A Study of the Spontaneous Membrane Insertion of Chloride Intracellular Ion Channel Protein CLIC1 into Model Lipid Membranes

Khondker Rufaka Hossain

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Life Sciences Faculty of Science 2016

Certificate of Original Authorship

I, Khondker Rufaka Hossain, certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me and to the best of my knowledge contains no materials previously published or written by another person. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Khondker Rufaka Hossain 2016

Acknowledgement

I would like to express my sincere thanks to my principle supervisor, Associate Professor Dr Stella Valenzuela from UTS for her constant guidance, help and support, for inspiring me, motivating me and for making it possible for me to work with dedicated research scientists at Australian Nuclear Science and Technology Organisation (ANSTO) and Australian Synchrotron. These experiences and research opportunities have been very rewarding, and would not have been possible without Dr Valenzuela and her dedication to my education and development.

I wish to gratefully acknowledge the support of my co-supervisor Dr Stephen A Holt from ANSTO for his high enthusiasm, dedication and continuous help and support throughout my PhD. He is an excellent educator and have dedicated hours of his time teaching me all the biophysical techniques used in this thesis. I would like to say to Dr Holt that "without your help I would have never been able to come this far in this research study".

I would like to extent my gratitude to all my friends, lab membranes, academics and colleagues from the faculty of science at UTS and from ANSTO for their assistance, friendship, supportive attitudes, helpful comments and feedbacks that have motivated and inspired me throughout my PhD degree. I would like to specifically thank Dr Heba Al Khamici for sharing her knowledge of protein purification with me; Dr Anton Le Brun for his constant guidance and assistance with all my reflectivity work and Dr Rekas Agata for teaching me how to use the CD spectrophotometer. I would also like to thank Dr Nicole Cordina and Dr Louise Brown from Macquarie University for allowing me to perform mutagenesis experiments in their lab.

I am extremely grateful to the Graduate Research School at UTS and the Australian Institute of Nuclear Science and Engineering (AINSE) for their financial support without which, this work would not have been possible. I would also like to thank AINSE and ANSTO for the three beam time awards (P3304, A2842 and A2839).

Lastly but most importantly a big thanks to my parents and my husband for their patience, endless support, believe and motivation that kept me going during this long and often challenging time. To you I dedicate this thesis.

Publications

Publications arising from this thesis

[1] Hossain, KR., Al Khamici, H., Holt, SA, and Valenzuela, SM. (2016) Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air-Water Interface., Membranes (Basel) 6 (1), E15.

Publications arising from collaborations during my PhD degree

[1] Charles C, Thomas B, Holt SA,; Hossain KR, Anton LB, Sonia C, Al Khamici H, Hans C, Valenzuela SM and Bruce C. (2016) Evidence for the Key Role of H₃O in Phospholipid Membrane Morphology, Langmuir, Manuscript ID: la-2016-01988p (Submitted for review).

[2] Al Khamici, H., Brown, L., Hossain, K., Hudson, A., Sinclair-Burton, A., Ng, J., Daniel, E., Hare, J., Cornell, B., Curmi, P., Davey, M., and Valenzuela, S. (2015) Members of the Chloride Intracellular Ion Channel Protein Family Demonstrate Glutaredoxin-Like Enzymatic Activity, PLoS One 10, e115699.

[3] Yepuri, N., Holt, S., Moraes, G., Holden, P., Hossain, K., Valenzuela, S., James, M., and Darwish, T. (2014) Stereoselective synthesis of perdeuterated phytanic acid, its phospholipid derivatives and their formation into lipid model membranes for neutron reflectivity studies., Chem Phys Lipids. 183, 22-33.

