of the
appropriate variogram can be problematic. The integration process used in this study was the inverse
distance weighting (IDW) method (Mueller et al. 2004, Wu et al. 2006). IDW is a simple and easy
interpolation method for predicting unmeasured values. This method uses the weights directly
calculated from the inverse of powered distances. Generated maps were stratified at equal intervals

according to the interpolated values.

7.3 Results

7.3.1 Projected changes in temperature and rainfall

To present the range in projected future climate, median changes across the 13 GCM simulations
in growing season mean temperature and rainfall for both RCPs are computed for each of the 894 sites.
RCP8.5 projects higher temperature increases than for RCP4.5. By 2061-2100, the median increase
for temperature is on average 2.1°C for RCP4.5 and 3.8 °C for RCP8.5 across the wheat belt (Fig. 7.3¢c
and e) while rainfall is predicted to decrease on average by 2.5% and 4.0% for RCP4.5 and RCPS.5,
respectively (Fig. 7.3d and f). All GCMs agree on a future temperature rise (Fig. 7.4a). The highest
increase for temperature is located in region NE, with regionally averaged ensemble median increase
of 2.2 °C for RCP4.5 and 4.0 °C for RCP8.5. The lowest simulated increase is found in region SW, 1.9
°C for RCP4.5 and 3.5 °C for RCP8.5. By the end of 21st century, changes in simulated growing
season rainfall vary with GCM used, with some GCMs simulating increases in rainfall and some

simulating decreases. In all regions, most GCMs simulate decreases, meaning that regionally averaged
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ensemble median changes in rainfall are all decreases. The largest ensemble median decrease in
rainfall, 3.7% for RCP4.5 and 7.5% for RCP8.5, is found in region NW (Fig. 7.4b). The smallest
decrease, 0.7% and 3.6% for RCP4.5 and RCP8.5 respectively, is located in region NE.

7.3.2 Impacts of climate change on phenology

Simulated days from sowing to flowering (DTF) shows a spatial gradient (decrease from east to
west), with the average being 143 days ranging between 64 and 200 in the NSW wheat belt (Fig. 7.5a),
which was derived from APSIM simulations forced with observations for baseline period 1961-2000.
The smallest DTF was found in southwestern parts of the region, whereas the largest DTF was found
in the southeastern part of the wheat belt. In the future, flowering date is advanced due to gradually
increasing temperature across the region. Compared with the baseline period, by 2061-2100, median
DTF is expected to shorten on average by 17.0 days for RCP4.5 and 27.8 days for RCP8.5 across the
NSW wheat belt (Fig. 7.5¢ and e). The largest decrease of the time to flowering is found in region NE,
with an ensemble median change of 18.4 days for RCP4.5 and 31.5 days for RCPS8.5 (Fig. 7.6a). The
smallest reduction in DTF is located in region NW with 14.4 days and 21.2 days for RCP4.5 and
RCP8.5, respectively.
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Fig. 7.3 Spatial patterns of wheat growing season (April to November) mean temperature (a) and
rainfall (b) for baseline (1961-2000) and the median changes of the spatial patterns for 2061-2100
under RCP4.5 and RCP8.5 (c-f).
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Fig. 7.4 Projected changes of wheat growing season (April to November) mean temperature (a) and rainfall
(b) from the 13 selected GCMs under RCP4.5 and RCP8.5 in the 2061-2100 compared to 1961-2000 in the
four regions over the NSW wheat belt. Box boundaries indicate the 25th and 75th percentiles; the black
line within the box marks the median; whiskers below and above the box indicate the 10th and 90th

percentiles. I: Northeast (NE); II: Northwest (NW); I11: Southeast (SE) and IV: Southwest (SW).
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Fig. 7.5 Spatial patterns of simulated days to flowering (DTF) and days to maturity (DTM) for
baseline (1961-2000) (a-b) and the median changes of the spatial patterns for 2061-2100 under
RCP4.5 and RCP8.5 (c-f).

Simulated days from sowing to maturity (DTM) for 1961-2000 presented similar spatial patterns
with DTF and was also reduced from east to west, with the average being 188 days ranging between
138 and 248 days in the study region (Fig. 7.5b). In the future climate, crop cycle is shortened on
average by 17.6 days for RCP4.5 and 29.0 days for RCP8.5 across the wheat belt (Fig. 7.5d and f)
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mostly due to advance in flowering date. The largest reduction of DTM is found in region NE, with an
ensemble median of 18.8 days for RCP4.5 and 33.4 days for RCP8.5 (Fig. 7.6b). The smallest
decrease in DTM is located in region NW with 14.9 days and 23.6 days for RCP4.5 and RCPS.5,
respectively. The changes of DTF and DTM are significantly correlated with the change of growing
season mean temperature. According to a linear regression between changes in simulated DTF and
DTM and growing season temperature using regionally averaged data for 13 GCMs and two RCPs,
shown in Table 7.1. The time to flowering and maturity is mainly controlled by the daily thermal time
in APSIM model and the crop will die if extreme drought (water stress) occurs during any crop phases.
The shortening of the time to flowering and maturity is likely to be related to projected temperature
increases and, to some extent, rainfall changes. DTF could decrease by 7.6, 5.8, 8.6 and 7.2 days,
respectively, in region NE, NW, SE and SW, with a decrease of 7.3 days for the entire region, as a
result of an elevation of mean temperature of 1.0 °C. The response of crop growth duration to
temperature is larger in the eastern regions than in the western regions. The similar results can be

