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Abstract 

Sterols have been reported to modulate conformation and hence the function of 

several membrane proteins. One such group is the Chloride Intracellular Ion 

Channel (CLIC) family of proteins. These largely soluble proteins possess the 

intriguing property of spontaneous insertion into phospholipid bilayers to form 

integral membrane ion channels. To date, the structure of their membrane-bound 

form and factors influencing their auto-insertion remains largely unknown. In this 

thesis, we have performed Langmuir-film, X-ray, and neutron reflectivity 

experiments to study the interaction of wild-type or mutant versions of the protein 

CLIC1 with monolayers prepared using various mixtures of different 

phospholipids and sterol molecules, in order to investigate the regulatory role of 

the membrane lipid combination on the spontaneous membrane insertion of 

CLIC1 and to elucidate the structural features of the CLIC1 membrane-bound 

form within the lipid monolayers.  

 

Our findings have demonstrated that the spontaneous membrane insertion of 

CLIC1 is dependent on the presence of cholesterol in lipid monolayers. In 

phospholipid monolayers only, CLIC1 was able to insert within the phospholipid 

head-group region with no penetration into the acyl chain region of the 

monolayers. However, in the presence of cholesterol, CLIC1 showed significant 

interaction with the phospholipid acyl chains thereby, suggesting that cholesterol 

is required for the penetration of CLIC1 into the hydrophobic tails of the lipid 

monolayer, which is considered necessary for the formation of functional ion 

channels. From reflectivity experiments, we were able to show that approximately 

0.8 mg/m2 of CLIC1 inserted into phospholipid monolayers containing cholesterol 

such that the protein occupied an area per molecule between 5 ~ 7 nm2 with a total 

CLIC1 thickness ranging from ~ 51 Å to 59 Å throughout the entire monolayer. 

We have also demonstrated for the first time that the GXXXG motif in CLIC1 

acts as the cholesterol-binding site used by the protein for its initial recognition 

and binding to membrane cholesterol. Furthermore, Langmuir and reflectivity 

experiments using different sterols have confirmed that the interaction between 

CLIC1 and sterols is dependent on an intact 3β-OH group in the sterol ring.  

Modification of the sterol structure by the introduction of additional hydroxyl 



groups and methylation of the sterol alkyl chain was shown to facilitate greater 

spontaneous membrane insertion of the protein within the phospholipid 

monolayer. Taken together these findings provide clear evidence for the important 

role of sterols in the regulation of CLIC1 membrane interactions and a putative 

mechanism for its initial binding and membrane integration. 
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