Conference Presentations

Oral presentations

- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2016) ELUCIDATING THE MECHANISM FOR STEROL REGULATION OF CHLORIDE INTRACELLULAR ION CHANNEL PROTEIN INTERACTIONS WITH LIPID MEMBRANES. 60th Annual Meeting, Biophysical Society, California, USA.
- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2015) Interaction of the Chloride Intracellular Ion Channel Protein CLIC1 with different sterols in Model Membranes. 2nd Asia-Oceania Conference on Neutron Scattering, Sydney, Australia.
- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2014) Effects of Cholesterol on the spontaneous membrane insertion of Chloride Intracellular Ion Channel Protein CLIC1. 12th AINSE-ANBUG Neutron Scattering Symposium (AANSS), Sydney, Australia.
- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2013) A Study of the Spontaneous Membrane Insertion of Chloride Intracellular Ion Channels (CLICs) into Model Lipid Membranes. 11th AINSE-ANBUG Neutron Scattering Symposium (AANSS), Sydney, Australia.

Poster presentations

- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2015) Investigating the mechanism for Sterol Regulation of CLIC1 with Lipid Membranes. New Horizons, Sydney, Australia.
- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2014) The Spontaneous Membrane insertion of Chloride Intracellular Ion Channel Protein CLIC1 into Model Membranes. 22nd Australian Society for Medical Research (ASMR), Sydney, Australia.
- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2014) Effects of Sterol Structure on the spontaneous membrane insertion of Chloride Intracellular Ion Channel Protein CLIC1. New Horizons, Sydney, Australia.
- Hossain KR, Al Khamici H, Holt SA and Valenzuela SM. (2013) A Study of the Spontaneous Membrane Insertion of CLIC1 into Model Lipid Membranes. Australian Society of Biophysics, Melbourne, Australia.

Table of Contents

Certificate of Original Authorship	II
Acknowledgement	III
Publications	IV
Conference Presentations	V
Abbreviations	XII
List of Figures	XVI
List of Tables	XX
Abstract	XXI

Chapter 1 Chloride Intracellular Ion Channel (CLIC) Proteins	1
1.Introduction	2
1.1 Chloride Ion Channels	3
1.2 The CLIC proteins	6
1.3 The CLIC1 protein	12
1.3.1 Tissue and subcellular distribution	12
1.3.2 Physiological function of CLIC1	13
1.4 Structure of CLIC1 protein	15
1.4.1 The N-terminal and C-terminal domain of CLIC1 protein	15
1.4.2 The putative transmembrane regions of CLIC1 protein	18
1.5 Structural similarity between GST superfamily and CLIC proteins	19
1.6 Conversion of soluble CLIC1 into membrane integral form	22
1.7 Factors regulating the membrane insertion of CLIC1	25
1.7.1 Redox regulated membrane insertion of CLIC1	25
1.7.2 Role of pH on spontaneous membrane insertion of CLICs	28
1.7.3 Role of Lipid composition on spontaneous membrane insertion of CLIC1	30

1.8 Aims and Objective	32
1.9 References	34

Chapter 2 Theory and Applications of the Langmuir Monolayer and		
<u>Reflectivity Techniques used in this Study</u>		

2.1 Introduction	46		
2.2 Langmuir Monolayer Model			
2.2.1 Advantages of the Langmuir Monolayer as a model membrane system	47		
2.2.2 Lipid as amphiphilic molecules for Langmuir Monolayer	48		
2.2.3 Lipid Monolayer at the Air-Water interface	51		
2.2.4 Surface pressure – Area isotherm	52		
2.2.5 Surface pressure- Area isotherms of POPC, POPE and POPS monolayers	55		
2.3 Lipid-protein interaction at the Air-Water interface	57		
2.3 Lipid-protein interaction at the Air-Water interface2.4 X-ray and Neutron Reflectivity studies give structural information about CLIC1 and Lipid Monolayer upon their interaction at the Air-Water interface	57 59		
 2.3 Lipid-protein interaction at the Air-Water interface 2.4 X-ray and Neutron Reflectivity studies give structural information about CLIC1 and Lipid Monolayer upon their interaction at the Air-Water interface 2.4.1 Fundamental principles for X-ray and Neutron Reflectivity 	57 59 59		
 2.3 Lipid-protein interaction at the Air-Water interface	57 59 59 62		
 2.3 Lipid-protein interaction at the Air-Water interface	57 59 59 62 63		
 2.3 Lipid-protein interaction at the Air-Water interface	 57 59 59 62 63 64 		