found in DTM and temperature.
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Fig. 7.6 Simulated changes in days to flowering (DTF) (a) and days to maturity (DTM) (b) from the
13 selected GCMs under RCP4.5 and RCP8.5 in the 2061-2100 compared to 1961-2000 in the four
regions over the NSW wheat belt. Box boundaries indicate the 25th and 75th percentiles; the black
line within the box marks the median; whiskers below and above the box indicate the 10th and 90th

percentiles. I: Northeast (NE); II: Northwest (NW); I1I: Southeast (SE) and IV: Southwest (SW).
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Table 7.1 Regression coefficients of changes for days to flowering (ADTF) and days to maturity (ADTM)
with changes of wheat growing season mean temperature (AT) and rainfall (AR) in a multiple linear

regression model (AY = aAT + bAR).

. ADTF ADTM

Region > >
a b R a b R

I (NE) -7.6%* 0.08 0.99 -7.9%* 0.12%* 0.98

I (NW) -5.8%* 0.19%* 0.95 -6.1%* 0.16* 0.95

I (SE) -8.6%* 0.13* 0.98 -8.5%* 0.17* 0.97

IV (SW) S7.2%% 0.26** 0.96 S7.0%* 0.21%%* 0.95

Entire region ~ -7.3%* 0.17%* 0.96 -7.4%* 0.16%* 0.95

* indicates the significant level of P<0.05. ** indicates the significant level of P<0.01. I: Northeast (NE);
II: Northwest (NW); III: Southeast (SE) and IV: Southwest (SW).
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Fig. 7.7 Spatial patterns of simulated wheat yield for baseline (1961-2000) (a) and the median changes of
the spatial patterns for 2061-2100 under RCP4.5 and RCP8.5 (b-c).

7.3.3 Impacts of climate change on wheat yield

In the baseline period, simulated wheat yield decreased from east to west due to lower rainfall
and the shorter length of the growing period caused by higher temperature in the west. The spatially
averaged wheat yield was 4685 kg ha™' ranging between 1090 and 7996 kg ha™' across the wheat belt
(Fig. 7.7a), which is the same range as reported by Wang et al. (2009b). The average yield is higher
than the averaged shire yield of 2700-3300 kg ha™ in the year 2000 (Wang et al. 2015a). Considering
that our simulations were based on no limitations to N, pest and weed effect, the baseline yields
represent an achievable yield in this region. Compared with 1961-2000, median yields are expected to
increase by on average 0.4% for RCP4.5 and 7.3% for RCP8.5 in 2061-2100 across the NSW wheat
belt (Fig. 7.7b and c). It is interesting to note that the RCP4.5 shows median yield decline in the dry
southwestern parts of the wheat belt (Fig. 7.7b). However, RCP8.5 leads to a multi-model median

yield increase as a result of the higher CO, concentration compensating some negative effects. The
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largest increase in wheat yield is found in region NW, with an ensemble median increase of 7.0% for
RCP4.5 and 12.4% for RCP8.5 (Fig. 7.8). The smallest ensemble median increase is located in region
SE with 0.1% and 5.1% for RCP4.5 and RCPS8.5, respectively.
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Fig. 7.8 Simulated changes of wheat yield without/with CO, fertilization from the 13 selected GCMs
under RCP4.5 and RCP8.5 in the 2061-2100 compared to 1961-2000 in the four regions over the
NSW wheat belt. Box boundaries indicate the 25th and 75th percentiles; the black line within the box
marks the median; whiskers below and above the box indicate the 10th and 90th percentiles. I:

Northeast (NE); II: Northwest (NW); I1I: Southeast (SE) and IV: Southwest (SW).

The importance of CO, fertilization in wheat production is demonstrated by simulating future
yield with only the change in climate. Without the increase in CO, concentration simulated wheat
yield decrease rapidly under RCP4.5 by 2061-2100 and much more so under RCP8.5 compared to the
present (Fig. 7.8). It is interesting to note that some GCMs show a decrease in simulated yield even
with CO, fertilization. These GCMs may show a greater yield reduction without CO, positive effects.
In contrast, with the exception of region NW for RCP4.5, all GCMs show a decrease in yield without
CO, fertilization. A descriptive statistical analysis was conducted using regional averages for 13
GCMs and two RCPs and a linear regression model. The relationships between changes of wheat

yield and changes of wheat growing season rainfall, temperature and CO, concentration are shown in
Table 7.2.
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Fig. 7.9 Spatial patterns of simulated wheat ET and WUE for baseline (1961-2000) (a-b) and the
median changes of the spatial patterns for 2061-2100 under RCP4.5 and RCP8.5 (c-f).

