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Abstract  

Estimation of design flood flow has been and remains a concern for both hydrologic research and 

hydrologic practice.  Knowledge of design flood flows provides a basis for sustainable flood 

management, which has the aim of reducing flood risk, thereby protecting people’s lives and property. 

Design floods for a given location can be estimated by a number of approaches including analysis of 

past flood statistics and the use of catchment modelling.  When catchment modelling approaches are 

applied estimation of design flood flows, there is a need to calibrate the model parameters.  As part of 

this calibration process, a calibration metric, or fitness measure, is needed to enable assessment of 

alternative sets of parameter values.  Presented herein is an investigation into design flood quantiles 

derived from predictions obtained from a continuous catchment modelling system when alternative 

calibration metrics are used to assess the suitability of parameter values.  Two alternative calibration 

metrics are considered with one calibration metric aimed at ensuring replication of recorded 

hydrographs and the second calibration metric aimed at ensuring replication of the statistical 

characteristics of the Annual Maxima Series.  It was found that use of the later calibration metric 

resulted in better reproduction of the flood probability model estimated from the historical data while 

reproduction of the recorded hydrographs (i.e. the first calibration metric) did not ensure reproduction 

of the flood probability model. 
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1. INTRODUCTION 

Simulation in hydrology refers to the replication of the flows that could have been recorded if a gauge 

were present at the location of interest.  Developments in this approach can be traced from very 

simple manual calculation systems to the more complex computerised systems currently used.  

Catchment simulation can be event – based or continuous; for continuous simulation, the flow is 

simulated during both dry and wet periods. The degree of belief in predictions normally will depend 

on the success of reproduction of observations. Therefore, the choice of the fitness measure that 

assesses agreement between simulated and observed data is important. 
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Hydrograph based measures of fit have been widely used to assess the modelling fitness in many 

event - based modelling studies (see, for example, Criss et al. 2008, Gupta et al. 2009, Krause et al. 

2005).  The hydrograph measures of fit considered have included the Nash–Sutcliff efficiency (NSE), 

sum of weighted absolute errors; squared residuals; percent error in peak; and peak-weighted root 

mean square error. The appropriateness of these criteria for measuring goodness of fit, has been 

debated in the literature (see, for example, Krause et al., 2005, Legates and McCabe, 1999, Seibert, 

2001, Smithers, 2012, Gupta et al., 2009). As part of this debate, modified versions of the NSE have 

been proposed by Garrick et al. (1978), Refsgaard and Knudsen (1996), Legates and McCabe (1999), 

McMillan and Clark (2009) and Podger (2004). One conclusion that can be deduced from 

consideration of the literature is that some measures of fit are influenced by particular flow 

magnitudes (e.g. high or low flows) and hence, the purpose of the modelling needs to be considered in 

selecting the appropriate measure of fit.  

For continuous simulation, hydrograph fitting methods are more challenging due to the sensitivity of 

different performance measures related to different flow magnitudes (Westerberg et al., 2011). 

Attempts to address this issue have included a time series approach where the annual maxima series 

(AMS) (Cameron et al., 1999, Calver and Lamb, 1995) or the flow duration curve (Westerberg et al., 

2011) were used as performance measures. From a design flood estimation perspective, Cameron et 

al. (1999) tested the predicted and recorded AMS using a t-test and selected the parameters that 

resulted in the best correlation between the predicted and recorded AMS. Implicit in this approach is 

the assumption that small variations in the AMS do not result in large variations in the flood quantiles: 

in other words, subtle variations in the AMS do not result in changes to the parameters defining the 

statistical model of floods. 

Ball (2013) reported on estimated design flood quantiles obtained when a hydrograph measure of fit 

was employed to assess model suitability.  Both event-based and continuous simulation approaches 

were considered. In both these cases, the estimated design flood quantiles were not similar to those 

estimated from recorded data.   

As design flood estimation is concerned with the prediction of flood quantiles, we have investigated 

how two alternative measures of fit influence these predictions. The two alternative measures of fit 

considered were the NSE and the parameters of the flood probability model.  A monsoon catchment in 

Vietnam, namely the area of Ba river upstream of the An Khe gauge was used as the test catchment 

for the investigation.  