Chapter 3 Cholesterol Promotes the Interaction of the protein CLIC1 with70Phospholipid Monolayers at the Air-Water Interface

3.1 Introduction	71
3.2 Materials and Method	73
3.2.1 CLIC1 heterologous over-expression	74

3.2.2 His-CLIC1 fusion protein purification and cleavage	75
3.2.2.1 Nickel Affinity Chromatography	75
3.2.2.2 Size Exclusion Chromatography	77
3.2.3 Protein Concentration Determination	78
3.2.4 SDS-PAGE	79
3.2.5 Western Blotting	79
3.2.6 HEDS Enzyme Assay	80
3.3 Langmuir Film Experiments	80
3.3.1 Surface activity of CLIC1 protein at the Air-Water interface	81
3.3.2 Interaction of CLIC1 with Phospholipid or Cholesterol Monolayers	81
3.3.3 Interaction of CLIC1 with Mixed Lipid Monolayers	82
3.3.4 Pre-incubation of CLIC1 with Cholesterol	82
3.4 Results	84
3.4.1 Protein Overexpression and Purification	84
3.4.1.1 SDS-PAGE analysis of samples collected from Affinity Chromatography	84
3.4.1.2 Size Exclusion Chromatography Results	86
3.4.2 HEDS Enzyme Assay	88
3.4.3 Surface activity of CLIC1 protein	89
3.4.4 Interaction of CLIC1 with Lipid Monolayers	90
3.4.5 Interaction of CLIC1 with Phospholipid Monolayers containing Cholesterol	93
3.4.6 Interaction of CLIC1 with Mixed Lipid Monolayers	94
3.4.7 Surface pressure-Area isotherms of Mixed Phospholipid Monolayers	96
3.4.7 CLIC1-Cholesterol interaction	98
3.5 Discussion	101
3.6 Conclusion	105

3.7	References	 	 	106

<u>Chapter 4 Elucidating the structure of CLIC1 at the Air-Water Interface:</u>	110
An X-ray and Neutron Reflectivity Study	
4.1 Introduction	111
4.2 Materials and Method	114
4.2.1 Deuterated-CLIC1 protein expression, purification and activity	114
4.2.2 Sample preparation for X-ray and Neutron Reflectivity experiments	114
4.2.3 X-ray Reflectometry measurements at the Air-Water interface	115
4.2.4 Specular Neutron Reflectometry measurements at the Air-Water interface.	116
4.2.5 XR and NR data analysis	119
4.3 Results	123
4.3.1 Functional activity of deuterated CLIC1 (d-CLIC1) protein	123
4.3.2 CLIC1 interaction with POPC monolayer in the absence and presence of Cholesterol.	124
4.3.2.1 Characterisation of CLIC1 insertion into POPC (± cholesterol) monolayer by X-ray Reflectivity	125
4.3.2.2 Characterisation of CLIC1 insertion into POPC (± cholesterol) monolayer by Neutron Reflectivity	129
4.3.3 CLIC1 interaction with POPE monolayer in the absence and presence of Cholesterol	133
4.3.3.1 Characterisation of CLIC1 insertion into POPE monolayer	133
4.3.3.2 Characterisation of CLIC1 insertion into POPE: Chol monolayer.	136
4.3.4 CLIC1 interaction with POPS monolayer in the absence and presence of Cholesterol	138
4.4 Discussion	140
4.5 Conclusion	145