With this regression analysis the contribution of specific climate factors to yield change can be
quantified. At all subregions, the change in wheat yield is significantly correlated with each lower
rainfall regions. For example, there is a significant 0.65% grain yield change in SE (higher rainfall
region) for each percentage change in rainfall compared to significant 1.10% grain yield changes in
SW (lower rainfall region). Simultaneously, dry southwestern parts of the wheat belt have large
benefit from CO; fertilization as APSIM simulates the CO, fertilization effects through an increase in

transpiration efficiency (Sultan et al. 2014).

7.3.4 Changes in simulated ET and WUE

The spatial patterns of simulated cumulative ET for the growth period derived from APSIM
simulations with observed baseline climate are shown in Fig. 7.9a. The ET value for wheat was lower
in the west than in the east, associated with the spatial gradients of rainfall (decrease from east to
west). The spatially averaged wheat ET was 320 mm ranging from 133 to 458 mm across the wheat
belt. The simulated ET could decrease by 2061-2100 in response to warming conditions and reduced
rainfall. The spatial pattern of median ET changes is quite similar to that of the growth period changes,
suggesting that ET decreases mainly due to shortened wheat growth duration. ET decreases by 7.2%
for 10 days decline in the growth period (Fig. 7.10). Compared with 1961-2000, the multi-model
median ET is expected to decrease by an average of 10.7% for RCP4.5 and 18.6% for RCP8.5 by the
end of this century across the NSW wheat belt (Fig. 7.9¢ and e). Fig. 7.11a shows the relative change
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of ET compared to that for the baseline period under the RCP4.5 and RCPS8.5 scenarios with and
without CO, fertilization. The difference in the changes in ET between with/without CO, fertilization
simulations was relatively small. The largest ensemble median decrease in simulated ET is found in
region SE, especially under the high-emission RCP8.5 scenario, followed by region NE; the smallest
changes in ET are located in regions SW and NW (Fig. 7.11a).

Table 7.2 Regression coefficients of changes for wheat yield (AY, %) with changes of wheat growing
season mean temperature (AT, °C), rainfall (AR, %) and CO; concentration (ACO,, ppm) in a multiple

linear regression model (AY = aAT + bAR + cACO,).

Region a b ¢ R’
I (NE) -2.1 0.66%** 0.035 0.68
11 (NW) 0.6 125%% 0046 0.81
III (SE) -6.4% 0.65%* 0.067** 0.68
IV (SW) -8.3%* 1.10%** 0.091%** 0.89

Entire region  -3.6%* 0.97%* 0.056%** 0.73

* indicates the significant level of P<0.05. ** indicates the significant level of P<0.01. I: Northeast (NE);
II: Northwest (NW); III: Southeast (SE) and IV: Southwest (SW).
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Fig. 7.10 Relationship between simulated change in ET and wheat growth period across four regions
in the NSW wheat belt. I: Northeast (NE); II: Northwest (NW); III: Southeast (SE) and I'V: Southwest
(SW). ** indicates the significant level of P<0.01.
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Fig. 7.11 Simulated changes of wheat ET (a) and WUE (b) without/with CO, fertilization from the 13
selected GCMs under RCP4.5 and RCPS8.5 in the 2061-2100 compared to 1961-2000 in the four
regions over the NSW wheat belt. Box boundaries indicate the 25th and 75th percentiles; the black
line within the box marks the median; whiskers below and above the box indicate the 10th and 90th

percentiles. I: Northeast (NE); II: Northwest (NW); I1I: Southeast (SE) and I'V: Southwest (SW).

The spatial distribution of wheat water use efficiency (WUE) under the baseline climate is shown
in Fig 7.9b. It shows that WUE decreased from east to west. The spatially averaged wheat WUE was
13.8 kg ha mm™ ranging from 6.8 to 17.6 kg ha’ mm™ over the wheat belt. The spatial patterns of
median WUE changes in relation to the baseline under RCP4.5 and RCP8.5 in the 2061-2100 are
presented in Fig. 7.9d and f. In contrast with ET changes, median WUE clearly depicts an increase
trend across the wheat belt. By 2061-2100, median WUE is expected to increase by an average of 11.0%
for RCP4.5 and 30.3% for RCP8.5 across the NSW wheat belt.

Fig. 7.11b shows the relative change of WUE under RCP4.5 and RCP8.5 with and without CO»

fertilization for the four subregions. In general, with CO, fertilization the majority, and sometimes all,
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GCMs show an increase in WUE. In all cases, most of the GCMs present decreases in WUE without
CO; fertilization. The largest ensemble mean increase in WUE is found in region SE, especially under
the high-emission RCP8.5 scenario, followed by region NE; the smallest changes in WUE are located
in regions NW and SW (Fig. 7.11b). The greatest decrease for WUE appears in region SW under
RCPS8.5 with the value of 11.0%.