2. DESIGN FLOOD ESTIMATION  

Design flood characteristics must be interpreted from a statistical viewpoint.  This contrasts with the 

analysis of historical flood events where a deterministic viewpoint is appropriate.  When design flood 

characteristics are required, as discussed by Ball (2013), there are two alternative situations which are: 

 Sufficient historical information is available for a statistical analysis; and 

 Sufficient historical information is not available. 

For those situations where there are insufficient data for a statistical analysis, catchment modelling 

techniques commonly are employed.  Catchment modelling techniques may be categorized as event 

(either complete event or most significant burst) or continuous simulation.  The aim of continuous 

simulation is to estimate flow sequences analogous to those where sufficient historical data are 

available.  Hence, a flood frequency analysis (FFA; see, for example, Kuczera and Franks 2016) of 

flow data from continuous simulation is needed for design flood estimation; this is similar to of the 

situation for historically recorded data.  

At a site with sufficient measured flood data, the design flood flow can be estimated by a flood 

frequency analysis (FFA).  As reported by Kuczera and Franks (2016), application of FFA requires 

resolution of: 

 Choice of the flood series; 

 Errors in the flood series due to the measurement method; 

 Selection of a suitable statistical distribution model; and 

 Determination of the parameters for that distribution.  

2.1 Choice of Flood Series 

Selection of the most appropriate flow series for flood design estimation has received widespread 

attention.  The two main flood series considered are the AMS and the Peak-over-Threshold Series 

(POTS).  Kuczera and Franks (2016) discussed the relationship between POTS and AMS and 

recommended the use of an AMS for estimation of low annual exceedance probability events.  Using 

that recommendation, an AMS was preferred for the case study discussed in the later sections. 

Included in the choice of a flood series is consideration of the need to censor data and the inclusion of 

historical flood data.  While there are many alternative approaches to identification of data that should 

be censored, the general concept is one of identifying those data points that depart significantly from 

the trend of the remaining data.  Examples of approaches for identifying data that should be censored 

are provided by (US Interagency Advisory Committee on Water Data, 1982), Grubbs and Beck 



(1972), and Cohn et al. (2013).  Historical data, on the other hand, are events recorded prior to 

commencement of the monitoring programme.  As discussed by Kuczera and Franks (2016), these 

events may be informative for the defining the parameters of the statistical model fitted to the flood 

series.  

2.2 Statistical Model 

In the past, many alternative probability distributions have been proposed for defining the statistical 

characteristics of recorded flood events.  When an AMS is used to extract the flood series, Kuczera 

and Franks (2016) note that two families of distribution have been found to fit flood data; these are 

the generalized extreme value (GEV) and log Pearson III (LPIII).  Furthermore, they note that the 

choice of an appropriate statistical model for prediction of peak flood flows for a particular site or 

region can be made only by testing the goodness-of-fit for a statistical model with data for that 

catchment or region.  An LP-III was used for the case study reported in the later sections. 

2.3 Determination of Distribution Parameters 

Probability distribution fitting or simply distribution fitting is the determination of the parameter 

values for a selected probability distribution using recorded flood data to predict the flood frequency 

curve.  In application of FFA techniques, there are three main techniques used for fitting probability 

distributions; these techniques are: the Method of Moments, Bayesian techniques and L-moment and 

LH moment techniques.  

The Bayesian approach, as described by Lee (1989), is a general approach to fitting parameters to 

data.  The approach considers a set of data, for example flood flow peaks (D), hypothesized and a 

random realization from the probability model M, with probability density function pdf p(D|β,M) 

where β is an unknown finite-dimensioned parameter vector.  The term of pdf p(D|β,M) is dependent 

on the context.  When p(D|β,M) is used to describe the probability model generating the sample data 

D for a given β, it is called the sampling distribution.  However, when inference about the parameter β 

is sought, p(D|β,M)  is  called the likelihood function to emphasize that the data D are known and the 

parameter β is the object of attention.  In Bayesian inference, the parameter vector β is considered a 

random vector, the probability distribution of which describes the true value of β.  However, the prior 

pdf p(β|M) for given probability model M known β can be used as information to refine β.  Bayes 

theorem describes the true value of β by the following posterior density function (Kuczera and Franks, 

2016):   

