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Many industrial decisions problems are decentralized in which decision
makers are arranged at two levels, called bilevel decision problems. Bilevel
decision making may involve uncertain parameters which appear either
in the objective functions or constraints of the leader or the follower or
both. Furthermore, the leader and the follower may have multiple conflict
decision objectives that should be optimized simultaneously. This study
proposes an approximationKth-best approach to solve the fuzzy multi-
objective bilevel problem. Two case based examples further illustrate how
to use the approach to solve industrial decision problems.

Keywords: Bilevel programming, Fuzzy sets, Optimization, Multi-objective
decision making, Fuzzy programming,Kth-best approach.

1 INTRODUCTION

Bilevel programming (BP) is a special case of multilevel programming with
a two level structure to model bilevel decision problems. In a BP problem,
decision makers are arranged at two levels and both try to make decision
successively. When the leader at the upper level attempts to optimize his/her
objective(s), the follower at the lower level tries to find an optimized strat-
egy according to each of possible decisions made by the leader [3,4]. Here,
although each decision maker (the leader or the follower) tries to optimize
his/her own objective functions with partially or without considering the
objectives of the other level, the decision of each level affects the objec-
tive optimization of the other level [16]. The Stackelberg solution [33] has
been employed as a solution concept to bilevel programming problems, and
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a considerable number of approaches for obtaining the solution have been
developed [1,2,5–13,15,18–20,34].

To solve a real BP problem, a BP model needs to be established first. The
parameters in the objective functions and constraints of the leader and the
follower are required to be fixed at some values in an experimental and/or
subjective manner through the experts’ understanding of the nature of the
parameters in the problem-formulation process. It has been observed that, in
most real-world situations, the possible values of these parameters are often
only imprecisely or ambiguously known to the experts, such as planning of
land-use, transportation and water resource. With this observation, it would
be certainly more appropriate to interpret the experts’ understanding of the
parameters of a BP problem as fuzzy numbers [35]. Many researchers, such
as Sakawaet al. [22–27], have formulated BP problems with fuzzy parame-
ters and propose fuzzy programming methods for fuzzy bilevel programming
problems. Our recent research work has extended Kuhn-Tucher,Kth-best and
branch-and-bound approaches to solve BP problems with fuzzy parameters.

Another issue in bilevel decision practice is that multiple conflicting objec-
tives often need to be considered simultaneously by the leader, and/or the
follower. For example, a coordinator of a multi-division firm considers
three objectives in making an aggregate production plan: maximise net prof-
its, maximise quality of products, and maximise worker satisfaction. The
three objectives could be in conflict with each other, but must be consid-
ered simultaneously. Any improvement in one objective may be achieved
only at the expense of others. The normal multi-objective decision-making
problem has been well researched by many researchers such as Hwang and
Masud [14]. But in a bilevel model, the selection of a satisfactory solution
for the leader is imparted by his/her follower’s optimal reaction. Therefore,
how to find an optimal solution for the leader which has multiple objectives
under the consideration of both its constraints and its followers needs to be
explored.

Following our previous research results shown in [17,28–32,37–42],
this study aims at developing an approach to solve fuzzy multi-objective
linear bilevel programming (FMOLBP) problems. It first transforms a
FMOLBP problem into a non-fuzzy multi-objective linear bilevel program-
ming (MOLBP) problem. Based on the definition and related theorems [29,41],
it then solve the FMOLBP problem by solving the associated MOLBP prob-
lem. As this paper focuses a linear bilevel problem, so BP means linear BP in
the paper.

Following the introduction, Section 2 reviews related definitions, theo-
rems and properties of fuzzy numbers and a FMOLBP model [41]. A general
fuzzy number based approximationKth-best approach for solving FMOLBP
problems is presented in Section 3. Two case based examples are shown in
Section 4 for illustrating the proposed model and approach. Conclusions and
further study are discussed in Section 5.
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2 PRELIMINARIES

In this section, we present some basic concepts, definitions and theorems that
are to be used in the subsequent sections. The work presented in this section
also can be found from our recent papers in [36,41].