7.4 Discussion

GCMs typically provide gridded data at a spatial resolution of several hundreds of kilometres. In
impact studies it is too coarse for the output to be used directly in detailed regional scale analysis and
resolve small scale processes. Therefore, before these GCMs can be used, it is necessary to select
satisfactory GCMs in simulating the climate over the NSW wheat belt. Consequently, I used a skill
score defined in Taylor’s method that combined correlation and standard deviation between simulated
and observed spatial patterns in climatological temperature and rainfall means to select satisfactory
climate models across the studied region. As a result, 13 out of 28 GCMs were selected for
downscaling. Monthly gridded outputs of these GCMs were downscaled to station-scale daily weather
series. Future climate projections from the multi-model median values based on the 13 selected GCMs
showed an averaged warming of 2.1 °C for RCP4.5 and 3.8 °C for RCP8.5 across the NSW wheat belt
in 2061-2100 compared to the baseline period 1961-2000. However, not all GCMs agreed on the sign
of rainfall change. Large differences in magnitude and sign existed between different climate models.
Multi-model median values showed a decrease in growing season rainfall. The results generally
agreed with the study from CSIRO and BoM (2015) and the NARCIM project
(http://www.ccrc.unsw.edu.au/sites/default/files/NARCliM/index.html).

The growth periods from sowing to flowering and maturity are critical phenological stages for
wheat crops. Although there is still a considerable degree of uncertainty of projected future climate
change, my analysis demonstrated DTF would be predicted to shorten by 14-31 days across the whole
study area, depending on the scenarios and locations, which are analogous to the findings of other
modelling studies (Sadras & Monzon 2006, Zheng et al. 2012, Potgieter et al. 2013, Yang et al. 2014,
Wang et al. 2015b). My results also showed that a decrease in DTM under future climate was
consistent with reduction in DTF. Moreover, modelled DTF and DTM had a similar response to rising
temperature, approximately -7 days “C"'. This rate compared well with rates derived from Sadras and
Monzon (2006) and Anwar et al. (2015). These results implied an early flowering date may result in
the advance of maturity, which means the time to flowering contributed to most of the variation in
time to maturity. The duration of the post-anthesis phase was relatively stable (Sadras & Monzon

2006). However, shorter vegetative periods in the future climate reduce less time to intercept radiation

120



Spatiotemporal changes of wheat yield and water use efficiency under the CMIPS multimodel ensemble projections

and water than current climate. Therefore, the change of phenological development has become one of
the most important attributes involved in crop adaptation to climate change, such as changing the
planting window (sowing earlier) to escape heat stress around flowering as frost-free seasons become
more frequent due to global warming (Zheng et al. 2012) and selecting long-season wheat cultivars

that are resistant to water stress and high temperature during grain filling (Ludwig & Asseng 2010).

My simulated spatial patterns of yield for the baseline period 1961-2000 were associated with
spatial distribution of rainfall, which is consistent with the fact that rainfall is the main climatic factor
in determining yield (Oliver et al. 2009, Yu et al. 2014, Wang et al. 2015a). Wheat yield showed
obvious differences between eastern and western parts of the wheat belt as the result of spatial
patterns of growing season rainfall. Spatially, multi-model median yields increased by 0.4% for
RCP4.5 and by 7.3% for RCP8.5. The median yield increase for RCP4.5 was small probably due to
half of GCMs predicting yield decrease while half of them increase. However, these findings were in
contrast with the conclusions of Yang et al. (2014) and Anwar et al. (2015). Using the APSIM model
with 18 GCMs, they found that median wheat yield decreased at some of their climatologically
distinct study sites in the NSW wheat belt under SRES A2 emission scenarios. The reason for the
differences in results across these studies could be due to the choice of climate models, greenhouse
gas emissions scenario, time horizon and different configuration of the crop model (such as soil types
and crop management practices at each site), which can strongly influence the sign and magnitude of
yield response (Araya et al. 2015, Kassie et al. 2015). For example, Yang et al. (2014) focused on
CMIP3 GCM data and used A2 emission with individual site, particularly in a near future period of
2021-2040. My study was based on the latest greenhouse gas emission scenarios and GCM
projections and focused on a far future period (2061-2100).

Rising concentrations of CO; in the atmosphere are driving global warming that will impact on
crop yields through changes in rainfall and increases in temperature. However, elevated CO; also has
beneficial physiological effects on crops through the stimulation of photosynthesis and reduction of
drought stress as a result of lower stomatal conductance and greater intercellular CO; (Lin et al. 2005).
By conducting a systematic comparison between yield response to climate change with or without
CO; effect, many studies conclude that the impacts of higher atmospheric CO, concentration is
another major source of uncertainty in quantification of crop yield (Soussana et al. 2010, Sultan et al.
2014). Acceleration of crop development and shortening of growth duration could reduce the yield
potential. However, this unfavourable effect is counterbalanced by the positive CO, effects on
biomass production. The impact of CO, level is two-fold as it governs climatic changes and
simultaneously triggers crop responses (Vanuytrecht et al. 2011). Although the effectiveness of CO;