𝑝(𝛽|𝐷, 𝑀) =
𝑝(𝐷|𝛽, 𝑀)𝑝(𝛽|𝑀)

𝑝(𝐷|𝑀)
 



In using this approach, the inputs (observed flood peaks in this case) are treated as a set of data, the 

true value β of which can be described by the density function. The posterior distribution 𝑝(𝛽|𝐷, 𝑀) 

fully defines the parameter uncertainty and is sampled by the “Importance Sampling” method 

described in Kuczera and Franks (2016).  This Bayesian approach has been implemented in FLIKE 

(Kuczera and Franks, 2016) which was used to analyse the recorded data. 

3. MEASURES OF FIT 

The degree of belief in predictions obtained from a model normally will depend on how well they can 

reproduce observations; in other words, in comparing the predictions obtained from two models, those 

predictions obtained from the model that more closely reproduces the recorded data will be 

considered more reliable than those from the alternative model.  Therefore, the choice of the fitness 

measure that assesses the agreement between simulated and observed data is an important choice in 

any modelling study.  Two alternative measure of fit are considered herein.  These alternative 

measures of fit are hydrograph fitting and time series fitting; details of these metrics are presented in 

the following sections. 

3.1 Hydrograph measure of fit 

In using a hydrograph measure of fit, the desired outcome is a model that reproduces the shape and 

other characteristics of the hydrograph.  For FFA, the largest peak flow in a year assessed from the 

predicted hydrographs is then used to develop the AMS. 

A commonly used performance measure for a hydrograph fitting application (see, for example, 

Krause et al., 2005, Legates and McCabe, 1999, Seibert, 2001, Criss and Winston, 2008, Das et al., 

2008, Gupta et al., 2009, McMillan and Clark, 2009) is the NSE which can be expressed as:  

𝑁𝑆𝐸 = 1 − 
∑ (𝑂𝑖 −  𝑃𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1

 

3.2 Time series measure of fit 

An alternative hydrograph measure of fit is to use a measure more closely related to the desired aims 

of the modelling.  For application of a design flood estimation approach, the aim of using a 

continuous simulation catchment modelling system is the development of flow records analogous to 

those that would have been recorded if a gauge were present at that location.  From these generated 

records, the AMS is extracted and then analysed using FFA techniques. 

Hence, the desire is for the predictions from the continuous modelling system to result in an AMS that 

has similar statistical characteristics to the recorded flows.  Use of a time series measure of fit, 



therefore, uses the AMS, or the outcomes from analysis of the AMS, as an objective function for 

calibration and validation of the modelling outcomes.   

4. TEST CATCHMENT 

4.1 Location 

The Ba River, Vietnam located in South Central Vietnam was chosen as a test catchment for the 

analysis being presented herein.  The Ba River is one of the largest river systems in central Vietnam.  

The headwaters for the system are found in the Ngoc Ro mountain (Truong Son ridges) in Kon Tum 

province.  The study reported herein used an unregulated 1350 km2 area of the catchment upstream of 

the An Khe gauge.  This portion of the catchment comprises high to moderate mountainous areas, and 

is located mostly in the eastern part of the Central Highlands of Vietnam (VKT KTTV&MT 2010).  

4.2 Climate 

The Ba River catchment is located in a tropical monsoon climatic regime.  The main features of this 

climate are extraordinarily rainy wet seasons and pronounced dry seasons.  The wet season consists of 

5-6 months from May to October or November with about 90% of the total annual rainfall occurring 

in this period.  The average number of wet days in this season is 22-24 days/month.  Foehn winds and 

tropical cyclones strongly affect the area during the wet season.  A distinct cyclone season occurs later 

in the summer period from September to December, sharply peaking in October (VKT KTTV&MT, 

2010).  During a thunderstorm, the 24-hour rainfall can be as high as 228mm (19 November 1987) at 

Pleiku station.  

4.3 Data availability 

Daily rainfall data are available at 12 stations both within and nearby the catchment (see Figure 1 for 

locations of these gauges).  Rainfall records at almost all of these stations are available for more than 

30 years covering the period 1980 – 2011.  However, there are only four rainfall stations recording 

hourly rainfall with periods of record ranging from 14 to 33 years (from 1976 to 2011).  