2.1 Fuzzy numbers
Let R be the set of all real numbers,Rn ben-dimensional Euclidean space,
andx = (x1, x2, . . . , xn)

T , y = (y1, y2, . . . , yn)
T ∈ Rn be any two vectors,

wherexi, yi ∈ R, i = 1, 2, . . . , n andT denotes the transpose of the vector.
Then we denote the inner product ofx andy by 〈x, y〉. For any two vectors
x, y ∈ Rn, we writex � y iff xi ≥ yi,∀i = 1, 2, . . . , n; x ≥ y iff x � y and
x �= y; x > y iff xi > yi,∀i = 1, 2, . . . , n.

Definition 2.1. A fuzzy numberã is defined as a fuzzy set onR, whose
membership functionµã satisfies the following conditions:

1. µã is a mapping fromR to the closed interval [0,1];

2. it is normal, i.e., there existsx ∈ R such thatµã(x) = 1;

3. for anyλ ∈ (0, 1], aλ = {x;µã(x) ≥ λ} is a closed interval, denoted
by [aL

λ , aR
λ ].

Let F(R) be the set of all fuzzy numbers. By the decomposition theorem of
fuzzy sets, we have

ã =
⋃

λ∈[0,1]
λ[aL

λ , aR
λ ],

for everyã ∈ F(R).
Let F ∗(R) be the set of all finite fuzzy numbers onR.

Theorem 2.1. Let ã be a fuzzy set on R, then ã ∈ F(R) if and only if µã

satisfies

µã(x) =


1 x ∈ [m, n]
L(x) x < m

R(x) x > n

,

where L(x) is the right-continuous monotone increasing function, 0 �
L(x) < 1 and limx→−∞ L(x) = 0, R(x) is the left-continuous monotone
decreasing function, 0 � R(x) < 1 and limx→∞ R(x) = 0.

Corollary 2.1. For every ã ∈ F(R) and λ1, λ2 ∈ [0, 1],if λ1 � λ2, then
aλ2 ⊂ aλ1.



“MVLSC” — “72i-f1” — 2007/12/17 — 10:33 — page 208 — #4

208 Jie Lu et al.

Definition 2.2. For anyã, b̃ ∈ F(R) and 0� λ ∈ R, the sum of̃a andb̃ and
the scalar product ofλ andã are defined by the membership functions

µ
ã+b̃

(t) = sup min
t=u+v

{µã(u), µ
b̃
(v)},

µ
ã−b̃

(t) = sup min
t=u−v

{µã(u), µ
b̃
(v)},

µλã(t) = sup
t=λu

µã(u).

Theorem 2.2. For any ã, b̃ ∈ F(R) and 0 � α ∈ R,

ã + b̃ =
⋃

λ∈[0,1]
λ[aL

λ + bL
λ , aR

λ + bR
λ ],

ã − b̃ = ã + (−b̃) =
⋃

λ∈[0,1]
λ[aL

λ − bR
λ , aR

λ − bL
λ ],

αã =
⋃

λ∈[0,1]
λ[αaL

λ , αaR
λ ].

Definition 2.3. Let ãi ∈ F(R), i = 1, 2, . . . , n. We defineã = (ã1,

ã2, . . . , ãn)

µã : Rn→ [0, 1]

x �→
n∧

i=1

µãi
(xi),

wherex = (x1, x2, . . . , xn)
T ∈ Rn, andã is called ann-dimensional fuzzy

number onRn. If ãi ∈ F ∗(R), i = 1, 2, . . . , n, ã is called ann-dimensional
finite fuzzy number onRn.

Let F(Rn) andF ∗(Rn) be the set of alln-dimensional fuzzy numbers and
the set of alln-dimensional finite fuzzy numbers onRn respectively.

Proposition 2.1. For every ã ∈ F(Rn), ã is normal.

Proposition 2.2. For every ã ∈ F(Rn), the λ-section of ã is an n-
dimensional closed rectangular region for any λ ∈ (0, 1].
Proposition 2.3. For every ã ∈ F(Rn) and λ1, λ2 ∈ [0, 1], if λ1 � λ2, then
aλ2 ⊂ aλ1.