fertilization has been assessed in various modelling and experimental studies, there is still an ongoing
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debate and uncertainty on the extent of effects of CO, fertilization on future crop yields (Ainsworth &
Long 2005, Long et al. 2006). For example, Sun et al. (2009) reviewed and quantified the yield
increase of C3 crops to be 18% on average, ranging from 3% to 35% under elevated CO, in various
FACE experiments. In my simulations, I compared RCP4.5 and RCPS.5 results with the analogous
simulations where the CO, concentration was fixed at 330 ppm to roughly estimate a magnitude of
CO; effect on wheat yield. Without the increase in CO» concentration simulated wheat yield decreased
remarkably for two RCPs in 2061-2100. My results showed that CO, fertilization significantly
reduced the negative climate impacts, increasing wheat yield by about 10.6% for RCP4.5 and 23.9%
for RCP8.5 in the future. Wheat in drier parts of the wheat belt would have larger benefit from the
positive impact of elevated CO, concentration than in wetter areas. These results are consistent with
previous studies in rainfed cropping system (Luo et al. 2003, Wang et al. 2011a, Sultan et al. 2014).
Recent analyses of Free-Air Carbon Dioxide Enrichment studies indicate that, at 550 ppm
atmospheric CO, concentration, observed yields increase under unstressed conditions by 26% for
wheat in Australian dry land (O'Leary et al. 2015). The APSIM model simulates the CO, fertilization
effects through an increase in transpiration efficiency as well as transpiration efficiency. However, a
contribution of elevated CO, effects cannot be directly quantified without further examination.
Correct quantification of CO, fertilization is complex and is believed to be associated to crop
characteristics and governing environmental conditions (Vanuytrecht et al. 2011). For example,
interactions of CO, with limiting factors, especially heat and drought stress, are increasingly well
understood and capable of strongly modulating observed growth responses in crops (Lin et al. 2005).
Therefore, further research based on experimental systems is urgently needed to clarify how to best

model the impacts of CO, stimulation.

Water consumption is strongly impacted by climatic shifts in temperature and rainfall,
concomitant with elevated atmospheric CO; in a future climate (Wang et al. 2009¢). As an important
water loss process in field water balance, ET during wheat growth period always decreased by
10.7-18.6% across the wheat belt under future climates. Under the warming conditions, the vegetative
periods of wheat will be advanced and their reproductive periods be shortened; the enriched CO»
concentration will reduce leaf stomatal conductance and then decrease ET rates. These somewhat
trade-off effects make the response of crop transpiration to climate change complicated and non-linear
(Mo et al. 2013). There was relatively small response of growing season ET to CO, fertilization
because the shortened wheat growth period and decreased rainfall were main determining factors.
Trends of decreasing wheat ET under future climate projections were similar among the four
subregions and agreement with previous impact assessment studies in south eastern Australia (Wang

et al. 2009¢c, Yang et al. 2016). However, the change in wheat yields was not proportional to the
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change in water use. Overall, increases in WUE were generally associated with improved wheat yields
rather than reductions in water used. The median wheat yields showed an increase while cumulative
ET decreased, which resulted in WUE increase in the future climate. It should be noted that simulated
WUE showed a decreasing trend without considering CO fertilization, indicating that elevated CO;

could improve the water use efficiency of wheat in a certain degree.

In our study, there is still uncertainty arising from the process within the crop model (e.g.
strength of CO, fertilization), the choice of GCMs and the method of future climate scenario
generation (Osborne et al. 2013). The projected yield increase in the future could be overestimated
because the crop model generally does not sufficiently account for yield reduction due to diseases,
pests, weed, effects of extreme heat and drought stress (Gornall et al. 2010). We did not explicitly
consider certain aspects such as technological innovations, which will obviously have a significant
impact on wheat yield in the future. In addition, we assume current two wheat cultivars can sow in the
future climate. However, as a result of phenological responses to increasing temperatures, current
wheat cultivars may not be suitable for future climate conditions due to a shorter growth cycle and
exposure to extreme high temperatures during flowering date (Wang et al. 2015b). New wheat
cultivars might provide more drought and heat resistance against warming conditions. Finally,
management strategies that are optimized for present-day climate may not necessarily be optimal for
future climate. It should be noted that some potential adaptation opportunities arising from managing
soil water more efficiently through the wheat growing season, such as choosing cultivars, sowing time,
sowing density and fertilizer timing and amount, were not included in this impact analysis. This may
be a main limitation of this study. Therefore, our current simulated results should be used with caution
in the development of climate change adaptation strategies. Despite these limitations, this study
provides a framework for assessing the future trends in wheat yield under the latest greenhouse gas
emissions and CMIP5 GCM projections to facilitate policymaking and strategic research and

management.