Flow data are observed at An Khe station.  These data are available in hourly and 6-hourly intervals 

from 1980 to 2011. 

5. DESIGN FLOOD FLOW  

Design flood flows at the An Khe station were estimated from the historical data using FFA.  

Application of a flood frequency method requires consideration of: 

 Selection of flood series and censoring of the data; 



 Selection of distribution function and estimation of its parameters; and 

 Plotting the frequency curve and the confident limits. 

An LP-III distribution was selected based on the guidance in Kuczera and Franks (2005) and Bulletin 

17-B (U.S. Interagency Advisory Committee on Water Data, 1982).  In addition, a Bayesian approach 

was used to estimate the parameters in the LP-III distribution and the uncertainty in these parameters. 

Selection of flood series: As recommended by (Kuczera and Franks, 2016) for a gauge with more than 

10 years of record, an AMS was used to determine the flood series.  The selected period for analysis 

discovered the period from 1980 to 2010.  

Detection of outliers for the LP-III distribution was undertaken using the methodology described by 

Interagency Advisory Committee on Water Data, (1982).  The adopted high and low threshold for the 

gauge are shown in Table 1.  Using the data in this table, peak flows of 326 m3/s (1978), 250 m3/s 

(1989), and 275 m3/s (2006) at the An Khe gauge were treated as censored data. 

Frequency curves: Flood quantiles were estimated using the FLIKE software (Kuczera and Franks, 

2016) with an LP-III distribution and Bayesian parameter estimation.  No prior information was used 

in the analysis. 

In general, use of the LP-III distribution produced consistent results with, in the majority of cases, the 

observed data within the confidence limits as shown in Figure 2.  The most probable values of LP-III 

distribution parameters (i.e. the location, scale, and shape parameters) and the standard deviation of 

these parameters are presented in Table 2. The most probable value of the location parameter (mean 

of log flow) is 7.0422, while an acceptable range is 7.0422 ± 0.09018; this acceptable range is the 

most probable value ± one standard deviation.  In a similar manner, the most probable value of the 

scale parameter (loge [standard deviation (loge flow)]) is -0.74320 and the acceptable range is -

0.74320 ± 0.15064.  Finally, the most probable value of the shape parameter (skewness) is -0.56875 

and the acceptable range is -0.56875 ± 0.09018.  Correlations between the values of these parameters 

are shown in Table 2 also. 

6. MODEL IMPLEMENTATION  

Flows in the river basin were simulated using HEC-HMS which is described by US Army Corps of 

Engineers (2010) as being a physically based, semi-distributed parameter model.  Application of this 

software used gridded rainfall with a 2000-m resolution while the SCS curve number method was 

used as the loss model.  For the rainfall to runoff transform, a kinematic wave approach was applied 

with flood wave translation along channel reaches simulated using a Muskingum-Cunge technique. 



6.1 Rainfall Model and Method of Fragments for Rainfall Disaggregation 

Gridded rainfall data are necessary for implementation of the model.  Therefore, an Inverse Distance 

Weight method using rainfall data at nine stations across the catchment was used to generate the 

gridded pattern of rainfall over the catchment. 

However, as previously noted, there were only four continuous rain gauges across the catchment; this 

is insufficient to reliably develop the rainfall grids.  To generate additional data, the Method of 

Fragments was used to predict sub-daily data (1-hour increments were used in this study) at the daily 

rainfall gauges.   More details of this approach are presented in Ball and Cu (2014). 

6.2 Catchment Stream Network and Preliminary Subcatchment Parameters 

Application of a distributed modelling system requires subdivision of a catchment into a number of 

subcatchments.  For this study, the catchment was divided into 16 subcatchments as shown in (Figure 

3) based on a Digital Elevation Model (DEM) with a horizontal resolution of 90m.  An additional 

assumption was that each subcatchment should be small so that application of the kinematic wave 

model was feasible; a small catchment according to Vietnamese practice is less than 100km2.  At the 

same time, there is a need to ensure that the number of parameters to be determined during calibration 

of the model is not excessive.  Shown in Table 3 are the primary calibration parameters for each 

subcatchment.  As shown in that table, each subcatchment requires 10 parameters to be estimated.  