Definition 2.4. For everyn-dimensional fuzzy numbers̃a, b̃,∈ F(Rn), we
define

1. ã
�= b̃ iff aL

λ � bL
λ andaR

λ � bR
λ , λ ∈ (0, 1];

2. ã  b̃ iff aL
λ ≥ bL

λ andaR
λ ≥ bR

λ , λ ∈ (0, 1];
3. ã � b̃ iff aL

λ > bL
λ andaR

λ > bR
λ , λ ∈ (0, 1].
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We call the binary relations
�=,� and� a fuzzy max order, a strict fuzzy max

order and a strong fuzzy max order, respectively.

2.2 Fuzzy multi-objective linear bilevel programming model
Consider the following FMOLBP problem:

For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F : X × Y → F ∗(Rs),

andf : X × Y → F ∗(Rt ),

min
x∈X F(x, y) = (c̃11x + d̃11y, c̃21x + d̃21y, . . . , c̃s1x + d̃s1y)T (2.1a)

subject toÃ1x + B̃1y
≺= b̃1 (2.1b)

min
y∈Y f (x, y) = (c̃12x + d̃12y, c̃22x + d̃22y, . . . , c̃t2x + d̃t2y)T

(2.1c)

subject toÃ2x + B̃2y
≺= b̃2 (2.1d)

wherec̃i1, c̃j2∈F ∗(Rn), d̃i1, d̃j2∈F ∗(Rm), i=1, 2, . . . , s, j =1, 2, . . . , t,

b̃1 ∈ F ∗(Rp), b̃2 ∈ F ∗(Rq), Ã1 = (ãij)p×n, ãij ∈ F ∗(R), B̃1 = (b̃ij)p×m,

b̃ij ∈ F ∗(R), Ã2 = (ẽij)q×n, ẽij ∈ F ∗(R), B̃2 = (s̃ij)q×m, s̃ij ∈ F ∗(R).

For the sake of simplicity, we set̃X × Ỹ = {(x, y); Ã1x + B̃1
≺= b̃1,

Ã2x + B̃2y
≺= b̃2} and assume that̃X × Ỹ is compact. In a FMOLBP

problem, for each(x, y) ∈ X̃ × Ỹ , the value of the objective functions
F(x, y) = (F1(x, y), F2(x, y), . . . , Fs(x, y)) and f (x, y) = (f1(x, y),

f2(x, y), . . . , ft (x, y)) of the leader and the follower ares-dimensional and
t-dimensional fuzzy numbers, respectively. Thus, we introduce the following
concepts of optimal solutions to FMOLBP problems.

Definition 2.5. [41]Apoint (x∗, y∗) ∈ X̃× Ỹ is said to be a complete optimal
solution to the FMOLBP problem if it holds thatF(x∗, y∗) ≺= F(x, y) and
f (x∗, y∗) ≺= f (x, y) for all (x, y) ∈ X̃ × Ỹ .

Definition 2.6. [41] A point (x∗, y∗) ∈ X̃ × Ỹ is said to be a Pareto optimal
solution to the FMOLBP problem if there does not exist(x, y) ∈ X̃× Ỹ such
thatF(x∗, y∗)  F(x, y) andf (x∗, y∗)  f (x, y) holds.

Definition 2.7. [41] A point (x∗, y∗) ∈ X̃ × Ỹ is said to be a weak Pareto
optimal solution to the FMOLBP problem if there is no(x, y) ∈ X̃ × Ỹ such
thatF(x∗, y∗) � F(x, y) andf (x∗, y∗) � f (x, y) holds.
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Associated with the FMOLBP problem, we now consider the following
MOLBP problem:

Forx ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F : X × Y → F ∗(Rs),

andf : X × Y → F ∗(Rt ),

min
x∈X(F (x, y))

L(R)
λ = ((F1(x, y))Lλ , (F1(x, y))Rλ , . . . , (Fs(x, y))Lλ ,

(Fs(x, y))Rλ )T , λ ∈ [0, 1] (2.2a)

subject toAL
1λx + BL

1λy � bL
1λ, A

R
1λx + BR

1λy � bR
1λ, λ ∈ [0, 1] (2.2b)

min
y∈Y (f (x, y))

