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with guidance and support from my supervisors and collaborators from other institutes. The 

details are as the following: 

Chapter 2: Shi, H., L. Li, D. Eamus, J. Cleverly, A. Huete, J. Beringer, Q. Yu, E. v. Gorsel, 

and L. Hutley (2014), Intrinsic climate dependency of ecosystem light and 

water-use-efficiencies across Australian biomes, Environmental Research Letters, 9(10), 

104002. 

Chapter 3: Shi, H., L. Li, D. Eamus, A. Huete, J. Cleverly, X. Tian, Q. Yu, S. Wang, L. 

Montagnani, V. Magliulo, E. Rotenberg, M. Pavelka, and A. Carrara (2017), Assessing the 

ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple 

land cover types, Ecological Indicators, 72, 153-164. 

Chapter 4: Shi, H., W. Zhuang, L. Li, J. Beringer, J. Cleverly, J. Dong, D. Eamus, Q. Guo, 

and Q. Yu (2016), Remote estimation of evapotranspiration for Australian seasonally 

water-limited ecosystems within an evapotranspiration-vegetation index framework, Remote 

Sensing Letters, submitted. 
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Chapter 5: Shi, H., L. Li, Y.-P. Wang, J. Beringer, J. Cleverly, L. Cheng, D. Eamus, L. He, 

X. Lu, L. Zhang, and Q. Yu (2016), Identifying and optimizing key above- and below-ground 

processes for carbon assimilation and evapotranspiration in the CABLE model across 

Australian vegetation types, Journal of Geophysical Research, internal review. 

Chapter 6: Shi, H., L. Li, D. Eamus, X. Lu, Y.-P. Wang, J. Cleverly, J. Beringer, and Q. Yu 

(2016), Benchmarking the CABLE model using remote sensing GPP and ET products across 

Australia, Journal of Hydrometeorology, in prep. 
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ecosystem water- and light-use efficiencies within a Budyko framework, Journal of 
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Abstract 

The aim of this thesis is to analyze the patterns of gross primary production (GPP) and 

evapotranspiration (ET) across Australian biomes in combination of eddy covariance, remote 

sensing and land surface model (LSM) methods, taking advantage of their respective 

applicability on different space and time scales. To do this, I (1) used the wavelet method to 

decompose eddy covariance observed half-hourly GPP and ET into different frequencies from 

hourly to annual to investigate the coupling of GPP and ET and their interactions with climate 

and vegetation variability over hourly to annual time-scales, (2) established GPP-EVI 

relationships across multiple biomes using observed GPP and MODIS EVI and applied them 

to the global scale, (3) developed an pure remote sensing ET model (TG-SM) in combination 

of MODIS EVI, LST and microwave soil moisture data, (4) identified and optimized key 

above- and below-ground processes of GPP and ET in the CABLE model across 10 Australian 

flux sites, and (5) benchmarked the CABLE model across the whole Australia through 

integrative use of remote sensing products of GPP and ET predicted by both my own remote 

sensing models and other available products. 

Each chapter provides new insights into the popular approach for estimating GPP or ET, while 

together they form a strong example in joint analysis of GPP and ET across various 

spatio-temporal scales. 
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Chapter 1. Introduction 

The problem of pattern and scale is a core issue in ecology [Levin, 1992]. Ecosystems can 

show varied patterns from fine to broad scales of space and time. Carbon assimilation (i.e., 

gross primary production, GPP) and evapotranspiration (ET) are two fundamental functions of 

terrestrial ecosystems and are critical for the sustainability of the Earth’s life-support system 

[Costanza et al., 1997]. Responses of both GPP and ET to environmental variability are 

typically regulated by scales of either space or time. For example, short-scale (hourly) 

variability of meteorological forcing can effectively influence fast processes such as GPP 

whereas it has only small impact on long-term (inter-annual) variability of carbon and water 

fluxes [Paschalis et al., 2015]. The well-known Budyko’s curve [Budyko, 1974] can operate 

well at basin to global spatial scales and long-term time-scales but fails in estimating ET at 

local scales and short-term time-scales [Brooks et al., 2011; Pappas et al., 2015]. Therefore, 

the scale issue constitutes a major challenge in recognizing patterns and estimating of GPP 

and ET and this is particularly true when considering the heterogeneity of ecosystems. This is 

because different plant function types have differed functioning and adaptation strategies in 

responding to various environmental changes or stresses [Allen and Breshears, 1998; Bréda et 

al., 2006; Holdo and Brocato, 2015; Paschalis et al., 2015]. The importance, approaches and 

research gaps of GPP and ET are outlined in the following sections. 

 

1.1 GPP and ET 

1.1.1 GPP 

GPP is the amount of carbon captured from the atmosphere by land vegetation through the 

photosynthesis process, and thus is a key component of the terrestrial carbon balance [Beer et 

al., 2007; Xiao et al., 2005]. It is of fundamental importance to human society because plant 
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production provides most of our food, fiber and wood supply and creates environments 

suitable for human inhabitation [Melillo et al., 1993; Xiao et al., 2005; Zhao et al., 2005]. 

Climate changes (e.g., aridity, droughts, changes in precipitation patterns) are expected to 

profoundly affect the GPP of terrestrial ecosystems [Ciais et al., 2005; Piao et al., 2008] and 

accurate monitoring and estimation of GPP continuously are the bases for addressing the 

carbon related issues such as the size of the terrestrial carbon sink, vegetation phenology, 

vegetation dynamics, and management of forests and grasslands [Ciais et al., 2005; Ma et al., 

2013; Sims et al., 2006b].  

 

1.1.2 Evapotranspiration (ET)  

ET is the sum of soil evaporation, canopy evaporation, and canopy transpiration transferred to 

the atmosphere. It is a major link between the global energy budgets and hydrological cycles 

[Smith and Choudhury, 1990] and accounts for over half of the total water loss from most 

terrestrial vegetated ecosystems [Zhang et al., 2001]. Accurate estimates of ET are of 

remarkable importance to proper and sound management of water resource, particularly in 

semi-arid and arid regions, where water resource supply is limited for human and 

environmental needs. At catchment scales, ET is closely linked with vegetation characteristics 

and climate [Zhang et al., 2001]. Specifically, rainfall interception, net radiation, advection, 

turbulent transport, canopy resistance, leaf area, and plant available water can affect ET 

[Zhang et al., 2001]. In long-term period, for a large area, ET is mainly controlled by water 

and energy availability and by land surface characteristics to a minor extent [Milly, 1994; 

Zhang et al., 2001; Zhang et al., 2004]. 
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1.2 Main approaches for measurements and estimation of GPP and ET 

1.2.1 Eddy covariance method 

The eddy covariance method, originating from micrometeorological field, directly measures 

the net carbon and water fluxes across a horizontal plane between vegetated canopies and the 

atmosphere [Aubinet et al., 2000; Baldocchi et al., 2001]. At an individual EC site, a 

fast-response, three-dimensional wind sensor (sonic anemometer) is installed to obtain the 

orthogonal wind components and the speed of sound (to derive air temperature). An infrared 

gas analyzer is used to obtain water vapor density and CO2 concentration. Carbon, water, and 

heat fluxes are determined by measuring the covariance between fluctuations in vertical 

velocity and the mixing ratio of trace gases of interest [Aubinet et al., 2000; Baldocchi, 2008]. 

The EC method can measure mass and energy fluxes over the flux footprint around the tower 

(100 to 2000 m) [Schmid, 1994] across timescales of seconds, hours, days, weeks, seasons and 

years with negligible disturbance to the underlying vegetation.  

Networks of EC systems have been deployed across continents (e.g. AmeriFlux, EuroFlux, 

AsiaFlux, OzFlux) and yield a global network FLUXNET, which includes more than 850 sites. 

With this network, valuable data sets of ecological and hydrological variables for the first time 

have been obtained across a spectrum of biomes and climate zones worldwide, with excellent 

coverage in Europe and North America [Baldocchi, 2008; Baldocchi et al., 2001; Wang and 

Dickinson, 2012]. To provide consistent gap-filled and partitioned flux data, FLUXNET has 

made effort to unify methodology for EC data processing [Mauder et al., 2008; Reichstein et 

al., 2005]. FLUXNET aims to integrate flux measurements, remote sensing and land surface 

modeling to assess the interactions between terrestrial biosphere and the atmosphere 

[Baldocchi et al., 2001]. The data produced by FLUXNET provide the opportunity to evaluate 

the effects of disturbances (e.g. droughts, aridity), complex terrain, and land use change, and 



5 

to develop and test remote sensing methods and LSMs [Baldocchi et al., 2001; Cleugh et al., 

2007]. 

The EC method has its own weakness. It requires that atmospheric conditions are steady, the 

underlying terrain is relatively flat and the vegetation extends horizontally about 100 times the 

sampling height [Baldocchi et al., 2001]. Also it is argued that the EC method can only 

measure small eddies while large eddies are not in steady state and thus cannot be measured 

with the EC technique [Foken, 2008; Franssen et al., 2010]. Nevertheless, the advantages of 

the EC method far outweigh its weakness and the measurements are relatively accurate for a 

variety of common situations [Baldocchi et al., 2001; Wang and Dickinson, 2012]. 

 

1.2.2 Remote sensing techniques 

Remote sensing techniques can take digital images of surface features through measuring 

electromagnetic energy reflected or emitted by objects [Lillesand et al., 2014]. According to 

the wavelength regions of these energy signals in the electromagnetic spectrum, remote 

sensing can be partitioned into optical, infrared, microwave, etc. Depending on the structural, 

chemical and physical properties of material, different objects have different spectrum 

characteristics, which enables detection and discrimination of them [Lillesand et al., 2014]. 

Remote sensing vegetation indices (VIs) alone [e.g., Sims et al., 2006c; Yebra et al., 2013] or 

together with land surface temperature (LST) or meteorological variables are common in 

estimating GPP [e.g., Sims et al., 2008; Wu et al., 2010; Xiao et al., 2004a; Xiao et al., 2004b; 

Zhao et al., 2005] and ET [e.g., Wang et al., 2007; Yang and Shang, 2013]. VIs per se are 

spectral transformations of two or more bands to enhance the signal of vegetation properties 

[Huete et al., 2002]. NDVI and EVI are two most famous “greenness” indices: 
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where NIR , red  and blue  are atmospherically corrected or partially corrected surface 

near-infrared (NIR), red and blue spectral reflectances, G  is the gain factor, L  is the 

canopy background adjustment, and 1C , 2C  are the coefficients of the aerosol resistance 

term, which uses the blue band to correct for aerosol influences in the red band. The NDVI is 

successful in serving as a surrogate of vegetation NPP or above-ground NPP (ANPP), 

coverage fraction and fraction of APAR (fAPAR), and is also an important parameter to 

general and biogeochemical models [Carlson and Ripley, 1997; Huete et al., 2002; Potter et 

al., 1999]. The major advantage of NDVI than EVI is that NDVI has been obtained globally 

since 1980s via the NOAA-AVHRR (Advanced Very High Resolution Radiometer onboard 

the National Oceanic and Atmospheric Administration polar-orbiting satellites) mission while 

the EVI global product is only traced back to the Moderate Resolution Imaging 

Spectroradiometer (MODIS) launch in early 2000. The MODIS NDVI is also referred to as 

the “continuity index” to the AVHRR-NDVI [Huete et al., 2002]. 

 

1.2.3 Land surface models  

Land surface models (LSMs) are important for understanding and predicting mass and energy 

exchange between the terrestrial biosphere and atmosphere. LSMs integrate the key processes 

in land surface such as photosynthesis, respiration, evapotranspiration [Williams et al., 2009]. 

Generally, LSMs are a critical component of large domain models, for example, global carbon 

cycle models and global circulation models [Li et al., 2012; Williams et al., 2009]. The output 
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results of LSMs influence climate system through the control of greenhouse gas exchanges, 

energy balance and partitioning of sensible and latent heat fluxes.  

The Australian Community Atmosphere-Biosphere-Land Exchange (CABLE) model consists 

of radiation, canopy micrometeorology, surface flux, soil and snow, and ecosystem respiration 

sub-models [Wang and Leuning, 1998]. The radiation sub-model calculates the PAR, NIR 

radiation and thermal radiation absorbed by sunlit and shaded leaves. The canopy 

micrometeorology sub-model calculates canopy roughness length and aerodynamic transfer 

resistance. The surface flux sub-model calculates net photosynthesis, water extraction and 

ground heat fluxes. The soil and snow sub-model calculates soil temperature and moisture in 

the rooting zone, snow age, snow density and depth, and snow covered surface albedo. The 

ecosystem respiration sub-model calculates the non-leaf plant respiration, soil respiration and 

net ecosystem CO2 exchange.  

In a recent improvement of CABLE model, a dynamic root water uptake function and a 

hydraulic redistribution function were incorporated for better simulating the responses of 

vegetation to seasonal droughts or changes in soil moisture content [Li et al., 2012]. The root 

water uptake function was firstly developed by [Lai and Katul, 2000] assuming that root 

water uptake efficiency varies with rooting depth.  

 

1.3 Progress on estimation of GPP and ET 

1.3.1 GPP estimation 

For decades, several methods have been developed to estimate GPP over a wide range of 

spatial and temporal scales. The eddy covariance (EC) technique is suited to derive GPP on a 

local scale from half-hourly to annual scales [Baldocchi et al., 2001; Reichstein et al., 2007], 

but observations are limited both on a global-scale and in a long-term perspective.  
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Production efficiency models (PEMs) incorporate remote sensing data to estimate GPP or net 

primary production (NPP) of terrestrial ecosystems over the stand to global scales [Running et 

al., 2004; Xiao et al., 2005; Yuan et al., 2007]. Thus:   

 ( ) ( )g nGPP NPP FAPAR PAR  (1.3) 

where g and n  are light-use-efficiencies for calculation of GPP and NPP, respectively, 

PAR is photosynthetically active radiation, and FAPAR is fraction of absorbed PAR. g or n  

is a function of plant-function-type (PFT), specific apparent quantum yield or maximum light 

use efficiency ( 0 ) down-regulated by temperature, soil water content, vapor pressure deficit 

(VPD), or leaf phenology [Xiao et al., 2005; Yuan et al., 2007]. The deficiencies inherent in 

PEMs are the coarse spatio-temporal resolutions of weather inputs and the generally long 

intervals between successive satellite observations. In addition, 0 varies significantly across 

biomes and with climate [Polley et al., 2011; Rahman et al., 2005; Turner et al., 2003], thus 

the use of plant function type specific 0  in PEMs can introduce significant errors to 

modeled GPP or NPP [Rahman et al., 2005; Turner et al., 2003; Zhao et al., 2005]. To 

overcome the obstacles, satellite-based vegetation indices (VIs) are employed to directly 

estimate GPP or NPP based entirely on remote sensing data. Normalized difference vegetation 

index (NDVI) shows strong relationships with carbon flux in some ecosystems over one or 

two weeks [Sims et al., 2006a; Wylie et al., 2003]. The disadvantages of NDVI are the 

inherent nonlinearity of ratio-based indices, the influence of additive noise effects, saturation 

over high biomass, and sensitivity to high background brightness [Huete, 1988; Huete et al., 

2002]. The enhanced vegetation index (EVI) was developed to improve sensitivity in high 

biomass regions and to decouple the canopy background signal with reduction in atmosphere 

influences [Huete et al., 2002]. Thus EVI was regressed to GPP and it was found to be better 

correlated with GPP than NDVI in evergreen [Xiao et al., 2004a] and deciduous [Xiao et al., 
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2004b] forest sites. A strong overall relationship between EVI and GPP was also found across 

10 AmeriFlux tower sites representing a wide range of vegetation types [Rahman et al., 2005]. 

However, relationships between GPP and NDVI, and GPP and EVI have not been validated 

across enough different biomes and the temporal resolution (weekly or 16-day) is quite coarse 

to detect the short-time (hours to days) fluctuations in GPP [Sims et al., 2006b].  

Process-based ecosystem models estimate global GPP from leaf photosynthesis equations, 

which are up-scaled to continents and the globe [Beer et al., 2007]. These models need dozens 

of PFT specific physiological parameters and climate data or concurrent remote sensing data 

to drive. The benefit is that these models enable prediction of GPP from very short time 

periods (minutes to hours) to long term periods (years to decades) over canopy to global 

spatial scales. However, such modeled GPP need independent data-driven estimation to 

increase the reliability [Beer et al., 2007]. Therefore, there is considerable interest in 

integrating and comparing the three methods of eddy covariance technique, remote sensing, 

and ecosystem modeling to estimate GPP in a consistent way. 

 

1.3.2 ET estimation 

Sapflow and eddy covariance methods estimate ET at high temporal resolution and are 

regarded as the most accurate at stand scales (0.1 to 1 km) [Nagler et al., 2005a; Sun et al., 

2011]. However, these two methods only perform well in relatively uniform ecosystems and 

are less reliable in complex stands [Barker et al., 2009; Sun et al., 2008]. In addition, similar 

to GPP, the ET observations using sapflow and eddy covariance methods are still very limited 

for the large area (regional to global) and a long-term time scale (years to decades). Directly 

extrapolating data from flux towers to larger spatial scales can lead to significant biases due to 

the limited samplings of a whole biome [Wylie et al., 2003].  

Remote sensing based models or models coupled with remote sensing thus are highly 
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recommended to predict ET from regional to global scales continuously [Verstraeten et al., 

2005]. These models can be partitioned into mass and energy balance based biophysical 

models and empirical models that regress ET against remote sensing VIs and land surface 

climate variables. Among biophysical models, the resistance energy balance method is widely 

applied [e.g., Hall et al., 1992; Kalma and Jupp, 1990] but is shown to be unreliable in a 

regional experiment due to the inherent non-linearity in the governing heat transfer equation 

and the lack of energy-balance constraint on the sensible flux derived from the radiative 

surface temperature [Cleugh et al., 2007].The Penman-Monteith model (Equation 1.4 

[Monteith, 1965]) provides a more robust method to estimate land surface ET but requires 

several meteorological forcing data and aerodynamic and surface resistances, which are 

usually unavailable for large areas [Cleugh et al., 2007]. Thus,  

 
1

n p s a h

c h

R G C e T e r
E

r r
 (1.4) 

where  is the latent heat of vaporization, E  is the evapotranspiration,  is the derivative 

of the saturated vapor pressure ( se ) with respect to the air temperature ( aT ), nR is the net 

radiation, G  is the ground head flux,  is the density of air, pC  is the specific heat of air, 

e  is the air vapor pressure, hr  is the aerodynamic resistance, cr  is the canopy resistance, 

and  is the psychometric constant [Monteith, 1965]. To overcome the difficulties, 

remotely-sensed leaf area index (LAI) and NDVI were used to estimate the surface 

conductance [Cleugh et al., 2007]. The Budyko-type models, assuming ET as a function of 

precipitation and available energy, can adequately predict long-term ET at regional scale 

[Zhang et al., 2004]. However, it is still challenging to estimate ET of vegetated surfaces at 

fine spatial and temporal scales [Sun et al., 2011]. The empirical models use remote sensing to 

extrapolate eddy covariance water flux to regional scales. Empirical relationship between ET 
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and EVI and air temperature data was developed for cottonwood and salt cedar stands on the 

Middle Rio Grande and on western U.S. rivers [Nagler et al., 2005a; Nagler et al., 2005b]. 

This method offers a simple statistical approach to estimate ET over quite a short time scale 

(weekly to 16-day) in a large area. The disadvantage is that it is not known whether such a 

relationship generally exist across a large variety of biomes.  

Land surface models (LSMs), basically based on Monin-Obukhov similarity theory estimate 

latent heat flux ( E ) and sensible heat flux ( H ) from measurements of near-surface winds, 

temperature, and humidity [Monin and Obukhov, 1954], are capable of estimating ET across 

multiple spatial and temporal scales (stands to globe, hourly to decades). LSMs need 

meteorological forcing inputs, PFT coverage, vegetation status (e.g. LAI) information 

[Ghilain et al., 2012; Williams et al., 2009]. Parameterization in a specific PFT is calibrated 

and evaluated using site-level ground observations, literature, or laboratory experiments and 

then up-scaled to coarse grids [Chen and Zhang, 2009; Williams et al., 2009]. However, field 

measurements suggest that parameters vary significantly over different environmental 

conditions, even within a PFT [Wright et al., 2004]. The erroneous partitioning of ET between 

transpiration and soil or canopy evaporation limits the capability of LSMs to predict the 

sensitivities of ET to precipitation deficits and land cover change [Lawrence and Chase, 2009; 

Wang and Dickinson, 2012]. Furthermore, the partitioning of ET into canopy transpiration and 

evaporation affects the simulated GPP [Bonan et al., 2011]. Soil water availability for canopy 

transpiration, such as an unrealistic default root depth, also reduces the accuracy of ET 

estimation using LSMs, particularly over drought periods [Beer et al., 2010; Li et al., 2012; 

Schlosser and Gao, 2010; Tanaka et al., 2008]. Additional issues on LSMs are described in 

detail in several excellent reviews, for example, Wang and Dickinson [2012] and Overgaard et 

al. [2006]. Providing the advantages and disadvantages of ET estimation methods above, the 

efforts of quantifying ET continuously and accurately will obviously benefit from 
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inter-comparing ET estimates using eddy covariance, remote sensing data and land surface 

models. 

 

1.4 Study area 

This study mainly focus on biomes across Australia (except Chapter 3), covering evergreen 

broadleaf forests (EBF), open shrublands (OSH), C4 grasslands (GRA), C3 crops (CRO), 

wetlands (WET), savannas (SAV) and woody savannas (WSA). The eddy covariance flux 

towers are from the OzFlux network (http://www.ozflux.org.au/), including Adelaide River 

(AU-Ade), Alice Springs (AU-Asm), Calperum (AU-Cap), Daly Pasture (AU-Da1), Daly 

Uncleared (AU-Da2), Dry River (AU-Dry), Fogg Dam (AU-Fog), Howard Springs 

(AU-How), Yanco (AU-JXA), Sturt Plains (AU-Stp), Tumbarumba (AU-Tum), Wallaby 

Creek (AU-Wac) and Wombat (AU-Wom). These sites include major biomes in Australia and 

are dominated by a spectrum of climate regimes such as temperate, sub-tropical and tropical 

(Figure 1.1). Detailed information on these sites can be found in following chapters. It is 

noted that whether a site is included in a chapter is determined by the objective of the study. 

In Chapter 3, I extended the research into the global scale to get enough eddy covariance data 

and include biomes that do not naturally occur in Australia, such as deciduous needle-leaved 

forests and evergreen needle-leaved forests.  
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Figure 1.1. Spatial distribution of 13 OzFlux sites. The IGBP land cover types in Australia 

are also shown. The acronyms WAT, ENF, EBF, DBF, MF, CSH, OSH, WSA, SAV, GRA, 

WET, CRO, URB, CNM, SNO and BRN denote water, evergreen needleleaf forest, evergreen 

broadleaf forest, deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands, 

woody savannas, savannas, grasslands, wetlands, croplands, urban and built-up, 

cropland/natural vegetation mosaic, snow and ice and barren or sparsely vegetated, 

respectively. 

 

1.5 Aims and overview 

This study aims to integrate eddy covariance method, remote sensing techniques, and land 

surface modeling to quantify GPP and ET across Australian terrestrial biomes and their 

responses to climate change over a range of time scales. In chapter 2 to 5, I use one of the 

three approaches in a novel way to address scientific questions on the coupling or estimation 

of GPP and ET and produce available GPP and ET products (Figure 1.2). In Chapter 6, 



14 

outputs by previous chapters are integrated into a comprehensive assessment of patterns and 

underlying mechanisms of GPP and ET in Australia (Figure 1.2). Hypotheses and specific 

aims for each chapter are listed as the following: 

 

Figure 1.2. Framework of this thesis. The horizontal axis indicates time-scale while the 

vertical axis indicates spatial scale. The box for thesis step represents the spatio-temporal 

scales at which the research is conducted. The solid arrow lines indicate methods used in the 

chapter while the dashed arrow lines indicate output of the chapter into following steps. 

 

(1) In Chapter 2, I assume that the sensitivities of GPP to energy and water resources 

(represented as ET) across biomes, i.e., ecosystem light-use efficiency (eLUE) and ecosystem 

water-use efficiency (eWUE), are closely related with climate variables. The lack of 

consensus on controlling factors of eLUE and eWUE at multiple temporal scales and across 

biomes reflects the complexity of interactions between terrestrial ecosystems and climate. The 

eddy covariance technique provides an opportunity to examine this because it includes 
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simultaneous measurements of solar radiation, carbon and water fluxes, VPD and soil 

moisture content, thereby generating an extensive time series of eLUE and eWUE from 

hourly to annual time-scales. Seven OzFlux sites along a precipitation gradient were used. 

The novelty of this study lies in the application of the wavelet-aggregation method in 

decomposing half-hourly flux data into different frequencies.  

(2) In Chapter 3, I examined the ability of EVI alone to estimate GPP across biomes. 

Previous studies have shown that the EVI holds the potential to estimate GPP across biomes. 

However, this capacity of EVI has never been validated or developed against biomes 

distributed globally. The FLUXNET and MODIS EVI data set offer the opportunity to explore 

the relationship between annual GPP and annual EVI and thus can provide long-term 

monitoring of GPP to compare with modeled GPP by LSMs.  

(3) In Chapter 4, I aim to develop a pure remote sensing model of ET. Thermal or physical 

based remote sensing models are limited by the accuracy of land surface temperature, 

complex parameterization and coarse resolution of global meteorological inputs. The novelty 

of this study is that within a sophisticated hydrological framework of ET regimes, energy and 

water constraints on ET are represented by multi-source remote sensed variables, including 

optical EVI, thermal LST and microwave soil water content (SWC).  

(4) In Chapter 5, the Bayesian Monte Carlo Markov Chain method is used to identify and 

optimize key processes for GPP and ET in the CABLE model. Different from previous studies 

focusing on above- or below-ground processes only, I investigated both simultaneously 

through an improved version of CABLE, which incorporates a dynamic root water uptake 

function and a hydrologic redistribution function.  

(5) In Chapter 6, GPP estimated by EVI alone, ET estimated in Chapter 4 and other remote 

sensing products of GPP and ET are jointly used to benchmark the optimized CABLE model 
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across Australia. The specific aims are to find the deficits of LSMs in utilizing available 

information included in inputs and investigate the performance of LSMs at a large spatial 

scale with a variety of vegetation types and climate regimes.  

(6) In Chapter 7, findings and their implications in previous chapters are discussed as well as 

priory research directions in future.  
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Chapter 2: Intrinsic climate dependency of ecosystem light 

and water-use-efficiencies across Australian biomes 

Abstract 

The sensitivity of ecosystem gross primary production (GPP) to availability of water and 

photosynthetically active radiation (PAR) differs among biomes. Here I investigated 

variations of ecosystem light-use-efficiency (eLUE: GPP/PAR) and water-use-efficiency 

(eWUE: GPP/evapotranspiration) among seven Australian eddy covariance sites with 

contrasting annual precipitation, species composition and temperature regimes. Changes to 

both eLUE and eWUE were primarily correlated with atmospheric vapor pressure deficit 

(VPD) at multiple temporal scales across biomes, with minor additional correlations observed 

with soil moisture and temperature. The effects of leaf area index on eLUE and eWUE were 

also relatively weak compared to VPD, indicating an intrinsic dependency of eLUE and 

eWUE on climate. Additionally, the influence of eLUE and eWUE were statistically different 

for biomes between summer and winter, except eWUE for savannas and the grassland. These 

findings will improve our understanding of how light- and water-use traits in Australian 

ecosystems may respond to climate change. 

 

2.1 Introduction 

Climate imposes important but often contrasting limitations on productivity in most vegetated 

biomes [Churkina and Running, 1998]. Among climate factors, solar radiation provides the 

energy source for photosynthesis, while water availability alters leaf-scale photosynthesis via 

modulations of plant stomatal conductance [Beer et al., 2009] and canopy-scale 

photosynthesis via changes in leaf area index [Eamus et al., 2001]. Ecosystem 
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light-use-efficiency (eLUE) and water-use-efficiency (eWUE) are two critical traits of 

terrestrial ecosystems that characterize the sensitivity of biomass production to solar 

irradiance and water supply [Beer et al., 2007; Hu et al., 2008; Ponton et al., 2006; Turner et 

al., 2003]. eLUE and eWUE differ substantially in value and vary with environmental stress 

and vegetation structure within and across biomes [Farquhar et al., 1989; Law et al., 2002; 

Schwalm et al., 2006]. The values of both eLUE and eWUE exhibit time-scale dependence in 

the sense that their primary environmental controls vary temporally [Campos et al., 2013; 

Schwalm et al., 2006; Turner et al., 2003].  

Historically, eLUE ( ) has been defined as the ratio of net primary production (NPP, 

aboveground or total, εn) or gross primary production (GPP, εg) to incident photosynthetically 

active radiation (PAR) or absorbed PAR (APAR) [Gower et al., 1999]. Based upon 

evolutionary and physiological theory, εn and εg are expected to converge across biomes 

[Goetz and Prince, 1999]. However, values of each are dependent on plant function type 

[Gower et al., 1999; Schwalm et al., 2006; Turner et al., 2003]. The biophysical, biochemical 

and meteorological controls of eLUE among biomes at multiple time-scales are not well 

understood, resulting in imprecise estimates of NPP and GPP and uncertainties in the 

responses of eLUE to climate change [Kanniah et al., 2011]. For example, in one study, daily 

εg decreased with increasing APAR but was poorly correlated with vapor pressure deficit 

(VPD) or air temperature (Ta), while the relative values of εg across biomes were influenced 

by relative nitrogen availability [Turner et al., 2003]. In contrast, Schwalm et al. [2006] 

observed that changes in daily εg were driven by variation in light and temperature with no 

correlation to water availability or foliar nitrogen, while annual εg varied across biomes as a 

function of mean annual temperature (MAT) and leaf area index (LAI). Additionally, annual εg 

can increase with increasing total annual precipitation and decreasing potential 

evapotranspiration [Polley et al., 2011] or MAT [Lafont et al., 2002].   
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eWUE reflects a trade-off between carbon gain and water loss from leaves and ecosystems 

[Baldocchi, 1994], and is important for ecosystem productivity and resilience [Campos et al., 

2013; Huxman et al., 2004]. At the leaf-scale, eWUE is expressed as the ratio of net 

photosynthesis to transpiration but at the ecosystem-scale, eWUE is defined as the ratio of 

either NEE or GPP to ET or canopy transpiration [Beer et al., 2009; Niu et al., 2011]. To 

quantify the role of water limitation on above-ground NPP, rain-use-efficiency (RUE, the ratio 

of above-ground NPP to rainfall) is widely used [Huxman et al., 2004]. Alternatively, inherent 

water-use-efficiency (IWUE, GPP*VPD/ET) can be used to normalize the effect of VPD on 

ET [Beer et al., 2009; Eamus et al., 2013]. Daily eWUE is negatively correlated with VPD 

during the time of peak GPP activity [Ponton et al., 2006] and so is monthly eWUE across a 

large range of biomes [Law et al., 2002]. In contrast, annual eWUE tends to be similar across 

biomes except for tundra vegetation [Law et al., 2002]. Across a grassland transect in China, 

LAI is considered as the primary determinant of seasonal eWUE [Hu et al., 2008]. Annual 

eWUE of grasslands may decrease [Li et al., 2008] or increase [Niu et al., 2011] with 

increasing annual precipitation whilst eWUE may differ between wet and dry years [Campos 

et al., 2013; Huxman et al., 2004] or wet and dry seasons [Eamus et al., 2013], and varies 

with soil moisture and LAI [Beer et al., 2009]. 