4.6 R	rences	

Chapter 5 Sterol structural requirements for interaction of CLIC1 with	
Cholesterol in Phospholipid Monolayers	
5.1 Introduction	152
5.2 Materials and Method	155
5.2.1 Langmuir Monolayer Experiment	155
5.2.2 Specular Neutron Reflectivity	155
5.3 Results	157
5.3.1 Effects of Sterol Structure on CLIC1 Membrane Interactions	157
5.3.2 Characterisation of CLIC1 insertion into POPC monolayers containing different natural sterols	159
5.3.2.1 Characterisation of CLIC1 insertion into POPC:Ergosterol monolayer	160
5.3.2.2 Characterisation of CLIC1 insertion into POPC:ß-Sitosterol monolayer	164
5.3.2.3 Characterisation of CLIC1 insertion into POPC:Hydroxyecdysone monolayer	167
5.4 Discussion	171
5.5 Conclusion	177
5.6 References	178

<u>Chapter 6 A conserved GXXXG motif in the transmembrane domain may</u> <u>serve as the Cholesterol-Binding motif for the CLIC1 proteins</u> 182

6.1 Introduction	183
6.2 Material and Method	
6.2.1 Site-directed mutagenesis using polymerase chain reaction (PCR)	186
6.2.1.1 Oligonucleotide primer design	189

6.2.1.2 Purification of CLIC1-pET-28a plasmid	189
6.2.1.3 Polymerase chain reaction (PCR)	190
6.2.1.4 Transformation into E.coli XL1-Blue super-competent cells	191
6.2.1.5 DNA sequencing	192
6.2.1.6 Transformation into E.coli BL21 (DE3) pLysS super-competent cells.	192
6.2.1.7 Preparation of CLIC1-mutant Glycerol Stocks	193
6.2.2 Over-expression and Purification of CLIC1 mutants: G18A and G22A	193
6.2.3 Circular Dichroism Spectroscopy	194
6.2.4 Dialysing DTT from CLIC1-wt and mutant proteins in solution	196
6.2.5 Functional analysis of G18A and G22A CLIC1 mutants	196
6.2.6 Spontaneous membrane insertion of G18A and G22A CLIC1 mutants	197
6.3 Results	198
6.3.1 DNA Sequencing results	198
6.3.2 Over-expression and purification of G18A and G22A CLIC1 mutants	201
6.3.3 Structural analysis of G18A and G22A CLIC1 mutants using Circular Dichroism Spectroscopy	202
6.3.4 Functional activity of G18A and G22A CLIC1 mutants	203
6.3.5 Spontaneous membrane insertion of G18A and G22A CLIC1 mutants	204
6.3.5 Pre-incubation of G18A and G22A CLIC1 mutants with Cholesterol	206
6.4 Discussion	209
6.5 Conclusion	213
6.6 References	214

Chapter 7 Conclusion and Future Directions

pendix 2	232
----------	-----

218

Abbreviations

2D	Two-dimensional
А	Area per molecule
Å	Angström (10^{-10} m)
A9C	Anthracene-9-carboxylic acid
ACMW	Air Contrast Matched Water
AEBSF	4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride
AKAP	A Kinase anchor protein
AMP	Adenosine monophosphate
Ano	Anoctamin
ANX	Annexin
APP	Amyloid precursor protein
AQP	Aquaporin
Arg	Arginine amino acid
Asn	Asparagine amino acid
ATP	Adenosine triphosphate
Bcl	B-cell lymphoma
BSA	Bovine serum albumin
C-domain	Carboxyl terminal domain
Ca ²⁺	Calcium ion
CaCC	Ca ²⁺ - activated Cl- channel
CaCl ₂	Calcium chloride
CD	Circular Dichroism
CDC	Cholesterol-dependent cytolysins
CFTR	Cystic fibrosis transmembrane conductance regulator
Ch-ane	Cholestane
Ch-one	5-cholesten-3-one
CHO-K1	Chinese hamster ovary cells
Chol	Cholesterol
CIC	Chloride ion channel
Cl ⁻	Chloride ion
CLIC	Chloride intracellular ion channel
CV	Column Volume
Cys	Cysteine amino acid