L(R)
λ = ((f1(x, y))Lλ , (f1(x, y))Rλ , · · · (ft (x, y))Lλ ,

(ft (x, y))Rλ )T , λ ∈ [0, 1] (2.2c)

subject toAL
2λx + BL

2λy � bL
2λ, A

R
2λx + BR

2λy � bR
2λ, λ ∈ [0, 1] (2.2d)

where (Fi(x, y))Lλ = cL
i1λx + dL

i1λy, (Fi(x, y))Rλ = cR
i1λx + dR

i1λy,

(fj (x, y))Lλ = cL
j2λx + dL

j12λy and(fj (x, y))Rλ = cR
j2λx + dR

j12λy, λ ∈
[0, 1], cL

i1λ, cR
i1λ, c

L
j2λ, cR

j2λ ∈ Rn, dL
i1λ, dR

i1λ, d
L
j2λ, dR

j2λ ∈ Rm, dL
i1λ, d

R
i1λ,

dL
j2λ, d

R
j2λ ∈ Rm, i = 1, 2, . . . , s, j = 1, 2, . . . , t, bL

1λ, b
R
1λ ∈ Rp, bL

2λ, b
R
2λ ∈

Rq , AL
1λ = (aL

ijλ
), AR

1λ = (aR
ijλ

) ∈ Rp×n, AL
2λ = (eL

ijλ
), AR

2λ = (eR
ijλ

) ∈ Rq×n,

BL
1λ = (bL

ijλ
), BR

1λ = (bR
ijλ

) ∈ Rp×m, BL
2λ = (sL

ijλ
), BR

2λ = (sR
ijλ

) ∈ Rq×m.

For the sake of simplicity, we setX × Y = {(x, y);AL
1λx + BL

1λ �
bL

1λ, A
R
1λx +BR

1λ � bR
1λ, AL

2λx +BL
2λ � bL

2λ, A
R
2λx +BR

2λ � bR
2λ} and assume

thatX × Y is compact. Obviously,̃X × Ỹ = X × Y .

Definition 2.8. [41] A point (x∗, y∗) ∈ X × Y is said to be a complete
optimal solution to the MOLBP problem if it holds that((F1(x

∗, y∗))Lλ ,

(F1(x
∗, y∗))Rλ , . . . , (Fs(x

∗, y∗))Lλ , (Fs(x
∗, y∗))Rλ )T � ((F1(x, y))Lλ , ((F1(x,

y))Rλ , . . . , (Fs(x, y))Lλ , (Fs(x, y))Rλ )T and((f1(x
∗, y∗))Lλ , (f1(x

∗, y∗))Rλ , . . . ,

(ft (x
∗, y∗))Lλ , (ft (x

∗, y∗))Rλ )T � ((f1(x, y))Lλ , ((f1(x, y))Rλ , . . . ((ft (x,

y))Lλ , ((ft (x, y))Rλ )T for λ ∈ [0, 1] and(x, y) ∈ X × Y .

Definition 2.9. [41] A point (x∗, y∗) ∈ X × Y is said to be a Pareto opti-
mal solution to the MOLBP problem if there is no(x, y) ∈ X × Y such
that ((F1(x

∗, y∗))Lλ , (F1(x
∗, y∗))Rλ , . . . , (Fs(x

∗, y∗))Lλ , (Fs(x
∗, y∗))Rλ )T ≥

((F1(x, y))Lλ , ((F1(x, y))Rλ , . . . , (Fs(x, y))Lλ , (Fs(x, y))Rλ )T or((f1(x
∗, y∗))Lλ ,

(f1(x
∗, y∗))Rλ , . . . , (ft (x

∗, y∗))Lλ , (f1(x
∗, y∗))Rλ )T ≥ ((f1(x, y))Lλ , (f1(x,

y))Rλ , . . . , (ft (x, y))Lλ ), (ft (x, y))Rλ )T hold.

Definition 2.10. [41] A point (x∗, y∗) ∈ X × Y is said to be a weak Pareto
optimal solution to the MOLBP problem if there is no(x, y) ∈ X × Y such
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that ((F1(x
∗, y∗))Lλ , (F1(x

∗, y∗))Rλ , . . . , (Fs(x
∗, y∗))Lλ , (Fs(x

∗, y∗))Rλ )T >

((F1(x, y))Lλ , ((F1(x, y))Rλ , . . . , (Fs(x, y))Lλ , (Fs(x, y))Rλ )T or((f1(x
∗, y∗))Lλ ,

(f1(x
∗, y∗))Rλ , . . . , (ft (x

∗, y∗))Lλ , (ft (x
∗, y∗))Rλ )T > ((f1(x, y))Lλ , (ft (x,

y))Rλ , . . . , (ft (x, y))Lλ , (ft (x, y))Rλ )T hold.