7.5 Conclusion

The responses of wheat productivity and water use to two projected future climate change
scenarios in the NSW wheat belt were simulated by using the APSIM model with the output of 13
GCMs statistically downscaled to individual locations. My results show that there was a decrease in
days to flowering and maturity for 2061-2100 compared with a baseline period across the whole
production region. The advance in time to flowering contributed to most of the changes in wheat
phenology. Spatially, median wheat yields could increase on average by 0.4% for RCP4.5 and 7.3%
for RCP8.5 across the NSW wheat belt. The largest increase was found in the northwestern parts of
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the wheat belt with 12.4% for RCP8.5. Evapotranspiration could decrease by 10.7% for RCP4.5 and
18.6% for RCPS8.5 by the end of this century due to the reduction in length of the wheat growing
period and a decrease in rainfall. However, increasing yields combined with decreasing ET resulted in
water use efficiency increasing by 11.4% for RCP4.5 and 29.3% for RCP8.5. Comparisons of
simulation results with and without CO, fertilization indicate that an increase of CO, concentration
with future climate change scenarios will increase wheat yields and improve water use efficiency. This
study is in contrast to many other studies and showed that low-rainfall-low-yielding growing
environments might benefit more from climate change due to the stimulating effects of elevated CO»

on water-limited crop productivity.
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Chapter 8

Final conclusions

In the NSW wheat belt, wheat yields were positively correlated to growing season rainfall and
minimum temperature while negatively correlated to growing season maximum temperature at a
significant level (p<0.05). Recent climatic trends from 1922 to 2000 contributed to wheat yield
increase by 8.5-21.2% in different climatically regions. Rainfall is usually the main direct climatic
driver affecting wheat yield variation in this semi-arid area, but the variation is also affected by
temperature and solar radiation. My results show that in the eastern slopes, growing season
temperatures and number of heat stress days were major factors affecting wheat yield, accounting for
36% of yield variation. In the northern parts of the wheat belt, major climatic drivers for yield
variation were growing season maximum temperature and pre-growing season (December to April)
rainfall and number of frost days accounted for 41% of yield variation. In the southern region,
growing season rainfall, temperatures, number of frost and heat stress days accounted for 47% of
yield variation. In the southwestern plains, growing season rainfall was the main direct climate factor
to determine 31% of yield variation. However, frost had more impact on yield variation in the
northern parts of the wheat belt as farmers sow earlier and select short-season cultivars to avoid heat
stress. Understanding the impact of climate variations on crop yield is important for developing

sustainable agricultural production under future climate change.

Statistical downscaling method used in this study was effective at correcting the bias associated
with the site-based monthly GCM values by relating observed historical climate data to that simulated
by GCMs. The SILO daily time series of meteorological data at point locations were used as a basis
for spatial downscaling and bias correction of different skill-selected CMIP5 GCMs. I evaluated the
ability of the downscaled data from each of the selected GCMs to reproduce trends in values of 11
extreme temperature indices across eastern Australia over the period 1961-2000. In general, most
GCM models captured the sign of historical observed trends in temperature extremes, but no one
model was consistently good at reproducing all indices. Future projections show that great warming
occurs in the east and northeast of the NSW wheat belt by 2061-2100 and increases the risk of
exposure to hot days around wheat flowering date, which might result in farmers needing to

reconsider wheat cultivars suited to maintain yield.

The flowering time of wheat is strongly controlled by temperature and is potentially highly
sensitive to climate change. My simulations suggest a general advance in spring wheat flowering date

in 2080s, on average, by 10.2 days for RCP4.5 and 17.8 days for RCP8.5 across the NSW wheat belt.
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Winter wheat flowering dates were delayed by an average of 2.4 days for RCP4.5 and 14.3 days for
RCPS8.5 in the warmest parts of the region (the northwest) due to reduced cumulative vernalization
days (requiring cool conditions). In the cooler regions (the northeast, southeast and southwest),
flowering date occurred earlier by 6.2 days for RCP4.5 and 6.7 days for RCP8.5 on average.
Moreover, in the western parts of the wheat belt the delay of winter wheat flowering date was about
9.5 days longer than that in the eastern parts. As a result of phenological responses to increasing
temperatures, limiting sowing of winter cultivars in the western plains may be one strategy to mitigate
the impacts of future climate change in the wheat belt. Furthermore, the number of hot days with
maximum temperature exceeding 30°C during flowering date (+/- 7 days) increased while simulated
number of frost days with minimum temperature below 2°C decreased due to climate warming.
Therefore, sowing dates may advance as a consequence of flowering date change to minimize frost
and heat stress at anthesis dates in the future. Late-maturing cultivars with increased heat-stress
resistance will be needed to maintain the current crop cycle duration, to provide for the use of

resources (radiation, CO,, water, and nutrients) of long-season cultivars in eastern Australia.

I selected six sites in the NSW wheat belt to analyse changes in relative yield loss due to water
stress. Our results show that simulated water limited yield tended to decline at wetter and cooler
locations under a future climate while increased at warmer and drier locations. Soils with high PAWC
provided a larger buffer to store water from variable rainfall and to supply it to crops during dry
periods and therefore were less affected by rainfall decreases compared to soils with low PAWC. Our
results also indicated that a drought stress index decreased with increasing PAWC and then leveled out
at high PAWC. Under the high emission scenario RCP8.5, drought stress was expected to decline or
stay about the same due to the elevated CO, compensation effect. Therefore, to maintain or increase
yield potential and respond to climate change, increasing cultivar tolerance to heat stress and
improving crop management to reduce impacts of water stress on lower plant available water holding

soils should be a priority for the genetic improvement of wheat in eastern Australia.