The lack of consensus on the relative importance of different controlling factors of eLUE and 

eWUE across biomes at multiple temporal scales reflects the complexity of interactions 

between terrestrial ecosystems and climate. Therefore, a key issue to resolve is the 

relationships of eLUE and eWUE to climatic drivers. The eddy covariance (EC) technique 

provides an opportunity to examine the potential relationships through simultaneous 

measurements of solar radiation, carbon and water fluxes, VPD and soil water content (SWC), 

thereby generating an extensive time series of eLUE and eWUE from hourly to multi-annual 

time-scales. Concurrent measurement of meteorological variables with fluxes can be used to 
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quantify limitations on eLUE and eWUE and the interaction of climate variables as 

determinants of eLUE and eWUE. Thus, the current study used eddy covariance data from 

seven contrasting ecosystems in Australia for examining the magnitude, spatial patterns, and 

environmental regulation of eLUE and eWUE at multiple time-scales (hourly, daily, 8-day, 

monthly, and yearly). These seven EC sites encompass a range of biomes along a large 

precipitation, species compositional and temperature gradient, thereby providing further 

insights into coupling between ecosystems and climate. I aimed to identify variations in eLUE 

and eWUE of Australian major ecosystems over different time-scales and their key climatic 

drivers among biomes. This will allow for a better understanding of the coupling of carbon 

and water cycles and the effects of climate change on ecosystem carbon budgets and water 

use.  

 

2.2 Methods 

2.2.1 Sites and data processing 

2.2.1.1 Sites information 

Seven sites were selected for this study in Australia. These sites include four contrasting 

savannas (Savn, AU-Ade, AU-Asm, AU-Dry and AU-How sites), two different evergreen 

broadleaf forests (EBF, AU-Tum and AU-Wac sites), and one grassland (Grass, AU-Stp site) 

(Table 2.1; Figure 2.1). The dominant woody species differ among the sites. The AU-How and 

AU-Dry sites are Eucalyptus tetrodonta/Eucalyptus miniata dominated savannas (tree height 

ca 12 m), which are widely distributed across tropical Australia [Hutley et al., 2011]. The 

AU-Ade site is dominated by Eucalyptus tectifica and Corymbia latifolia (tree height ca 16 m) 

as a result of the finer textured and poorly drained soils. The canopy dominant tree species at 

the AU-Asm site is the N2 fixing species Acacia aneura, which is 6.5 m tall on average.  

Each of these sites (AU-How, AU-Dry, AU-Ade and AU-Asm) are classified as savanna, a 
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biome defined by a discontinuous tree canopy with a grassy understory [Eamus et al., 2001] 

experiencing seasonality in rainfall. The grassland AU-Stp is dominated by Mitchell grass 

within an extensive tussock grassland ecosystem that occurs on heavily cracking clay soils. 

The AU-Tum site is classified as a wet sclerophyllous forest and is dominated by Eucalyptus 

delegatensis (tree height ca 40 m). The AU-Wac site is an 300-year-old growth stand 

dominated by Eucalyptus regnans (tree height ca 75 m) with a temperate rainforest understory 

consisting of Pomaderris aspera and Olearia argophylla (tree height 10-18 m) [Kilinc et al., 

2013a]. Bioclimatic classifications of these sites range from tropical wet-dry in northern 

Australia, through tropical semi-arid in central Australia to cool temperate mesic in 

southeastern. Mean annual precipitation (MAP) is smallest in central Australia and largest in 

far northern monsoonal Australia. All sites show seasonal patterns in precipitation, 

temperature and VPD that interact with large fluctuations in water availability. Seasonal 

variability in temperature and PAR was larger at the two forests in southeastern Australia than 

at the grassland and savanna sites. Conversely, seasonal variability in VPD and rainfall was 

larger in the northern and central sites, where a distinct dry season occurs during Australian 

winter (Figure 2.1).  
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Table 2.1. La Thuile code, site name, latitude (Lat), longitude (Long), year of observations, 

altitude (Alt), biomes (Evergreen Broadleaf Forests, EBF; Savannas, Savn; Grasslands, Grass), 

mean maximum annual temperature (Tmax), mean minimum annual temperature (Tmin), mean 

annual precipitation (MAP), mean annual minimum leaf area index (LAImin) and mean annual 

maximum LAI (LAImax) during observation intervals for the study sites.  

La Thuile 
code 

Site name Lon Lat Year Alt  
(m) 

Biome
s 

Tmax 
( ) 

Tmin 
( ) 

MAP  
(mm) 

LAImin-LAIm

ax 
(m2/m2) 

AU-How Howard 
Springs 

131.15 E 12.50 S 2004-
2008 

64 Savn 39.3 12.2 1201 1.23-2.16 

AU-Ade Adelaide 
River 

131.12 E 13.08 S 2007-
2009.
05 

90 Savn 38.0 11.7 1852 0.73-2. 04 

AU-Dry Dry River 132.37 E 15.26 S 2009-
2012.
09 

175 Savn 40.6 8.9 995 1.03-1.66 

AU-Stp Sturt Plains 133.35 E 17.15 S 2008-
2012 

250 Grass 42.7 6.2 695 0.38-1.03 

AU-Asm Alice 
Springs 

133.25 E 22.28 S 2010.
09-20
13.09 

606 Savn 40.8 0.2 335 0.27-0.47 

AU-Tum Tumbarum
ba 

148.15 E 35.66 S 
 

2008-
2012 

120
0 

EBF 29.3 -2.9 1000 4.06-5.58 

AU-Wac Wallaby 
Creek 

145.19 E 37.43 S 
 

2006-
2008 

720 EBF 33.1 -0.1 1595 0.98-5.01 
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Figure 2.1. Average annual precipitation contour map of Australia in 30 years from 1976 to 

2005 (statistics by Bereau of Meteorology, Australia), spatial distribution of selected sites and 

average monthly climate over the respective observation periods for each site. T indicates 

temperature, Prcp indicates precipitation, PAR indicates photosynthetically active radiation, 

and VPD indicates the vapor pressure deficit. 
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2.2.1.2 Data processing 

At each site, LAI data were derived from the space-borne MODIS (Moderate Resolution 

Imaging Spectroradiometer) sensor (500 m spatial resolution and 8 day temporal resolution). 

The MODIS images are spatially similar to the footprint size of the EC data used. A central 3 

× 3 window was used to extract the flux tower LAI time series. This sampling strategy can 

effectively reduce the error due to the scale mismatch between the tower footprint and 

MODIS pixels [Rahman et al., 2005; Xiao et al., 2005]. Then the LAI data series were 

smoothed using the TIMESAT tool [Jönsson and Eklundh, 2004]. Mean maximum LAI 

(LAImax) for each site were aggregated at 8-day, monthly and yearly scales.  

Half-hourly carbon and water fluxes, rainfall, air and soil temperature, soil water content, 

absolute humidity, downward shortwave radiation and net radiation were measured using an 

eddy covariance system and associated meteorological and soil moisture sensors installed at 

each site. PAR and ET were calculated as downward shortwave radiation (unit: W m-2) times 

0.5 and latent heat flux (unit: W m-2) divided by the latent heat of vaporization (2450 J g 

H2O-1), respectively. Water and CO2 fluxes were processed through OzFlux level 2 (i.e., 

QA/QC) and level 3 (e.g. rotation, correction for frequency attenuation, and density-flux 

(WPL) corrections) using standardized methodology [Eamus et al., 2013]. The post 

processing of the quality controlled data to fill gaps in meteorology, soil moisture and fluxes 

as well as partitioning NEE into GPP and ecosystem respiration was performed using the 

Dynamic INtegrated Gap filling and partitioning for Ozflux (DINGO) system. The system 

was coded in Python and consisted of modules to gap fill meteorological variables (air 

temperature, specific humidity, wind speed and barometric pressure) using nearby Bureau of 

meteorology (www.bom.gov.au) automatic weather stations that were correlated and 

corrected to tower observations. All radiation streams were gap-filled using a combination of 

MODIS albedo products (MCD43 BRDF-Albedo suite) and Bureau of Meteorology (BoM) 
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gridded global solar radiation and gridded daily meteorology from the Australian Water 

Availability Project data set (BoM AWAP) [Jones et al., 2009]. Precipitation was gap-filled 

using either nearby BoM stations or BoM AWAP. Soil temperature and moisture were filled 

using the BIOS2 land surface model [Haverd et al., 2013] run for each site forced with BoM 

AWAP data. Gap filling of fluxes were performed using an Artificial Neural Network (ANN) 

model using a multilayer network of full connectivity following Beringer et al. [2007]. 

Training was done using gradient information in a truncated Newton algorithm. NEE and the 

fluxes of sensible, latent and ground heat fluxes were modelled using the ANN with incoming 

solar radiation, VPD, soil moisture content, soil temperature, wind speed and MODIS EVI as 

inputs. The Ustar threshold for each site was determined following [Reichstein et al., 2005] 

and night time observations below the μ* (the wind friction velocity) threshold were replaced 

with ANN modelled values of ecosystem respiration using soil moisture content, soil 

temperature, air temperature and MODIS EVI as inputs. The ANN model for ecosystem 

respiration was applied to daylight periods to estimate daytime respiration and GPP was 

calculated as the difference between net ecosystem exchange and ecosystem respiration. 

 

2.2.2 Wavelet aggregation method  

Half-hourly eLUE and eWUE were defined as ratios of GPP to PAR and GPP to ET, 

respectively. For eLUE, using incident PAR as the denominator instead of absorbed PAR 

(APAR) can couple carbon and energy budgets directly at the ecosystem level rather than 

merely focusing on the biological mechanisms that drive photosynthesis [Schwalm et al., 

2006]. When large disturbances occurred (for example, fire or extensive insect-induced 

defoliation), flux and LAI data were excluded from all analyses to minimize the introduction 

of bias arising from the inclusion of short-term episodic large-scale fluctuations in these data. 

To analyze multi-scale interactions between eLUE/eWUE and forcing variables, measured 
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carbon and water fluxes, meteorological variables, SWC and LAI were resolved using the 

wavelet transformation [Ding et al., 2013; Stoy et al., 2005; Torrence and Compo, 1998]. The 

wavelet transformation can be used to analyze time series such as eddy covariance fluxes 

[Scanlon and Albertson, 2001] that contain non-stationary power at different frequencies 

[Daubechies, 1990]. Here a continuous wavelet transformation with the Morlet basis was 

employed. The Morlet mother wavelet function can be represented as: 

 
2

01/4 /2
0

ie e   (3.1)  

where 0  is the frequency and is taken as 6 to make above function have zero mean and be 

localized in both time and frequency space. To ensure the wavelet transform at different 

scales are comparable to each other and the transforms of other time series, the 0  

wavelet function at each scale s  is normalized as: 

 
1/2

0
t

s
  (3.2) 

where t  is the time step of the time series. Then the continuous wavelet transform of a 

discrete time series nx  is the convolution of nx  with a scaled and translated Morlet mother 

wavelet: 

 
1

0
*

N

n t
t

t n t
W s x

s
  (3.3) 

where n  indicates the localized time index, N is the number of nx  and * indicates the 

complex conjugate. The scale s  is usually given as fractional powers of two: 

 0 2 , 0,1,...,j j
js s j J   (3.4) 

where 0s is the smallest resolvable scale and generally taken to be 2 t , j indicates the 

scale sampling step and given to be 1/12 here and 1
0log 2, /J j N t s indicates the 

number of scales. Then the reconstructed time series at scale k is the sum of the real part of 
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the wavelet transform over k  to J  scales: 

 
1/2

, 1/2
0 0

J n j
n k

j k j

R W sj tx
C s

  (3.5) 

where R  indicates the real part of complex and C  is a constant of 0.776.  

Using the wavelet method, half-hourly carbon and water fluxes and environmental factors 

were transformed, reconstructed and then aggregated at hourly, daily, 8-day, monthly, 

seasonal and yearly time-scales, respectively. eLUE and eWUE were concurrently calculated 

at each time-scale. Figure 2.2 gives an example of this method at the Howard Springs site. 

 

 

Figure 2.2. eWUE reconstruction at hourly, daily, monthly, seasonal and yearly scales using 

the wavelet transform at the Howard Springs site from 2004 to 2008. The reconstructed time 

series removes the higher frequency information in lower scales. 

2.3 Results 

2.3.1 GPP responses to PAR and ET 

Figure 2.3 shows the multi-temporal (i.e. at daily to yearly time-scales) responses of GPP to 

variations in PAR and ET across the various ecosystems. GPP and PAR were significantly 

correlated only at the two temperate forest sites (R2 = 0.88–0.97, p < 0.001 and R2 = 

0.67–0.98, p < 0.001 at AU-Tum and AU-Wac, respectively) (Figure 2.3). Generally, GPP 

exhibited a significant linear correlation with ET (R2 from 0.48 to 0.96, p < 0.001) at all sites 
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across daily to monthly time-scales. Across the three biomes, average eLUE and eWUE were 

largest in forests, intermediate in savannas, and smallest in the grassland. Among the 

savannas, eLUE and eWUE were largest at AU-How and AU-Ade (tropical savannas) and 

smallest at AU-Asm (semi-arid savanna).   

 

Figure 2.3. Relationships between (left) daily (GPPd), eight day (GPP8d), monthly (GPPm)  

GPP and PAR and between (right) GPP and ET for seven sites. Ellipses (left) indicate 95% 

confidence boundaries of GPP. Bars indicate one standard deviation of annual eLUE or 

eWUE at each site. Also shown is the linear fit between GPP and ET (right). Annual 

eLUE(eLUEyr) and eWUE(eWUEyr) were calculated from annual GPP, PAR and ET. 
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2.3.2 Relationships of eLUE and eWUE with climate 

eLUE was significantly correlated with air temperature and PAR, and eWUE was 

significantly correlated with PAR. However, these correlations across biomes became much 

weaker at shorter time-scales, especially at the hourly time-scale and in the summer when 

light is less limiting (Table 2.2). PAR explained less variation in eLUE than VPD at all 

time-scales, and air temperature was less correlated with eWUE than VPD at all time-scales 

except the hourly time-scale. Henceforth, of climate factors I mainly focus on the 

relationships between eLUE/eWUE and VPD, but this does not mean the effects of PAR on 

eLUE and air temperature on eWUE were not important. Across all sites, eLUE and eWUE 

followed a negative logarithmic relationship with VPD (Table 2.2; Figure 2.4). The 

goodness-of-fit increased as the time-scale increased. However, within a given ecosystem, a 

significant relationship between eLUE or eWUE and meteorology was, on occasion, absent. 

For example, at the AU-How site, eWUE was very weakly or not correlated with VPD 

(Figure 2.4). Likewise, at the AU-Asm site, eLUE was very weakly or not correlated with 

VPD (Figure 2.4). This suggests that the factors driving eLUE and eWUE can differ within 

and across biomes.  
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Table 2.2. Coefficients of determination (R2) between LUE, WUE and Ta, PAR, VPD, SWC 

or LAImax by logarithmic/exponential (Log/Exp) and linear (Lin) fitting, respectively. ***, **, *, 

and NULL indicates significant relationship at p < 0.001, 0.01, 0.05 and not significant, 

respectively. Monthly(S) and Monthly(W) indicate monthly variables in summer (December, 

January, and February) and winter (June, January, and August). 

 
Scale Hourly Daily 8-day Monthly 

Model Log/Exp Lin Log/Exp Lin Log/Exp Lin Log/Exp Lin 

eLUE 

Ta 0.34*** 0.35*** 0.41*** 0.41*** 0.43*** 0.43*** 0.44*** 0.44*** 

PAR 0.20*** 0.21*** 0.52*** 0.43*** 0.46*** 0.39*** 0.46*** 0.41*** 

VPD 0.43*** 0.34*** 0.71*** 0.62*** 0.76*** 0.71*** 0.78*** 0.75*** 

SWC 0.59*** 0.49*** 0.63*** 0.67*** 0.63*** 0.74*** 0.64*** 0.76*** 

LAImax     0.48*** 0.33*** 0.53*** 0.38*** 

eWUE 

Ta 0.52*** 0.52*** 0.62*** 0.63*** 0.62*** 0.65*** 0.64*** 0.67*** 

PAR 0.05*** 0.11*** 0.51*** 0.46*** 0.44*** 0.41*** 0.46*** 0.44*** 

VPD 0.49*** 0.34*** 0.71*** 0.57*** 0.74*** 0.65*** 0.78*** 0.72*** 

SWC 0.44*** 0.45*** 0.50*** 0.56*** 0.53*** 0.62*** 0.55*** 0.66*** 

LAImax     0.50*** 0.47*** 0.55*** 0.52*** 

 

(Continued) 

 Scale Monthly(S) Monthly(W) Annual 

Model Log/Exp Lin Log/Exp Lin Log/Exp Lin 

eLUE 

Ta 0.38** 0.39** 0.52*** 0.51** 0.59* 0.56 

PAR 0.40** 0.35** 0.77*** 0.70*** 0.82** 0.84** 

VPD 0.90*** 0.83*** 0.76*** 0.74*** 0.89** 0.94*** 

SWC 0.63*** 0.61*** 0.65*** 0.84*** 0.70* 0.84** 

LAImax 0.81*** 0.58*** 0.36** 0.20* 0.83** 0.68* 

eWUE 

Ta 0.65*** 0.67*** 0.63*** 0.59*** 0.75* 0.71* 

PAR 0.22* 0.19* 0.73*** 0.69*** 0.82** 0.85** 

VPD 0.83*** 0.69*** 0.79*** 0.78*** 0.95*** 0.96*** 

SWC 0.51*** 0.60*** 0.60*** 0.77*** 0.70* 0.81** 

LAImax 0.82*** 0.73*** 0.49*** 0.36** 0.84** 0.80** 



40 

 

Figure 2.4. Relationships between (left) daily (eLUEd), eight day (eLUE8d), monthly (eLUEm)  

eLUE and VPD and between (right) daily (eWUEd), eight day (eWUE8d), monthly (eWUEm) 

eWUE and VPD for seven sites. Ellipses indicate 95% confidence boundaries of eLUE and 

eWUE. Bars indicate one standard deviation of annual eLUE, eWUE or VPD at each site. 

Also shown are logarithmically fitted functions, coefficients of determination (R2) and p 

values.  
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2.3.3 Relationships of eLUE and eWUE to SWC and LAI 

Significant positive correlations between eLUE/eWUE and SWC were observed across all 

time-scales (Table 2.2; Figure 2.5). The strength of these correlations increased with 

increasing time-scale. SWC showed a slightly better relationship with eLUE at hourly 

time-scale than VPD (Table 2.2), while at other time-scales, the influence of SWC was 

consistently and slightly weaker than VPD. Across all time-scales, SWC was less correlated 

with eWUE than VPD. Specifically, SWC explained much less compared to VPD in variation 

of eLUE in summer. Considering the seven ecosystems together, a spatial pattern emerged 

whereby ecosystems with high annual average SWC also had large eLUE and eWUE. This 

was consistent with the response of eLUE/eWUE to VPD because of the inverse relationship 

between SWC and VPD. However, the relationships between eLUE/eWUE and SWC varied 

from site to site. Notably, at the AU-How site, eLUE increased with SWC whereas eWUE 

appeared to decrease as SWC increased (Figure 2.5).  
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Figure 2.5. Relationships between (left) daily (eLUEd), eight day (eLUE8d), monthly (eLUEm)  

eLUE and SWC and between (right) daily (eWUEd), eight day (eWUE8d), monthly (eWUEm) 

eWUE and SWC for seven sites. Ellipses indicate 95% confidence boundaries of eLUE and 

eWUE. Bars indicate one standard deviation of annual eLUE, eWUE or SWC at each site. 

Also shown are logarithmically fitted functions, coefficients of determination (R2) and p 

values. 
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There were significant positive correlations between eLUE or eWUE and LAImax at 8-day, 

monthly and annual time-scales (Table 2.2; Figure 2.6). Correlations between LAImax with 

eLUE and eWUE among biomes were not found within all sites. In contrast, for example, 

there was a significant decrease in eLUE and eWUE with LAImax increasing at AU-Wac site. 

Similar to climate variables, the correlation among biomes became stronger as time-scale 

increased. However, these relationships were much weaker than those between eLUE/eWUE 

and VPD. Specifically, in winter, eLUE and eWUE were moderately or weakly correlated 

with LAImax. In contrast, eLUE and eWUE in summer showed strong correlation with LAImax. 
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Figure 2.6. Relationships between (left) eight day (eLUE8d), monthly (eLUEm) and yearly 

(eLUEyr) eLUE and mean maximum LAI (LAImax) and between (right) eight day (eWUE8d), 

monthly (eWUEm) and yearly (eWUEyr) eWUE and LAImax for seven sites. Bars indicate 

standard one standard deviation of annual eLUE, eWUE or LAImax. Also shown are 

logarithmically or linearly fitted functions, coefficients of determination (R2) and p values. 
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2.3.4 Behavior of eLUE and eWUE in summer and winter 

Monthly eLUE and eWUE in summer and winter showed responses to climate variables 

consistent with the daily/8-day to annual time-scales (Table 2.2; Figure 2.7) but the 

correlation between eLUE/eWUE versus SWC in summer became relatively weak compared 

with VPD and LAI (Table 2.2). During summer, the VPD dependence of eLUE and eWUE 

were more apparent than dependence on other climate variables and SWC (Table 2.2). By 

contrast in winter, variations in eLUE and eWUE were less sensitive to VPD (i.e. the fitted 

slopes in Figure 2.7). Notably, SWC explained slightly more variability in eLUE during 

winter, than climatic variables in summer, suggesting different controlling factors and/or 

mechanisms regulating eLUE in contrary hydrothermal conditions.  

 

Seasonal eLUE differed between summer and winter at all sites except three savannas sites 

(Figure 2.7). Notably, difference of eLUE between summer and winter was significantly large 

(p < 0.001) at the AU-How savannas site. Contrary to AU-How and the grassland, the two 

EBF sites showed higher eLUE in winter. There was no significant difference of seasonal 

eWUE at biome scale except EBF. Similar to eLUE, eWUE at the two EBF sites was lower in 

summer than that in winter.  
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Figure 2.7. Logarithmical relationships between (top two) monthly LUE (eLUEm) and VPD 

and between monthly WUE (eWUEm) and VPD in summer and winter, respectively. 

Comparisons of (bottom two) average seasonal eLUE (eLUEseason) and eWUE (eWUEseason) 

for seven sites are also shown in summer and winter, respectively. Error bars indicate the 

standard deviations of seasonal eLUE or eWUE at each site. “***”, “**”, and “*” above the 

error bars of each site indicate significance at 0.001, 0.01, and 0.05 levels, while “ns” 

represents not significant, based on t-test statistics, and these symbols above the horizontal 

lines represent significance at biome level. 
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2.4 Discussion 

2.4.1 Relationships between GPP, PAR and ET 

Canopy photosynthesis can be linearly related with PAR [McMurtrie and Wang, 1993] or 

show a hyperbolic response function [Ramier et al., 2009]. Hyperbolic responses of canopy 

photosynthesis to PAR are expected in biomes with low photosynthetic capacity or low LAI 

[Baldocchi and Amthor, 2001], where self-shading within canopies is relatively small, in 

contrast to biomes with large LAI where light saturation of photosynthesis does not occur so 

frequently in the lower canopy. Thus, the significant linear correlation of GPP with PAR at 

EBF sites can be explained by their relatively large LAI (Table 2.1; Figure 2.3).  

Consequently, these sites are primarily light limited during the period of measurement. In 

savannas and the grassland, GPP was not correlated with variations in PAR at these northern 

tropical sites (Figure 2.3) due to relatively small intra-annual variations in daily average PAR 

(arising from their lower latitude) (Figures 2.1 and 2.3). Seasonal variation in GPP primarily 

responded to large changes in LAI arising from senescence of the grassy understory as driven 

by seasonal monsoonal rainfall [Whitley et al., 2011]. Thus it is light interception rather than 

light supply that limits GPP at these sites. 

 

Coupling of GPP to ET has been observed in many studies [Baldocchi, 1994; Beer et al., 

2009], and stems from the intrinsic link between carbon and water fluxes via stomatal 

conductance at the leaf level [Beer et al., 2009]. In contrast to reported convergence of annual 

eWUE across multiple biomes (except for tundra vegetation) [Law et al., 2002], I only 

observed similar eWUE values (that is, functional convergence of eWUE) within the savannas 

(Figure 2.3). Similarly, Ponton et al. [2006] identified differing eWUE among Douglas-fir 

forest, aspen forest and grassland within a growing season. However, it is noteworthy that the 

regression slope of GPP against ET in savannas during the dry season (when ET is minimal) 
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was similar to that of forests (Figure 2.3). This is likely to be because ET is driven by C3 trees 

in the dry season following senescence of the annual C4 grasses. At larger rates of ET during 

the wet season, C4 grasses dominate the understory and have a larger WUE than C3 plants. 

Thus, there is some evidence that the eucalypt species examined across temperature and 

tropical biomes in the current study converged to a common WUE. This result is consistent 

with the results of O’Grady et al. [2009], who observed convergence of rates of tree water use 

within an arid-zone woodland in Australia. Apparent divergence of eWUE between seasons in 

wet-dry tropical biomes is therefore driven by changes in the relative contributions of upper 

(C3) and lower (C4) canopies to ET and GPP, rather than changes in functional behavior of 

the biomes per se. 

  

2.4.2 Climate dependence of  eLUE and eWUE among biomes 

Variations of eLUE were best explained by VPD and SWC while variations of eWUE were 

best explained by VPD across all time-scales but also well correlated with SWC (Table 2.2). 

This suggested that VPD co-varied with SWC and water availability was the most influential 

factor for eLUE/eWUE. Rapid ecosystem transitions that include changes in ecosystem 

productivity, structure and water cycling can result from long-term climate variations, such as 

variability in inter-annual precipitation and seasonality of precipitation [Grimm et al., 2013]. 

Over northern savannas in Australia and the grassland, rainfall is the primary environmental 

controlling factor such that vegetation structure (i.e. tree height and LAI) has adapted to the 

available resources [Cook et al., 2002]. In contrast, PAR, VPD and air temperature which 

usually strongly co-vary, were the major drivers of variation in ecosystem productivity in the 

two temperate forests [Cleverly et al., 2013; Kanniah et al., 2011; van Gorsel et al., 2013]. 

Therefore, climate variables are critical factors that essentially regulate eLUE and eWUE 

through their long-term influence on ecosystem structure and functioning. Consequently, the 
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results presented here showed a robust intrinsic dependence of eLUE and eWUE on climate 

across all time-scales.   

 

Several explanations exist for the strong link between eLUE/eWUE and climate. Generally, 

climatic control of ET and GPP lies somewhere along a continuum between either severe 

water or energy limitation [Budyko, 1974; Whitley et al., 2011], although temperature also 

limits productivity in many low latitude ecosystems [Churkina and Running, 1998]. Deficits 

of radiation, temperature or water that cause a decrease in GPP will lead to lower canopy 

conductance and ET [Beer et al., 2009]. Most sites in the present study, and particularly the 

tropical ones that experience a distinct dry season, did not show evidence of energy supply 

limitation (as inferred from PAR) at any temporal scales because the range in daily PAR was 

too small (Figure 2.3). VPD represents atmospheric evaporative demand and is responsive to 

patterns of water availability. Increasing VPD leads to reduced GPP through smaller stomatal 

conductance [Beer et al., 2009], hence eLUE and eWUE decline with increasing VPD 

because at low and moderate values of VPD, increasing VPD causes increased ET [Eamus et 

al., 2008; Thomas and Eamus, 1999; Wharton et al., 2009] but reduced GPP (Table 2.2; 

Figure 2.7).   

 

2.4.3 Seasonal patterns of eLUE and eWUE across biomes 

eLUE and eWUE showed significant difference between summer and winter at several sites 

(Figure 2.7). Seasonal changes in climate variables, soil water content and vegetation 

structure (e.g. LAImax) can explain these seasonal similarity or difference. At the EBF sites 

during winter, GPP increased with PAR. During winter neither temperature nor VPD were 

supra-optimal for GPP. In contrast, in the summer, increasing PAR was accompanied by 

either temperature or VPD attaining supra-optimal values, thereby limiting the response of 
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GPP to increased PAR and leading to a smaller eLUE in summer. A similar phenomenon was 

also found in eWUE. At the EBF sites, both GPP and ET decreased in winter. However, in 

summer, high VPD and temperature imposed larger limiting effects on GPP than ET, which 

caused a smaller eWUE in summer. This limiting effect was especially obvious at the 

AU-Wac site because VPD became increasingly important for GPP during summer compared 

to winter [Kilinc et al., 2013b]. Meanwhile, since both GPP and LAImax at AU-Wac were 

larger in summer whereas the corresponding eLUE was relatively smaller (p < 0.01), eLUE 

was negatively correlated with LAImax (Figure 2.6) as with VPD. At the grassland site, dry 

winter (Figure 2.1) caused SWC and LAI to decline significantly compared to summer (data 

not shown), which decreased canopy photosynthesis and transpiration and further decreased 

eLUE substantially but not significantly affected eWUE. At AU-How, as a combination of 

trees and seasonal grass, savannas have larger LAI in summer resulting in a larger GPP. 

Meanwhile, PAR in winter at AU-How was comparable to that in summer. Consequently, 

eLUE in summer at this site was larger than that in winter (p < 0.001). Similarly, both GPP 

and ET in winter significantly decreased resulting from senescence of C4 grass and effects of 

meteorological variables, but the decrease in GPP was stronger than the decrease in ET at 

AU-How, leading to a smaller eWUE. Contrarily, at AU-Dry the decrease in ET exceeded the 

decrease in GPP resulting in a larger eWUE in winter. This asynchronous response of GPP 

and ET to climatic variables or LAI and thus variations of eWUE are in good agreement with 

previous findings in China [Yu et al., 2008]. 

 

2.5 Conclusions 

Climate drivers are critical in regulating water cycling (and consequently soil water content) 

and LAI through their long term influences on ecosystem structure and functioning [Kanniah 

et al., 2011]. Understanding the spatial patterns of eLUE and eWUE at multiple time-scales 
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and their underlying environmental control mechanisms is of great significance for estimating 

ecosystem carbon budgets and water carrying capacity under changing hydrothermal 

conditions (i.e., climate change) [Yu et al., 2008]. In this study, I investigated the relationships 

between eLUE and eWUE versus climate factors, soil water content and vegetation dynamics 

across diverse climatic regimes across environmental gradients. Across biomes, eLUE and 

eWUE were tightly and coherently correlated with climate drivers, particularly VPD (and 

consequently SWC), at multiple time-scales. For any specific biome, eLUE and eWUE were 

significantly different between summer and winter except eWUE for savannas and the 

grassland. LAI played an important role in influencing eLUE and eWUE in summer season. 

