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Preface 

This thesis has been prepared in publication format, whereby each chapter represents a 

manuscript ready for submission to a scientific peer-reviewed journal. Due to this 

preparation, there will be a degree of repetition across chapter introductions and 

methodologies. All data chapters are prepared as research articles. As of yet, no 

individual chapter has been accepted for publication in a peer-reviewed journal.  

Two papers (both submitted to journals, not yet in publication) were produced in 

association with this PhD, but do not form a part of this thesis. These two papers (one 

review paper, one research article) are attached in the appendix of the thesis.  These are 

both formatted in the style of the particular journal they have been submitted to. 
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Abstract 

The ability of vegetated coastal habitats to enhance carbon (C) sequestration and sustain 

C stocks plays an important role in the global cycling of atmospheric CO2. These blue 

carbon ecosystems (encompassing seagrass meadows, mangroves, and saltmarshes) are 

among the most efficient and productive environments for C storage worldwide. In fact, 

seagrass meadows transfer C into the sediment more efficiently than any terrestrial 

ecosystem. There is therefore a huge potential to capitalise on these C sinks, and 

understanding processes that affect the sequestration and storage of C within seagrass 

ecosystems is essential. There is however a major deficit in our understanding of the 

factors affecting C cycling in seagrass sediments, and this is how burrowing macrofauna 

within seagrass sediments affect the flux of C.  

Benthic macrofauna (“bioturbators”) are a natural component of seagrass environments. 

Their activity within the sediment potentially has major impacts on seagrass C 

sequestration, given their influence on organic matter, and relationship with sediment 

microbes. It is generally accepted that the effects of bioturbators are a poorly studied 

component of blue C ecosystems. Quantifying the effect of bioturbation on C 

sequestration is essential in understanding the continuing C sequestration capacity of 

these systems. 

The overarching objectives for this thesis were two-fold; (1) to determine whether 

bioturbation has a net overall positive or negative effect on seagrass C sequestration; 

and (2) to evaluate the mechanisms behind these processes in relation to a meadows C 

flux. To address these objectives, this thesis took a holistic approach, following the 

burial and decomposition of organic matter (detritus), and investigating the extent of 

sediment oxygenation and microbial activity. Finally, we were able to quantify the flux 

of both sediment and detrital-C from the sediment. A number of species were 

investigated, including globally-distributed Thalassinidean shrimp (“Callianassid”), and 

the lugworm Arenicola marina.  The overall findings of this thesis encompass a “scaled-

up” approach to the potential impacts of bioturbators on seagrass sediment C stocks. 

The results uncovered in this thesis revealed that bioturbation can have varying impacts 

on both seagrass C stocks, as well as C sequestration. It was shown that not only do 

bioturbators influence the burial of organic matter (i.e. detritus), bioturbation also 
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affects the degradation rate of organic matter. The results in this thesis also brought to 

light that bioturbation stimulated microbial degradation of sediment-bound C stocks, a 

process known as “microbial priming”. The results of this thesis outline that 

bioturbation ultimately results in favourable sediment conditions for microbial 

degradation of both detrital and sediment-C. The culmination of these processes may 

result in “hot-spots” of C loss. However, it is also evident that bioturbation has a larger 

scale impact on seagrass as a whole ecosystem. We conclude that bioturbation is likely 

to have ecologically-meaningful impacts on both Australian and global seagrass C 

sequestration.   
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