d ₃₁ -POPC	Deuterated 1-palmitoyl-(d31)-2-oleoyl-sn-glycero-3-
	phosphatidylcholine
DmCLIC	Drosophila melanogaster CLIC protein
DPPC	1,2-dipalmitoyl-sn-glycero-3-phosphocholine
DSC	Differential Scanning Calorimetry
DTT	Dithiothreitol
E-64	Epoxide protease inhibitor
E.coli	Escherichia coli
EDTA	Ethylenediaminetetraacetic acid
EPR	Electron Paramagnetic Resonance
ErbB	Epidermal growth factor receptor
Erg	Ergosterol
ERK	Extracellular signal-regulated kinase
ERM	Ezrin, Radixin and Moesin proteins
EXC	Excretory canal abnormality
EXL	EXC-like
FRET	Fluorescence Resonance Energy Transfer
GABA	gamma-Aminobutyric acid
Gln	Glutamine amino acid
Glu	Glutamic acid amino acid
Gly	Glycine amino acide
GPHR	Golgi pH Regulator
Grx	Glutaredoxin
GSH	Reduced glutathione
GST	Glutathione S-transferase
H^+	Hydrogen ion
HEDES	2-hydroxyethyl disulphide
Hepes	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
His	Histidine amino acid
Hyd	20-hydroxyecdysone
IAA-94	Indanyloxyacetic acid 94
IPTG	Isopropyl-thio-β-D-galactopyranoside
IQGAP	IQ motif containing GTPase activating protein
IR	Infra-Red
IRS	Interfacial Stress Rheometry
Kan	Kanamycin
KC1	Potassium chloride

kDa	kilo-Dalton
KH ₂ PO ₄	Potassium dihydrogen phosphate
LC	Liquid condensed phase
LM	Langmuir monolayer
LSM	U6 snRNA-associated Sm-like protein
Lys	Lysine amino acid
М	Moles
MAP	Mitogen activated protein
MC	Monte-Carlo
mCLIC	mouse Chloride intracellular ion channel protein
MgCl ₂	Magnesium chloride
$MgSO_4$	Magnesium sulphate
ml	milli-Litre
mM	milli-Molar
N-domain	Amino terminal domain
NaCl	Sodium chloride
NADPH	Nicotinamide adenine dinucleotide phosphate
NBD	Nucleotide binding domain
NCC27	Nuclear chloride channel protein 27kDa
NEM	N-Ethylmaleimide
Ni-NTA	nickel-nitrilotriacetic acid
NMR	Nuclear Magnetic Resonance
NR	Neutron Reflectivity
p64	Bovine chloride channel protein 64kDa
Panc	Pancreatic cancer cells
PC	Phosphatidylcholine
PCR	Polymerase chain reaction
PE	Phosphatidylethanolamine
PFT	Pore-forming toxin
Phe	Phenylalanine amino acid
PHR	Pam Highwire RPM-1 proteins
pI	Isoelectronic point
POPC	1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine
POPE	1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine
POPS	1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine
PPI2	Serine/threonine phosphatase (PP1) isoform PP1 gamma 2
Pro	Proline amino acid