Our results provide valuable information for predicting the spatial pattern of eLUE and eWUE 

at multiple time-scales across Australian biomes. Also this study improves understanding of 

the responses of ecosystem functional traits to gradients in water availability and temperature, 

which in turn enables improvements of estimating carbon and water fluxes on a large spatial 

scale.  
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Chapter 3. Assessing the ability of MODIS EVI to estimate 

terrestrial ecosystem gross primary production of multiple 

land cover types 

Abstract 

Terrestrial ecosystem gross primary production (GPP) is the largest component in the global 

carbon cycle. The enhanced vegetation index (EVI) is strongly correlated with annual GPP 

within several biomes. However, the annual GPP-EVI relationship and associated 

environmental regulations have not yet been comprehensively investigated across biomes at 

the global scale. Here I explored relationships between annual integrated EVI (iEVI) and 

annual GPP observed at 155 eddy flux sites, where GPP was predicted with a log-log model: 

ln( ) ln( )GPP a iEVI b . iEVI was computed from MODIS monthly EVI products 

following removal of values affected by snow or cold temperature and without calculating 

growing season duration. Through categorization of flux sites into 12 land cover types, the 

ability of iEVI to estimate GPP was considerably improved (R2 from 0.62 to 0.74, RMSE 

from 454.7 to 368.2 g C m-2 yr-1). The biome-specific GPP-iEVI formulae generally showed a 

consistent performance in comparison to a global benchmarking dataset (R2 = 0.79, RMSE = 

387.8 g C m-2 yr-1). Specifically, iEVI performed better in cropland regions with high 

productivity but poorer in forests. The ability of iEVI in estimating GPP was better in 

deciduous biomes (except deciduous broadleaf forest) than in evergreen biomes due to the 

large seasonal signal in iEVI in deciduous biomes. Likewise, GPP estimated from iEVI was in 

a closer agreement to global benchmarks at mid and high-latitudes, where deciduous biomes 

are more common and cloud cover has a smaller effect on remote sensing retrievals. Across 

biomes, a significant and negative correlation (R2 = 0.37, p < 0.05) was observed between the 
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strength (R2) of GPP-iEVI relationships and mean annual maximum leaf area index (LAImax), 

and the relationship between the strength and mean annual precipitation followed a similar 

trend. LAImax also revealed a scaling effect on GPP-iEVI relationships. These results suggest 

that iEVI provides a very simple but robust approach to estimate spatial patterns of global 

annual GPP whereas its effect is comparable to various light-use-efficiency and data-driven 

models. The impact of vegetation structure on accuracy and sensitivity of EVI in estimating 

spatial GPP provides valuable clues to improve EVI-based models. 

 

3.1 Introduction 

Terrestrial gross primary production (GPP) is the amount of carbon captured from the 

atmosphere through vegetation photosynthesis [Beer et al., 2010]. Vegetation GPP is a key 

component of the terrestrial carbon balance and is of fundamental importance to human 

society because plants provide food, fiber and wood supply and also contribute to the 

production of environmental conditions suitable for human habitation [Melillo et al., 1993; 

Xiao et al., 2005; Zhao et al., 2005]. Therefore, continuous monitoring and accurate 

estimation of GPP is required to ensure the long term security of terrestrial ecosystem services 

and to address issues pertaining to the global carbon cycle, including determination of the size 

of the terrestrial carbon sink, prediction of vegetation dynamics, and management of forests 

and grasslands [Ciais et al., 2005; Ma et al., 2013; Sims et al., 2006b].  

GPP can be calculated as the sum of vegetation assimilated carbon flux, partitioned from net 

carbon exchange measured at eddy covariance (EC) tower sites [Baldocchi et al., 2001; 

Reichstein et al., 2007], but such observations are limited, both temporally and spatially. 

Remote sensing technique provides a promising approach to overcome these limitations. 

Various diagnostic models taking advantage of spatially extensive remote sensing and 
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meteorological data have been developed to estimate GPP across stand-to-global scales for a 

relatively long period [e.g., Jung et al., 2008; Running et al., 2004; Sims et al., 2008; Xiao et 

al., 2005]. These models can be generally partitioned into three categories: 

light-use-efficiency (LUE) models, machine learning algorithms and simple empirical models 

[Verma et al., 2014]. The LUE theory was first proposed by Monteith [1972], in which GPP is 

generally represented as the product of LUE, photosynthetically active radiation (PAR), the 

fraction of PAR absorbed by vegetation (fAPAR), and environmental scalars. fAPAR is a 

strong function of vegetation greenness, as measured by vegetation indices (VIs), such as the 

normalized difference vegetation index [NDVI; e.g., Goward and Huemmrich, 1992] and the 

enhanced vegetation index [EVI; e.g., Xiao et al., 2004a; Xiao et al., 2004b]. However, it is 

difficult to estimate LUE, which varies among plant functional types, and it can be 

down-regulated by temperature, soil water content, vapour pressure deficit (VPD), and leaf 

phenology [Xiao et al., 2005]. Another deficiency of LUE models is the coarse resolution of 

climate inputs, which are often only available at large scales. This may introduce significant 

errors to estimations of GPP [Heinsch et al., 2006; Zhao et al., 2005] and hinder the 

acquisition of fine-resolution GPP estimates at large scales. Machine learning algorithms, 

such as artificial neural networks [Papale and Valentini, 2003], support vector machines 

[Yang et al., 2007], and model tree ensembles [Jung et al., 2009], predict GPP based on the 

non-functional patterns extracted in training data sets. Obviously, the accuracy of machine 

learning algorithms relies on the abundance and representativeness of input information 

including remotely sensed vegetation properties, meteorological, and land cover data [Jung et 

al., 2011]. Therefore, the use of machine learning algorithms is also limited by the coarse 

resolution of meteorological data. Moreover, in many cases machine learning algorithms show 

no better performance than LUE models in specific ecosystems [e.g., Yang et al., 2007]. 

Consequently, simple empirical models utilizing remote sensing proxies of vegetation 
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photosynthesis activity (with or without meteorological data) enjoy consistent interest in 

estimating both spatial and temporal variations of GPP [e.g., Jung et al., 2008; Rahman et al., 

2005; Sims et al., 2006b].  

The growing season NDVI and EVI show strong relationships with vegetation production 

over one or two week intervals [e.g., Mao et al., 2014; Rahman et al., 2005; Sims et al., 2006a; 

Sims et al., 2006b; Wylie et al., 2003]. Vegetation indices per se are transformations of two or 

more spectral bands to enhance the signal derived from vegetation properties [Huete et al., 

2002]. Both NDVI and EVI employ surface bidirectional reflectances of red and near-infrared 

spectral bands that are sensitive to leaf chlorophyll content [Huete et al., 2002], which 

converts light to photosynthetic carbon fixation. NDVI is limited due to its saturation over 

dense vegetation and large sensitivity to canopy background brightness [Huete et al., 2002], 

whereas EVI can improve performance in regions of high biomass through a decoupling of 

the canopy and background signals and a reduction in the influence of atmospheric conditions 

using a blue spectral reflectance [Huete et al., 2002]. This makes EVI more responsive to 

canopy structural variations and thus EVI is better correlated with GPP than NDVI in 

evergreen [Xiao et al., 2004a] and deciduous [Xiao et al., 2004b] forests as well as in 

croplands [Xiao et al., 2005]. Compared to LUE models, the growing season EVI or 

EVI-based models [e.g., Temperature-Greenness model; Sims et al., 2008] provide a 

comparable or better estimation of GPP at both the 16-day [Sims et al., 2008; Sims et al., 

2006b] and annual [Verma et al., 2014] time-scales. As well as EVI, cumulative growing 

season fAPAR with separate functions for herbaceous plants, evergreen forests and all other 

vegetation types has been used to predict annual GPP in Europe [Jung et al., 2008]. The 

disadvantage of selecting fAPAR against EVI is subtle: fAPAR consists of fractional 

absorbance of PAR absorbed by both chlorophyll and by non-photosynthetic pigments [Zhang 

et al., 2005], while EVI is much closer to the fraction of PAR absorbed by chlorophyll. 
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Moreover, fAPAR shows no significant correlation with GPP in deciduous broadleaf forests 

[Jung et al., 2008]. Therefore, the use of EVI should be favored over fAPAR in correlating to 

GPP. However, current studies on EVI-GPP relationships or EVI-based models have been 

focused within only a limited number of biomes and these EVI-based models generally need 

to compute the start and end or the length of the growing season period [Jung et al., 2008; 

Sims et al., 2008; Sims et al., 2006b; Verma et al., 2014], which constitutes an extra source of 

uncertainty. Simultaneously, environmental influences on the ability of EVI to estimate GPP 

across a wide spectrum of biomes have not yet been investigated [Sims et al., 2006b; Sjöström 

et al., 2011]. 

In this study, I used the annual integral of MODIS EVI (iEVI), which only needs removal of 

those values that have been affected by cold temperature or snow and subtracting the soil 

background signal, to regress with annual eddy covariance measured GPP across 12 land 

cover types. The developed set of formulae were then applied at the global scale and 

compared with a widely used GPP benchmark dataset to evaluate the effectiveness and 

robustness of iEVI, thereby determining whether iEVI can serve as a reference for other GPP 

models over a fine-to-coarse resolution. The impacts of environmental conditions on iEVI in 

estimating GPP were further investigated across biomes, to improve our understanding of the 

underlying mechanistic processes that differentiate responses of vegetation photosynthetic 

activity to remote sensing spectral measurements among biomes.        

 

3.2 Data and Methods 

3.2.1 Eddy covariance and meteorological data 

The eddy covariance method is a micrometeorological technique that directly measures net 

carbon, water and energy fluxes across a horizontal plane between vegetation canopies and 
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the atmosphere [Aubinet et al., 2000; Baldocchi et al., 2001]. In the present study a total of 

155 sites (Appendix Table A3.1) were selected, consisting of 624 site-years of data and 

representing a worldwide spectrum of biomes and climate regimes with excellent coverage in 

North America, Eurasia and Oceania [Table 3.1, Figure1; Baldocchi, 2008; Baldocchi et al., 

2001; Wang and Dickinson, 2012].  

The flux data were obtained from three sources: (1) a small fraction (mainly high-latitude and 

wetland sites) was collected directly from published studies, which only included annual 

values of flux and meteorological forcing; (2) a larger fraction was contributed directly from 

participating site researchers; and (3) the majority were from FLUXNET level 2 or level 4 

products that were downloaded from the database. Of the latter two categories, only site-years 

with small gaps (i.e., individual gaps in NEE of less than 5% of the entire annual record) were 

selected except in certain ecosystems of the boreal region where only growing season data 

were available. Carbon and water fluxes and meteorological variables in all selected site-years 

were then processed through gap-filling and flux partitioning routines. If the principal 

investigator at each site had already performed these processes, the already gap-filled and 

partitioned GPP dataset was aggregated from a half-hourly time-step to an annual time-scale 

(GPPEC). Otherwise, half-hourly GPP derived using one of the two FLUXNET standard 

methods, either the marginal distribution sampling [MDS, a local method; Reichstein et al., 

2005] or a feed-forward artificial neural network [ANN, trained on an annual dataset; Papale 

and Valentini, 2003], were obtained from the FLUXNET products to calculate annual GPP. 

Both partitioning methods show good performance according to previous studies [Papale and 

Valentini, 2003; Reichstein et al., 2005]. For sites with neither investigator’s decomposition 

nor standardized flux partitioning, the publicly available online MDS tool 

[http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/index.php; Reichstein et al., 2005] was 

used to gap-fill and partition NEE. The derived half-hourly GPP, temperature, precipitation 
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and vapour pressure deficit (VPD) of all site-years were screened for outliers and linearly 

interpolated in bins representing the measurement hour of the day before aggregation into the 

annual scale.  

Table 3.1. Summary of number of sites and site-years used for each biome. CNM: 

cropland/natural vegetation mosaic; CRO: croplands; CSH: closed shrublands; DBF: 

deciduous broadleaf forest; DNF: deciduous needle-leaf forest; EBF: evergreen broadleaf 

forest; ENF: evergreen needle-leaf forest; GRA: grasslands; MF: mixed forest; OSH: open 

shrublands; SAV: savannas; WET: permanent wetlands; WSA: woody savannas. 

Biome CRO CSH DBF DNF EBF ENF GRA MF OSH SAV WET WSA 

Sites 16 4 18 4 13 40 24 8 7 7 9 5 

Site-years 61 11 83 6 55 190 76 28 21 24 34 35 

 

 

Figure 3.1. Geographical distribution of flux towers overlaid onto the 2001 MODIS IGBP 

land cover map at a 0.5º × 0.5º resolution.  

 

3.2.2 Benchmark dataset 

The model tree ensemble (MTE) approach was used to empirically up-scale FLUXNET 



65 

measurements of fluxes (hereafter GPPMTE) to the global scale. Explanatory variables for the 

model consisted of meteorological variables, the biophysical state of the vegetation, and 

vegetation types [Jung et al., 2009; Jung et al., 2011]. GPPMTE constitutes a benchmark for 

global FLUXNET up-scaling that has been used as a baseline for evaluating land surface 

models and estimating global CO2 uptake [e.g., Beer et al., 2010; Bonan et al., 2011]. 

However, GPPMTE has its own weakness, specifically for estimates of GPP in high-production 

croplands [Guanter et al., 2014]. Mean annual GPPMTE was calculated at a spatial resolution 

of 0.5º for the years 1982-2008. The same grid was also applied in our global GPP estimation. 

 

3.2.3 Satellite data 

3.2.3.1 EVI data 

EVI is widely used as a proxy of canopy “greenness” to address spatial and temporal 

variations in terrestrial photosynthetic activity [e.g., Huete et al., 2002; Ma et al., 2013]. EVI 

is defined as [Huete et al., 1997]:  

 
1 2

NIR red

NIR red blue

EVI G
C C L

  (5.1) 

where NIR , red  and blue  are atmospherically corrected, either fully or partially, values of 

surface near-infrared (NIR, 841-876 nm), red (620–670 nm) and blue (459-479 nm) spectral 

reflectance, respectively; G  is the gain factor (set at 2.5); (set at 1.0) is the canopy 

background adjustment; and 1C (set at 6) and 2C  (set at 7.5) are the coefficients of the 

aerosol resistance term, which uses the blue band to correct for the influence of aerosols in the 

red band.  

MODIS monthly VI products (MOD13A3.005) for February 2000 to 2013 were obtained 

from the USGS repository (http://e4ftl01.cr.usgs.gov/MOLT/MOD13A3.005/). This dataset is 

L
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produced globally over land at 1-km resolution and monthly compositing periods from 

atmospherically corrected surface reflectances. The compositing algorithm is based on a 

constrained-view angle-maximum value composite (CV-MVC) to minimize atmospheric and 

bidirectional reflectance distribution function (BRDF) influences [Huete et al., 2002]. 

It is difficult to precisely co-locate the pixels that directly correspond to the footprint of an EC 

tower [Sims et al., 2006b]. Fluctuations in flux tower footprint size and shape, due to the 

underlying topography, vegetation, wind speed and other factors, may induce a footprint 

mismatch between the tower and MODIS [Jung et al., 2009; Sims et al., 2006b; Sjöström et 

al., 2011]. Where the landscape is homogenous, the scale mismatch is not a serious problem 

and the MODIS pixels can adequately represent flux site conditions. Discrepancies are 

typically observed at grassland and cropland sites, likely due to the fragmentation of these 

landscapes [Cescatti et al., 2012]. However, sub- and inter-pixel heterogeneity is unavoidable 

in most cases and thus introduces additional bias. Consequently, a central 3 × 3 km window 

surrounding the flux tower was used to extract mean EVI time series. The 3 × 3 km window 

has been found to reduce scale mismatch relative to a centrally located 1 km pixel or window 

sizes of 5 × 5 or 7 × 7 km [e.g., Ma et al., 2013; Rahman et al., 2005; Sims et al., 2006b; 

Sjöström et al., 2011; Xiao et al., 2005]. At sites with spatially varying amounts of mixed 

vegetation types, averaging across the MODIS window is equivalent to averaging across time 

in flux measurements [Sims et al., 2006b].  

 

3.2.3.2 Smoothing method of EVI 

To reduce noise and uncertainties in the MODIS EVI time series at each site, the singular 

spectrum analysis (SSA) was employed. SSA is a data adaptive, non-parametric analysis 

approach based on embedding a time series : 1,X t t N  in a vector space of dimension 
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M and it works well in the analysis of non-linear dynamics in geophysical datasets 

[Kondrashov and Ghil, 2006; Ma et al., 2013; Wang and Liang, 2008]. The SSA technique 

consists of two complementary stages: decomposition and reconstruction [Hassani, 2007]. 

The one-dimensional time series : 1,X t t N  is first embedded into a trajectory matrix

,

1 , 1
,...

L K

K ij i j
X X X x , where 1.K t L  Next, singular value decomposition (SVD) is 

applied to X : 

 '

1
,

d
T

i j j j j
j

X U V V X   (5.2) 

where j  is the jth eigenvalue of 'XX , jU  is the jth eigenvector of 'XX , and d  is the 

rank of X . The reconstruction includes the eigentriple grouping and diagonal averaging (i.e., 

Hankelization of a matrix), to produce a length N  time series from the matrix X . The SSA 

method is more robust to outliers than linear filtering because it conducts a global 

reconstruction (i.e., convolution) of the whole time series as with Fourier methods 

[Alexandrov, 2009]. 

Key parameters in SSA are the decomposition window length L and the number of leading 

components in reconstruction.  In the monthly EVI time series, a window length of 37 (i.e. 

37 months) and 6 leading components best captured the periodicity and simultaneously 

reduced random noises during reconstruction. The missing EVI value in January 2000 was 

extrapolated, thereby yielding a complete set of 14 years of EVI data. Since bare soil yields an 

EVI value of 0.08 ~ 0.10, around which GPP is zero [Sims et al., 2008; Sims et al., 2006b], 

monthly values of EVI reconstructed from SSA were corrected by offsetting 0.10 to remove 

the background signal. EVI data are also contaminated by snow effects in mid- and high 

latitudes that result in a false positive signal [Huete et al., 2002]. To minimise the 

contamination, the snow/ice flag in MOD13A3 VI quality assurance field was first used to 
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remove the snow-covered EVI values; and then EVI values were further screened for effects 

of cold temperature [daytime land surface temperature below -2 ºC; Tan et al., 2011; Zhang et 

al., 2004] using the MODIS land surface temperature product (MOD11C3). Finally, positive 

values of monthly EVI during non-snow and non-cold temperature periods were summed into 

annual, integrated values (iEVI) to regress against annual GPP calculated at each flux site. In 

our global GPP estimation, the 1 km EVI data were re-gridded into 0.5º resolution to compare 

with global GPPMTE and then processed the same way as the site level analysis. 

 

3.2.3.3 Leaf area index data 

The MOD15A2.005 leaf area index (LAI) product is composited every 8 days at 1 km 

resolution and is available at the USGS repository 

(http://e4ftl01.cr.usgs.gov/MOLT/MOD15A2.005). LAI is retrieved through a 

three-dimensional radiative transfer model that requires land cover classification [Knyazikhin 

et al., 1998]. By applying a procedure similar to that used for EVI, a central 3 × 3 km window 

was used to extract LAI time series from 2000 to 2013, and SSA was applied to smooth the 

series. At each site, peak LAI values in individual site-years were averaged to represent the 

mean annual maximum LAI (LAImax) of the site and then the site LAI values within a land 

cover type were averaged to get the mean LAI for each of the land cover classifications except 

wetlands, which have no observed values in MOD15A2.005. In this analysis a mean LAI 

value of 6.3 (± 2.3) was assigned for the 6 wetland sites, obtained from a global synthesis of 

LAI observations [Asner et al., 2003].  

 

3.2.3.4 Land cover types 

The MCD12Q1.005 land cover type product provides options of five global land cover 
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classification systems. The IGBP land cover scheme was used which includes 17 land cover 

classes: water, evergreen needle-leaf forest (ENF), evergreen broadleaf forest (EBF), 

deciduous needle-leaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF), 

closed shrublands (CSH), open shrublands (OSH), woody savannas (WSA), savannas (SAV), 

grasslands (GRA), permanent wetlands (WET), croplands (CRO), urban and built-up, 

cropland/natural vegetation mosaic (CNM), snow and ice, barren or sparsely vegetated. The 

IGBP land cover map in 2001 was obtained from ORNL DAAC 

(http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10004_1). The product has a spatial 

resolution of 500 m. In our global GPP estimation, this map was resampled into 0.5º 

resolution to match the GPPMTE product. Four land cover types were excluded (water, urban 

and built-up, snow and ice, and barren or sparsely vegetated), and CNM was classed with 

CRO. The GPPMTE product and spatial EVI data were overlaid using the IGBP map.  

 

3.2.4 Statistical analyses 

Annual GPP calculated for each site in each year was correlated with the corresponding 

annual iEVI using log-log regressions following [Campos et al., 2013]. Since the 

goodness-of-fit for intra-annual GPP-EVI correlations may differ across biomes [Rahman et 

al., 2005; Sims et al., 2006b; Wu et al., 2010], the GPP-iEVI relationship was further 

investigated within each biome. The performance of these GPP-iEVI models within each 

biome was evaluated based on leave-one-out cross-validations (CV), which can test the 

practical accuracy of these models. The GPP-iEVI models based on biomes were then applied 

to the whole globe, and the final global GPP estimation was compared to GPPMTE. Two 

standard statistical measures were employed to assess the regression relationships: the 

coefficient of determination ( 2R ) and the root mean squared error (RMSE). 
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where ix  denotes the observed data, iy  the modeled data, n the number of observations. 

2R  represents the proportion of total variation of observed data explained by the model. 

RMSE measures the bias between modeled and observed data. 

 

3.3 Results 

3.3.1 The overall relationship between GPP and iEVI without biomes categorization 

The significant logarithmic-logarithmic regression (R2 = 0.67, p < 0.001, Figure 3.2, inset) 

between GPPEC and iEVI at the annual scale shows that there was a good general 

correspondence between GPPEC and iEVI across all biomes (Figure 3.2). The leave-one-out 

cross-validation based performance measures (CV R2 = 0.66, Table 3.2) further demonstrated 

the effectiveness of the logarithmic model (log-log) in regressing GPP against iEVI. The 

estimated GPPiEVI using the global GPP-iEVI relationship also showed reasonable agreement 

with GPPEC (R2 = 0. 62, p < 0.001), although GPPiEVI was consistently underestimated relative 

to field (EC) measurements. However, the point distribution in the relationship was much 

more scattered at medium to high production biomes (approximately GPP > 800 g C m-2 yr-1). 

The global relationship was unable to satisfactorily estimate GPP accurately for some of the 

biomes, such as evergreen broadleaf forest and woody savannas, although the data from these 

biomes still occurred within the overall distribution (Figure 3.2). Consequently, it was 
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necessary to further investigate the individual GPP-iEVI relationship within each biome. 

 

Figure 3.2. Relationship between derived annual GPP from iEVI (GPPiEVI) and eddy 

covariance tower measured GPP (GPPEC) since 2000 based on all sites and across 12 different 

biomes. The inset shows ln-transformed annual GPPEC and annual iEVI for all site-years. The 

solid line represents the least squares regression line. The dashed line represents the 1:1 line. 

3.3.2 Biome-specific relationships between GPP and iEVI 

There was considerable variation among the 12 individual biome types in the regression 

relationships between GPPEC and iEVI (Figure 3.3). The poorest performance of iEVI in 
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estimating GPPEC was observed in wetlands in raw regression (R2 = 0.11, p < 0.05, RMSE = 

297.2 g C m-2 yr-1) and in cross validations (Table 3.2). The correlation was strongest in 

woody savannas, closed shrublands, deciduous needle-leaf forests, grasslands, and open 

shrublands; and moderate in croplands, evergreen needle-leaf forests, savannas, mixed forests, 

deciduous broadleaf forests, and evergreen broadleaf forests (Figure 3.3). Meanwhile, I 

calculated the anomalies (by subtracting the mean value) of GPP and iEVI within each biome 

and investigated correlations between GPP anomaly and iEVI anomaly using linear 

regressions. Except for the wetlands, GPP anomaly and iEVI anomaly showed moderate to 

strong correlations within biomes (Figure 3.4). This result was consistent with the non-linear 

models using GPP and iEVI themselves (Figure 3.3). Further, cross-validations revealed that 

the GPP-iEVI models within each biome (except wetlands) performed robustly and thus could 

be applied to the global scale. It is notable that the strength of the correlation within deciduous 

biomes was generally better (higher R2 and lower RMSE) than those within evergreen 

vegetation, except deciduous broadleaf forest (still with better iEVI performance than 

evergreen broadleaf forest). The relationship for mixed forests had a similar R2 to evergreen 

needle-leaf forest but was associated with the largest RMSE (490.3 g C m-2 yr-1) across all 

biomes. There was also a wide range of values for the fitted slopes of the relationship between 

GPPEC and iEVI. Croplands and deciduous needle-leaf forests occupied a similar and narrow 

iEVI spectrum, but GPPEC of the former was more sensitive (larger slope) to iEVI. Among 

forested biomes, GPPEC of evergreen broadleaf forest was less sensitive to iEVI than 

evergreen needle-leaf forests. Likewise, GPPEC of deciduous broadleaf forests was less 

sensitive to iEVI than deciduous needle-leaf forests. GPPEC of grasslands and savannas, both 

of which are grass-dominated biomes, exhibited similar responses to iEVI. Although the range 

of GPPEC and iEVI values differed substantially among mixed forests and woody savannas, 

the biome-specific regression slopes were found to be close, whereas woody savannas had a 
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much smaller RMSE (Figure 3.3).  

 

Figure 3.3. Biome-specific relationships between tower-estimated annual GPP (GPPEC) and 

iEVI. Solid lines represent GPP-iEVI relationships derived from the ln(GPPEC) ~ ln(iEVI) 

formulas within each biome. Coefficient of determination (R2) represents the fit goodness of 

the ln(GPPEC) ~ ln(iEVI) relationship, and the root mean squared error (RMSE) represents the 

bias between GPP estimated using iEVI and GPPEC. All relationships are statistically 

significant. 
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Figure 3.4. Linear correlations between observed GPP anomaly and iEVI anomaly within 

each biome. The anomaly is calculated as the variable values subtracting their mean. 
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Table 3.2. Summary of the raw and leave-one-out cross-validation (CV) performance 

measures (coefficients of determination, R2; root mean squared error, RMSE) of 

ln(GPP)-ln(iEVI) models for all data points and each biome, respectively. 

Biomes Raw R2 CV R2 Raw RMSE CV RMSE 
All 0.67 0.66 454.7 455.8 

CRO 0.51 0.48 326.7 335.9 
CSH 0.90 0.81 195.4 239.6 
DBF 0.39 0.36 251.5 256.0 
DNF 0.90 0.51 175.1 284.9 
EBF 0.36 0.32 477.4 492.1 
ENF 0.49 0.48 448.8 454.2 
GRA 0.70 0.67 291.2 296.2 
MF 0.48 0.33 490.3 529.2 

OSH 0.61 0.52 104.6 115.0 
SAV 0.48 0.43 375.3 395.2 
WET 0.11 0.01 297.2 311.9 
WSA 0.93 0.93 214.3 222.8 

 

Estimated GPP based on the biome-specific GPP-iEVI formulae at all sites were then 

compared with observed GPPEC (Figure 3.5). The relationship between GPPiEVI and GPPEC 

was significantly strengthened relative to the regression obtained without biome partitioning 

(Figure 3.2) with increased R2 (from 0.62 to 0.74), larger slope (from 0.538 to 0.723), 

decreased RMSE (from 454.7 to 368.2 g C m-2 yr-1) and smaller intercept (from 492 to 295). 

There was a large dispersion of points around the linearly fitted function, but these points 

were mainly obtained from high-GPP locations (> approximately 2400 g C m-2 yr-1).   
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Figure 3.5. Comparison of modelled annual GPP (GPPiEVI) using biome-specific GPP-iEVI 

relationships with eddy covariance tower measured GPP (GPPEC). The solid line represents 

the linear regression line. The dashed line represents the 1:1 line. 

 

3.3.3 Global application of biome-specific GPP-iEVI relationships 

The set of biome-specific GPP-iEVI relationships were applied to the global data of iEVI and 

IGBP land cover types. Per-pixel comparison between GPPiEVI and GPPMTE demonstrated the 
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consistency of biome-specific GPP-iEVI models when up-scaling GPP from the site to global 

scales (R2 = 0.79, RMSE = 387.8 g C m-2 yr-1; Figure 3.6). The very high accuracy of global, 

multi-year, averaged GPP (R2 = 0.97) within each biome was unexpected given that the 

number of flux towers was restricted and their distribution was not geographically uniform. 

Individual biomes for which annual GPP was larger than 10 Pg C yr−1 were scattered farther 

from the 1:1 line, resulting in underestimation of GPP by iEVI in EBF and overestimation in 

WSA, CRO and CNM in comparison with the benchmark dataset.  

 

Figure 3.6. Comparison between modelled average annual GPP using iEVI (GPPiEVI) 

(2000-2013) and the benchmark GPP (GPPMTE) (1982-2008) at a grid level (left) and a biome 

level (right) across the globe. The red solid line represents the linear regression line and the 

black dashed line represents the 1:1 line. Horizontal and vertical error bars (right) indicate 

standard deviations of mean annual biome GPPiEVI (2000-2013) and GPPMTE (1982-2008), 

respectively. 
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Figure 3.7. Spatial comparison of (A) the mean annual GPP from iEVI (GPPiEVI, g C m-2 yr-1) 

(2000-2013) with (B) the benchmark GPP (GPPMTE, g C m-2 yr-1) (1982-2008) and the 

distribution of (C) the residual (g C m-2 yr-1) between GPPiEVI and GPPMTE within the 5-95% 

quantile. 

 

The mean spatial pattern of GPP was accurately reproduced by iEVI (Figure 3.7). However, 

GPP was primarily underestimated by iEVI in the tropics, western Russia and equatorial 
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Africa and was overestimated in Europe, eastern North America, the high-latitude tropics of 

Africa, southeastern South America, southeastern Australia, southeastern Asia, and parts of 

India and north China. In these regions, central Africa was dominated by tropical EBF (area 

around equator) and its north and south edges (area around 5º N and 5º S) were dominated by 

woody savannas; Europe, eastern North America, southeastern South America and Australia, 

India and north China were widely covered by cropland/natural vegetation mosaics or 

croplands (Figure 3.1), which were both parameterized as croplands when calculating GPPiEVI. 