The responses of wheat phenology, yield and water use efficiency to two projected future climate
change scenarios in the NSW wheat belt were simulated by using the APSIM model with the output of
selected 13 GCMs statistically downscaled to individual locations. Compared with 1961-2000,
multi-model median projected a +2.1 to +3.8 °C rise in growing season temperature, and -2.5 to -4.0%
reductions in rainfall across the NSW wheat belt by 2061-2100 under the two emission scenarios.
Simulated results indicated that the length of wheat growth period could decline by 17.6 days for
RCP4.5 and 29.0 days for RCPS8.5. Despite an acceleration of crop development and shortening of
growth duration together with declining growing season rainfall, I projected that multi-model median

yields could increase by 0.4% for RCP4.5 and 7.3% for RCP8.5 by 2061-2100. Although the RCP4.5

126



Final conclusions

showed a small decrease in median yield in the dry southwestern parts of the wheat belt, the higher
CO; concentration in RCP8.5 compensated some of the negative effects resulting in 11.5% yield
increase. These results show that a drier area would benefit more from elevated CO, than a wetter area.
Without the increase in CO, concentration simulated wheat yield decrease rapidly under RCP4.5 by
2061-2100 and much more so under RCP8.5 compared to the present. A decline in growing season
length and a decrease in rainfall resulted in a reduction of crop water consumption. As a consequence,
simulated evapotranspiration (ET) decreased by 11.9% for RCP4.5 and 18.8% for RCP8.5 across the
NSW wheat belt. Increasing yields combined with decreasing ET resulted in simulated water use
efficiency increasing by 11.4% for RCP4.5 and 29.3% for RCP8.5. Wheat production in water-limited,
low yielding environments appears to be less negatively impacted or in some cases even positively
affected under a future climate and carbon dioxide changes, compared to other growing environments

in the world.

Nonetheless, a number of limitations in our methodology and results still remain, and further
research is needed in the future. Firstly, we only provide simulation result with one crop model,
APSIM. Although the model has been validated at the national scales in several previous studies,
simulation results may be constrained by the fundamental assumptions and approaches used in this
model. This shortcoming can be overcome by comparing results from several crop growth models,
which use the same combination of climate, soil, management and other input data (Martre et al.
2015). Because a broader range of crop models may differ in the description of the basic physiology
thus also add information on uncertainties in projected adaptation measures. For example, recent work
as part of the agricultural model intercomparison and improvement project (AgMIP) has examined
(and narrowed) these differences through systematic model intercomparison (Asseng et al. 2013,
Rosenzweig et al. 2013). Secondly, the magnitude of climate change scenarios for past and future
periods differ among different circulation models and therefore it is a source of uncertainty that might
affect the results of the applied models (statistical downscaling, crop model and SDMs). For example,
these climate-change driven alterations of growing conditions can thus lead to diverse, depending on
their direction (e.g. dryer or wetter), amplitude, and the starting conditions (e.g. cold- or heat-limited
growing season). It is therefore normally of utmost importance to apply a range of climate models and

scenarios in order to estimate the inherent variability introduced by the choice of climate.
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ABSTRACT: Identifying climatic drivers that dominate in determining crop yield variations at a
regional scale is important for predicting regional crop production. In this study, a statistical
method was used to quantify the relationship between reported shire wheat yields and climate
factors during the wheat-growing season across the New South Wales (NSW) wheat belt in east-
ern Australia from 1922 to 2000. The results show that recent climatic trends have increased
wheat yield by 8.5 to 21.2% in 4 different climatic regions of NSW over the last few decades: In
the eastern slopes, growing season maximum and minimum temperatures and number of heat
stress days (>34°C) were identified as the dominant climatic factors affecting wheat yield,
accounting for 36 % of its variation. The wheat vield variation in the remaining 3 regions were as
follows: 41 % in the northern region from maximum temperature, pre-growing season rainfall
(December to April), and number of frost days (<2°C); 47 % in the south from rainfall, temperature,
and number of frost and heat stress days; while in southwest NSW, rainfall was the main factor
responsible for 31 % of the variation. Frost was less important in the eastern slopes because farm-
ers manage frost occurrence by sowing late and using late-flowering cultivars. However, the
opposite occurs in the northern parts of the wheat belt where farmers sow earlier and select short-
season varieties to avoid heat stress, but thereby expose their crops to possible frost conditions.
Understanding the impact of climate variations on crop yield is important for developing sustain-
able agricultural production under future climate change.
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ARTICLE INFO ABSTRACT
Article history: The flowering time of wheat is strongly controlled by temperature and is potentially highly sensitive to
Received 29 January 2015 climate change. In this study, we analysed the occurrence of last frost (days with minimum tempera-

Received in revised form 27 April 2015

p ture under 2°C) and first heat (days with maximum temperatures exceeding 30 °C) events of the year to
Accepted 30 April 2015

determine the optimum flowering date in the wheat belt of New South Wales (NSW), eastern Australia.
We used statistically downscaled daily maximum and minimum temperature data from 19 Global Cli-
mate Models (GCMs) with a vernalizing- photothermal model in order to simulate future flowering dates
and the changes in frost and hot days occurrence at flowering date (£ 7 days) for two future scenarios
for atmospheric greenhouse gas concentrations (RCP4.5 and RCP8.5) in 2040s (2021-2060) and 2080s