PS	Phosphatidylserine
PTMD	Putative Transmembrane Domain
Q	Momentum transfer
RyR	Ryanodine receptor
SANS	Small Angle Neutron Scattering
SAXS	Small Angle X-ray Scattering
SDS-PAGE	Sodium Dodecyl Sulfate-PolyAcrylamide
SEC	Size Exclusion Chromatography
Ser	Serine amino acid
Sito	ß-sitosterol
SLD	Scattering Length Density
SLS	Surface Light Scattering
t	Thickness
T84	Human colon cancer cell
tBLM	Tethered lipid bilayers
ТСЕР	tris-2-carboxyethyl-phosphine
TEMED	NNNN'-tetramethylethylenediamine
TMD	Transmembrane domain
TMR	Transmembrane region
TNF-α	Tumour necrosis factor- alpha
Trp	Tryptophan amino acid
Val	Valine amino acid
VGAT	Vesicular GABA transporter
VGLUT	Vesicular glutamate transporter
Х	Any amino acid
XR	X-ray Reflectivity
XRD	X-ray Diffraction
Γ	Surface excess/ Surface coverage
ΔΑ	Percentage surface area expansion
λ	Wavelength
μl	micro-Litre
π	Surface pressure
σ	Roughness
Ω-GST	Omega class GST

List of Figures

Chapter 1

1.1 Schematic diagrams of the topological structures and mechanism of regulation of Chloride Ion Channels.	5
1.2 Multiple sequence alignment of the six human CLIC proteins.	8
1.3 Multiple sequence alignment of the vertebrate, invertebrate and plant CLIC- like proteins.	11
1.4 Crystal structures of human CLIC family members.	16
1.5 Schematic diagram of reduced CLIC1 in ribbon showing the putative transmembrane region of CLIC1.	17
1.6 The hydrophobic region (PTMD) at the N-terminal domain conserved amongst all human CLIC proteins.	19
1.7 Comparison of A) Ω -GST and B) CLIC1 structure.	21
1.8 Membrane insertion model of CLIC1 protein.	23
1.9 Oligomerisation model of CLIC1 protein upon membrane interaction.	24
1.10 The oxidised CLIC1 dimer.	26
1.11: The proposed model for the CLIC1 transition from its soluble to membrane-bound form.	29
Chapter 2	
2.1 Chemical structures of the phospholipids and cholesterol used in this study.	49
2.2 A Langmuir trough showing the principle assembly of a Lipid monolayer on a water surface: a) expanded, b) partly compressed, and c) close-packed.	51
2.3 The π -A isotherm of the KCl/Hepes buffer pH 6.5.	53
2.4 Schematic illustration of a π -A isotherm of a lipid monolayer at the air-water interface and descriptors of various phases.	54
2.5 Surface pressure-area (π -A) isotherms of POPC, POPE and POPS phospholipid monolayers.	56
2.6 A schematic diagram of protein insertion into a lipid monolayer at the air-	57

water interface and its subsequent surface area vs. time plots.

2.7 The geometry of specular reflectivity.	60
<u>Chapter 3</u> 3.1 Schematic diagram showing the complex formed between the poly-Histidine tagged protein and a Ni-NTA matrix	76
3.2 SDS-PAGE gel showing a representative CLIC1 purification.	85
3.3 Eluted fractions of CLIC1-wt protein from Size Exclusion Chromatography Column.	86
3.4 SDS-PAGE, Western blot and Bradford Protein Quantification assay results of the SEC CLIC1-wt fractions.	87
3.5 Oxidoreductase activity of the purified CLIC1 protein.	89
3.6 Adsorption isotherm of CLIC1 to an air-water interface at 25°C at a final concentration of 2 μ g/ml.	90
3.7 CLIC1 protein interactions with different phospholipid or cholesterol monolayers.	92
3.8 CLIC1 protein interactions with phospholipid monolayers containing cholesterol.	93
3.9 CLIC1 protein interactions with mixed lipid monolayers.	95
3.10 Surface pressure-Area isotherms of mixed lipid monolayers.	97
3.11 SDS-PAGE gel showing CLIC1- cholesterol pre-incubation.	99
3.12 Percentage area expansion profiles of POPC:Chol monolayer after 3 hours without CLIC1 protein or after injection of recombinant CLIC1-wt and pre-incubated CLIC1 protein.	100
Chapter 4	
4.1 Schematic representation of putative structural models of CLIC1 interacting with a lipid monolayer.	112
4.2 Schematic representation of the structural model and contrasts used to fit data from POPC:Chol monolayer after interaction with CLIC1.	118
4.3 Oxidoreductase activity of the purified d-CLIC1 protein.	124
4.4 (A) X-ray reflectivity profile and model data fit and (B) the electron density	125

profile the fit describes for air-water interface containing POPC monolayer held at a constant pressure of 20 mN/m.