Latitudinal GPP derived from the iEVI showed positive biases from the benchmark in the 

regions 30º-38º S, 8º-15º N, 20º-28º N and 30º-55º N, and negative biases in the region 10º 

S-5º N (Figure 3.8).   

 

Figure 3.8. Latitudinal patterns (0.5º bands) of mean annual GPP by iEVI (GPPiEVI, 

2000-2013) and the benchmark (GPPMTE, 1982-2008), respectively. The red shaded area 

represents the standard deviation of all GPPiEVI values of cells along the latitude. The grey 

shaded area represents the standard deviation of all GPPMTE values of cells along the latitude. 
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3.3.3 LAI and precipitation effects on biome-specific GPP-iEVI relationships 

Among vegetation and climatic factors (mean annual maximal LAI, temperature, precipitation 

and VPD), only LAI and precipitation influenced the regression between GPP and iEVI. The 

strength of the biome-specific correlations between GPP and iEVI decreased with increasing 

mean annual LAI (R2 = 0.37, p < 0.05) (Figure 3.9). The strength of biome-specific GPP-iEVI 

relationships with mean annual precipitation followed the same negative trend, but the R2 was 

only marginally statistically significant (R2 = 0.33, p = 0.051; Figure 3.9 inset). The slopes of 

relationships between GPPEC and iEVI (i.e., the sensitivity of GPP to EVI) across 12 biomes 

increased at small values of maximal LAI and then decreased across larger values of maximal 

LAI (LAI breakpoint was estimated to be 1.98 m2 m-2, Figure 3.9). 

 

Figure 3.9. Strength (R2) and slopes of relationships between ln(GPPEC) and ln(iEVI) for each 

biome as a function of either mean annual precipitation (Prcp, inset) or mean annual 

maximum LAI in each biome. Black lines represent the segmented linear regression line. The 

dashed vertical line indicates the breakpoint of the segmented linear relationship. The shaded 

area represents 95% confidence band.  
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3.4 Discussion 

3.4.1 Uncertainty analysis 

3.4.1.1 Gap-filling and partitioning of eddy covariance carbon fluxes 

Two major concerns in up-scaling of eddy covariance measurements of fluxes are (1) the 

associated propagation of uncertainty within the source datasets, and (2) the up-scaling 

method itself. Systematic and random errors in measurement, gap-filling and partitioning 

procedures can result in uncertainty for estimates of GPP [Papale, 2006]. Flux measurements 

can be subject to substantial random errors, which can be modelled as a double exponential 

distribution [Hollinger and Richardson, 2005]. To minimize gap-filling errors in this study, 

only site-years without large gaps (fewer than 5% missing data) were included. A short-term 

empirical temperature function was used to model ecosystem respiration in the MDS method 

and the robustness of this function depends on the noisiness of the flux data and the range of 

temperatures during the short period [Reichstein et al., 2005]. Therefore, at sites with stable 

temperatures and noisy eddy covariance data, it can be difficult to establish a reliable 

relationship between ecosystem respiration and temperature [Reichstein et al., 2005]. 

Consequently, datasets from the FLUXNET ANN product were preferred above the MDS 

product. The total annual error in eddy fluxes has been conservatively estimated to be below 

200 g C m-2
 yr-1 [Reichstein et al., 2007] and the products from these standard methodologies 

are widely used in up-scaling and benchmarking models [e.g., Beer et al., 2010; Bonan et al., 

2011; Jung et al., 2009; Rahman et al., 2005]. However, it is noteworthy that neither the ANN 

nor the MDS method may be the best option in all flux sites. 

 

3.4.1.2 Ecosystem heterogeneity   

A further source of error is introduced when scaling EVI to global GPP. To match the spatial 
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resolution of GPPMTE, MODIS EVI (1 km resolution) and IGBP classification maps (500 m 

resolution) were resampled into 0.5º, thereby simplifying prediction of GPP at the global scale. 

However, resampling unavoidably introduced error in areas with mixed land cover types. The 

loss of information concerning landscape heterogeneity within larger pixels can cause misuse 

of the biome-specific GPP-iEVI formulae at the sub-pixel level. The incongruence between 

GPPiEVI and GPPMTE in WSA, CNM and CRO could be due to varying proportions of 

vegetation components within a grid cell. For WSA, the eddy covariance measured flux data 

were mostly from Australia, where the woody and herbaceous components of woody savannas 

are substantially heterogeneous [Hirota et al., 2011]. Even within a single continent (e.g., 

Africa or Australia), woody savannas display significant variation in structural and 

phenological patterns [Kutsch et al., 2008; Sjöström et al., 2011; Sjöström et al., 2013]. 

However, EVI only has a moderate capacity to predict ecosystem structural and functional 

attributes such as basal cover of vegetated patches, perennial plants species richness and 

retention of nutrients [Gaitán et al., 2013]. Similar situations (e.g., different species, cultivars 

and fragments of croplands) can be encountered in CNM and CRO, besides the fact that the 

CRO specific GPP-iEVI formula was applied in CNM. In addition, crops are generally 

intensely managed (e.g., irrigation, fertilization, sowing and harvest), which constrains the 

reflectance-based greenness indices to accurately estimate GPP of crops [Guanter et al., 2014]. 

Consequently, the benchmark dataset GPPMTE underestimates cropland GPP in large 

agricultural regions such as the US Corn Belt, the Indo-Gangetic Plain and the North China 

Plain but tends to moderately overestimate cropland GPP in South America [Guanter et al., 

2014]. Thus, the overestimation of GPPiEVI in comparison with GPPMTE in croplands of North 

America, north India and north China (Figure 3.7) seems reasonable but is still biased in other 

agricultural areas. Limitations arising from global scaling can be overcome using the original 

relatively high-spatial resolution satellite data [Sjöström et al., 2011; Zhao et al., 2005]. 
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However, using these fine resolution data will inevitably increase modeling complexity. 

Furthermore, the 500 m resolution MODIS IGBP map has its own weakness and uncertainty 

[Friedl et al., 2010]. Errors due to global scaling were similar in GPPiEVI and GPPMTE and 

consequently were comparable in this study (Figure 3.6).  

 

3.4.2 Relationships between EVI and GPP 

Vegetation greenness indices (VIs) associated GPP models are generally based on one of the 

following two hypothetical relationships between either LUE or GPP and VIs. The first holds 

that VIs provide proxy information for parameterizing LUE or fAPAR [Gitelson et al., 2006; 

Inoue et al., 2008; Sims et al., 2006a; Sims et al., 2006b; Wu et al., 2012] in photosynthetic (as 

opposed to non-photosynthetic) tissues [Xiao et al., 2005; Xiao et al., 2004a; Xiao et al., 

2004b]. Following the logic of classical LUE theory, various LUE models have been 

developed based on eddy covariance observation and satellite data [Gitelson et al., 2006; 

Peng et al., 2011; Running et al., 2004; Sims et al., 2008; Yuan et al., 2010]. Each of these 

models includes a combination of equations that are scaled by environmental regulation of 

GPP [Beer et al., 2010]. The second is that VIs can estimate GPP alone. Values of EVI follow 

changes in the greenness and structure of vegetation regardless of the cause of those variations 

[Huete et al., 2002], resulting in a stronger correlation between tower-estimated GPP and EVI 

than the correlations between tower-estimated GPP and MODIS GPP or between tower LUE 

and EVI during the photosynthetic period [Sims et al., 2006b]. The assumption that EVI can 

be taken as a proxy of LUE results in curvilinear relationships between GPP and EVI [Sims et 

al., 2006a]. This strongly supports the results presented here (Figure 3.3), suggesting the two 

hypotheses are essentially consistent, and it is therefore reasonable to assume a strong 

correlation between GPP and EVI. However, EVI does not perform satisfactorily across all 

vegetation types, particularly at evergreen forest sites [Rahman et al., 2005; Sims et al., 2006b; 
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Wu et al., 2010]. Furthermore, EVI is not able to capture GPP variations at short time-scales 

because short-term fluctuations in photosynthetic capacity are not reflected by variations in 

canopy greenness over physiological timescales [Sims et al., 2006a]. For example, low 

temperature can significantly and rapidly reduce GPP whilst having little effect on canopy 

greenness [Wu et al., 2010].  

 

3.4.3 Environmental constraints on the ability of EVI to estimate GPP 

3.4.3.1 LAI affects covariation (R2) of GPP with iEVI 

The performance of EVI in estimating GPP is constrained by environmental conditions, 

including features of both climate and vegetation structure. The covariation between GPP and 

EVI is often better in deciduous sites than evergreen sites [Rahman et al., 2005; Sims et al., 

2006b; Wu et al., 2010]. Deciduous sites experience a large range between maximal and 

minimal EVI (as a result of large seasonal variation in canopy cover) and among sites the 

range is significantly correlated with mean summer rainfall (positive correlation) or mean 

summer VPD (negative correlation) [Sims et al., 2006b]. The results presented here showed 

that the strength of the correlation between GPP and iEVI in deciduous biomes was generally 

better than in evergreen biomes, although the strength of the correlation in DBF was only 

slightly better than in EBF. Evergreen biomes show smaller seasonal variation in EVI than 

deciduous biomes. Observable seasonal variation in vegetation greenness may be a 

prerequisite for successful use of VIs to estimate vegetation production. Deciduous biomes 

demonstrate distinct seasonal dynamics of leaf greenness, thus satellite data can accurately 

capture these large seasonal changes in greenness [Ma et al., 2013; Verma et al., 2014]. In 

contrast, it is difficult to achieve the same level of accuracy within evergreen biomes. This 

presumably explains the poor performance of iEVI in estimating GPP of EBF, either in wet 

tropical areas (Figures 3.5, 3.6 and 3.7) or in semi-arid evergreen forests, where 
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photosynthetic capacity can vary independently of EVI and LAI in response to dry conditions 

[Maseyk et al., 2008]. However, either the seasonal change of EVI or LAI cannot effectively 

explain the weak correlation between iEVI and GPP in DBF. Nagai et al. [2010] found EVI to 

increase earlier than GPP during the leaf-expansion period in DBF, and this caused systematic 

variability in the GPP-EVI relationship [Richardson et al., 2012; Verma et al., 2014]. To 

address the asynchronicity between GPP and EVI in DBF, a phenological scalar may be 

needed in GPP-iEVI equations, as has been applied in the vegetation photosynthesis model of 

Xiao et al. [2004b]. This suggests that large seasonal variance of EVI does not necessarily 

imply a good correlation of EVI and GPP and thus EVI variance is not appropriate to explain 

the covariation of iEVI-GPP across biomes. My result also showed that iEVI variance across 

biomes can be greatly divergent while R2 of iEVI-GPP correlations can be close. For example, 

iEVI standard deviations for CRO and ENF are 0.44 and 0.94, whereas R2 are 0.51 and 0.49, 

respectively (Figure 3.3). In contrast, peak LAI can be as a metric of the complexity of 

canopy structures of a biome and thus is appropriate to indicate the covariation strength of 

iEVI-GPP relationships. As peak LAI increases, the iEVI-GPP relationship is weakened 

(Figure 3.9) by the increased structural complexity due to either small seasonal EVI variations 

in a biome such as EBF or the asynchronicity between GPP and EVI in a biome such as DBF.  

Another possible factor contributing to the poor correlation between GPP and iEVI in 

vegetation with high LAI that are most located in wet regions may be the extensive cloudy 

conditions that reduce the quality of EVI retrievals [Nagai et al., 2010]. In arid and semi-arid 

areas where cloud cover is minimal, precipitation is a controlling factor of vegetation 

phenology and productivity [Bradley et al., 2011; Cleverly et al., 2013; Huxman et al., 2004; 

Jolly and Running, 2004; Ma et al., 2013; Schwinning and Sala, 2004]. Moreover, peak LAI 

is typically limited by water availability in arid and semi-arid regions [Eamus and Prior, 2001; 

Sjöström et al., 2011]. Consequently, the correlation between the strength of GPP-iEVI 
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relationships with mean annual precipitation showed the same trend as that for LAImax (Figure 

3.9 inset). The correlation between the strength of GPP-iEVI relationships and LAImax may 

help identifying the regions where iEVI is most likely to be a good predictor of GPP. Globally, 

underestimation of GPP in some locations was compensated by overestimation in other 

locations within the same biome type (Figures 3.5 and 3.6), with a consequential minimisation 

of biases on the estimation of GPP due to global patterns of LAI.  

 

3.4.3.2 LAI scales the sensitivity (fitted slopes) of GPP to iEVI 

Lindroth et al. [2008] proposed that LAI is the principal scaling parameter for GPP in 

northern deciduous and coniferous forests. In biomes with a relatively small peak LAI (e.g., 

less than 2.5 m2 m-2), the sensitivity of GPP to EVI increases with LAI [Sjöström et al., 2011], 

although there were too few arid vegetation classes in the study to identify a statistically 

significant trend in sensitivity across small values of LAI (less than 1.98 m2 m-2, Figure 3.9). 

Conversely, as vegetation becomes less water limited, the sensitivity of GPP to EVI tended to 

decrease across large values of LAI (larger than 1.98 m2 m-2, Figure 3.9), which has not 

previously been found at a global scale. Degradation of the GPP-iEVI relationship at large 

LAI is due to (1) decreased sensitivity of variation in EVI to changes in canopy structure, 

including LAI and canopy type, of dense forests [Gao et al., 2000] and (2) biased or 

decreased seasonality of variations in EVI.  

 

3.5 Conclusions 

I comprehensively evaluated the ability of MODIS EVI to estimate annual GPP across 12 land 

cover types based on GPP from eddy covariance. iEVI does not require calculation of the 

duration of the growing season, which significantly simplifies the estimation of annual GPP 
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by EVI at the global scale. Cross validations demonstrated the robustness of biome-specific 

ln(GPP)~ln(iEVI) models. In comparison to a global benchmarking dataset of mean annual 

GPP, I showed that the performance of iEVI was consistent from site-to-global scales. 

Compared to GPPMTE, GPPiEVI performed better in croplands of high productivity but poorer 

mainly in forests. The strength of the GPP-iEVI relationships across biomes was correlated 

with peak LAI, by which the slope was also scaled. These findings suggest that vegetation 

structure is an important factor regulating the accuracy and sensitivity of EVI in estimating 

spatial patterns of annual GPP across multiple biomes. While LUE models, data-driven 

models and terrestrial biosphere models are usually difficult to parameterize or are limited by 

coarse resolution meteorological inputs, this study provides a promising and very convenient 

approach to estimate global spatial patterns of GPP at either a fine or coarse resolution. 

Nevertheless, the use of EVI in estimating GPP requires further study, especially in deciduous 

broadleaf forest and evergreen biomes. My findings on impacts of vegetation structure 

provide valuable information for such efforts in improving EVI-based models of GPP.  
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Appendix 

Table A3.1. ID, code, coordinates, and IGBP of 155 flux sites used in this study. CRO: 

croplands; CSH: closed shrublands; DBF: deciduous broadleaf forest; DNF: deciduous 

needle-leaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needle-leaf forest; GRA: 

grasslands; MF: mixed forest; OSH: open shrublands; SAV: savannas; WET: permanent 

wetlands; WSA: woody savannas.  

ID Code Lat Long startYear endYear IGBP 
1 AU-Ade -13.0769 131.1178 2007 2008 SAV 
2 AU-Asm -22.28 133.25 2011 2012 SAV 
3 AU-Cap -34.0027 140.5877 2010 2012 OSH 
4 AU-Da1 -14.0633 131.3181 2007 2012 SAV 
5 AU-Da2 -14.1592 131.3881 2007 2012 SAV 
6 AU-Dry -15.2588 132.3706 2008 2012 SAV 
7 AU-Fog -12.5452 131.3072 2007 2008 WET 
8 AU-How -12.4952 131.15 2001 2012 WSA 
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9 AU-JXA -34.9878 146.2908 2012 2012 CRO 
10 AU-RDM -14.5636 132.4776 2012 2012 SAV 
11 AU-Rig -36.6499 145.576 2011 2012 GRA 
12 AU-Stp -17.1507 133.3502 2008 2012 GRA 
13 AU-Tum -35.6566 148.1517 2001 2012 EBF 
14 AU-Wac -37.4262 145.1873 2006 2011 EBF 
15 AU-Whr -36.6731 145.0262 2012 2012 EBF 
16 AU-Wom -37.4222 144.0944 2010 2012 EBF 
17 BR-Sa1 -2.85667 -54.9589 2002 2005 EBF 
18 BR-Sa3 -3.01803 -54.9714 2001 2003 EBF 
19 CA-Ca1 49.86725 -125.334 2000 2010 ENF 
20 CA-Ca2 49.87048 -125.291 2001 2010 ENF 
21 CA-Ca3 49.53462 -124.9 2002 2010 ENF 
22 CA-Man 55.8796 -98.4808 2007 2008 ENF 
23 CA-Mer 45.4094 -75.5186 2000 2010 WET 
24 CA-NS1 55.8792 -98.4839 2003 2004 ENF 
25 CA-NS2 55.9058 -98.5247 2002 2002 ENF 
26 CA-NS3 55.9117 -98.3822 2002 2004 ENF 
27 CA-NS5 55.8631 -98.485 2002 2004 ENF 
28 CA-NS6 55.9167 -98.9644 2002 2004 OSH 
29 CA-NS7 56.6358 -99.9483 2003 2004 OSH 
30 CA-Oas 53.62889 -106.198 2000 2010 DBF 
31 CA-Obs 53.98717 -105.118 2000 2010 ENF 
32 CA-Ojp 53.91634 -104.692 2000 2010 ENF 
33 CA-Qc2 49.75984 -74.5711 2008 2010 ENF 
34 CA-Qcu 49.26708 -74.0365 2002 2010 ENF 
35 CA-Qfo 49.69247 -74.342 2004 2010 ENF 
36 CA-SJ2 53.94474 -104.649 2003 2007 ENF 
37 CA-SJ3 53.87581 -104.645 2004 2006 ENF 
38 CA-TP4 42.7098 -80.3574 2003 2010 ENF 
39 CA-WP1 54.95384 -112.467 2004 2008 WET 
40 CN-Bed 39.5306 116.2519 2006 2006 EBF 
41 CN-Cha 42.4025 128.0958 2003 2007 MF 
42 CN-Dan 30.41 91.08 2004 2007 GRA 
43 CN-Din 23.16667 112.53 2003 2007 EBF 
44 CN-Do2 31.58 121.9 2005 2005 WET 
45 CN-Hab 37.66 101.33 2003 2007 GRA 
46 CN-Hui 26.83 109.75 2008 2008 ENF 
47 CN-Huz 51.47 123.01 2010 2010 DNF 
48 CN-Ku2 40.3808 108.5486 2006 2006 OSH 
49 CN-Lao 45.2786 127.5784 2004 2004 DNF 
50 CN-Mao 45.38 127.53 2004 2004 DBF 
51 CN-Pa1 41.14 121.9117 2005 2005 WET 
52 CN-Qia 26.7333 115.0667 2003 2007 ENF 
53 CN-Sa2 47.58 133.52 2005 2005 CRO 
54 CN-Sa3 47.58 133.52 2005 2005 CRO 
55 CN-San 34.35 100.55 2006 2006 GRA 
56 CN-Tao 28.92 111.45 2003 2003 CRO 
57 CN-Xg1 44.13 116.32 2004 2006 GRA 
58 CN-Xi1 43.5544 16.2797 2006 2006 GRA 
59 CN-Xi2 43.5528 116.6714 2006 2006 GRA 
60 CN-Xip 33.35 113.91 2010 2010 DBF 
61 CN-Xsh 21.95 101.2 2003 2007 EBF 
62 CN-Yuc 36.83333 116.5667 2003 2007 CRO 
63 CZ-BK1 49.5021 18.5368 2009 2011 ENF 
64 CZ-BK2 49.4944 18.5429 2009 2011 GRA 
65 CZ-wet 49.025 14.7722 2008 2009 WET 
66 FR-Hes 48.6742 7.0656 2001 2006 DBF 
67 FR-Mau 43.38528 1.292222 2008 2009 GRA 
68 ID-Pag -2.345 114.0364 2002 2005 EBF 
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69 IL-Yat 31.345 35.0515 2007 2009 ENF 
70 IT-BCi 40.52375 14.95744 2008 2009 CRO 
71 JP-HEF 42.98 141.38 2000 2000 ENF 
72 JP-Mas 36.05397 140.0269 2001 2005 CRO 
73 JP-MBF 44.38417 142.3186 2005 2005 DBF 
74 JP-MMF 44.32194 142.2614 2004 2005 MF 
75 JP-Tef 45.05 142.1 2002 2004 MF 
76 JP-Tom 42.73697 141.5186 2001 2003 DNF 
77 KR-Hnm 34.55 126.57 2004 2008 CRO 
78 KR-Kw2 37.75 127.15 2006 2007 DBF 
79 MA-PSO 2.966667 102.3 2003 2009 EBF 
80 MN-Kbu 47.21 108.74 2003 2007 GRA 
81 RU-Che 68.62 161.34 2003 2003 MF 
82 RU-Tur 64.2 100.45 2004 2004 DNF 
83 Th-Mae 14.57628 98.84389 2003 2004 MF 
84 Th-Sak 14.49236 101.9163 2002 2003 EBF 
85 TW-Chn 24.58333 121.4 2008 2008 ENF 
86 UK-AMo 55.79167 -3.23889 2007 2010 WET 
87 UK-Ham 51.15353 -0.8583 2011 2012 DBF 
88 US-AR1 36.4267 -99.42 2010 2010 GRA 
89 US-AR2 36.6358 -99.5975 2010 2010 GRA 
90 US-ARM 36.6058 -97.4888 2007 2012 CRO 
91 US-Bar 44.0646 -71.2881 2004 2006 DBF 
92 US-Blo 38.8952 -120.633 2000 2006 ENF 
93 US-Ced 39.8379 -74.3791 2008 2009 ENF 
94 US-Cop 38.09 -109.39 2002 2007 GRA 
95 US-Dia 37.6773 -121.53 2012 2012 GRA 
96 US-Dix 39.9712 -74.4346 2007 2007 MF 
97 US-Dk2 35.9736 -79.1004 2004 2005 DBF 
98 US-Elm 25.5519 -80.7826 2009 2012 WET 
99 US-Esm 25.4379 -80.5946 2009 2012 WET 
100 US-Fmf 35.1426 -111.727 2006 2010 ENF 
101 US-FR2 29.9495 -97.9962 2005 2005 WSA 
102 US-FR3 29.94 -97.99 2005 2012 WSA 
103 US-Fuf 35.089 -111.762 2007 2010 ENF 
104 US-Fwf 35.4454 -111.772 2007 2010 GRA 
105 US-GLE 41.3644 -106.239 2005 2012 ENF 
106 US-Ha1 42.5378 -72.1715 2000 2011 DBF 
107 US-Ho1 45.2041 -68.7402 2000 2008 ENF 
108 US-Ho2 45.2091 -68.747 2005 2009 ENF 
109 US-IB1 41.8593 -88.2227 2006 2008 CRO 
110 US-IB2 41.8406 -88.241 2005 2007 GRA 
111 US-KFS 39.0561 -95.1907 2008 2012 GRA 
112 US-Kon 39.0824 -96.5603 2011 2012 GRA 
113 US-KS2 28.6086 -80.6715 2004 2006 CSH 
114 US-Los 46.0827 -89.9792 2006 2010 CSH 
115 US-LPH 42.5419 -72.185 2003 2004 DBF 
116 US-Me2 44.4523 -121.557 2002 2012 ENF 
117 US-Me3 44.3154 -121.608 2004 2008 ENF 
118 US-Me4 44.4992 -121.622 2000 2000 ENF 
119 US-Me5 44.4372 -121.567 2001 2002 ENF 
120 US-Me6 44.3232 -121.604 2011 2012 ENF 
121 US-MMS 39.3231 -86.4131 2000 2010 DBF 
122 US-MOz 38.7441 -92.2 2005 2009 DBF 
123 US-MRf 44.6465 -123.552 2006 2010 ENF 
124 US-NC1 35.8115 -76.7115 2005 2009 ENF 
125 US-NC2 35.8031 -76.6679 2005 2010 ENF 
126 US-Ne1 41.1651 -96.4766 2002 2012 CRO 
127 US-Ne2 41.1649 -96.4701 2003 2012 CRO 
128 US-Ne3 41.1797 -96.4397 2002 2012 CRO 
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129 US-NR1 40.0329 -105.546 2006 2012 ENF 
130 US-Oho 41.5545 -83.8438 2005 2005 DBF 
131 US-PFa 45.9459 -90.2723 2000 2012 MF 
132 US-Ro1 44.7143 -93.0898 2007 2007 CRO 
133 US-Ro3 44.7217 -93.0893 2007 2007 CRO 
134 US-SdH 42.0693 -101.407 2005 2008 GRA 
135 US-Seg 34.3623 -106.702 2007 2010 GRA 
136 US-Ses 34.3349 -106.744 2007 2010 OSH 
137 US-Skr 25.3646 -81.0779 2004 2009 EBF 
138 US-Slt 39.9138 -74.596 2005 2011 DBF 
139 US-Snd 38.0373 -121.754 2008 2010 GRA 
140 US-SO2 33.3739 -116.623 2006 2006 CSH 
141 US-SO4 33.3844 -116.64 2004 2006 CSH 
142 US-SP1 29.7381 -82.2188 2008 2009 ENF 
143 US-SRC 31.9083 -110.84 2009 2011 OSH 
144 US-SRM 31.8214 -110.866 2004 2007 WSA 
145 US-Syv 46.242 -89.3477 2002 2006 MF 
146 US-Ton 38.4316 -120.966 2002 2011 WSA 
147 US-Twt 38.1055 -121.652 2010 2010 CRO 
148 US-UMB 45.5598 -84.7138 2004 2012 DBF 
149 US-UMd 45.5625 -84.6975 2008 2012 DBF 
150 US-Var 38.4133 -120.951 2001 2011 GRA 
151 US-WCr 45.8059 -90.0799 2000 2012 DBF 
152 US-Whs 31.7438 -110.052 2008 2012 OSH 
153 US-Wkg 31.7365 -109.942 2005 2009 GRA 
154 US-Wrc 45.8205 -121.952 2003 2011 ENF 
155 ZA-Kru -25.0197 31.4969 2007 2008 SAV 
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Chapter 4: Remote estimation of evapotranspiration for 

Australian seasonally water-limited ecosystems within an 

evapotranspiration-vegetation index framework 

Abstract 

Vegetation function, available energy and soil moisture (SM) availability are the principle 

controls for evapotranspiration (ET) from vegetated land surface. This is particularly 

pronounced at seasonally water-limited ecosystems in Australia. Using data from eight 

Australian seasonally water-limited ecosystems, I propose an ET-vegetation index framework, 

within which satellite retrieved land surface temperature (LST, serving as a proxy of available 

energy), together with MODIS EVI (Greenness index) and microwave SM (TG-SM), was 

used to estimate ET. At the site scale, TG-SM was evaluated against measured ET (R2: 0.59  

0.90) and outperformed a land surface model and MODIS ET product. At the regional scale, 

TG-SM proved better than MODIS estimated ET by comparing to a global ET benchmark (R2 

= 0.87). These results show that the TG-SM model, as a purely remote sensing tool, can 

effectively contribute to diagnosing water consumption of Australian seasonally water-limited 

ecosystems due to climate variability. 

 

4.1 Introduction 

Evapotranspiration (ET) is a key component of water and energy exchange between terrestrial 

ecosystems and the atmosphere, which can account for as much as 60%, or more, of 

precipitation on land [Oki and Kanae, 2006]. Remote sensing is a promising tool to provide 

reasonable estimates of ET over large spatial scales [Mu et al., 2011; Wang et al., 2007]. 
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Remote sensing methods can be grouped into: (1) thermal temperature-based surface energy 

balance models [e.g., Nishida et al., 2003; Yang and Shang, 2013], and (2) models based upon 

vegetation indices (VIs) [e.g., Mu et al., 2011; Wang et al., 2007]. Thermal models are often 

very sensitive to the accuracy of remotely sensed surface temperature [Wang and Dickinson, 

2012] whereas VI-based models can effectively avoid this problem by alleviating dependence 

on thermal imagery, although VI-based models can be limited by coarse resolution of 

meteorological inputs over large spatial scales [Wang et al., 2007; Yang et al., 2013]. VI-based 

models can further be grouped into: (1) empirical models employing VIs (e.g., enhanced 

vegetation index, EVI), land surface temperature (LST) or meteorological observations 

[Glenn et al., 2010; Wang et al., 2007] and (2) physical models based on the 

Penman-Monteith [Leuning et al., 2008; Mu et al., 2011] or Priestley-Taylor equations [e.g., 

Guerschman et al., 2009] in which equation terms are parameterized using remotely sensed 

data. Empirical models are much simpler than physical ones which often require complex 

parametrization. However, empirical models can lack a theoretical framework, limiting their 

general applicability outside the locations where the models were developed and tested. 

Therefore, it is essential to propose a generic ET regimes framework as a function of VIs, 

which could help identify how VIs succeed or fail in estimating ET. 

Classical hydrology defines energy-limited and water-limited ET regimes as a function of soil 

moisture (SM, inset in Figure 4.2). In the energy-limited ET regime (i.e., soil moisture is 

above a critical value θcrit), water availability is not a limiting factor for ET; below the soil 

moisture content at the wilting point (θwilt), ET tends to zero; in the transitional interval 

between θwilt and θcrit, water availability is the primary constraint on ET [Salvucci, 1997; 

Seneviratne et al., 2010]. As vegetation indices are closely correlated with soil moisture 

[Eamus et al., 2015; Schnur et al., 2010; Yang et al., 2014], it is natural to expect a similar 

framework between ET and VIs. Specifically, I hypothesize that ET will shift from extremely 
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water-limited to a transitional state and then to energy-limited as VI increases. Since EVI 

performs best amongst the various vegetation indexes in estimating ET [Yebra et al., 2013], 

hereafter I will focus on EVI only. 

Australia is largely arid to semi-arid and retains large areas of seasonally water limited 

ecosystems. Eddy covariance observations over these ecosystems provide a unique 

opportunity to verify the above hypothesis. Therefore, the main objectives of this research 

were (1) to develop an ET-EVI framework in seasonally water-limited ecosystems of Australia; 

(2) to develop a new VI model to estimate monthly ET based solely on remote sensing data; 

and (3) to evaluate this new model both across- and within-sites and at the regional scale, 

respectively, in comparison with a land surface model, the MOD16A2 ET product and a 

widely used global data-driven benchmark. 

 

4.2 Data and Methods 

4.2.1 Data 

4.2.1.1 Flux Sites and Data Processing 

Eight eddy covariance sites from the OzFlux network (http://www.ozflux.org.au/) were used 

in this study (Figure 4.1). These sites cover a spectrum of biomes across a range of climates in 

Australia, including savannas, grasslands, open shrublands and woody savannas (Figure 4.1, 

Figure 4.1) in temperate, sub-tropical and tropical climates. Climate regimes at these sites 

result in periodical seasonal oscillations between water and energy limitations [Shi et al., 2014; 

Whitley et al., 2011]. During the period of analysis, mean annual temperatures ranged from 

17.4 °C at AU-Cap to 26.8 °C at AU-Ade and AU-Dry, and mean annual precipitation ranged 

between 1857 mm yr-1 at AU-Ade and 346 mm yr-1 at AU-Asm (Figure 4.1). The uneven 

temporal (intra-annual) distribution of precipitation leads to distinctive dry and wet seasons. 