Initial model parameter values were estimated using various sources such as land use and land cover 

maps, the DEM, and soil maps.   All parameter maps had a horizontal resolution of 2000 m, which 

was consistent with the rainfall grid data.  Once the value of parameters had been estimated for 

individual grids, the average value of each parameter for each sub-catchment was determined. 

6.3 Model Operation 

The model was operated using an hourly step to predict continuous flow records for the period 1980- 

2011.  These generated flow sequences were suitable for conducting an analysis using the FFA 

method for estimation of the design flood.   

6.4 Model Calibration 

Model calibration commonly is defined as the process for determination of parameter values.  Both 

manual and computerized techniques have been used for undertaking this process (see, for example, 

Bevan and Binley, 1992, Kuczera and Parent 1998; Choi and Ball, 2002).  The generic process is one 

where alternative sets of parameter values are tested against recorded data to enable determining the 

suitability of the parameter values.  This test against recorded data requires a metric for comparative 

purposes. 



Calibration was conducted using a global search method, which based on 600 parameter sets 

randomly selected within an acceptable range of model parameter values.  The fitness measure for 

assessing the calibration achieved was selected as a time series fit or a hydrograph fit using data from 

the An Khe gauge. 

6.5 AMS fitting method 

The measure of fit used in AMS fitting was based on the parameters of the flood model which are the 

three parameters for the flood probability model.  As discussed above, the recorded flood probability 

model parameters and their confidence limits were estimated during application of the FFA method 

on the reported data.  The model calibration, therefore, was searching for scenarios which produced 

LP-III parameters that fitted within the acceptable range of the parameters ascertained from the 

recorded data.    

At An Khe gauge, the 20 best scenarios within the acceptable ranges were selected.  Shown in Table 4 

are the LP-III parameters from these parameter sets while shown in Figure 4 are the predicted AMSs 

plotted on the flood frequency diagram (Figure 5).  

6.6 Hydrograph fitting method 

The hydrograph fitting considered herein used the NSE as the objective function. The events selected 

for assessment of model performance were the same events used in developing the AMS from the 

recorded data.  As a result, 28 events were extracted and used to perform the model calibration.  A 

NSE was calculated for each event and then an average value for all events was determined for each 

parameter set.  

Similar to assessment of the AMS fitting approach, the 20 best parameter sets were selected.  The 

average NSE for these parameter sets varied from 0.47 to 0.52.  However, when individual events are 

considered, the NSE was usually higher; as shown in Table 5, the NSE was regularly above 0.9 for 

individual events. 

Shown in Figure 6 is a comparison of the simulated and recorded hydrographs for these parameter 

sets.  Comparisons of individual hydrographs are shown in Figure 7 to 13. 

For the 20 selected sets of parameter values, AMSs were extracted to enable estimation of design 

flood quantiles by an FFA method. The LPIII parameters of simulated AMSs (location, scale, shape 

parameters) are shown in Table 6. It can be seen that the scale and shape parameters of the simulated 

AMSs were within the uncertainty of the observed values. However, the location parameter was 

underestimated. This resulted in underestimation of the design flood quantiles. 



The derived AMSs can be plotted on the flood frequency diagram derived from the historical data.  As 

shown in Figure 14, the underestimation of the location parameter would result in a systematic 

underestimation of the design flood quantiles. 

6.7 Results 

For the 20 best sets of parameter values derived using either of the two measures of fitness, the 

parameter values for the resultant flood probability model were derived.  These values are shown in 

Figures 15 to 17 together with the threshold values derived from analysis of the historical data. 

As shown in Figure 15, the location parameter derived from the hydrograph fit measure was 

underestimated consistently.  On the other hand, the location parameter derived from the AMS fit 

measure consistently was within the threshold bounds.  The shape and scale values developed from 

analysis of the 20 best sets of parameter values were found to be within the threshold bounds and 

hence the values were considered acceptable.  

7. CONCLUSION 

The purpose of design flood estimation is the prediction of design flood quantiles. Two alternative 

measures of fit were considered for calibration of the parameters of a continuous catchment modelling 

system. Validation of the accepted parameter values was undertaken by using the predicted flows to 

estimate the design flood quantiles for both measures of fit. It was found that the AMS fitting was 

superior to the hydrograph fitting. In general, the hydrograph fitting method resulted in an 

underestimation of the design quantiles based on observed data primarily due to underestimation of 

the location parameter in the flood probability model.  
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Figure 1: Distribution of meteorological stations across Ba basin. 