4.5 Comparisons of X-ray reflectivity profiles and model data fits and the electron density profile the fits describe for CLIC1-lipid monolayer at the airwater interface in the presence and absence of cholesterol.	127
4.6 Neutron reflectivity profiles and model data fits (A) and the scattering length density profiles these fits describe (B) for CLIC1 interaction with POPC:Chol monolayer in ACMW KCl/Hepes buffer subphase (pH 6.5).	129
4.7 Results from the Monte-Carlo resampling of neutron contrast for CLIC1 layers where the line is a Gaussian fit intended to provide a guide to the eye.	132
4.8 XR and NR profiles and model data fits and the scattering length density profiles these fits describe for (A) POPE monolayer and for (B) CLIC1 interaction with POPE monolayer.	134
4.9 Comparisons of X-ray reflectivity profiles and model data fits and the electron density profile the fits describe for CLIC1-POPE:Chol monolayer at the air-water interface.	137
4.10 Comparisons of X-ray reflectivity profiles and model data fits and the electron density profile the fits describe for CLIC1-lipid monolayer at the airwater interface.	139
4.11 A schematic model summary of the interaction of CLIC1 with phospholipid monolayers in the absence and presence of cholesterol.	143
<u>Chapter 5</u>	
5.1 Chemical structures of the different natural sterols and cholesterol derivatives used in this study.	153
5.2 CLIC1-wt interaction with different POPC:Sterol monolayers.	159
5.3 Monte-Carlo (MC) resampling, Neutron reflectivity profiles and model data fits, and the scattering length density profiles these fits describe for POPC:Ergo monolayer (A) without CLIC1 and (B) with CLIC1.	163
5.4 Monte-Carlo (MC) resampling, Neutron reflectivity profiles and model data fits, and the scattering length density profiles these fits describe for POPC:Sito monolayer (A) without CLIC1 and (B) with CLIC1.	166
5.5 Monte-Carlo (MC) resampling, Neutron reflectivity profiles and model data fits, and the scattering length density profiles these fits describe for POPC:Hyd monolayer (A) without CLIC1 and (B) with CLIC1.	170

Chapter 6

6.1 Schematic diagrams of reduced CLIC proteins in ribbon showing the putative transmembrane region and the GXXXG motif.	185
6.2 Schematic diagram of reduced CLIC1 showing the positions of the different amino acids that were mutated to alanine.	187
6.3 SDS-PAGE gel showing a representative G18A and G22A CLIC1 purification.	201
6.4 Far-UV CD spectra of CLIC1-wt, G18A and G22A CLIC1 proteins.	203
6.5 Oxidoreductase activity of the G18A and G22A CLIC1 proteins.	204
6.6 CLIC1 wild-type and mutant proteins interaction with POPC:Chol monolayer.	206
6.7 Percentage area expansion profiles of POPC:Chol monolayer after 3 hours following injection of non-incubated and pre-incubated CLIC1 wild-type and mutant proteins.	207
6.8 Amino Acid Sequence Alignment of Human CLIC proteins showing the GXXXG motif.	212

Chapter 7

7.1 A schematic representation of a postulated structural model for CLIC1 224 interacting with A) a lipid monolayer and B) a lipid bilayer.