104 

Although trees at AU-How can access to deep soil water [Cook et al., 1998] and thus are 

mainly limited by light interception [Whitley et al., 2011] in dry seasons, understory grasses 

do not persist during the dry season because of their annual habit [Whitley et al., 2011] and 

some limitation on tree’s stomatal conductance occurs in the dry season. Therefore, the 

AU-How site is still defined as a water-limited ecosystem. Gap-filling of carbon and water 

fluxes and meteorological forcing was performed using the dynamic integrated gap filling and 

partitioning for OzFlux (DINGO) system based on a feed-forward artificial neural network 

algorithm [Beringer et al., 2007; Beringer et al., 2016]. ET data in January, February and 

March 2008 at AU-Dry and ET data in November 2003 and October and November 2006 at 

AU-How were removed due to energy imbalance. 

 

Table 4.1. Brief description of the eight flux tower sites used to develop and validate the 

TG-SM model, including site identifier (ID), site name (Site), latitude (Lat, °S), longitude 

(Long, °E), biome type (IGBP), data period, mean annual temperature (MAT, °C), mean 

annual precipitation (MAP, mm yr-1) and mean annual radiation (Rad, W m−2 s−1). SAV 

denotes savannas; OSH denotes open shrublands; WSA denotes woody savannas; and GRA 

denotes grasslands. 

ID Site Lat Long IGBP Data period MAT MAP Rad 

AU-Ade Adelaide River -13.08 131.12 SAV 2007-2008 26.8 1857 503 

AU-Asm Alice Springs -22.28 133.25 OSH 2011-2012 21.9 346 522 

AU-Cap Calperum -34.00 140.59 OSH 2010-2012 17.4 363 422 

AU-Da1 Daly Pasture -14.06 131.32 GRA 2007-2012 25.4 1279 514 

AU-Da2 Daly Uncleared -14.16 131.39 SAV 2007-2012 26.3 1132 495 

AU-Dry Dry River -15.26 132.37 SAV 2008-2012 26.8 1029 525 

AU-How Howard Springs -12.50 131.15 WSA 2001-2012 26.6 1397 487 

AU-Stp Sturt Plains -17.15 133.35 GRA 2008-2012 25.7 695 531 
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4.2.1.2 Remote Sensing Data 

Seasonally water-limited ecosystems were classified using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land cover product (MCD12C1) in 2012 with a spatial resolution 

of 0.05° (Figure 4.1). Monthly EVI data were obtained from the MODIS vegetation index 

product (MOD13A3) at a 1 km spatial resolution [Huete et al., 2002]. A central 3 × 3 km 

window was applied to extract EVI values around the flux tower following [Rahman et al., 

2005] and [Sims et al., 2008]. Only EVI pixels with usefulness values not larger than 12, 

aerosol values less than 3 and cloud free were used to calculate the average. A value of 0.08 

was subtracted from EVI values (scaled EVI) to remove soil background contamination [Ma 

et al., 2013]. LST data were acquired from the monthly MOD11C3 product at a spatial 

resolution of 0.05° [Wan and Li, 1997]. A 3 × 3 km window was also applied to the readily 

available MOD16A2 ET product (8-day time-step, 1 × 1 km, 

ftp://ftp.ntsg.umt.edu/pub/MODIS). The extracted MODIS ET values were aggregated to a 

monthly time-step and then compared against the performance of the new model at the site 

level as a benchmark representative of physical remote sensing models. The yearly 

aggregation of the MOD16A2 product at a spatial resolution of 0.5 × 0.5° was also used to 

compare with the new model at the regional scale. The MODIS ET algorithm employs a 

remotely sensed model based on the Penman-Monteith approach and requires MODIS derived 

vegetation land cover, leaf area index, EVI and daily meteorological reanalysis data as inputs 

[Mu et al., 2011; Mu et al., 2007].  

The daily Essential Climate Variable (ECV) soil moisture product (0.25 × 0.25°) from the 

European Space Agency’s Water Cycle Multi-mission Observation Strategy and Climate 

Change Initiative projects was aggregated to a monthly time-step. The ECV soil moisture 

product is a new merged product combining soil moisture retrievals from both passive and 

active coarse resolution microwave sensors [Liu et al., 2011; Liu et al., 2012; Wagner et al., 
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2012]. The ECV soil moisture product is also the first satellite-retrieved soil moisture product 

at the decade time-scale spanning from 1978 to 2013. The sensing depth of ECV soil moisture 

data is the top few centimeters on average [Dorigo et al., 2015] but surface moisture can be 

closely related to the soil moisture in the upper ten centimeters because both are impacted by 

the weather during the preceding few days to weeks [Albergel et al., 2008; Brocca et al., 

2011]. 

 

Figure 4.1. Spatial distribution of eight OzFlux sites. The IGBP land cover types in Australia 

are also shown. The acronyms WAT, ENF, EBF, DBF, MF, CSH, OSH, WSA, SAV, GRA, 

WET, CRO, URB, CNM, SNO and BRN denote water, evergreen needleleaf forest, evergreen 

broadleaf forest, deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands, 

woody savannas, savannas, grasslands, wetlands, croplands, urban and built-up, 

cropland/natural vegetation mosaic, snow and ice and barren or sparsely vegetated, 

respectively. 



107 

4.2.1.3 Estimated ET from a Land Surface Model 

A modified version [Haverd et al., 2013] of the Community Atmosphere-Biosphere-Land 

Exchange (CABLE) model was used in the DINGO system [Beringer et al., 2016] to simulate 

ET at these eight flux sites. The default soil module in CABLE v1.4 was replaced by the 

Soil-Litter-Iso model [Haverd and Cuntz, 2010] and the default carbon module was integrated 

with the CASA-CNP biogeochemical model [Wang et al., 2010]. The modified CABLE was 

forced with prescribed LAI and disabled the nitrogen and phosphorous cycles [Haverd et al., 

2013]. The CABLE model calculates canopy transpiration as a linear combination of the 

water fluxes from the dry and wet portions of the canopy [Wang et al., 2011], and 

transpiration is modelled using a coupled stomatal conductance-photosynthesis model 

[Leuning, 1990]. Soil evaporation in CABLE is calculated as a fraction of potential 

evaporation derived from a Penman-Monteith combination equation [Wang et al., 2011]. The 

half-hourly CABLE ET outputs were further accumulated to a monthly time-step as a 

benchmark representative of complex biogeophysical models to evaluate the new model. 

 

4.2.1.4 Global Benchmark Dataset 

The global ET benchmark dataset was up-scaled from FLUXNET measurements using the 

model tree ensemble approach (MTE, Jung et al. [2009]). Input environmental variables for 

MTE consist of meteorological forcing, remotely sensed biophysical states of vegetation and 

biome types. This dataset is at a 0.5° × 0.5° spatial resolution and has been widely used in 

evaluating land surface models and in climate change studies [e.g., Beer et al., 2010; Bonan et 

al., 2011]. Here I used the dataset from 2001 to 2011 to benchmark the performance of the 

new model at the regional scale. 
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4.2.2 Development of the ET-EVI Framework 

By applying a three-segmented regression approach to investigate the ET-EVI relationship 

across the eight flux sites, two important EVI thresholds were determined that partitioned 

ET-EVI into three regimes (Figure 4.2), which correspond to the classical ET-soil moisture 

framework (inset in Figure 4.2). Below the lower threshold (scaled EVI = 0.09), vegetation 

was sparse with high radiation but low precipitation; conversely, above the higher threshold 

(scaled EVI = 0.27), dense vegetation was accompanied by high precipitation but low 

radiation (Figure 4.2). Linear regressions in the stage 1 of water-limited regime and the 

energy-limited regime interval showed that EVI could not significantly explain variations in 

ET. However, the reasons that EVI fails in estimating ET in these two intervals are different 

for each interval. In dry conditions (stage 1 in water-limited regime), soil evaporation tends to 

dominate ET when the surface is wet due to occurrences of light rain [Gong et al., 2007], 

whereas EVI indicates canopy water content and thus can represent only transpiration 

effectively [Glenn et al., 2010]. In energy-limited conditions, though transpiration comprises 

the major component of ET, lack of energy constrains the increase of ET and thus undermines 

the linear relationship between ET and EVI that characterized the transient interval (Figure 

4.2). Therefore, an energy constraint was imposed on EVI and included a soil evaporation 

module in the EVI model to improve the accuracy of estimations of ET. 
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Figure 4.2. Scatterplots of measured monthly ET versus scaled monthly EVI across eight 

seasonally water- limited ecosystems in Australia. The inset is a conceptual diagram [Feddes 

et al., 1978; Seneviratne et al., 2010] defining energy-limited and water-limited ET regimes 

as a function of soil moisture (θ). θwilt is the “soil wilting point” and θcrit is a critical soil 

moisture value. The black line represents a three-segment regression line. The coefficients of 

determination (R2) and the significance values (p) for the stage 1 in water-limited domain and 

energy-limited domain are shown in black. The blue line is the linear regression line between 

ET and scaled EVI. The related regression equation and statistical values are shown in blue 

color. 

 

4.2.3 A Simple EVI-Based ET Model 

Based on the above analysis, ET can be given as a function of EVI: 

 ( _ , )ET f scaled EVI e E    (8.1) 
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where _ 0.08scaled EVI EVI , e is the energy constraint factor, ( _ , )f scaled EVI e  

indicates transpiration and E indicates soil evaporation. This equation takes the same form as 

the Penman-Monteith-Leuning (PML) model that calculates ET as the sum of canopy 

transpiration and soil evaporation [Leuning et al., 2008]. Soil evaporation in the PML model 

occurs as a fraction of the equilibrium evaporation rate derived from the energy available at 

the soil surface [Leuning et al., 2008]. Thus the form of soil evaporation in the model was: 

 ( , )sE f A f   (8.2) 

where sA indicates the available energy at the soil surface and f indicates a fraction constraint 

on sA . An advantage of this form is that it allows use of separate but unique variables to 

represent the energy constraint on transpiration and at the soil surface. LST was chosen to 

represent energy availability because LST reflects partitioning of surface energy [Price, 1990] 

and contains significant information about land surface evaporation [Caparrini et al., 2004]. 

LST was directly used to represent sA and investigated the relationship between ET and LST to 

determine e. Figure 4.3a shows the constraining effect of LST on ET, from which e can be 

defined as: 

 min ( ), (2.5 0.05 )
30

LSTe LST   (8.3) 

where e obtains a maximum value of 1 at 30 °C and minimum value of 0 at 0 °C and 50 °C. 

This formula is the same as the LST scalar used in Sims et al. [2008] to estimate ecosystem 

gross primary productivity (GPP). Because carbon and water cycles are strongly coupled, it is 

thus not surprising that LST shows similar effects on ET and GPP. 
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Figure 4.3. Regulation effects of land surface temperature (LST, a) and soil moisture (SM, b) 

on ecosystem observed ET across eight Australian seasonally water-limited sites. 

 

The two-stage theory of bare soil evaporation suggests that, between soil wetting events, soil 

evaporation is governed mainly by energy availability in the first stage and then is limited by 

soil moisture [Salvucci, 1997]. Therefore, soil moisture was employed to define f. According 

to the linear regulating effect of soil moisture on ET between θwilt and θcrit (Figure 4.3b), f is 

defined as 

 

0,

,

1,

wilt

wilt
wilt crit

crit wilt

crit

f   (8.4) 

where θ indicates microwave soil moisture, θwilt = 0.05 m3m−3 and θcrit = 0.40 m3m−3. θ was 

scaled to 0  1 where it is between θwilt and θcrit. 

Combining Equations 4.1-4.4 forms an ET model as a function of monthly LST, EVI 

(Greenness index) and SM data (TG-SM) which are all obtained from remote sensing 

measurements: 

 max(0, _ )ET a scaled EVI e b LST f   (8.5) 
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where a (mm, transpiration per unit EVI) and b (mm, soil evaporation per degree LST) are 

coefficients and accounts for regression intercept. The TG-SM model was then regressed 

against observed ET across and within eight sites, respectively. The TG-SM model was also 

parametrized using data from only stage 1 of water-limited domain or energy-limited domain, 

respectively, to investigate its performance under hydrothermal limiting conditions. Further, 

the parametrized TG-SM models within biomes were used to estimate ET in seasonally 

water-limited ecosystems across Australia. 

 

4.3 Results 

4.3.1 Performance of the TG-SM Model across Sites 

Compared with the linear regression between measured ET and EVI 

( 295.97 _ 8.0ET scaled EVI , R2 = 0.60 and RMSE = 25.0 mm month-1, Figure 4.2), 

the TG- SM model ( = 0,240.4  6.9 0.1( )ET max scaled EVI e LST f ) improved the 

estimation accuracy considerably (R2 = 0.72 and RMSE = 20.9 mm month-1, Figure 4.5a). 

Larger improvements were achieved in the energy-limited regime and stage 1 in the 

water-limited regime and the predicted ET was significantly correlated with tower observed 

ET with R2 values of 0.06 and 0.46 and RMSE of 19.3 mm month-1 and 11.1 mm month-1 

(Figures 4.5b and 4.3c), respectively. In contrast, there was no significant relationship 

between ET and EVI in neither the energy-limited domain nor stage 1 in the water-limited 

domain (Figure 4.2). When TG-SM was parameterized independently at each site, modelled 

ET were better correlated to measured ET, with R2 values of 0.87 across all three intervals, 

0.32 in the energy-limited domain and 0.50 in the lower water-limited domain (Figure 4.4). 
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Figure 4.4. Comparison of predicted ET by TG-SM models fitted within each site with in-situ 

measured ET across all eight sites in Australia on a monthly basis. 

4.3.2 Performance of the TG-SM Model within Sites 

The TG-SM model successfully estimated monthly ET both at the arid sites (e.g., AU-Asm) 

and at relatively humid sites (e.g., AU-Da1). The only relatively poor performance was found 

at the AU-Cap site (R2 = 0.59, RMSE=8.2 mm month-1, p < 0.01). Compared to the CABLE 

simulation and the MOD16A2 product (Figures 4.5d, 4.5e and 4.5f, 4.6 and 4.7) the TG-SM 

model showed generally better performance. At the AU-Cap site, the R2 value of the TG-SM 

model was slightly smaller than that of the CABLE model, but the RMSE value of the 

CABLE model was larger. Similarly, at the AU-How site, though the R2 value of the 

MOD16A2 ET product was slightly larger than that of the TG-SM model, the RMSE value 

was almost two times larger than the RMSE of TG-SM. At other sites, the TG-SM model 

performed equally to or much better than the CABLE model and the MOD16A2 ET product 

(Figures 4.5d, 4.5e and 4.5f). However, the TG-SM model tended to underestimate ET when 
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ET was large but tended to overestimate ET when ET was small (Figures 4.5a, 4.5b, 4.5c and 

4.5f). Systematic bias (shown as the slopes of the linear regressions in Figure 4.5f) ranged 

from 0.59 at AU-Cap to 0.92 at AU-Da1 and was 0.73 across all sites (Figure 4.5a). 

 

Figure 4.5. Comparison of predicted ET and measured ET across (top) and within (bottom) 

eight sites. (a) Performance of the model parametrized across all sites, (b) performance of the 

model parametrized in only the energy-limited domain, (c) performance of the model 

parametrized in only the extremely water-limited domain, and (d, e and f) coefficients of 

determination (R2), RMSE (mm month-1) and fitted slopes of TG-SM, CABLE or MOD16A2 

predicted ET against measured ET at each site on a monthly time-scale. At AU-Cap, 

MOD16A2 ET was not significantly correlated with observed ET. At AU-Da2, CABLE ET 

was correlated with observed ET at a significant level of p < 0.05. All correlations between 

estimated and observed ET were significant with p < 0.01 except for the CABLE model at 

AU-Da2 (p < 0.05). 
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Figure 4.6. The performance of the CABLE model at each of the eight flux sites at a monthly 

time-scale. 
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Figure 4.7. The performance of MOD16A2 ET product at each of the eight flux sites at a 

monthly timescale. 

 

4.3.3 Performance of the TG-SM Model at the Regional Scale 

The TG-SM model showed moderate agreement with ET-MTE in the mean annual spatial 

pattern of ET in Australian seasonally water-limited ecosystems during 2001-2011 (Figures 

4.8a, 4.8c and 4.8d). The correlation analysis across all pixels resulted in a RMSE of 101.4 
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mm yr-1 and R2 of 0.87. Although MOD16A2 product obtained a slightly larger R2 of 0.94, it 

obtained a larger RMSE of 111.7 mm yr-1 against ET-MTE than TG-SM. Furthermore, 

MOD16A2 product systematically underestimated ET with a spatial annual mean bias of 

-100.3 mm yr-1 (Figure 4.8). In contrast, the spatial annual mean for TG-SM (297.4 mm yr-1) 

was close to that of ET-MTE (327.3 mm yr-1) (Figure 4.8d). Overestimation of ET by TG-SM 

occurred mainly along the coast and some inland regions whereas for transition regions from 

coast to inland the TG-SM model slightly underestimated ET in contrast to ET-MTE (Figures 

4.8a and 4.8c). 

Temporally, ET estimated by the TG-SM model correlated with ET-MTE at almost all pixels 

with a p value less than 0.01 (Figure 4.8g). The strongest correlation occurred in North and 

East Australia whereas the correlation was moderate or weak in inland Australia (Figure 4.8e) 

and the mean R2 value of all pixels was 0.55 (Figure 4.8h). The majority of RMSE values 

between TG-SM ET and ET-MTE were around 12 mm month-1 (Figure 4.8f). The 

performance of the TG-SM model generally surpassed the MOD16A2 product, which failed 

to capture the temporal variation of ET-MTE in southern Australia (Figures 4.8i and 4.8k). 

The mean R2 value (0.44, Figure 4.8l) of all pixels between MOD16A2 and ET-MTE was also 

smaller than that between TG-SM and ET-MTE. 
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Figure 4.8. Spatial comparisons of mean annual TG-SM ET (a) and mean annual MOD16A2 

ET (b) against mean annual ET-MTE (c) during 2001-2011.  Figure 4.8d is the probability 

density distributions of spatial mean values. The red, blue and green dashed lines indicate 

spatial mean annual values for TG-SM, MOD16A2 and ET-MTE, respectively. Figures 4.8e, 

4.8f and 4.8g are determination coefficients (R2), RMSE and significant values of monthly 

TG-SM ET against monthly ET-MTE at the pixel level and Figure 4.8h is the probability 

density distribution of R2 between TG-SM ET and ET-MTE. Figures 4.8i, 4.8j and 4.8k are 

determination coefficients, RMSE and significant values of monthly MOD16A2 ET against 

monthly ET-MTE at the pixel level and Figure 4.8i is the probability density distribution of 

R2 between MOD16A2 ET and ET-MTE. Black dashed lines in Figures 4.8h and 4.8l indicate 

mean values of R2. 
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4.4 Discussion and conclusions 

The parametrized TG-SM model at only eight flux sites worked well at the regional scale on a 

monthly time-step in comparison with ET-MTE and the complex physical model-based 

MOD16A2 product, suggesting the TG-SM model was both robust and contained a 

reasonable representation of the process of ET. However, one limitation of the framework is 

that it cannot apply over short time-scales (e.g., seconds to hourly), because changes in EVI 

are not rapid enough to capture short-term fluctuations in vegetation function and structure. 

The application of LST as a proxy for available energy is necessary for scaling EVI as 

transpiration and for calculating soil evaporation. Variations in LST can be positively 

correlated with variations in vegetation and soil fractions in vegetated regions [Sims et al., 

2008], which will affect partitioning of ET from transpiration and soil evaporation. 

Furthermore, LST significantly correlates with air temperature, photosynthetically active 

radiation and vapor pressure deficit over a wide diversity of natural vegetation and thus is a 

good proxy for several important environmental variables [Sims et al., 2008]. Although Wu et 

al. [2010] reported that air temperature instead of LST provided the best regulating effect on 

EVI in a vegetation index based carbon model [Sims et al., 2008], LST cannot be substituted 

by air temperature because LST is available as continuous observations over large spatial 

scales but air temperatures are not. 

Soil moisture provides an important constraint on ET because both evaporation and 

transpiration respond to variation in soil moisture [Seneviratne et al., 2010]. Satellite retrieved 

soil moisture can sensitively respond to atmospheric forcing such as radiation and 

precipitation because the shallow sensing soil surface layer is directly exposed to air [Wagner 

et al., 2007]. This characteristic makes satellite retrieved soil moisture appropriate to estimate 

soil evaporation because deeper soil layers are largely disconnected from shallow layers near 
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the surface in dry periods [Wang and Dickinson, 2012]. The ECV soil moisture data used in 

this study show moderate correlation with in-situ observations from global monitoring 

networks [Dorigo et al., 2015]. Satellite retrievals of soil moisture can be a poor 

representation of measured soil water content (i) in densely vegetated regions due to 

attenuation of the satellite signal and radiation at the soil surface [Liu et al., 2012] and (ii) 

because of gaps due to the interference of snow or frozen soil. However, over 

sparsely-to-moderately vegetated regions, the ECV soil moisture product is expected to 

provide reasonable estimates of upper soil moisture content [Liu et al., 2012]. 

The lack of joint observations of both transpiration and soil evaporation introduces 

uncertainty in scaling LST and soil moisture, which potentially limits the applicability of the 

TG-SM model. The systematic bias of the TG-SM model was identified by overestimation of 

energy limitations when ET was high and by under- estimation of water stress when ET was 

low. Failure to partition trees and grasses at those sites where both trees and grasses grow also 

introduces uncertainty due to their distinct access to soil moisture reserves and differential 

contribution to fluctuations in leaf area [Whitley et al., 2011]. Trees and grasses have different 

vegetation traits and display different responses to environmental changes which can affect 

their respective patterns of water use. All trees are C3 but some grasses, especially in central 

and northern Australia are C4, and these behave differently. Several studies reported that 

grasses consume water more aggressively [Bond, 2008], have larger maximum transpiration 

rates and more rapid depletion of available soil moisture than coexistent trees [Holdo and 

Brocato, 2015]. Even within different species of savanna trees, stomatal conductance shows 

differential response to watering [Holdo and Brocato, 2015]. These facts imply that using the 

same coefficient for EVI to represent transpiration of trees and grasses can significantly 

contribute to systematic bias in the TG-SM model. It is therefore important to understand how 

trees and grasses individually and jointly contribute to ET and observations of overstory and 
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understory canopy transpiration will help achieve this goal. 

Although the TG-SM model was developed using seasonally water-limited sites, it has 

potential to be applied in non-water limited ecosystems of other types, such as forests and 

crops, assuming there is access to accurate soil moisture inputs. Since a separate soil 

evaporation item is explicitly incorporated, the TG-SM model theoretically can be applied to 

estimate ET of irrigated crops, as previously shown by Wang et al. [2007], who used a 

combination of net radiation, VI and temperature data. However, the application of the 

TG-SM model still needs testing and validation in ecosystems with various vegetation types 

and climate regimes in future. 

By linking EVI to a classical ET-soil moisture framework, a similar ET-EVI framework was 

proposed. This framework provided insights into the behaviors of vegetation under 

contrasting energy and water conditions and thus can be used to guide the development of 

vegetation index based models for not only ET but also vegetation productivity. The TG-SM 

model in this study puts the ET-EVI frame- work into a practical outcome. Using a 

combination of EVI, LST and microwave soil moisture, the TG-SM model was proven better 

than the MODIS ET product in comparison to ET-MTE at seasonally water-limited 

ecosystems in Australia. Therefore, the TG-SM model can serve as a tool for estimating 

regional ET by using satellite images only, and contribute to diagnosing the vulnerability of 

seasonally water-limited ecosystems in Australia to climate variability. 
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Chapter 5. Identifying and optimizing key above- and 

below-ground processes for carbon assimilation and 

evapotranspiration in the CABLE model across Australian 

vegetation types 

Abstract  

Land surface models, as a critical component of global climate models, provide estimates of 

carbon, water and energy fluxes as the lower boundary conditions for climate prediction. Here 

I combined a global sensitive analysis method and a generic optimization framework to 

investigate key parameters and associated processes in an improved version (v2.0b, with 

dynamic root water uptake function and hydrological redistribution, HR) of the Australian 

Community Atmosphere-Biosphere Land Exchange (CABLE) model. My results showed that 

biochemical process (Vcmax) and the process of HR were most important for carbon 

assimilation across 10 OzFlux sites while HR as well as root depth were key determinants of 

evapotranspiration (ET). When optimized values of both above- and below-ground parameters 

were used, model performance was significantly improved, particularly during dry periods.  

In contrast there was very limited improvement if only optimized aboveground parameters 

were used. Further, I investigated effects of optimization at various time-scales and found a 

decrease of model performance from mesic to xeric sites at hourly to daily time-scales but not 

at the monthly timescale. However, soil water content was still poorly modeled even if the 

GPP and ET were reasonably estimated. These results suggest that below-ground processes 

such as HR and root water uptake are critical for LSMs in correctly capture vegetation 

responses to droughts and also highlights the challenges for LSMs to characterize variations 

of soil water content. 
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5.1 Introduction 

After decades of evolution, current land surface models (LSMs) represent interactions 

between land surface and the atmosphere through a coupling of biophysical and 

biogeochemical processes with explicit partitions of vegetation and soil types [Pitman, 2003; 

Wang et al., 2011]. As a key component of global climate models, LSMs provide the lower 

boundary conditions for climate and weather predictions, i.e., calculate available energy at the 

surface and its partitioning between sensible and latent heat (Qle) fluxes, balance incoming 

water between evapotranspiration (ET, calculated by Qle times a transform coefficient), runoff 

and soil water content (SWC), and estimate net ecosystem exchange (NEE) of CO2, which is 

critical to the development of our understanding of the future climate [Pitman, 2003]. Of these 

turbulent fluxes outputted by LSMs, most important are likely to be NEE and Qle [Abramowitz 

et al., 2008; Reichstein et al., 2003] while SWC can be of central importance among slowly 

varying state variables of LSMs because it can have strong impacts on carbon uptake [Poulter 

et al., 2014], Qle and precipitation [Koster et al., 2004]. It is important to note that NEE is 

calculated as the difference between gross primary productivity (GPP) and ecosystem 

respiration (RE, equal to nighttime NEE) in LSMs and GPP is tightly coupled with ET at the 

ecosystem scale [Beer et al., 2009]. Therefore, for the purpose of identifying key processes in 

LSMs, I focus on GPP, Qle, NEE and SWC. By convention, I use Qle at hourly time-scale but 

use ET over daily to annual time-scales hereafter. 

LSMs have been extensively evaluated [Li et al., 2012; Ukkola et al., 2016; Wang et al., 2001], 

inter-compared [Boone et al., 2009; Dirmeyer et al., 2006] and benchmarked [Abramowitz et 

al., 2008; Best et al., 2015] for carbon, water and energy fluxes. Significant problems are 

identified as remaining within LSMs, including sub-grid-scale heterogeneity, biogeochemical 

cycles [Pitman, 2003] and particularly their limited ability to replicate the impacts of water 

stress [De Kauwe et al., 2015; Egea et al., 2011; Powell et al., 2013]. Thus, improving the 
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performance of LSMs in circumstances of low water availability has been a priority task and 

this is gaining growing interest within the land modeling community, especially since 

droughts are widely expected to increase in both frequency and intensity [Allen et al., 2010; 

Dai, 2013]. Efforts have been done in parametrizing both above- and below-ground 

component processes using either alternative model structures or parameter sets. Reichstein et 

al. [2003] applied an inverse modeling method to estimate drought effects on leaf stomatal 

conductance and ensuing changes in leaf photosynthetic capacities in three Mediterranean 

ecosystems. De Kauwe et al. [2015] incorporated drought sensitivities of different species to 

constrain stomatal conductance and photosynthetic biochemistry parameters (Vcmax and Jmax). 

Ukkola et al. [2016] compared effects of alternative hydrological processes, leaf area index 

and soil properties on simulated Qle and found that a more physically consistent 

parametrization of hydrology [Decker, 2015] could better capture responses of Qle during 

precipitation deficits. While above efforts are of significant importance, the majority examine 

above- and below-ground processes separately and few attempt to revise bias induced by root 

water uptake functions [Li et al., 2012] and associated SWC changes in LSMs. These 

problems result from the large number of parameters (typically 20-60 for each vegetation type) 

[Lu et al., 2013; Wang et al., 2011], lack of or difficulties in direct measurements of 

parameters involved in fine-scale processes (e.g., Vcmax and root density distribution, 

Reichstein et al. [2003]), and non-linearity between surface fluxes and model parameters 

[Wang et al., 2001]. However, interactions between roots and soil water are important because 

plants take up water from soil in the root zone [De Kauwe et al., 2015; Li et al., 2012]. 

 

Model-data fusion techniques provide a systematic and rigorously analytical framework for 

identifying the best or most probable values and associated uncertainties of model parameters 

[Keenan et al., 2011; Raupach et al., 2005; Wang et al., 2009]. The principle of model-data 
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fusion is iterative comparisons of model outputs using proposed parameter sets at each step 

with observed data. The objective is to minimize the cost function which is usually a metric of 

mismatch between a model and measurements [Raupach et al., 2005; Wang et al., 2009]. 

Model-data fusion methods have been successfully applied to estimate soil organic carbon 

pools [Ahrens et al., 2014; Hararuk et al., 2014], vegetation properties [Keenan et al., 2012; 

Reichstein et al., 2003; Richardson et al., 2010], and propagation of model and data 

uncertainties [Keenan et al., 2011]. These applications show that model-data fusion is a 

powerful tool to investigate critical parameters and processes in LSMs. 

Here I use an adaptive Bayesian Markov-chain Monte Carlo framework to optimize both 

above- and below-ground parameters in an improved version of the Australian Community 

Atmosphere-Biosphere Land Exchange (CABLE, Wang et al. [2011]) model, which performs 

comparably with other major LSMs [Abramowitz et al., 2007; Best et al., 2015]. Different 

from the standard version, Li et al. [2012] incorporated a dynamic root water uptake function 

[Lai and Katul, 2000] and a hydraulic redistribution (HR) function [Ryel et al., 2002], which 

significantly improved estimation of NEE, Qle and SWC during dry seasons in three forest 

ecosystems. I select 23 parameters (Table 5.2) involved in vegetation photosynthesis and 

evapotranspiration processes. As not all these parameters can be well constrained by observed 

turbulent fluxes, I first use a global sensitivity analysis method to screen out parameters that 

are relatively insensitive. This filtering step can effectively avoid ill-conditioning [Tarantola, 

2005] and decrease dimensions of parameter space in optimization [Lu et al., 2013]. Then I 

conducted optimization at ten OzFlux sites, covering a diversity of vegetation types from xeric 

to mesic environments. Three simulations using default parameters (S-Def), above-ground 

parameters only (S-Abv) and all optimized parameters (S-Opt) were performed to identify 

effects of above- and belowground processes on GPP and Qle. Therefore, the objectives of 

this study are to (1) identify both above- and below-ground key parameters and processes for 
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GPP and Q in LSMs, (2) optimize key parameters across different vegetation types, (3) gain 

insights about the coupling of GPP and ET, and (4) evaluate performance of optimization at 

different time-scales. 