Keywords:

‘Wheat phenology
Vernalizing-photothermal medel
Climate change

NSW wheat belt (2061-2100). Relative to the 1961-2000 period, the GCMs projected increased daily maximum and min-
Frost days imum temperatures for these future periods, accompanied by reduced frost occurrence and increased
Hot days heat stress incidence. As a consequence, by the 2080s, simulations suggest a general advance in spring

wheat flowering date by. on average, 10.2 days for RCP4.5 and 17.8 days for RCP8.5 across the NSW wheat
belt. Winter wheat flowering dates were delayed by an average of 2.4 days for RCP4.5 and 14.3 days for
RCP8.5 in the warmest parts of the region (the northwest) due to reduced cumulative vernalization days
(requiring cool conditions). In the cooler regions (the northeast, southeast and southwest), flowering
date occurred earlier by 6.2 days for RCP4.5 and 6.7 days for RCP8.5 on average. Moreover, in the western
parts of the wheat belt the delay of winter wheat flowering date was about 9.5 days longer than that in
the eastern parts. As a result of phenological responses to increasing temperatures, current wheat vari-
eties may not be suitable for future climate conditions, despite reduced frost risk. In the future, it may be
necessary to use longer-season wheat varieties and varieties with increased heat-stress resistance.

© 2015 Elsevier B.V. All rights reserved.
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Abstract Projections of changes in temperature extremes are critical to assess the potential
impacts of climate change on agricultural and ecological systems. Statistical downscaling can
be used to efficiently downscale output from a large number of general circulation models
(GCMs) to a fine temporal and spatial scale, providing the opportunity for future projections of
extreme temperature events. This paper presents an analysis of extreme temperature data
downscaled from 7 GCMs selected from the Coupled Model Intercomparison Project phase
5 (CMIP5) using a skill score based on spatial pattems of climatological means of daily
maximum and minimum temperature. Data for scenarios RCP4.5 and RCP8.5 for the New
South Wales (NSW) wheat belt, south eastern Australia, have been analysed. The results show
that downscaled data from most of the GCMs reproduces the correct sign of recent trends in all
the extreme temperature indices (except the index for cold days) for 1961-2000. An indepen-
dence weighted mean method is used to calculate uncertainty estimates, which shows that
multi-model ensemble projections produce a consistent trend compared to the observations in
most extreme indices. Great warming occurs in the east and northeast of the NSW wheat belt by
2061-2100 and increases the risk of exposure to hot days around wheat flowering date, which
might result in farmers needing to reconsider wheat varieties suited to maintain yield. This
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Abstract:  Projections of changes in temperature extremes are critical to assess the potential impacts of
climate change on agricultural and ecological systems. Statistical downscaling can be used to efficiently
downscale output from a large number of general circulation models (GCMs) to a fine temporal and spatial
scale, which now provides the opportunity for future projections of extreme temperature events. This paper
presents an analysis of extreme temperature in data downscaled from ensembles of 13 selected GCMs, out of
28 GCMs, contributing to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC-ARS) under two Representative Concentration Pathways (RCP4.5 and RCP&.5) in eastern Australia.
The statistical downscaling procedure begins with spatial interpolation of the monthly gridded data to specific
locations of interest using an inverse distance-weighted method, followed by a bias correction towards
historical observed climate. Daily climate data for each location are then generated by a modified version of
the WGEN stochastic weather generator. The extremes of temperature are described by eleven indices, namely,
the annual maximum daily Tmax (TXx), the annual maximum daily Tmin (TNx), the annual mimmum daily
Tmax (TXn), the annual minimum daily Tmin (TNn), the number of hot days (HD) and frost days (FD), warm
days (TX90p) and nights (TN90p), cold days (TX10p) and mights (TN10p) and extreme temperature range
(ETR). The results show that downscaled data from most of the GCMs reproduced the correct sign of recent
trends in all the extreme temperature indices (except TN10p) although there was much more variation between
the individual model runs. An independence weighted mean method was used to calculate uncertainty estimates,
which verified that multi-model ensemble projections produced a good consensus compared to the observations
in magnitude of the trend in TXx, TN90p, HD, TNn, ETR for the period 1961-2000 when averaged across
eastern Australia In the 21st century the frost days, cold days and nights decrease while more frequent warm
days and nights and hot days are projected in the New South Wales (NSW) wheat belt. The changes in
temperature extremes under RCP8.5 are more pronounced than that under RCP4.5. Greater warming occurs in
the east and northeast of the NSW wheat belt by the end of the 215t century and increases the risk of exposure
to hot davs around wheat flowering date, which results in farmers needing to reconsider wheat varieties suited
to maintain yield. This analysis provides a first overview of projected changes in climate extremes from the
ensemble of 13 CMIP5 models with statistical downscaling data in eastern Australia, and supplies important
mformation to mibgate the adverse effects of climate extremes on NSW wheat belt and improve the regional
strategy for agricultural systems.

Keywords: Warm indices, cold indices. GCMs, observations, independence weighted mean
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