List of Tables

Table 1.1: A summary of the molecular characteristics, tissue expression and localization and known functions of human CLIC proteins.	9
Table 4.1 Summary of the Molecular Volumes (V_m) , theoretical electron densities (SLD_e) and neutron scattering length densities (SLD_n) of CLIC1 and the different lipids used in this study.	121
Table 4.2 Parameters obtained from fits of XR data from POPC monolayer and POPC:Chol monolayer with and without CLIC1.	128
Table 4.3 Parameters obtained from simultaneous fits of NR data from POPC monolayer without CLIC1 and POPC:Chol monolayer with and without CLIC1.	132
Table 4.4 Parameters obtained from simultaneous fits of XR and NR data from POPE monolayer with and without CLIC1.	135
Table 4.5 Parameters obtained from fits of XR data from POPE:Chol monolayer with and without CLIC1.	137
Table 4.6 Parameters obtained from fits of XR data from POPS monolayer and POPS:Chol monolayer with and without CLIC1.	138
Table 5.1 Summary of the molecular Volumes (V_m), theoretical neutron scattering length densities (SLD_n) of h/d ₃₁ -POPC, h/d-CLIC1 and the different sterols in ACMW and D ₂ O subphase.	156
Table 5.2 Parameters obtained from simultaneous fits of NR data from POPC:Ergo monolayer with and without CLIC1.	162
Table 5.3 Parameters obtained from simultaneous fits of NR data from POPC:Sito monolayer with and without CLIC1.	165
Table 5.4 Parameters obtained from simultaneous fits of NR data from POPC:Hyd monolayer with and without CLIC1.	169
Table 6.1 Sequences of the Oligonucleotides.	188
Table 6.2 PCR reaction mixture and PCR program for site-directed mutagenesis of CLIC1-pET28a plasmid DNA.	191
Table 6.3: CLUSTAL.W alignment of the DNA Sequences of the eleven different CLIC1-mutants with CLIC1-wt.	199

<u>Abstract</u>

Sterols have been reported to modulate conformation and hence the function of several membrane proteins. One such group is the Chloride Intracellular Ion Channel (CLIC) family of proteins. These largely soluble proteins possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. To date, the structure of their membrane-bound form and factors influencing their auto-insertion remains largely unknown. In this thesis, we have performed Langmuir-film, X-ray, and neutron reflectivity experiments to study the interaction of wild-type or mutant versions of the protein CLIC1 with monolayers prepared using various mixtures of different phospholipids and sterol molecules, in order to investigate the regulatory role of CLIC1 and to elucidate the structural features of the CLIC1 membrane-bound form within the lipid monolayers.

Our findings have demonstrated that the spontaneous membrane insertion of CLIC1 is dependent on the presence of cholesterol in lipid monolayers. In phospholipid monolayers only, CLIC1 was able to insert within the phospholipid head-group region with no penetration into the acyl chain region of the monolayers. However, in the presence of cholesterol, CLIC1 showed significant interaction with the phospholipid acyl chains thereby, suggesting that cholesterol is required for the penetration of CLIC1 into the hydrophobic tails of the lipid monolayer, which is considered necessary for the formation of functional ion channels. From reflectivity experiments, we were able to show that approximately 0.8 mg/m² of CLIC1 inserted into phospholipid monolayers containing cholesterol such that the protein occupied an area per molecule between $5 \sim 7 \text{ nm}^2$ with a total CLIC1 thickness ranging from ~ 51 Å to 59 Å throughout the entire monolayer. We have also demonstrated for the first time that the GXXXG motif in CLIC1 acts as the cholesterol-binding site used by the protein for its initial recognition and binding to membrane cholesterol. Furthermore, Langmuir and reflectivity experiments using different sterols have confirmed that the interaction between CLIC1 and sterols is dependent on an intact 3β-OH group in the sterol ring. Modification of the sterol structure by the introduction of additional hydroxyl

groups and methylation of the sterol alkyl chain was shown to facilitate greater spontaneous membrane insertion of the protein within the phospholipid monolayer. Taken together these findings provide clear evidence for the important role of sterols in the regulation of CLIC1 membrane interactions and a putative mechanism for its initial binding and membrane integration.