 

5.2 Data and Methods 

5.2.1 Sites and Measurements 

Ten sites from the OzFlux network (http://www.ozflux.org.au) were used in this study (Table 

5.1). These sites cover a variety of biomes across a spectrum of climates in Australia, 

including savannas (SAV), woody savannas (WSA), open shrublands (OSH), crops (CRO), 

grasslands (GRA) and evergreen broad-leaf forests (EBF). Three savannas sites, Adelaide 

River (AU-Ade), Daly Uncleared (AU-Da2) and Dry River (AU-Dry), are located in northern 

Australia with a tropical climate. The dominant species are Eucalyptus tectifica and 

Planchonia careya in AU-Ade, Eucalypts and tussock in AU-Da2 and Eucalyptus tetradonta, 

Eucalyptus terminalis and Eucalyptus dichromophloia in AU-Dry [Beringer et al., 2011]. 

Howard Springs (AU-How) is the woody savanna site dominated by tree species Eucalyptus 

miniata and Eucalyptus tentrodonata and Sorghum tall grass [Eamus et al., 2001]. Two open 

shrublands sites are Alice Springs (AU-Asm) located in central Australia and Calperum 

(AU-Cap) in southeastern Australia. The AU-Asm site is a Mulga woodland [Cleverly et al., 

2013] and the AU-Cap site is dominated by mallee trees and various shrubs [Meyer et al., 

2015]. The crop site, Yanco (AU-JXA), is located in the western plains of southeastern 

Australia [Smith et al., 2012]. The Sturt Plains (AU-Stp) site lies in a low plain dominated by 

Mitchell grass [Beringer et al., 2011]. Two evergreen broad-leaf forests, Tumbarumba 

(AU-Tum) and Wombat (AU-Wom) are both located in southeastern Australia. The Forest at 

AU-Tum is classified as wet sclerophyll dominated by Eucalyptus delegatensis [van Gorsel et 
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al., 2013] and the Wombat site (AU-Wom) is a secondary regrowth forest dominated by 

Eucalyptus obliqua, Eucalyptus radiata and Eucalyptus rubida [Griebel et al., 2016]. 

 

Table 5.1. Eddy covariance data used in this study. Information includes site name (Site), 

latitude (Lat), longitude (Lon), vegetation type (IGBP), data observed period, mean annual 

temperature (MAT, ◦C), mean annual radiation (MAR, W m−2), mean annual precipitation 

(MAP, mm y−1) and reference citation 

Site Lat Lon IGBP Period MAT MAR MAP Reference 

Adelaide River (AU-Ade) -13.08 131.12 SAV 2007-2008 26.8 239.7 1852 Beringer et al. [2011] 

Alice Springs (AU-Asm) -22.28 133.25 OSH 2011-2012 21.9 255.2 335 Cleverly et al. [2013] 

Calperum (AU-Cap) -34.00 140.59 OSH 2010-2012 17.4 210.6 335 Meyer et al. [2015] 

Daly Uncleared (AU-Da2) -14.16 131.39 SAV 2007-2009 26.4 246.2 882 Beringer et al. [2011] 

Dry River (AU-Dry) -15.26 132.37 SAV 2009-2010 28.1 254.4 935 Beringer et al. [2011] 

Howard Springs (AU-How) -12.50 131.15 WSA 2001-2002 26.5 232.2 1193 Eamus et al. [2001] 

Yanco (AU-JXA) -35.00 146.29 CRO 2012 16.4 203.0 301 Smith et al. [2012] 

Sturt Plains (AU-Stp) -17.15 133.35 GRA 2008-2010 26.3 256.2 623 Beringer et al. [2011] 

Tumbarumba (AU-Tum) -35.66 148.15 EBF 2001-2003 8.2 192.1 1013 van Gorsel et al. [2013] 

Wombat (AU-Wom) -37.42 144.09 EBF 2010-2012 11.1 181.2 1059 Griebel et al. [2016] 

 

Half-hourly eddy covariance measurements of carbon, water and energy fluxes and auxiliary 

observations of meteorological and soil variables at these ten sites were collected and 

processed using the dynamic integrated gap filling and partitioning for OzFlux (DINGO) 

system based on a feed-forward artificial neural network algorithm [Beringer et al., 2007; Shi 

et al., 2014]. MOD15A2 leaf are index (LAI, at 8-day time-step and 1 km resolution) at ten 

sites during the study periods were interpolated into half-hourly time-step as inputs. 
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5.2.2 The CABLE Model 

The CABLE (version 2.0b) model is a global land surface model that allows for interactions 

between micro-climate, plant physiology and hydrology [Kowalczyk et al., 2006]. It can 

simulate momentum, heat, water and carbon exchange between the land surface and the lower 

atmosphere [Kowalczyk et al., 2006; Wang et al., 2011]. Here key processes are described for 

GPP and ET in an improved version of the CABLE model incorporating a root water uptake 

function, assuming root water uptake efficiency as a function of rooting depth, and a hydraulic 

redistribution function [Li et al., 2012]. A one-layered, two-leaf (sunlit and shaded) canopy 

model is used to calculate canopy carbon assimilation and transpiration through coupling of 

stomatal conductance, photosynthesis and transpiration [Wang and Leuning, 1998; Wang et al., 

2011]. Potential transpiration ( *
,c iE ) without soil moisture limit for the sunlit leaf (i = 1) or the 

shaded leaf (i = 2) is modelled as: 

 , , ,*
,

, , ,

( )
( )

c i p a a h i r i
c i

h i r i w i

sRn c D G G
E

s G G G
             (12.1) 

photosynthesis-gas diffusion and photosynthesis-biochemistry are calculated as: 

 , , , ,( ) ( )c i sc s i s i i c i a iA b G C C G C C   (12.2) 

 , , , , ,min( , , )c i J i c i p i d iA V V V R   (12.3) 

and stomatal conductance is represented as: 
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where λ is the latent heat of vaporization (J kg−1), Rnc,i is the net available energy partitioned 

into latent and sensible heat fluxes, s is the slope of the curve relating saturation water vapor 

to temperature, γ is the psychrometric constant, cp is the specific heat, and ρa is the air density. 
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Da and Ds,i are vapor pressure deficit in the ambient air and at the leaf surface, respectively. 

Gw,i, Gh,i and Gr,i are conductances for water, heat and radiation, respectively. Ac,i is the net 

photosynthesis rate, bsc is the ratio of diffusivity of CO2 and H2O through the stomata, Gs,i and 

G0,i (Gs,i, when Ac,i = 0) are the bulk stomatal and residual conductance for water vapor, and 

Gc,i is the total conductance from the inter-cellular space of the leaves to the reference height 

above the canopy for CO2. Cs,i, Ca and Ci are CO2 mole fractions at the leaf surface, in the 

ambient air and leaf inter-cellular spaces, respectively. min(VJ,i,Vc,i,Vp,i) and Rd,i indicate net 

carboxylation rate and day respiration rate, respectively, where VJ,i, Vc,i and Vp,i are the 

RuBP-limited, Rubisco-limited and sink-limited carboxylation rates. a1 and D0 are two 

empirical constants, and Γ is the CO2 compensation point of photosynthesis. fw is an empirical 

parameter describing soil water stress on stomatal conductance and is calculated, in the 

improved version of CABLE, as: 

 2,min(1.0,max(1.0 4, ))w mf e   (12.5) 

where m = 1,...,6 is the number of soil layer and α2,m is calculated as: 
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where θm, θwilt and θs are soil water content in soil layer i, soil water content at wilting point 

and saturated soil moisture content, respectively, and γr is an empirical constant. 

The actual evapotranspiration (λE) is calculated as the sum of transpiration from both dry 

(λEdry) and wet (λEwet) canopy and evaporation (Es) from the soil: 

 (1 )wet dry wet wet sE f E f E E   (12.7) 

where fwet  [0,1] is used to indicate the canopy wet fraction. Ewet, Es, and Edry are all based on 



136 

Equation 5.1 while the calculation of Edry needs considering root water uptake from soil layers. 

That is: 

 *
1
min((1 ) ,1000( ) / )n

dry wet m dry m wiltm
E f E z t   (12.8) 

where *
dryE  is the potential transpiration of dry canopy calculated using Equation 5.1, ∆z is 

the thickness of soil layer m, ∆t is the time step of CABLE, and ηm is the fraction of *
dryE

extracted from soil layer m. In the improved version of CABLE, ηm is calculated using root 

water uptake function by Lai and Katul [2000] as: 

 , 1, 2,

, 1, 2,1

root m m m
m n

root m m mm

f

f
  (12.9) 

where froot,m is the fraction of root mass in soil layer m and is formulated according to Gale 

and Grigal [1987] and Jackson et al. [1996] as: 

 ,1
1 n

n z
root m rm

f   (12.10) 

where ,1

n
root mm

f  indicates the cumulative root fraction from soil layer 1 to soil layer n, βr 

is the “extinction coefficient” for vertical root biomass distribution, and zn is the depth of soil 

layer n. α1,m is calculated as: 

 1, max(1.0 4, )m
m

s wilt

e   (12.11) 

Soil water content at each layer (θm) is modelled as: 

 dry s
q E E H

t z
  (12.12) 

where q is the kinematic moisture flux between soil layers and H is water flux from hydraulic 

redistribution. q is represented as: 
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and Hm for soil layer m redistributed from soil layer k (k ≠ m) is represented as: 
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where D is soil moisture diffusivity, K is hydraulic conductivity, ψ is soil matrix potential, ψ50 

is the soil water potential when soil-root conductance decreases by 50%, and θr is the residual 

soil water content. CRT is the maximum radial soil-root water conductance of the entire active 

root system, cm represents the constraint of soil water potential on soil-root conductance, and 

δT = 0 during day time and δT = 1 during nighttime. froot,x is equal to froot,m when θm > θk, 

otherwise froot,x is equal to froot,k. α,ν and b are empirical parameters. 

Equations 5.1 – 5.18 describe the key processes for GPP, ET and root water uptake in the 

CABLE model. In this study, I tested a total of 23 parameters involved in these equations 

(Table 5.2). Because C3 and C4 plants have different photosynthetic pathways, parameters for 
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both C3 and C4 were denoted separately. For example, G0 was denoted as G03 for C3 plant and 

G04 for C4 plant, respectively (Table 5.2). All CABLE runs were forced with prescribed LAI 

and without activation of nitrogen and phosphorus cycles. 

 

5.2.3 Sensitivity Analysis 

Land surface models generally have several hundred parameters, of which many are not well 

constrained by current measurements [Lu et al., 2013] and thus a variety of optimization 

methods are used to tune them [e.g., Beven and Freer, 2001; Keenan et al., 2012; Wang et al., 

2001]. However, the efficiency of optimization algorithms can decrease exponentially with the 

increasing number of parameters [Zhang et al., 2015]. Taking the long simulation of land 

surface models into account, the computational cost of optimization will be extremely high or 

even unacceptable in high-dimension parametric space. This cost is particularly uneconomical 

for those inherently serial algorithms in which the current model state depends on the previous 

one. In addition, limited measurements cannot provide effective boundary conditions for all 

parameters and those poorly constrained parameters will not converge or will be 

ill-conditioned in the optimization [Beven and Freer, 2001; Keenan et al., 2012; Tarantola, 

2005; Wang et al., 2001]. Therefore, it is essential to reduce the parameter dimension and 

identify parameters sensitive to available measurements. 

I used the Morris method [Campolongo et al., 2007; Morris, 1991], a global sensitivity 

analysis approach, to screen out the sensitive parameters. Assuming a k-dimension parameter 

input Xi, i = 1,...,k, the Morris method partitions the range of each parameter into p levels and 

thus produces a k-dimensional p-level grid, Ω. Each dimension of Ω is normalized into 0  1 

and then transformed to the actual distribution when input into the model [Campolongo et al., 

2007]. For a given X, the Morris method varies one factor at a time (OAT) by a predetermined 
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multiple of 1/(p−1) to calculate the impact of that factor on output. This impact is called 

elementary effect and can be represented as: 

 1 2 1 1, ,..., , , ,...,i i i k
i

y X X X X X X y
d

X
X   (12.19) 

where X  Ω, Xi ≤ 1−∆ and ∆ = p/[2(p−1)] when p is even [Morris, 1991]. In OAT based 

experiment design, the Morris method first randomly samples a start parameter set S0(X) from 

Ω and then generates another parameter set Si(X) by increasing the ith parameter by ∆ until all 

parameters are varied once. In doing so, the procedure produces k+1 parameter sets Si(X), i = 

0,1,...,k and can yield k elementary effects, one per parameter. The combination of these k + 1 

parameter sets constitutes a trajectory. To determine which parameter has effects that are 

negligible, linear and additive, nonlinear, or involved in interactions with other inputs, r 

(generally 10  50) trajectories are suggested to calculate the mean (μ) and the standard 

deviation (σ) of the elementary effects of each parameter [Campolongo et al., 2007; Morris, 

1991]. Because elementary effects of a parameter can have different signs, the absolute value 

of μ is recommended [Campolongo et al., 2007] and thus the following can be defined: 
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where dij(X) indicates the elementary effect of the ith parameter in the jth trajectory, μi is the 

mean of  is the mean of the absolute values of dij(X), and σi is the standard 

deviation of dij(X). Furthermore, a sensitivity index si using *
i  and σi is defined as: 

 *2 2
i i is   (12.22) 
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The Morris method provides a good compromise between accuracy and efficiency 

[Campolongo et al., 2007; Lu et al., 2013]. Employing this method, I assessed sensitivities of 

GPP and ET to 23 parameters (Table 5.2) in CABLE at ten sites, respectively. At all sites, p 

was set to 6 and y(X) was equal to mean values of GPP or ET during the simulation period. 

Meanwhile, a generic Ω (ranges of parameters in Table 5.2) was used at all sites. Using the 

mean values of GPP or ET as y(X) and the same priori can enable direct comparisons of 

parameter sensitivities at different sites with differed number of observations. 200 trajectories 

were sampled to obtain enough effective elementary effects because some trajectories were 

not valid to make the simulation converge, and the first 30 effective elementary effects were 

used to calculate the sensitivity index of each parameter. At each site, an arbitrary threshold of 

80% quantile was used to rank all sensitivity indices and only parameters above the threshold 

were considered to be important. 
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Table 5.2. Definitions and ranges of CABLE parameters in sensitivity analysis 

Parameter Definition Min Max 
Χ A parameter in the leaf inclination angle distribution 

(dimensionless) 
-1.0 0.50 

Vcmax Maximum RuBP carboxylation rate at canopy top at a leaf 
temperature of 25 ◦C (μmol m−2 s−1) 

5.0e-6 1.8e-4 

a13 An empirical parameter in C3 leaf stomatal model (dimensionless) 3.0 50.0 

a14 An empirical parameter in C4 leaf stomatal model (dimensionless) 0.8 50.0 

D03 An empirical parameter in C3 leaf stomatal model (Pa) 750 2600 
D04 An empirical parameter in C3 leaf stomatal model (Pa) 750 2600 
rd3 The ratio of C3 leaf day respiration to maximal carboxylation rate 

(dimensionless) 
7.5e-3 2.5e-2 

rd4 The ratio of C4 leaf day respiration to maximal carboxylation rate 
(dimensionless) 

1.25e-2 3.75e-2 

G03 The stomatal conductance for H2O when C3 leaf net 
photosynthesis is 0 (H2O m−2 s−1) 

0.005 0.015 

G04 The stomatal conductance for H2O when C4 leaf net 
photosynthesis is 0 (H2O m−2 s−1) 

0.020 0.060 

α3 Initial slope of the C3 response curve of potential electron transport 
rate to absorbed quantum flux (mol mol−1) 

0.10 0.40 

α4 Initial slope of the C4 response curve of potential electron transport 
rate to absorbed quantum flux (mol mol−1) 

0.60 0.99 

Θ3 Convexity of the C3 response curve of potential electron transport 
rate to absorbed quantum flux (dimensionless) 

0.001 0.99 

Θ4 Convexity of the C4 response curve of potential electron transport 
rate to absorbed quantum flux (dimensionless) 

0.60 0.99 

βr A parameter for estimating vertical root mass distribution in soil 
(m−1) 

0.7 1.0 

CRT Maximum radial soil-root conductance of the entire active root 
system for water (m MPa−1 s−1) 

0.01 110 

γr A parameter in the function of root water extraction 
(dimensionless) 

0.001 0.030 

Ksat Soil hydraulic conductivity at saturation (m s−1) 5.0e-7 3.0e-3 
θr Soil residual volumetric water content (m3 m−3) 0.01 0.10 
υ An empirical parameter in hydraulic conductivity function 

(dimensionless) 
1.0 3.0 

a An empirical parameter in soil matrix potential function 
(dimensionless) 

0.005 0.040 

ψ50 The soil water potential (MPa) where the relative soil-root 
conductance is reduced by 50% 

-2.0 -0.3 

b An empirical parameter in formula for the relative soil-root 
conductance (dimensionless) 

1.5 3.22 

5.2.4 Parameter Optimization 

The Bayesian inference method using an adaptive Markov chain Monte Carlo (MCMC) 



142 

algorithm was employed to optimize parameters. Instead of searching a unique best parameter 

set, the Bayesian approach is to estimate the probability distribution of acceptable parameter 

values. This stochastic strategy can effectively avoid an overconfident fit of complex 

non-linear models [Ahrens et al., 2014; Van Oijen et al., 2005] by acknowledging alternative 

model parametrizations and their probabilities [Harrison et al., 2012]. According to the Bayes’ 

rule, the prior probability (p(θ)) of a parameter can be updated to the posterior probability 

(p(θ|y)) using the data likelihood function as: 

 | |p y p y ppp   (12.23) 

where p(y|θ), assuming a Gaussian distribution of residuals between modelled values and 

observations, can be calculated as: 

 

2

2
1

| exp
2

N i i

i i

y y
p y   (12.24) 

where N is the number of observation values, yi is the ith observation value, iy  is the ith 

simulation value, and σi is the standard deviation of the ith observation. 

An adaptive MCMC algorithm based on the random walk Metropolis-Hastings (MH) 

sampling strategy [Haario et al., 2001; 2005] was used to approximate the posterior 

distributions of model parameters. I first assume for all parameters non-informative uniform 

distributions over the ranges in Table 5.2 and then used a proposal distribution (qt(·|X0,...,Xt−1)) 

to generate a candidate parameter set ( *
tX ) from the previous accepted parameter set (Xt−1). 

The acceptance probability ( *
1( | )t tr X X ) of *

tX  relative to Xt−1 can be calculated as: 
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and according to the MH strategy, the probability of accepting Xt
 is determined by: 
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where r is a random number from a uniform distribution U(0,1). Through iterations, we can 

get a Markov chain 0{ ,..., }tX X , in which the current state only depends on the previous state. 

The proposal distribution qt(·|X0,...,Xt−1) is critical for effectively searching candidate 

parameters and thus the convergence of the chain. qt(·|X0,...,Xt−1) in the adaptive MCMC is 

Gaussian with Xt−1 as mean and Ct as covariance, which adapts as: 

 *
1( , )t t tX N X C   (12.27) 
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where C0 is the initial covariance, U and H are constant integers, k is the dimension of 

parameter space, sk is the scaling parameter and generally sk = (2.4)2/k [Gelman et al., 1996], ε 

is a very small value to ensure that Ct will not become singular, and Ik is a k-dimensional 

identity matrix. 

In this study, I used the joint vector of GPP, Qle and NEE as a multi-objective constraint on the 

model, i.e., y = { , , }GPP Qle NEE , which is proved to be highly effective [Reichstein et al., 

2003; Wang et al., 2001]. The start parameter values in chains at each site were set as the 

default values in CABLE, and C0 was set as the square of 1/8 of the range of each parameter. 

U and H were both equal to 100. I ran 5000 iterations at each site and judged the convergence 

of the chains according to trace plots [Andrieu and Thoms, 2008; Das et al., 2008] of 

parameters and the acceptance rate, which is the fraction of proposed samples that is accepted 

in the whole chain. Only the last 1000 values were used to approximate the posterior 

distributions of parameters and the first 4000 values were as burn-in samples. 
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5.2.5 Statistical Metrics 

I used two statistical metrics to compare the modelled and observed fluxes of NEE, GPP and 

ET (Qle) and also SWC. They are coefficient of determination (R2) and agreement index (d). 

R2 is calculated as: 
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where O  and P  are means of observed and modeled fluxes, On and Pn are the observed and 

modeled fluxes at the time step n, and N is the total number of observations. d is calculated 

following Willmott [1981] as: 
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where d varies between 0 (no agreement) and 1 (perfect match) and is sensitive to the 

difference between observed and modeled means. 

 

5.3 Results 

5.3.1 Important Parameters for GPP and Qle 

Figure 5.1 shows sensitivities (accounted by elementary effects) of annual GPP and Qle at each 

site to those important parameters. The number of identified important parameters was five for 

both GPP and Qle at each site. However, the total sensitivity of Qle to its selected parameters 

was much higher than that of GPP within all sites. For the same parameter, GPP and Qle could 

also show different responses. For example, in EBF sites constituted by C3 tree species, 

parametrization of a13 (the empirical parameter in C3 leaf stomatal model) was more 
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important for Qle than GPP. In these parameters, the above-ground parameter Vcmax and the 

below-ground parameter ν (an empirical parameter in hydraulic conductivity function) were 

common to all sites for annual GPP while γr and βr showed importance in sites with 

herbaceous species (excluding EBF sites, Figure 5.1a). In addition, a1 (including a13 and a14 

for C3 and C4 plants, respectively) also showed importance across sites among above-ground 

parameters. In contrast to GPP, Qle was more influenced by below-ground parameters 

including ν, θr and βr in the majority of sites (Figure 5.1b). Vcmax was the most important 

parameter for annual GPP (Figure 5.1a) but only asserted very limited influence on Qle (Figure 

5.1b) whereas a13 was of significant importance at six out of the ten sites, particularly within 

EBF (Figure 5.1b). Within each vegetation type, sites occupied a similar set of important 

parameters. Across all vegetation types, the total sensitivity of GPP for woody savannas and 

savannas were highest while evergreen forests was ranked the first in the total sensitivity of 

Qle to selected parameters. 
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Figure 5.1. Sensitivities of key parameters identified by the Morris method for gross primary 

productivity (GPP, Figure 5.1a) and latent heat (Qle, Figure 5.1b) over the study periods 

across ten flux sites, covering crops (CRO), evergreen broad-leaf forests (EBF), C4 grasslands 

(GRA), open shrublands (OSH), savannas (SAV) and woody savannas (WSA). Bars tending 

to be red indicate parameters involved in above-ground processes whereas bars tending to be 

blue indicate parameters involved in below-ground processes. 

 

5.3.2 Distribution of Optimized Parameters 

The majority of parameters, including those below-ground ones which are difficult to measure 

(Figures 5.2g-5.2n), were well constrained by the joint of GPP, Qle and NEE at the hourly 

time-scale with low uncertainty (Figure 5.2). The acceptance rate was lowest at the Cap site 

(0.18) with all other sites between 0.22 (AU-Dry) and 0.27 (AU-Ade). In contrast to the 

default parameters that were vegetation type specific, optimized parameters were quite site 

specific (Figure 5.2). For Vcmax, optimized values were larger than the default values in open 
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shrublands, savannas and woody savannas whereas they were smaller in crops and evergreen 

forests (Figure 5.2a). For sites with C3 species, the optimized a13 were close to or smaller than 

the default values except for the AU-Asm site. Within the open shrublands, the AU-Asm site 

showed different vegetation properties from the AU-Cap site for both above (Figures 5.2a and 

5.2b) and below-ground processes (Figures 5.2g and 5.2h). In contrast, EBF sites obtained 

similar optimized values for vegetation parameters (Figures 5.2a, 5.2b, 5.2d, 5.2f, 5.2g, and 

5.2j). Of all parameters, ψ50 (soil water potential when soil-root conductance is reduced by 

50%) showed the highest uncertainty, suggesting some limitation of joint constraints of 

turbulent fluxes on the hydraulic redistribution process (Equations 5.17 and 5.18). 

 

Figure 5.2. Boxplots of optimized values of key above-ground (red) and below-ground (blue) 

parameters at ten flux sites. Black cross symbols represent default values of parameters. 

Boxplots show first quartile, median and third quartile (box) as well as the total range of 

values. 
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5.3.3 Performance of Optimization at the Hourly Time-scale 

The responses of mean diurnal NEE, GPP and Qle simulated from S-Def, S-Abv and S-Opt 

were compared to quantify effects of above- and below-ground processes on carbon 

assimilation and evapotranspiration. All three simulations successfully captured the time of 

peak NEE values, which was around 12:00 AM in EBF (Figures 5.3i and 5.3j) but 10:00 AM 

in other vegetation types (Figures 5.3a-5.3h). Across sites, S-Def showed the poorest 

covariation with observed NEE, especially at the AU-Tum, AU-Stp and AU-Dry sites (Figure 

5.6b). Figure 5.6e also indicates S-Def was in lower agreement with observations. Compared 

to SDef, S-Abv mainly improved model performance in estimating daytime NEE but 

remained the same as S-Def during night-time except at the AU-How site, suggesting minor 

influence of above-ground processes on nocturnal ecosystem respiration. S-Opt improved 

model performance for both daytime and night-time NEE with best covariation (Figure 5.6b) 

and agreement (Figure 5.6e) with observations. However, all three simulations tended to 

underestimate night-time NEE at the AU-Ade, AU-Da2, AU-Dry and AU-Stp sites and 

performed poorest at the only C4 grassland site AU-Stp (Figures 5.3h, 5.6b and 5.6e). 
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Figure 5.3. Average diurnal cycles for net ecosystem carbon exchange (NEE) as calculated 

from the observations (Obs, open circles) and modeled by CABLE using default parameters 

(Def, black line), optimized above-ground parameters alone (Abv, blue line) and optimized 

parameters (Opt, red line), respectively. The shaded area represents standard deviation of the 

mean observed NEE. 

Similar to NEE, observed GPP reached peak values at around 10:00 AM (Figures 5.4a and 

5.4h) in non-forests but 12:00 AM (Figures 5.4i and 5.4j) in forest sites. However, all three 

simulations failed to capture the peak time of GPP at AU-Dry and AU-How sites. S-Abv was 

slightly better than S-Def but was outperformed by the latter at an open shrublands site 

AU-Cap and the C4 grassland site AU-Stp (Figures 5.6a and 5.6d). Compared to S-Abv and 

S-Def, SOpt improved the model performance considerably especially in agreement with 

observed GPP (Figure 5.6d), whereas it still underestimated mid-day GPP at the AU-Dry and 

AU-Stp site (Figures 5.4e and 5.4h). Across all sites, S-Opt still performed poorest in 

estimating GPP at the only C4 grassland site AU-Stp, just like its performance in estimating 

NEE. 
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Figure 5.4. Average diurnal cycles for gross primary productivity (GPP) as calculated from 

the observations (Obs, open circles) and modeled by CABLE using default parameters (Def, 

black line), optimized above-ground parameters alone (Abv, blue line) and optimized 

parameters (Opt, red line), respectively. The shaded area represents standard deviation of the 

mean observed GPP. 

 

Although Qle is tightly coupled with GPP, observed Qle reached its peak values at around 

12:00 AM across all sites (Figure 5.5), showing diurnal asynchrony of Qle and GPP in 

response to environmental changes. S-Abv showed no significant improvement over S-Def in 

vegetation types excluding EBF and WSA, indicating limited influence of above-ground 

vegetation parameters on evapotranspiration process in these vegetation types. S-Opt 

significantly improved model performance across all sites except the only crop site AU-JXA 

and one open shrublands site AU-Cap (Figures 5.6c and 5.6f), particularly in EBF and WSA 

sites. Improvements of S-Opt over the other two simulations mainly occurred during daytime 

while at night-time all three simulations tended to slightly overestimate Qle (Figure 5.5). 
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Figure 5.5. Average diurnal cycles for latent heat (GPP) as calculated from the observations 

(Obs, open circles) and modeled by CABLE using default parameters (Def, black line), 

optimized above-ground parameters alone (Abv, blue line) and optimized parameters (Opt, 

red line), respectively. The shaded area represents standard deviation of the mean observed 

Qle. 
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Figure 5.6. Statistical metrics for CABLE performance at the hourly time-scale using default 

parameters (Def), optimized above-ground parameters alone (Abv) and optimized parameters 

(Opt) at ten sites. Figures 5.6a, 5.6b and 5.6c indicate coefficient of determination (R2) and 

Figures 5.6d, 5.6e and 5.6f indicate agreement index (d). 

 

5.3.4 Simulated SWC, GPP and ET at the Daily Time-scale 

Mean daily SWC was also simulated because SWC is the key state variable constraining GPP 

and ET. The observed SWC was measured at the soil depth 5 cm while the simulated SWC 

was calculated at the soil depth 5.8 cm. Figure 5.7 shows that S-Abv and S-Def obtained 

similar results. S-Opt was in better agreement with observations across the majority of sites 

but failed to outperform S-Def or S-Abv at the AU-Ade, AU-Asm and AU-Wom sites (Figures 

5.7a, 5.7b, and 5.7j). This phenomenon is normal because the optimization targeted the 

combination of GPP, Qle and NEE but not SWC alone. A major reason for biases of S-Def and 

S-Abv was excessive water consumption in the early stages of the development of low soil 
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water availability (e.g., Figures 5.7a, 5.7f, 5.7g and 5.7i). In contrast, at the AU-Cap site, 

which occupied the lowest SWC across sites, all three simulations overestimated the 

responses of SWC to precipitation events (Figures 5.7c). This bias between model and 

observation at a site such as AU-Cap showed excess sensitivity of model parametrization in 

extremely water-limited environment. 

 

Figure 5.7. Mean daily soil water content (SWC) at depth 5 cm as calculated from the 

observations (Obs, open circles) and modeled by CABLE at depth 5.8 cm using default 

parameters (Def, black line), optimized above-ground parameters alone (Abv, blue line) and 

optimized parameters (Opt, red line), respectively. 

In contrast to the results obtained in simulating SWC, S-Opt generally surpassed S-Def and 

S-Abv in modelling GPP (Figure 5.8) except at the only C4 grassland site, AU-Stp, where the 

three simulations performed equally (Figure 5.8h). S-Abv obtained significant improvement in 

only EBF sites in comparison with S-Def (Figures 5.8i and 5.8j). Contrary to simulations of 

SWC, S-Opt tended to underestimate environmental constraints on GPP during periods of low 
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SWC (Figures 5.8a, 5.8b, 5.8d, 5.8e, 5.8f and 5.8h). At the AU-Cap site with lowest SWC, 

S-Opt agreed quite well with observed GPP (R2 = 0.55 and d = 0.85) though S-Opt 

overestimated SWC during precipitation days. 