  



 

 

Figure 2: Flood frequency curve at Ankhe gauge 
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Figure 3: Catchment delineation and stream network 

  



 

 

Figure 4: Graph A - Frequency analysis of AMS at An Khe gauge calibrated by AMS method 

  



 

 

Figure 5: Sorted simulated and observed AMS at An Khe gauge  

  



 

 

Figure 6: Observed and simulated hydrographs of all selected events at An Khe gauge 

  



 

 

Figure 7: Hydrographs of recorded flow and simulated flow at An Khe gauge 1985 

  



 

 

Figure 8: Hydrographs of recorded flow and simulated flow at An Khe gauge 1986 

  



 

 

 
 

Figure 9: Hydrographs of recorded flow and simulated flow at An Khe gauge 1987 

  



 

 
 

Figure 10: Hydrographs of recorded flow and simulated flow at An Khe gauge 1988 

  



 

 
 

Figure 11: Hydrographs of recorded flow and simulated flow at An Khe gauge 2001 

  



 

 

 
 

Figure 12: Hydrographs of recorded flow and simulated flow at An Khe gauge 2009 

  



 

 

 

Figure 13: Hydrographs of recorded flow and simulated flow at An Khe gauge 2008 

  



 

 

Figure 14: Graph B-Frequency analysis of AMS at An Khe gauge calibrated by hydrograph fitting 

method 



 

Figure 15: Comparison of mean (loge flow) by two methods 
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Figure 16: Comparison of Loge [Std dev (loge flow)] by two methods 

 

  



 
 

 
Figure 17: Comparison of Skew (loge flow) by two methods 

  



 
Table 1: High outlier and low outlier for annual maximum series 

Gauge Mean Cv N KN 

Peak flow 

Logarithms (m3/s) 

High threshold Low threshold 

An Khe 7.03 0.46 29 2.55 
8.2089 

(3673) 

5.8448 

(345) 

 

  



Table 2: LP-III parameters for flood frequency at An Khe by Importance Sampling method 

N Parameters 
Most Probable 

value 

Standard 

deviation 
Correlation 

1 Mean (loge flow) 7.0422 0.09018 1.000   

2 Loge [Std dev (loge flow)] -0.74320        0.15064    -0.350 1.000  

3 Skew (loge flow) -0.56875        0.45883   0.042 -0.230   1.000 

 
  



Table 3: Model parameters and their available ranges 

Models Parameters Range 

Loss models Curve number 20 – 90 

Kinematic wave 

(Overland flow planes) 

Typical length  

Representative slope 0.0001 – 1 

Overland-flow roughness  coefficient 0.35 - 0.8 

Area represented by plane  

Musking-Cunge routing 

(The main channel ) 

Main channel length  

Description of main channel shape Rectangular 

Channel slope 0.0001 – 1 

Channel width  

Representative Manning’s roughness 

coefficient 

0.035 – 0.08 

 

  



Table 4: Parameters of LP-III distribution of simulated flow by hydrograph fitting and AMS fitting 

methods  

N 
N- 

Parameter 

set 

Mean 

(loge 

flow) 

Loge 

[Std dev 

(loge 

flow)] 

Skew 

(loge 

flow) 

1 1038 6.98 -0.68 -0.56 

2 1059 6.96 -0.68 -0.56 

3 1117 6.96 -0.67 -0.55 

4 1126 6.97 -0.68 -0.58 

5 1160 7.04 -0.66 -0.58 

6 1172 6.94 -0.68 -0.59 

7 1177 7.03 -0.65 -0.56 

8 1223 6.96 -0.68 -0.60 

9 1278 7.03 -0.66 -0.59 

10 1286 7.02 -0.64 -0.60 

11 1303 6.94 -0.69 -0.59 

12 1334 6.96 -0.68 -0.57 

13 1336 7.02 -0.63 -0.62 

14 1350 6.94 -0.67 -0.55 

15 1357 7.01 -0.61 -0.59 

16 1437 7.02 -0.64 -0.70 

17 1457 7.02 -0.62 -0.58 

18 1462 7.02 -0.62 -0.61 

19 1474 6.96 -0.68 -0.58 

20 1499 7.02 -0.62 -0.63 

 

