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with guidance and support from my supervisors and collaborators from other institutes. The 
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Chapter 2: Shi, H., L. Li, D. Eamus, J. Cleverly, A. Huete, J. Beringer, Q. Yu, E. v. Gorsel, 

and L. Hutley (2014), Intrinsic climate dependency of ecosystem light and 

water-use-efficiencies across Australian biomes, Environmental Research Letters, 9(10), 

104002. 

Chapter 3: Shi, H., L. Li, D. Eamus, A. Huete, J. Cleverly, X. Tian, Q. Yu, S. Wang, L. 

Montagnani, V. Magliulo, E. Rotenberg, M. Pavelka, and A. Carrara (2017), Assessing the 

ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple 

land cover types, Ecological Indicators, 72, 153-164. 

Chapter 4: Shi, H., W. Zhuang, L. Li, J. Beringer, J. Cleverly, J. Dong, D. Eamus, Q. Guo, 

and Q. Yu (2016), Remote estimation of evapotranspiration for Australian seasonally 

water-limited ecosystems within an evapotranspiration-vegetation index framework, Remote 

Sensing Letters, submitted. 
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Chapter 5: Shi, H., L. Li, Y.-P. Wang, J. Beringer, J. Cleverly, L. Cheng, D. Eamus, L. He, 

X. Lu, L. Zhang, and Q. Yu (2016), Identifying and optimizing key above- and below-ground 

processes for carbon assimilation and evapotranspiration in the CABLE model across 

Australian vegetation types, Journal of Geophysical Research, internal review. 

Chapter 6: Shi, H., L. Li, D. Eamus, X. Lu, Y.-P. Wang, J. Cleverly, J. Beringer, and Q. Yu 

(2016), Benchmarking the CABLE model using remote sensing GPP and ET products across 

Australia, Journal of Hydrometeorology, in prep. 
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ecosystem water- and light-use efficiencies within a Budyko framework, Journal of 
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1 

Abstract 

The aim of this thesis is to analyze the patterns of gross primary production (GPP) and 

evapotranspiration (ET) across Australian biomes in combination of eddy covariance, remote 

sensing and land surface model (LSM) methods, taking advantage of their respective 

applicability on different space and time scales. To do this, I (1) used the wavelet method to 

decompose eddy covariance observed half-hourly GPP and ET into different frequencies from 

hourly to annual to investigate the coupling of GPP and ET and their interactions with climate 

and vegetation variability over hourly to annual time-scales, (2) established GPP-EVI 

relationships across multiple biomes using observed GPP and MODIS EVI and applied them 

to the global scale, (3) developed an pure remote sensing ET model (TG-SM) in combination 

of MODIS EVI, LST and microwave soil moisture data, (4) identified and optimized key 

above- and below-ground processes of GPP and ET in the CABLE model across 10 Australian 

flux sites, and (5) benchmarked the CABLE model across the whole Australia through 

integrative use of remote sensing products of GPP and ET predicted by both my own remote 

sensing models and other available products. 

Each chapter provides new insights into the popular approach for estimating GPP or ET, while 

together they form a strong example in joint analysis of GPP and ET across various 

spatio-temporal scales. 
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