 

Figure 5.8. Mean daily gross primary productivity (GPP) as calculated from the observations 

(Obs, open circles) and modeled by CABLE using default parameters (Def, black line), 

optimized above-ground parameters alone (Abv, blue line) and optimized parameters (Opt, 

red line), respectively. 

 

For daily ET, S-Abv showed limited improvement over S-Def whereas S-Opt improved model 

performance, particularly when ET was low, across the majority of sites except at the AU-Cap, 

AU-Dry and AU-JXA sites (Figures 5.9c, 5.9e and 5.9g). The major bias was induced by 

overestimation of ET at all above three sites during precipitation days and underestimation of 

ET at AU-Dry when SWC was low. 
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Figure 5.9. Mean daily evapotranspiration (ET) as calculated from the observations (Obs, 

open circles) and modeled by CABLE using default parameters (Def, black line), optimized 

aboveground parameters alone (Abv, blue line) and optimized parameters (Opt, red line), 

respectively. 

 

5.3.5 Seasonal Responses of Simulated GPP and Qle to Water Deficits 

Figure 5.10 shows comparison of three simulations in modelling monthly GPP. At savannas 

and woody savannas sites where ecosystems experience pronounced wet and dry seasons, 

S-Opt tended to underestimate water constraints on GPP whereas the other models showed a 

tendency to overestimate water limitation leading to considerable underestimation of GPP 

during dry seasons (Figures 5.10a, 5.10d, 5.10e and 5.10f). At EBF sites, S-Def predicted a 

short duration of low water availability resulting in an early timing of spring growth (Figures 

5.10i and 5.10j). S-Abv significantly improved modelling performance during periods of low 

water availability but slightly underestimated GPP during wet seasons at EBF sites whereas 
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S-Opt successfully resolved the issue with S-Abv (Figures 5.10i and 5.10j). 

 

Figure 5.10. Monthly gross primary productivity (GPP) as calculated from the observations 

(Obs, open circles) and modeled by CABLE using default parameters (Def, black line), 

optimized above-ground parameters alone (Abv, blue line) and optimized parameters (Opt, 

red line), respectively. The shaded area denotes the dry season. 

For monthly ET, both S-Def and S-Abv overestimated rates of water use at the majority of 

sites within savannas, woody savannas, C4 grasslands and open shrublands (Figures 5.11a, 

5.11c, 5.11d, 5.11e, 5.11f and 5.11h), which caused a sharp depletion of SWC early in the dry 

season (Figure 7). At EBF sites, S-Def and S-Abv showed similar performance for estimating 

ET to GPP. S-Opt significantly improved model performance mainly during dry seasons 

across non-forest sites except at the AU-Dry site (Figure 5.11e). 
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Figure 5.11. Monthly evapotranspiration (ET) as calculated from the observations (Obs, open 

circles) and modeled by CABLE using default parameters (Def, black line), optimized 

aboveground parameters alone (Abv, blue line) and optimized parameters (Opt, red line), 

respectively. The shaded area denotes the dry season. 

 

5.3.6 Effects of Optimization on GPP and ET at Different Time-scales 

From the results shown above, it is apparent that S-Opt could better estimate temporal 

variations of GPP and ET at each site. However, the effects of optimization varied not only 

between GPP and ET but also over hourly to monthly time-scales. Figure 5.12 shows that 

improvements through optimization conducted at short-term scale were not necessarily 

transferred to longer time-scales. For example, both R2 and d for hourly GPP at the AU-Stp 

site were smaller than those at the AU-Da2 site but they became larger at the monthly 

time-scale (Figure 5.12a). Meanwhile, effects of optimization were clearly affected by water 

availability across sites. Both R2 and d for GPP and ET at hourly and daily time-scales 
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increased as sites became increasingly mesic. However, at the monthly time-scale, this 

influence became weak. Instead, sites located between xeric and mesic showed the poorest 

effects of optimization. 

 

Figure 5.12. Performance of the optimized CABLE at different time-scales. Model 

parameters are optimized targeted at observed hourly GPP, Qle and NEE. Coefficient of 

determination (R2, solid line) and agreement index (d, dashed line) are shown at hourly 

(black), daily (blue) and monthly (red) time-scales. Both GPP (Figure 5.12a) and Qle (Figure 

5.12b) are ordered by mean annual precipitation across the ten sites. 

 

I further investigated the effects of optimization on the spatio-temporal coupling between GPP 

and ET (Figure 5.13) at the annual time-scale. S-Def weakened the covariation (R2 = 0.42) 

between GPP and ET mainly by overestimating their ratios (i.e., water use efficiency, WUE) 

for EBF sites (Figure 5.13b). In contrast, S-Abv overestimated the covariation (R2 = 0.70) 

between GPP and ET mainly by underestimating WUE for OSH sites (Figure 5.13c). S-Opt 

also over-predicted the coupling (R2 = 0.67) of GPP and ET but obtained closest WUE to the 

observed value. In addition, S-Opt systematically overestimated annual ET. 
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Figure 5.13. Coupling of gross primary productivity (GPP) and evapotranspiration (ET) at the 

annual time-scale across ten sites as calculated from the observations (Obs, dark green) and 

modeled by CABLE using default parameters (Def, black line), optimized above-ground 

parameters alone (Abv, blue line) and optimized parameters (Opt, red line), respectively. The 

solid line represents the linear regression and the dashed line indicates the linear regression 

using observation data. 

 

5.4 Discussion 

5.4.1 Key Parameters and Processes for GPP and ET 

Sensitivity analysis shows that Vcmax and ν are the primary parameters influencing carbon 



160 

assimilation across a wide range of vegetation types. Corresponding to these two parameters 

are the biochemical process of photosynthesis (Equations 5.2 and 5.3) and hydraulic 

redistribution of soil water (Equations 5.15-5.18). The extreme importance of Vcmax in 

estimating GPP has long been recognized. Wang et al. [2001] used a non-linear parameter 

estimation method to optimize Jmax (maximum potential electron transport rate, usually 

defined as proportional to Vcmax) over six grazing/pasture sites. Reichstein et al. [2003] tuned 

leaf photosynthetic capacity to address seasonal drought effects on carbon and water fluxes by 

inverse estimation of Vcmax. The optimization results presented herein also suggest that tuned 

Vcmax only can improve model performance on GPP and Qle (Figure 5.6) during either wet (e.g., 

Figure 5.10a) or dry seasons (e.g., Figure 5.10f). However, these improvements are very 

limited and in some circumstances tuned Vcmax gave no better GPP estimates than default Vcmax 

values (e.g., dry season in 2001 in Figure 5.10c). Furthermore, optimized Vcmax exerted only a 

minor improvement on SWC modelling (Figure 5.7). These results underline two points: (1) 

there is indeed a need to include environmental constraints on Vcmax to get dynamic 

parametrization instead of a presumed static value, and (2) improvements on SWC modelling 

are critical for CABLE LSM to consent to reality. De Kauwe et al. [2015] tested variable 

data-driven drought sensitivities [Zhou et al., 2013] of Vcmax in CABLE and found little effect 

if simulations of SWC were not improved because of the rapid depletion of SWC in the early 

stage of dry periods. Such “on-off” [De Kauwe et al., 2015] behavior in response to droughts 

was also revealed in the current study and others [e.g., Ukkola et al., 2016] using CABLE and 

also other LSMs, such as CLM (Community Land Model, Powell et al. [2013]) and VIC+ 

(Variable Infiltration Capacity Model, Luo et al. [2013]). Including optimized below-ground 

parameters greatly lessens the water constraint on vegetation photosynthesis (e.g., Figures 

5.10a, 5.10b, and 5.10d). The side effect of including HR optimization (also optimization of 

root water uptake process at some sites) is the tendency of underestimating drought impacts 
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on GPP (see the same examples, Figures 5.10a, 5.10b, and 5.10d), which is not expected. This 

side effect may be amended by dynamic parametrization of Vcmax or other below-ground 

processes, such as changes in rooting depth and ground water table, which is discussed later. 

Estimation of ET is significantly affected by parametrization of a13, βr, ν and θr. These 

parameters relate to the biophysical process of canopy stomatal conductance (Equation 5.4), 

dynamic root water uptake (Equations 5.9 and 5.10), and the process of HR (Equations 

5.15-5.18). a13, as the slope of the relationship between Ac and Gs (Equation 5.4), is reduced by 

a factor of water stress (fw in Equation 5.4) to down-regulate Ac. However, our results suggest 

that ET rather than GPP is more sensitive to a13 (Figure 5.1), possibly because of the 

predominantly biophysical nature of ET. βr is the unique parameter to determine the vertical 

distribution of root biomass (Equation 5.10), which is used to weight the contribution of SWC 

from different soil layers (Equation 5.9). The standard CABLE and LSMs such as CLM also 

applies this root biomass based weighting method to calculate water stress. However, this 

approach is criticized by De Kauwe et al. [2015] based on evidences that it performs poorly in 

response to droughts in the standard CABLE and shows no significant improvement even 

using alternative root water uptake functions (i.e., the version of CABLE used in this study, Li 

et al. [2012]) without HR inclusion. However, our optimization results show that this 

approach can work well for ET at the majority of sites experiencing dry seasons (e.g., Figures 

5.11a, 5.11b, 5.11d, 5.11f and 5.11h) although some bias was still apparent. This bias can be 

induced by the parametrization of βr, which determines root depth. Luo et al. [2013] applied 

the same root biomass based weighting method in the VIC+ model and evaluated the impact 

of root depth. They found that increase of root depth effectively improved soil water 

availability for ET in dry seasons [Luo et al., 2013]. Meanwhile, our optimized values for βr 

(Figure 5.1h) also suggest that current soil depth (287.2 cm) used in CABLE LSM is 

inappropriate. For example, at the woody savannas site AU-How, the mean value of optimized 
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βr is 0.99, meaning a 94.4% cumulative root fraction at soil depth 287.2 cm and a 99.8% 

cumulative root fraction at soil depth 600 cm according to Equation 5.10. Cook et al. [1998] 

found that trees at the AU-How site have deep roots to absorb water at soil depth 6 m, which 

is consistent with our optimized βr. Therefore, if a larger rooting depth is included in CABLE, 

the additional 5.4% of deep roots can contribute to water uptake and further reduce the bias 

between ET by S-Opt and observations at the AU-How site (Figure 5.9f). Furthermore, 

Decker [2015] realized an alternative hydrological scheme allowing larger soil depth and 

changing groundwater depth and effectively improved the performance of CABLE in dry 

periods [Decker, 2015; Ukkola et al., 2016]. These findings indicate that a larger rooting depth 

is favorable for ET estimation in dry seasons. However, note that improvement on ET 

estimation does not mean the same to modelled SWC (Figures 5.9a vs. 5.7a). This contrast 

gives two possible hints: (1) optimization targeted at turbulent fluxes only cannot ensure the 

success in estimating state variables simultaneously, and (2) including HR process alone in 

LSMs may not fully resolve the issue of the response to droughts. Luo et al. [2013] in VIC+ 

model demonstrated that HR, increase of root depth and the rise of the water table can 

interactively contribute to improvement in modelling ET during dry periods at a forest site. 

Therefore, realizing a changing ground water table along with HR and a larger root depth 

should be an option in the future development of CABLE. 

Given the important impacts of below-ground processes on both GPP and ET, it is not 

surprising that the coupling relationship between GPP and ET was best captured across sites 

(Figure 5.13). This suggests that across a diversity of vegetation types, the representation of 

below-ground processes in CABLE LSM should receive further attention in the modelling 

community. 
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5.4.2 Applications of the Model-data Fusion Framework 

The model-data fusion framework has a large potential in calibration of complex process- 

based models [Reichstein et al., 2003]. The adaptive Bayesian MCMC method used in this 

study demonstrates its advantages on inverse estimation of parameters without enough prior 

information and investigation of deficits of model structures. Prentice et al. [2015] suggest 

that model-data fusion should be a standard part of model development because only when a 

model fails after optimization, can the model be judged as incorrectly structured. The results 

of the current study strongly support this opinion as the model performance was considerably 

improved after optimization. However, some problems still exist with model-data fusion 

before it can be generally applied. First, the computation efficiency is quite low for generic 

optimization algorithms such as Bayesian MCMC [Prentice et al., 2015; Wang et al., 2009]. 

Although the gradient-based approaches are more efficient, they can get trapped into a local 

optimum [Wang et al., 2009]. Therefore, a global sensitivity such as the Morris method should 

be conducted before optimization to reduce the dimensions of parameter space. Second, there 

are still no general specifications on selections of multiple datasets to constrain optimization. 

The results presented here show that only hourly turbulent fluxes could not provide enough 

information to obtain better modelled SWC (e.g., Figures 5.9a vs. 5.7a) and some parameters 

(e.g., Figure 5.2h), underlining the necessity of including SWC into the joint constraint. 

However, introducing more datasets as constrain conditions can bring new problems. 

Although more constraints can usually reduce the model’s degrees of freedom, they are 

accompanied by more uncertainties with different spatio-temporal scales [Prentice et al., 

2015]. Additionally, optimization on short-term time-scales cannot necessarily ensure positive 

effects at longer time-scales and vice versa because many details during short terms can be 

hidden when optimized at longer time-scales. Wang et al. [2011] proposed to minimize cost 

functions at different frequencies separately. Here I suggest that the coupling of GPP and ET 
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over various time-scales could be included to constrain optimization without introducing 

additional datasets but providing more information. The results presented here on the ratios of 

annual GPP over ET (Figure 5.13) show that there is still considerable bias between optimized 

and observed data, which can be used as an effective constraint over both spatial and temporal 

scales. 

 

5.4.3 Further Model Uncertainties 

Besides the above key parameters and processes, there are other factors contributing to model 

uncertainties. (1) Soil properties, such as Ksat and θr, could significantly impact ET (Figure at 

some sites 1). Ukkola et al. [2016] also found that effects of soil properties on ET are highly 

site-specific in CABLE. Thus, accurate soil maps are necessary to improve model 

performance. (2) As well as soil properties, LAI is another factor influencing ET estimation 

[Ukkola et al., 2016], because LAI is used to upscale leaf-scale fluxes to the canopy scale. It is 

noteworthy that in ecosystems with trees and grasses coexisting such as savannas and woody 

savannas, dynamic tree-grass partitioning of LAI can improve model performance at such 

sites [Haverd et al., 2016], implying a favored vegetation dynamics over a fixed tree-grass 

ratio in CABLE. (3) The results presented here show that optimized parameters are quite 

site-specific rather than vegetation type-specific which is popular in modern LSMs. Alton 

[2011] systematically investigated the effect of the simplification of dividing plants into 

discrete vegetation types and found about 15% difference for global vegetation net primary 

production between simulations using vegetation-specific parameters and those using varying 

parameters. However, varying site-specific parameters are generally not accessible, 

particularly over large regions or for below-ground processes. Thus the simplification of 

vegetation types is still commonly accepted though it has obvious limitations. (4) The results 

presented here revealed the underestimation of nocturnal NEE and the overestimation of ET 
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during night-time or rainfall days at some sites. These issues are out of the range of this study 

but worth attentions in future. (5) CABLE with optimized parameters should be benchmarked 

by those data driven models to further assess its deficits in model structures [Abramowitz et al., 

2007; Best et al., 2015; Keenan et al., 2012]. Optimized CABLE performed better at mesic 

sites than at xeric sites (Figure 5.12), implying the possibility of differing mechanisms for 

ecosystems with different water stress. Benchmarking with data-driven models can effectively 

help to identify the sources of errors. 

 

5.5 Conclusions 

I used the Morris sensitivity method to identify the critical parameters for carbon assimilation 

and evapotranspiration in the CABLE LSM across 10 Australian sites, covering major several 

Australian vegetation types. Then I optimized these parameters using the adaptive Bayesian 

MCMC method targeting the joint of NEE, GPP and Qle at an hourly time-scale. These results 

revealed that biochemical process (Vcmax) and hydrological redistribution were most important 

for GPP while stomatal parameterization as well as HR process were key for ET. Only when 

optimized parameters for both above- and belowground processes were used was the model’s 

performance, including the coupling relationship of GPP and ET, considerably improved, 

particularly during dry periods. I also investigated the effects of optimization at different 

time-scales and found that the model’s performance decreased from mesic sites to xeric sites 

at short-time scales (hourly and daily) but showed no significant trend at the monthly 

time-scale. This phenomenon implies that possibly there are differences in mechanisms to 

respond to water stress between vegetation in a wet environment and that in a dry 

environment. It is important to note that soil water content could be poorly estimated even if 

GPP and ET were reasonably modeled, featuring the necessity of introducing SWC as 
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constraint in optimization. However, more target datasets can bring more uncertainties with 

different time-scales. Thus, efforts are needed in selecting parsimonious datasets but with 

containing enough information to constrain optimization. Furthermore, I discussed other 

issues contributing to model uncertainties such as soil properties, leaf area index inputs and 

vegetation type-specific parameters, effects of which can be quite site-specific. This study 

highlights the importance of correct representation of below-ground processes in the CABLE 

LSM, especially in the context of more intensified and frequent droughts in future. 
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Chapter 6. Benchmarking the CABLE model using remote 

sensing GPP and ET products across Australia 

Abstract  

Land surface models (LSMs) provide lower boundary conditions for general circulation 

models. Both leaf area index (LAI) and soil water content (SWC) play a key role in the carbon, 

water and energy budgets. Therefore, reasonable representation of these two variables is 

central for prognostic LSMs to capture the variations of gross primary production (GPP) and 

evapotranspiration (ET) spatially and temporally. Here, I used two simple remote sensing GPP 

models and two remote sensing ET models, together with a data-driven product, to benchmark 

the performance of the CABLE model in a prognostic mode across Australia. CABLE greatly 

overestimated GPP and moderately overestimated ET in evergreen broad-leaf forests, 

savannas/woody savannas/C4 grasslands and the peripheral shrublands. Inappropriate 

prediction of photosynthetic capacity or LAI could cause the biased estimation of GPP and ET, 

featuring the joint control of physiological properties and canopy structures. CABLE failed to 

outperform the simplest EVI-based GPP model, implying the critical importance of correct 

representation of vegetation information, whereas the surpass of CABLE and the other remote 

sensing ET model over the MODIS ET product suggests information on soil water content or 

precipitation is important in accurate prediction of ET. CABLE could not well capture the 

temporal variations of LAI in the majority of arid and semi-arid regions but performed well in 

estimating soil water content in uppermost surface soil layer. More number of PFTs and 

realistic parametrization are needed to accurately estimate LAI and land surface data 

assimilation can help to achieve this aim. 
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6.1 Introduction 

Land surface models (LSMs) are a key component of general circulation models, serving as a 

lower boundary constraining the carbon, water and energy fluxes between atmosphere and the 

land surface [Thornton and Zimmermann, 2007]. The presence of vegetation and root zone 

soil water content (SWC) is of primary importance for the partitioning of water and energy 

budgets [Shukla and Mintz, 1982] and the natural carbon exchanges [Tucker et al., 1986]. 

Vegetation conditions generally include physiological parameters and leaf area index (LAI). 

The previous are incorporated into LSMs based on the partitioning of plant function types 

(PFTs), whereas LAI can be either prescribed based on field or satellite observations [Kala et 

al., 2014] or predicted according to the prognostic leaf carbon pools and PFT-specific 

thresholds [Murray-Tortarolo et al., 2013; Thornton and Zimmermann, 2007]. This difference 

divides LSMs running into diagnostic type and prognostic type [Thornton and Zimmermann, 

2007]. 

The variation of LAI is critical for accurately estimating carbon assimilation [Kala et al., 2014; 

Puma et al., 2013], evapotranspiration (ET) [Jarlan et al., 2008; van den Hurk et al., 2003] 

and radiation [Parton et al., 1996]. LAI can also influence precipitation variability through a 

change of the local hydrological cycle and a change of the general circulation patterns [van 

den Hurk et al., 2003], forming a feedback from vegetation to atmosphere. In the diagnostic 

running, observed LAI has a strong positive correlation with gross primary production (GPP) 

across the PFTs [Duursma et al., 2009; Keith et al., 2012]. However, in the prognostic running, 

LAI is calculated using the leaf carbon pool depending on GPP, which in turn depends on LAI 

[Thornton and Zimmermann, 2007]. Therefore, accurate estimation of LAI is central to the 

success of prognostic LSMs.  

Soil water content, particularly root zone SWC, provides key constraint on plant transpiration 
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and soil evaporation [Seneviratne et al., 2010], and thus the energy partitioning between latent 

and sensible heat. Previous studies have shown that SWC can significantly impact 

near-surface climate, including temperature [Koster et al., 2006; Seneviratne et al., 2006; 

Zhang et al., 2009] and precipitation [Koster et al., 2006; Santanello Jr et al., 2009], through 

direct and indirect interactions with atmosphere [Seneviratne et al., 2010]. Soil water content 

is also a key variable controlling the growth of vegetation because plants take up water from 

soil in the root zone [De Kauwe et al., 2015]. Therefore, there exists a SWC-LAI feedback, 

co-determining the vegetation response to environmental stress. 

The Australian Community Atmosphere Biosphere Land Exchange Model (CABLE, 

[Kowalczyk et al., 2006; Wang et al., 2010; Wang et al., 2011]) is a widely used land surface 

model, shares common features in some representation of photosynthesis and 

evapotranspiration processes and performs comparably with other major LSMs [Wang et al., 

2011]. Recently Kala et al. [2014] examined the effects of prescribed LAI on GPP and ET 

using CABLE in a diagnostic running across Australia. This research is of significant 

importance but perturbed prescribed LAI cannot reflect the capacity of CABLE in predicting 

LAI and thus its ability to estimate GPP and ET in future. Hence, here I investigate the effects 

of LAI and SWC on GPP and ET using CABLE in a prognostic mode. Instead of simply 

comparing with observations or inter-comparison of multiple LSMs, I use remote sensing 

models with simple empirical structures and remote sensing retrieved LAI and SWC products 

to benchmark the prognostic CABLE across Australia. This benchmark method can well 

inform us how an LSM utilizes available information including in input variables and how 

well an LSM should perform [Abramowitz et al., 2007; Best et al., 2015] both spatially and 

temporally. Because the most significant time-scale for vegetation of different PFTs is the 

seasonal variation [Wilson and Henderson-Sellers, 1985], my analysis focuses on a monthly 

time-step. 
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6.2 Data and Methods 

6.2.1 Flux sites 

Eddy covariance observations at 13 sites from the OzFlux network (http://www.ozflux.org.au) 

were used in this study (Table 6.1). These sites, according to the MODIS IGBP classifications 

(Figure 6.1a), consist of major biomes in Australia, namely savannas (SAV), woody savannas 

(WSA), grasslands (GRA), open shrublands (OSH), crop lands (CRO), evergreen broad-leaf 

forests (EBF) and wetlands (WET). Their distribution covers a variety of climate regimes, 

from tropical in the north to temperate in the south. Half-hourly measurements of carbon, 

water and energy fluxes and auxiliary meteorological and soil variables were processed using  

 

Figure 6.1. Comparison of MCD12C1 biomes and the CABLE biomes. Acronyms WAT, 

ENF, EBF, DBF, MF, CSH, OSH, WSA, SAV, GRA, WET, CRO, URB, CNM, SNO and 

BRN denote water, evergreen needleleaf forest, evergreen broadleaf forest, deciduous 

broadleaf forest, mixed forest, closed shrublands, open shrublands, woody savannas, savannas, 

grasslands, wetlands, croplands, urban and built-up, cropland/natural vegetation mosaic, snow 

and ice and barren or sparsely vegetated, respectively. 

the dynamic integrated gap filling and partitioning for OzFlux (DINGO) system using a 

feed-forward artificial neural network algorithm [Beringer et al., 2007]. Half-hourly GPP, ET 
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and associated meteorological data were aggregated into the monthly time-scale to fit the 

following remote sensing models. 

Table 6.1. Eddy covariance data used in this study. Information includes site name (Site), 

latitude (Lat), longitude (Lon), vegetation type (IGBP), data observed period and reference 

citation 

Site Lat Lon IGBP Period Reference 

Adelaide River (AU-Ade) -13.08 131.12 SAV 2007-2008 Beringer et al. [2011] 

Alice Springs (AU-Asm) -22.28 133.25 OSH 2011-2012 Cleverly et al. [2013] 

Calperum (AU-Cap) -34.00 140.59 OSH 2010-2012 Meyer et al. [2015] 

DalyPasture (AU-Da1) -14.06 131.32 GRA 2007-2012 Beringer et al. [2011] 

Daly Uncleared (AU-Da2) -14.16 131.39 SAV 2007-2012 Beringer et al. [2011] 

Dry River (AU-Dry) -15.26 132.37 SAV 2008-2012 Beringer et al. [2011] 

Fogg Dam (AU-Fog) -12.55 131.31 WET 2007-2008 Beringer et al. [2013] 

Howard Springs (AU-How) -12.50 131.15 WSA 2001-2012 Eamus et al. [2001] 

Yanco (AU-JXA) -35.00 146.29 CRO 2012 Smith et al. [2012] 

Sturt Plains (AU-Stp) -17.15 133.35 GRA 2008-2012 Beringer et al. [2011] 

Tumbarumba (AU-Tum) -35.66 148.15 EBF 2001-2012 van Gorsel et al. [2013] 

Wallaby Creek (AU-Wac) -37.43 145.19 EBF 2006-2008 Martin et al. [2007] 

Wombat (AU-Wom) -37.42 144.09 EBF 2010-2012 Griebel et al. [2016] 

 

6.2.2 Spatial data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product 

(MCD12C1, 0.05 × 0.05°) in 2012 was used in parametrizing all the remote sensing models 

for estimation of GPP and ET across different biomes (Table 6.2). MOD13C2 EVI (monthly, 

0.05 × 0.05°) and MOD11C3 LST (monthly, 0.05 × 0.05°) were also used. A value of 0.08 

was subtracted from EVI to remove soil background contamination. MOD15A2 LAI (8-day, 1 
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× 1 km) data were aggregated into the monthly time-scale. Microwave soil water content data 

were from the Essential Climate Variable (ECV) soil moisture product (0.25×0.25°, [Liu et al., 

2012; Wagner et al., 2012]). The sensing depth of ECV product is the top few centimeters on 

average [Dorigo et al., 2015] and thus it was used to compare with modelled SWC in soil 

layer 1 (2.8 cm depth) by the CABLE model. All the remote sensing data were resampled into 

a spatial resolution of 0.5 × 0.5°. 

The meteorological forcing for the CABLE model is a fusion of products by the Climate 

Research Unit (CRU) and the National Center for Environmental Prediction (NCEP)/National 

Center for Atmospheric Research (NCAR) with a sub-daily temporal resolution and a 0.5×0.5° 

spatial resolution [Wei et al., 2014]. This CRU-NCEP dataset includes air temperature, surface 

pressure, air specific humidity, wind speed, downward longwave and shortwave radiations, 

and precipitation. The land use change map for CABLE was from Hurtt et al. [2011] also with 

a spatial resolution of 0.5 × 0.5° (Figure 6.1b). The major difference of this land use map from 

the MODIS product is that it partitions open shrublands into shrublands and barren (Figure 

6.1b). 
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Table 6.2. Comparison of input data for various GPP and ET models. FAPAR indicates the 

fraction of absorbed photosynthetic active radiation (APAR), LWDown and SWDown 

indicate downward long- and short-wave radiation, respectively 

Variable GPP-EVI GPP-TG ET-TGSM ET-MOD CABLE MTE 

Air temperature    × × × 

Precipitation     × × 

Potential evaporation      × 

Climatic water balance      × 

Sunshine hours      × 

Number of wet days      × 

Air humidity    × × × 

Potential radiation      × 

Net radiation    ×   

Cloudiness      × 

FAPAR    ×  × 

Albedo    ×  × 

Potential APAR      × 

Land cover × × × × × × 

LWDown     ×  

SWDown     ×  

Surface pressure    × ×  

Wind speed     ×  

Land surface temperature  × ×    

Soil water content   ×    

Enhanced vegetation index × × ×    

Leaf area index    ×   
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6.2.3 Remote sensing GPP models 

Two remote sensing based GPP models using EVI only (GPP-EVI) and a combination of EVI 

and LST (GPP-TG [Sims et al., 2008]) were used. Instead of the log-log relationships 

established in Chapter 3 of this thesis, GPP-EVI here is defined as a simple linear function: 

 GPP a EVI b   (18.1) 

where a and b are empirical coefficients. GPP-TG is defined as: 

 _GPP m EVI scaled LST   (18.2) 

where m is an empirical coefficient and _ min ( 30), (2.5 0.05 )scaled LST LST LST . 

 

6.2.4 Remote sensing ET models 

The 8-day MOD16A2 ET product (1 × 1km [Mu et al., 2011]) was aggregated and resampled 

into the monthly time-scale at a spatial resolution of 0.5 × 0.5°. The MODIS ET algorithm 

(ET-MOD) is based the Penman-Monteith equation [Monteith, 1964] and partitions ET into 

daytime soil evaporation, canopy transpiration, canopy interception and nighttime ET. Besides 

the MODIS ET product, the TG-SM model (ET-TGSM) developed in Chapter 4 of this thesis 

was also used to provide estimate of ET across Australia. Specifically, ET-TGSM is calculated 

as: 

 max(0, )ET a EVI e b LST f   (18.3) 

 min ( ), (2.5 0.05 )
30

LSTe LST   (18.4) 
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,

1,

wilt
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where a  , b  and  are empirical coefficients, θ is soil water content, θwilt = 0.05 m3 m−3 

and θcrit = 0.40 m3 m−3. θ was scaled to 0  1 where it is between θwilt and θcrit. 

 

6.2.5 The CABLE Model 

The CABLE (v2.0b) model is a global land surface model capable of simulating momentum, 

heat, water and carbon exchange between the land surface and the lower atmosphere 

[Kowalczyk et al., 2006; Wang et al., 2011]. Wang et al. [2010] incorporated nitrogen and 

phosphorus cycles into the CABLE while Li et al. [2012] included a dynamic root water 

uptake function [Lai and Katul, 2000] and a hydrological redistribution function [Ryel et al., 

2002] to improve model performance in response to water stress. In this study, I used this 

improved version of CABLE with optimized parameters (Table 6.3) obtained in Chapter 5. 