 

  



Table 5: NSE at some events for the best 20 parameter sets 

N N - Parameter set 
Event (year) 

1985 1986 1987 1988 1992 1994 1997 2001 2003 2008 2009 

1 1001 0.82 0.96 0.91 0.89 0.72 0.75 0.77 0.86 0.76 0.83 0.87 

2 1022 0.88 0.93 0.86 0.84 0.69 0.82 0.71 0.89 0.67 0.90 0.89 

3 1039 0.84 0.96 0.92 0.89 0.75 0.77 0.75 0.82 0.73 0.86 0.87 

4 1089 0.86 0.92 0.86 0.84 0.68 0.80 0.73 0.90 0.71 0.89 0.88 

5 1168 0.86 0.97 0.94 0.89 0.78 0.80 0.72 0.79 0.69 0.87 0.88 

6 1173 0.86 0.93 0.88 0.85 0.69 0.79 0.75 0.90 0.74 0.87 0.88 

7 1276 0.84 0.94 0.89 0.87 0.70 0.77 0.76 0.89 0.74 0.86 0.87 

8 1360 0.85 0.96 0.92 0.89 0.75 0.77 0.75 0.84 0.73 0.86 0.88 

9 1378 0.88 0.96 0.92 0.88 0.75 0.81 0.72 0.83 0.69 0.89 0.88 

10 1379 0.84 0.95 0.91 0.88 0.71 0.77 0.76 0.86 0.74 0.86 0.87 

11 1386 0.86 0.96 0.93 0.88 0.77 0.79 0.74 0.82 0.73 0.86 0.88 

12 1387 0.89 0.94 0.89 0.86 0.71 0.82 0.71 0.86 0.66 0.90 0.89 

13 1405 0.86 0.95 0.90 0.87 0.72 0.79 0.75 0.87 0.73 0.87 0.88 

14 1418 0.83 0.94 0.88 0.86 0.68 0.77 0.77 0.90 0.75 0.85 0.87 

15 1452 0.83 0.93 0.86 0.85 0.67 0.76 0.76 0.91 0.75 0.86 0.87 

16 1468 0.91 0.92 0.87 0.82 0.72 0.83 0.69 0.89 0.70 0.90 0.90 

17 1470 0.90 0.93 0.88 0.84 0.72 0.82 0.71 0.88 0.71 0.90 0.89 

18 1507 0.86 0.97 0.96 0.89 0.83 0.81 0.69 0.72 0.69 0.85 0.85 

19 1511 0.93 0.94 0.91 0.85 0.77 0.85 0.67 0.84 0.65 0.91 0.90 

20 1539 0.82 0.96 0.91 0.89 0.73 0.75 0.77 0.85 0.74 0.84 0.87 

 
  



Table 6: Parameters of LP-III distribution of simulated flow by hydrograph fitting and AMS fitting 

methods  

N N- Parameter 

set 

Mean (loge 

flow) 

Loge [Std 

dev (loge 

flow)] 

Skew (loge 

flow) 

1 1001 6.83 -0.70 -0.55 

2 1022 6.75 -0.71 -0.57 

3 1039 6.84 -0.68 -0.57 

4 1089 6.76 -0.72 -0.55 

5 1168 6.83 -0.67 -0.55 

6 1173 6.78 -0.77 -0.73 

7 1276 6.80 -0.71 -0.55 

8 1360 6.82 -0.69 -0.56 

9 1378 6.81 -0.68 -0.56 

10 1379 6.82 -0.70 -0.54 

11 1386 6.72 -0.70 -0.56 

12 1387 6.78 -0.68 -0.57 

13 1405 6.79 -0.70 -0.55 

14 1418 6.80 -0.72 -0.56 

15 1452 6.78 -0.73 -0.56 

16 1468 6.73 -0.76 -0.73 

17 1470 6.75 -0.70 -0.56 

18 1507 6.85 -0.64 -0.56 

19 1511 6.76 -0.68 -0.56 

20 1539 6.83 -0.70 -0.55 

 

 