The CABLE model calculates GPP using a one-layered, two-leaf canopy model through 

coupling of stomatal conductance and photosynthesis [Wang and Leuning, 1998; Wang et al., 

2011]. ET is modeled based on the Penman-Monteith equation. Hourly CABLE outputs were 

aggregated into a monthly time-step. Hereafter, GPP and ET estimated by CABLE are written 

as GPP-CABLE and ET-CABLE, respectively. Different from Chapter 5 in which observed 

MODIS LAI was input at the site level, this study used prognostic LAI estimated by CABLE 

at the regional scale. LAI is predicted through specific leaf area varying among PFTs and a 

carbon-nitrogen cycling model that can simulate leaf carbon. Besides, LAI is regulated by 

prescribed PFT-specific maximum and minimum LAI thresholds, and also modelled 

phenology status. LAI is important as it is used to upscale leaf photosynthesis and 

transpiration to canopy level and intercepts considerable precipitation. The meteorological 

inputs for CABLE can be seen in Table 6.2.  
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6.2.6 Data-driven product 

Jung et al. [2009] upscaled FLUXNET measurements into global products (monthly, 0.5×0.5◦) 

using the model tree ensemble (MTE) approach, which have been widely used in land surface 

modeling and climate change research [Beer et al., 2010; Bonan et al., 2011]. The MTE 

method took advantage of a large number of input variables, including meteorological forcing, 

vegetation states and biome types. Table 6.2 shows comparisons of input variables for above 

remote sensing models, the CABLE model and MTE products. The MTE estimated GPP 

(GPP-MTE) and ET (ET-MTE) during the period from 2001 to 2011 were taken as “true” 

values to serve as the standard to assess other models. 

 

6.2.7 Statistical metrics 

Two statistical metrics were used to analyze the performance of models. They are coefficient 

of determination (R2) and root mean squared error (RMSE). R2 is calculated as: 
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where O  and P  are means of observed and modeled variables, On and Pn are the observed 

and modeled fluxes at the time step n, and N is the total number of observations. RMSE is 

calculated as: 
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Table 6.3. Key parameters used in CABLE for evergreen broad-leaf forests (EBF), open 

shrublands (OSH), C4 grasslands/savannas/woody savannas (C4 GRA/SAV/WSA), C3 

croplands (C3 CRO), C3 grasslands (C3 GRA) and barren soils (BRN). Soil 1 is coarse 

sand/loamy sand, soil 2 is medium clay loam/silty clay loadm/silt loam, and soil 3 is 

coarse-medium sandy loam/loam. Vcmax is the maximum RuBP carboxylation rate at canopy 

top at a leaf temperature of 25 °C, a1 is an empirical parameter in leaf stomatal model, α is the 

initial slope of leaf response curve of potential electron transport rate to absorbed quantum 

flux, G0 is the stomatal conductance for water when leaf net photosynthesis is 0, βr is a 

parameter for estimating vertical root mass distribution in soil, and ν is an empirical parameter 

in hydraulic conductivity function 

Vegetation EBF OSH C4 GRA/SAV/WSA C3 CRO C3 GRA BRN 

Vcmax 4.96e-5 3.90e-5 5.40e-5 3.35e-5 3.35e-5 5.31e-5 

a1 5.54 9.52 4.6 9.97 9.97 9.52 

Α 0.16 0.12 0.20 0.23 0.23 0.12 

G0 1.18e-2 0.01 7.13e-3 0.01 0.01 0.01 

βr 0.99 0.92 0.93 0.98 0.98 0.92 

Soil Soil 1 Soil 2 Soil 3 Others   

Ν 1.51 1.46 1.89 2.06   

 

6.3 Results 

6.3.1 Temporal benchmarking 

Figure 6.2 shows comparisons of monthly GPP, LAI and PC by different models across 

Australia from 2001 to 2011. Remote sensing models and CABLE all overestimated monthly 

GPP, particularly CABLE (Figure 6.2a). The simplest model GPP-EVI correlated best (R2 = 
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0.46) with GPP-MTE. Inclusion of LST in GPP-TG further decreased RMSE at the cost of a 

slight decrease of R2 (Table 6.4). This improvement benefited mainly from effective constraint 

of LST on EVI when GPP was low (Figure 6.2a). In contrast, the most complex CABLE 

model performed poorest using metrics of both R2 and RMSE (Table 6.4, Figure 6.2a). 

However, all models could capture the exceptional large carbon assimilation during 2011 

[Poulter et al., 2014; Ahlstrm et al., 2015]. Since the difference of land cover maps for remote 

sensing models and the CABLE model was basically consistent (Figure 6.1), land use change 

could not explain the poor performance of CABLE in estimating temporal monthly GPP. To 

investigate the reason, I compared LAI-CABLE with LAI-MOD and also the photosynthetic 

capacities (ratio of GPP over LAI) of all GPP models. The LAI-CABLE was nearly twice of 

the LAI-MOD (Figure 6.2b) whereas PC-CABLE (also RMSE) was intermediate between 

PC-EVI and PC-TG (Figure 6.2c) and correlated best with PC-MTE (Table 6.4), suggesting 

the overestimation of LAI was the major cause of the large RMSE between GPP-CABLE and 

GPP-MTE (Table 6.4). The product of PC-CABLE and LAI-MOD greatly decreased the bias 

(Figure 6.2a), further implying the inappropriate prediction of LAI in CABLE. 
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Figure 6.2. Monthly gross primary production (GPP), leaf area index (LAI) and 

photosynthetic capacity (PC, the ratio of GPP over LAI) of different models across Australia 

from 2001 to 2011. The gray line indicates the product of PC-CABLE and LAI-MOD. 
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Table 6.4. Statistical metrics for the performance of models on estimating GPP, ET, LAI and 

SWC. For spatial statistics, the significance level is calculated as the percent of pixels with 

significant correlations against object data at a p level of 0.05 

  Temporal  Spatial  “True” 

Model R2 RMSE p R2 RMSE Sig %  

GPP-EVI 0.46 21.9 0.001 0.51 26.2 93.0% GPP-MTE 

GPP-TG 0.42 15.1 0.001 0.47 23.5 93.5% GPP-MTE 

GPP-CABLE 0.23 39.9 0.001 0.12 60.7 56.9% GPP-MTE 

PC-EVI 0.07 56.5 0.01 0.17 63.7 57.5% GPP-MTE/LAI-MOD 

PC-TG 0.01 26.7 NS 0.15 43.0 57.7% GPP-MTE/LAI-MOD 

PC-CABLE 0.13 45.5 0.001 0.11 50.9 46.8% GPP-MTE/LAI-MOD 

ET-TGSM 0.83 5.1 0.001 0.57 13.8 100.0% ET-MTE 

ET-MOD 0.62 10.3 0.001 0.46 14.1 84.7% ET-MTE 

ET-CABLE 0.87 17.7 0.001 0.59 24.7 99.6% ET-MTE 

LAI-CABLE 0.27 0.3 0.001 0.12 0.7 54.5% LAI-MOD 

SWC-CABLE 0.62 0.04 0.001 0.51 0.05 99.6% SWC-ECV 

 

Similar to GPP, CABLE overestimated ET but mainly during the periods when ET was high 

(Figure 6.3a). In contrast to GPP, ET-CABLE correlated best with ET-MTE (R2 = 0.87) but 

with the largest RMSE (Table 6.4). ET-TGSM performed much better than ET-MOD featuring 

including SWC information is important in estimating ET. Compared to satellite retrieved 

SWC-ECV, CABLE modelled SWC performed well in both R2 and RMSE (Table 6.4, Figure 

6.3b). Compared to ET-MOD with similar algorithms and meteorological inputs (Table 6.2), 

ET-CABLE performed better when ET was low (Figure 6.3a), further showing the significant 

constraint of SWC on ET estimation. 
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Figure 6.3. Monthly evapotranspiration (ET) and surface soil water content (SWC) of 

different models across Australia from 2001 to 2011. 

 

6.3.2 Spatial benchmarking 

Figure 6.4 shows the spatial patterns of average monthly GPP by all models. Compared with 

GPP-MTE, both GPP-EVI and GPP-TG overestimated GPP along the east and north coasts 

and transition regions from coast to inland (Figures 6.4b and 6.4c), where EBF and 

savannas/woody savannas/C4 grasslands dominate. GPP-EVI also slightly overestimated GPP 

in inland area. GPP-CABLE showed the largest bias in comparison with GPP-MTE (Figure 

6.4d). The major bias occurred in EBF and peripheral areas of shrublands classified according 

to the CABLE land use map (Figure 6.1b). The spatial statistical analysis showed that 

GPP-CABLE performed poorest with mean R2 of 0.12 and only 56.9% significant pixels 

(Table 6.4, Figure 6.5c). The insignificant pixels were mostly shrublands and barren regions, 

featuring the deficit of CABLE in arid and semi-arid environments. However, large RMSE 

also occurred for EBF and SAV/WSA/C4 GRA (Figure 6.5f). The two remote sensing GPP 

models failed mainly in the west and south central open shrublands (Figures 6.5a and 6.5b) 

according to the MODIS IGBP classifications (Figure 6.1a), suggesting the challenge for both 
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remote sensing models and LSMs in estimating GPP in context of water stress. 

 

Figure 6.4. Average monthly gross primary production (GPP) calculated from different 

models from 2001 to 2011. The unit is gC m−2 month−1. 
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Figure 6.5. The spatial distribution of per-pixel correlations and RMSE between GPP-EVI, 

GPP-TG, GPP-CABLE and GPP-MTE. The cross symbols indicate the correlation is not 

statistically significant at a p level of 0.05. 

 

Both remote sensing models and CABLE failed to capture the variation of photosynthetic 

capacity in inland regions (Figures 6.6 and 6.7). In contrast to remote sensing models, 

CABLE also showed poor performance in SAV/WSA/C4 GRA located in the north using 

metrics of both R2 and RMSE (Figures 6.6d, 6.7c and 6.7f). However, both PC-CABLE and 

PC-TG obtained a smaller RMSE than PC-EVI across Australia (Table 6.4, Figure 6.7), 

showing the effect of LST or temperature on limiting PC. 
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Figure 6.6. Average monthly photosynthetic capacity (GPP/LAI) calculated from different 

models from 2001 to 2011. The unit is gC LAI−1 month−1. 
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Figure 6.7. The spatial distribution of per-pixel correlations and RMSE between PC-EVI, 

PCTG, PC-CABLE and PC-MTE. The cross symbols indicate the correlation is not 

statistically significant at a p level of 0.05. 

 

The reasons for bias between GPP-CABLE and GPP-MTE were different. For EBF, CABLE 

overestimated LAI (Figure 6.8b) but with a small bias of PC (Figure 6.7f). For peripheral 

areas of shrublands, CABLE both overestimated LAI (Figure 6.8b) and PC (Figure 6.6d). For 

SAV/WSA/C4 GRA, LAI-CABLE was underestimated (Figure 6.8b) while PC-CABLE had 

largest positive bias compared to PC-MTE (Figures 6.6d and 6.7f), leading to considerable 

RMSE of GPP (Figure 6.5f) though the effects of LAI and PC counteracted (Figure 6.5f). The 
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spatial statistical analysis showed that CABLE failed to capture the temporal variations of 

LAI in the majority of shrublands and barren regions (Figure 6.9a) though the RMSE was 

relatively small (Figure 6.9c). The largest bias (9a) between LAI-CABLE and LAI-MOD 

occurred in EBF whereas the best correlation were in SAV/WSA/C4 GRA regions (Figure 

6.9c). 

 

Figure 6.8. Average monthly leaf area index (LAI) calculated from the MCD12C1 product 

and the CABLE estimation during the period of 2001 to 2011. 
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Figure 6.9. The spatial distribution of per-pixel correlations and RMSE between estimated 

LAI and SWC by the CABLE model with LAI-MOD and SWC-ECV products. The RMSE 

between SWC-CABLE and SWC-ECV is multiplied by 40. The cross symbols indicate the 

correlation is not statistically significant at a p level of 0.05. 

 

Both remote sensing models and CABLE performed much better in estimating ET than GPP. 
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Figure 6.10 shows that ET-TGSM, ET-MOD and CABLE could capture the gradual decrease 

of ET from coast to inland. ET-CABLE correlated best with ET-MTE across Australia (R2 = 

0.59, Figure 6.11c) but with the largest RMSE (Table 6.4, Figure 6.11f). The bias between 

ET-CABLE and ET-MTE mainly occurred in EBF and northern regions (Figures 6.10d and 

6.11f), where LAI-CABLE (Figure 6.8b) and PC-CABLE (Figure 6.6d) were largely 

overestimated, respectively. ET-TGSM obtained a slightly lower R2 than ETCABLE but with 

only half of the RMSE of the latter (Table 6.4), featuring the importance of including 

vegetation information (EVI in ET-TGSM) in estimating ET according to the comparison of 

inputs into these two models (Table 6.2). Compared to SWC-ECV, CABLE underestimated 

SWC mainly in inland regions (Figures 6.9d and 6.12b). Compared to ETTGSM with SWC as 

input and ET-CABLE with precipitation as input, ET-MOD had no variable related to soil 

water status as input (Table 6.2). This resulted in the failure of ET-MOD to capture the 

temporal variations of ET in the southern part of shrublands and barren regions (15.3% of the 

total pixels, Figure 6.11b) and further its poorest correlation with ET-MTE. But ET-MOD still 

obtained a much smaller RMSE than ET-CABLE (Table 6.4), featuring the deficit of CABLE 

in estimating LAI. 
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Figure 6.10. Average monthly evapotranspiration (ET) calculated from different models from 

2001 to 2011. The unit is mm month−1.  
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Figure 6.11. The spatial distribution of per-pixel correlations and RMSE between ET-TGSM, 

ET-MOD, ET-CABLE and ET-MTE. The cross symbols indicate the correlation is not 

statistically significant at a p level of 0.05. 
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Figure 6.12. Average monthly soil water content (SWC) at soil surface layer calculated from 

the ECV product and the CABLE estimation during the period of 2001 to 2011. 

 

6.4 Discussion 

The result that the CABLE model, with complex structures and a large number of 

meteorological inputs, failed to outperform the simplest EVI-based remote sensing model in 

estimating GPP is not expected. The unrealistic LAI estimation in EBF (Figure 6.8b), 

photosynthetic capacity estimation in SAV/WSA/C4 GRA (Figure 6.6d), and both in 

peripheral areas of shrublands (Figures 6.6d and 6.8b) were the main causes. High 

photosynthetic capacity means high canopy conductance per LAI while high LAI is correlated 

to high total canopy conductance [van den Hurk et al., 2003]. Therefore, they are strongly 

positively correlated with GPP consistent with both observational [Keith et al., 2012; Wong et 

al., 1979] and modelling [Duursma et al., 2009; Kala et al., 2014; Lu et al., 2013; Puma et al., 

2013] evidences. However, the underlying mechanisms of PC and LAI influencing GPP are 

different in LSMs. PC is mostly regulated by maximum RuBP carboxylation rate (Vcmax), the 

initial slope of the leaf response curve of potential electron transport rate to absorbed quantum 



199 

flux (α), an empirical parameter in leaf stomatal model (a1) and the minimum stomatal 

conductance when net photosynthesis is 0 (G0) in CABLE [Wang et al., 2011], whereas LAI 

determines the absorbed amount of photosynthetically active radiation [Kala et al., 2014]. A 

sensitivity analysis of CABLE at the global scale also proved the primary importance of 

above physiological parameters for PC and LAI across various PFTs [Lu et al., 2013], further 

implying the correct representation of vegetation information is vital for LSMs to simulate the 

carbon assimilation. 

Because of the tight coupling between ET and GPP [Beer et al., 2009], ET-CABLE was also 

affected by the biased estimation of LAI and PC. However, the impacts of LAI and PC on ET 

were much more moderate than that on GPP, consistent with previous studies in west Africa 

[Jarlan et al., 2008] and Australia [Kala et al., 2014]. LAI plays a vital role in the partitioning 

of surface energy into latent and sensible heat fluxes [Barbu et al., 2011; Bonan et al., 1993; 

van den Hurk et al., 2003] through controlling canopy transpiration and precipitation 

interception. High LAI can result in a relatively large portion of the available energy for 

transpiration in wet conditions but favors soil evaporation in dry conditions [van den Hurk et 

al., 2003]. This is the reason that the same changes in LAI could not induce a large variation 

of ET as well as GPP in Australia, of which a large portion is arid and semi-arid. Kala et al. 

[2014] reported a similar result with perturbed prescribed LAI as input for a diagnostic 

version of CABLE. In addition, LAI can influence surface albedo and thus the amount of 

available energy for ET [Kala et al., 2014]. Apart from LAI, root zone soil moisture is also 

vital for partitioning of water and energy through root water uptake process for plant 

transpiration [Shukla and Mintz, 1982]. As surface soil water content can be well correlated 

with that in soil profile under specific conditions, it is reasonable to infer that CABLE well 

modelled deep soil water as well as its performance in the uppermost surface soil layer 

(Figure 6.9b and 9d). The overestimation of ET in inland regions (Figure 6.10d) was 
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compensated by underestimated soil water content (Figure 6.12b), implying a significant 

ET-SWC feedback in Australia. This result strongly supports the finding that over half of the 

water in Australia is lost through soil evaporation instead of plant transpiration [Haverd et al., 

2013]. Furthermore, the better performance of CABLE and TG-SM than the MODIS ET 

product features that soil water or precipitation information is critically important for ET 

estimation. 

Similar to GPP, CABLE performed poor in estimating LAI, in particular in arid and semi-arid 

regions (Figures 6.9a and 6.9c). This result features the deficits of CABLE in response to 

water stress and the LAI prediction needs incorporating various environmental stress in future. 

Previous studies also found that the majority of land surface models overestimate LAI in the 

high-latitude northern hemisphere either running offline using observed meteorological 

forcing [Murray-Tortarolo et al., 2013] or running offline with self-generated climatology by 

the coupled climate model [Anav et al., 2013]. Both studies pointed out that inappropriate 

parametrization of PFTs is the major reason for biased LAI and LSMs need to incorporate 

more accurate PFTS. For example, temperate EBF is different from tropical EBF and thus 

current parametrization of a unique EBF PFT across the globe is incorrect. Actually, current 

LSMs are built around the concept of PFTs although the simple partitioning of a diversity of 

vegetation has long been criticized [Alton, 2011]. But as I explained in Chapter 5 of this thesis, 

large-scale varying site-specific parameters are generally not accessible and thus the 

simplification into limited PFTs is still necessary. Increase of the number of PFTs is a 

reasonable compromise between limited PFTs and site-specific parametrization. However, this 

approach can increase a large number of parameters and bring new uncertainties, though it is 

towards a more realistic representation of different PFTs. Land surface data assimilation as 

used in Chapter 5 of this thesis, originating from the numerical weather prediction [Jarlan et 

al., 2008], can effectively address this concern. Barbu et al. [2011] assimilated soil wetness 
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index and LAI into an LSM at a grassland site and obtained an improvement of 13% of the 

root zone soil water content and corrected low LAI values in the senescence phase. In another 

example, [Jarlan et al. [2008]] assimilated LAI in modeling carbon and water processes in 

west Africa and compared simulations with MODIS products, concluding that a LAI data 

assimilation is essential for carbon prediction at seasonal and inter-annual time-scales while it 

may be sufficient for climatology only to predict ET in the light of the moderate effect of LAI 

on ET. 

 

6.5 Conclusions 

In this study, two remote sensing GPP models and two remote sensing ET models, together 

with a data-driven product, were used to benchmark the CABLE model in estimating GPP and 

ET. CABLE failed to outperform the simplest EVI-based GPP model, implying the critical 

importance of correct representation of vegetation information. Both inappropriate prediction 

of photosynthetic capacity (characterized by physiological parameters) and LAI could cause 

the biased estimation of GPP and ET, featuring the joint control of physiological properties 

and canopy structures. However, their impacts on ET were much more moderate than that on 

GPP. The surpassing of CABLE and the TG-SM model over the MODIS product suggests that 

information on soil water content or precipitation is important in accurate prediction of ET. 

Spatially, the biased GPP and ET were mainly induced by the overestimation of LAI in 

evergreen broad-leaf forests, by the overestimation of photosynthetic capacity in 

savannas/woody savannas/C4 grasslands, and biased estimation of both in shrublands. 

CABLE failed to capture the temporal variations of LAI in the majority of arid and semi-arid 

regions but performed well in estimating soil water content in uppermost surface soil layer. 

More number of PFTs and associated parameters are needed to accurately estimate LAI and 
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land surface data assimilation can help to achieve this aim.  
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Chapter 7. General discussion and conclusions  

7.1 General discussion 

7.1.1 Coupling of GPP and ET across Australian biomes      

GPP and ET are tightly coupled and their ratio, water use efficiency (WUE) is proportional to 

the reciprocal of square root of vapor pressure deficit (1 D ) [Zhou et al., 2014], the 

reciprocal of D [Beer et al., 2009; Sinclair et al., 1984] or leaf area index (LAI) [Hu et al., 

2008] within biomes. Huxman et al. [2004] and Campos et al. [2013] proved the convergence 

of rain use efficiency and WUE using above-ground productivity across biomes, respectively. 

I investigated WUE relationships with various climate and vegetation variables across seven 

Australian sites along a precipitation gradient (Chapter 2). These sites cover major Australian 

biomes such as savannas, C4 grasslands and evergreen broadleaf forests. Half-hourly GPP and 

ET were decomposed into daily, 8-day, monthly and annual frequencies. My results showed 

that WUE was strongly correlated with D over daily to annual time-scales across biomes. 

Simultaneously, I found that the ratio of GPP over radiation, light use efficiency (LUE), was 

also strongly correlated with D across biomes. These intrinsic climate dependency reveals the 

impacts of climate variability on ecosystem functioning. Meanwhile, WUE can act as an 

effective boundary condition to constrain optimization of land surface models (Chapter 5) 

because the intrinsic dependence of WUE on D allows WUE to rapidly reflect ecosystem 

responses to water stress.     

   

7.1.2 EVI-based GPP model 

Remote sensing models for estimating GPP are generally of LUE type, which down-regulates 

maximum LUE using various climate scalars and then multiplies absorbed photosynthetic 
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available radiation [Verma et al., 2014; Xiao et al., 2004; Zhao et al., 2005]. However, these 

LUE models are not effective across all biomes and are often limited by coarse meteorological 

inputs at large spatial scales [Rahman et al., 2005; Sims et al., 2006; Sjöström et al., 2011]. In 

chapter 3, I investigated the potential of EVI alone to estimate annual GPP within biomes. My 

results showed that EVI alone can well capture inter-annual variations of GPP within the 

majority of biomes. The accuracy of EVI-based GPP model was limited by the complexity of 

ecosystem structures across biomes. The EVI-based model provides a simple but robust tool 

for estimating GPP over large spatial scales and can serve as a metric to benchmark complex 

land surface models (Chapter 6). 

 

7.1.3 TG-SM ET model 

Remote sensing methods in estimation of ET include empirical models based on vegetation 

indices and meteorological inputs, thermal temperature-based surface energy balance models 

and physical models such as the Penman-Monteith [Leuning et al., 2008; Mu et al., 2011] type 

or Priestley-Taylor type [e.g., Guerschman et al., 2009]. Thermal models are very sensitive to 

the accuracy of land surface temperature while physical models need complex 

parameterization and large amount of inputs data, which bring considerable uncertainty to 

these two types of models. Empirical models regressing ET against vegetation indices and 

meteorological inputs are generally location specific and lacks mechanistic explanation of 

each component in the fitted equations. Furthermore, over large spatial scales, empirical 

models can be limited by coarse meteorological inputs as well as physical models [Yang et al., 

2013]. Unlike GPP, EVI or other vegetation indices alone perform poorly in estimating ET 

[Yebra et al., 2013] because ET consists of canopy transpiration, canopy interception and soil 

evaporation. Variations of the latter two items, particularly soil evaporation, cannot be well 

captured by vegetation greenness index. Therefore, a simple but robust remote sensing ET 
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model is needed. According to the classical energy-limited and water-limited ET regimes, I 

added an energy scalar to EVI and included a soil item to estimate ET, solely based on remote 

sensing EVI, LST and microwave soil moisture (TG-SM). This model showed good 

performance across Australian seasonally water-limited ecosystems (Chapter 4) and also other 

types of ecosystems such as forests (Chapter 6). The most important is that the model can 

provide both temperature and soil water information to benchmark complex land surface 

models to inform existing deficits in LSMs.  

 

7.1.4 Optimization of the CABLE model       

Two advantages of land surface models over remote sensing methods are that they can 

provide short-term predictions of GPP and ET and states of variables such as soil water table 

and vegetation carbon pools, which are usually not visible to observers (e.g., flux towers and 

satellites). Furthermore, LSMs can predict changes of ecosystem functioning in future. 

However, the prerequisite for LSMs performing as a positive role is that they are well 

parameterized and structured. Otherwise, model uncertainty existing in one time-step can be 

propagated into and amplified in following time-steps and leads to apparent “drifts” 

[Pijanowski et al., 2011]. In chapter 5, I used the Bayesian Monte Carlo Markov Chain 

method to identify and optimize the key processes of GPP and ET in the CABLE model with 

eddy covariance observed carbon and water fluxes as constraints. My results featured the 

impacts of below-ground processes such as hydrological redistribution on modelling GPP and 

ET. Also I raised suggestions to improve CABLE model and strengthen the constraint 

conditions in optimization method. 
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7.1.5 Benchmarking CABLE using remote sensing products  

Land surface models generally include complex processes and a number of inputs data, such 

as meteorological forcing, land cover map, soil map and also leaf area index in some 

occasions. This complexity of LSMs hinders distinguishing which process contributes most 

when the model performs poorly. In contrast, remote sensing models of GPP and ET have 

limited inputs and processes. Benchmarking the LSMs with remotes sensing products can tell 

how effectively the complex LSMs utilize available information in the inputs and which 

process should be improved [Abramowitz, 2005; Best et al., 2015; Luo et al., 2012]. In 

Chapter 6, I calculated GPP using EVI alone (GPP-EVI, Chapter 3) and the TG model in 

combination of LST and EVI [Sims et al., 2008], and calculated ET using the TG-SM model 

(Chapter 4) and resampled MOD16A2 ET product into a spatial resolution of 0.5° × 0.5° in 

Australia. The widely used model tree ensemble based GPP (GPP-MTE) and ET (ET-MTE) 

products [Jung et al., 2009] were taken as the “true” values. These remote sensing GPP and 

ET products were then used to benchmark CABLE GPP and ET. CABLE modeled LAI and 

SWC at surface soil layer (2.2 cm) were compared with MODIS LAI and microwave ECV 

soil moisture product, respectively. Further, the photosynthetic capacity (PC, GPP per LAI) of 

CABLE and remote sensing products (remote sensing GPP per MODIS LAI) were calculated 

to determine which of PC and LAI contributed mainly to the biases between CABLE GPP, 

remote sensing products and the “true” GPP values. 

 

7.2 Future research 

There have been over 850 flux towers around the world and these towers have collected a 

large volume of carbon, water, energy fluxes and meteorological data. Although the number of 

flux towers is still increasing, the more important task is how to fully utilize the information 
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included in current available datasets. One direction is to upscale tower flux observations into 

large spatial scales using process-based [e.g., Desai et al., 2010] or data-driven approaches 

[e.g., Jung et al., 2009]. However, there is still no available fine-scale (sub-hourly) product 

over large regions and issues that observed energy imbalance [Foken, 2008; Stoy et al., 2013] 

and the mismatch between flux tower footprint and remote sensing or model grids are ignored. 

Xu et al. [2017] recently proposed that the environmental response function approach 

[Metzger et al., 2013] combining process-based and data-driven methods can be used to 

upscale flux tower observations into grids at a sub-hourly resolution with explicit 

consideration of variations of flux footprints. This is an advance in up-scaling flux data but 

more efforts are needed to produce available global fine scale products. The other direction is 

to prove or uncover the underlying ecological mechanisms using flux datasets. There have 

been many studies in this aspect. For example, Eamus et al. [2013] analyzed seasonal 

responses of WUE to rainfall events in an arid savanna woodland. Zhou et al. [2014] used flux 

data from AmeriFlux to evidence the concept of underlying water use efficiency across 

biomes. Chapter 2 of this thesis is also of this kind. However, there are still many problems to 

elucidate on ecosystem responses to environmental drivers due to nonlinear feedbacks among 

vegetation, soil and atmosphere at multiple scales [Katul et al., 2007; Levin, 1992; Paschalis 

et al., 2015; Thornton et al., 2014]. The transfer of impacts of short-term meteorological 

variability to long-term scales and vice versa is also worth further research [Paschalis et al., 

2015].  

New available remote sensing data and methods are emerging. To be noted are the 

applications of sun-induced fluorescence (SIF) as a probe of photosynthesis and unmanned 

aerial systems (UAS) filling the gap between the plot/site scale and the regional scale. SIF, as 

a signal emitted by vegetation photosynthesis actively, effectively complements 

reflectance-based vegetation indices such as EVI [Guanter et al., 2014]. UAS can get 
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hyperspectral imagery at a finer time resolution than satellites. How to effectively apply these 

new available data and methods into analysis of GPP and ET in joint with traditional remote 

sensing data (e.g., EVI and LST) is a priority in future research. Integrating various remote 

sensing data within sophisticated framework is an option just as Chapter 4 of this thesis. 

Chapter 5 and Chapter 6 featured the deficit of LSMs in arid and sub-arid regions. The 

modelling community have achieved significant progress in improving the model 

performance in response to water stress induced by droughts, heatwaves or high temperature 

[De Kauwe et al., 2015; Decker, 2015; Li et al., 2012; Luo et al., 2013]. However, further 

improvements of LSMs are still required in parametrizing interactions between biological and 

hydrological processes and below-ground root processes [Pitman, 2003; Prentice et al., 2015]. 

Understanding the mechanisms underlying observed patterns at different scales is the key to 

achieve this goal [Levin, 1992]. Moreover, Prentice et al. [2015] proposed that benchmarking 

(Chapter 6) and optimization (Chapter 5) of LSMs should be as a standard step in developing 

LSMs to test accuracy of models’ parameters and structures. To be noted is the idea of 

traits-based ecological models. Current LSMs are built on the concept of plant functional 

types [Lavorel et al., 1997], within which vegetation traits are generally assumed to be 

constant. In contrast, traits-based models allow variations of vegetation traits to reflect 

vegetation acclimation and adaptation to the changing environment and feedback mechanisms 

between them [van Bodegom et al., 2014]. There have been implementations of fully 

traits-based models independent of LSMs for analyzing ecosystem productivity [Fyllas et al., 

2014] and global vegetation distribution [van Bodegom et al., 2014]. For LSMs, vegetation 

traits, such as leaf mass per area, leaf lifespan and leaf nitrogen concentration, can be used to 

constrain model predictions to reduce uncertainties [Wang et al., 2012]. These studies show 

the large potential of vegetation traits in development of next-generation LSMs.     

Besides the separate developments of eddy covariance (Chapter 2), remote sensing (Chapters 
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3 and 4) and LSMs (Chapter 5), joint use of these three approaches (Chapter 6) are extremely 

important to elucidate patterns and underlying mechanisms of GPP and ET at various scales of 

space and time and thus to guide field experiments [Medlyn et al., 2016] or improve LSMs’ 

performance [Beer et al., 2010; Blyth et al., 2010; Bonan et al., 2011; Medlyn et al., 2015; 

Stöckli et al., 2008; Williams et al., 2009]. My results provide an example and contribute new 

insights for resolving patterns of GPP and ET at various scales using the three approaches 

individually and jointly. 
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