Theorem 2.3. [41] Let (x∗, y∗)be the optimal solution of the MOLBPproblem
defined by (2.2). Then it is also an optimal solution of the FMOLBP problem
defined by (2.1).

Theorem 2.4. [41] For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parame-
ters ãij, b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2 and d̃ij have piecewise trapezoidal membership
functions in the FMOLBP problem (2.1),

µz̃(t) =



0 t < zL
α0

α1− α0

zL
α1
− zL

α0

(t − zL
α0

)+ α0 zL
α0

� t < zL
α1

α1− α0

zL
α2
− zL

α1

(t − zL
α1

)+ α1 zL
α1

� t < zL
α2

· · · · · ·
α zL

αn
� t < zR

αn
αn − αn−1

zR
αn−1
− zR

αn

(−t + zR
αn−1

)+ αn−1 zR
αn

� t < zR
αn−1

· · · · · ·
α0− α1

zR
α1
− zR

α0

(−t + zR
α0

)+ α0 zR
α1

� t � zR
α0

0 zR
α0

< t

(2.3)

where z̃ denotes ãij, b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2 and d̃ij respectively, then, (x∗, y∗)
is a complete optimal solution to the problem (2.1) if and only if (x∗, y∗) is a
complete optimal solution to the MOLBP problem:

min
x∈X(Fi(x, y))Lαj

= cL
i1αj

x + dL
i1αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

(2.4a)

min
x∈X(Fi(x, y))Rαj

= cR
i1αj

x + dR
i1αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

subject toAL
1αj

x + BL
1αj

y � bL
1αj

, j = 0, 1, . . . , n

AR
1αj

x + BR
1αj

y � bR
1αj

, j = 0, 1, . . . , n (2.4b)

min
y∈Y (fi(x, y))Lαj

= cL
i2αj

x + dL
i2αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

min
y∈Y (fi(x, y))Rαj

= cR
i2αj

x + dR
i2αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

(2.4c)
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subject toAL
2αj

x + BL
2αj

y � bL
2αj

, j = 0, 1, . . . , n

AR
2αj

x + BR
2αj

y � bR
2αj

, j = 0, 1, . . . , n. (2.4d)

We note

Ā1x + B̄1y � b̄1 (2.4b′)

Ā2x + B̄2y � b̄2 (2.4d ′)

where

Ā1 =



AL
1α0
...

AL
1αn

AR
1α0
...

AR
1αn

,


, Ā2 =



AL
2α0
...

AL
2αn

AR
2α0
...

AR
2αn

,


, B̄1 =



BL
1α0
...

BL
1αn

BR
1α0
...

BR
1αn


, B̄2 =



BL
2α0
...

BL
2αn

BR
2α0
...

BR
2αn


,

b̄1 =



bL
1α0
...

bL
1αn

bR
1α0
...

bR
1αn


, b̄2 =



bL
2α0
...

bL
2αn

bR
2α0
...

bR
2αn


.

Then we can re-write (2.4) by using

min
x∈X(Fi(x, y))Lαj

= cL
i1αj

x + dL
i1αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

(2.4′a)

min
x∈X(Fi(x, y))Rαj

= cR
i1αj

x + dR
i1αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

subject toĀ1x + B̄1y � b̄1, (2.4′b)

min
y∈Y (fi(x, y))Lαj

= cL
i2αj

x + dL
i2αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

min
y∈Y (fi(x, y))Rαj

= cR
i2αj

x + dR
i2αj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

(2.4′c)

subject toĀ2x + B̄2y � b̄2. (2.4′d)

Theorem 2.5. [41] For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parame-
ters ãij, b̃ij, ẽij, s̃ij, c̃ij , b̃1, b̃2 and d̃ij have piecewise trapezoidal membership
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functions (2.3) in the FMOLBP problem (2.1), then (x∗, y∗) is a Pareto opti-
mal solution to the problem (2.1) if and only if (x∗, y∗) is a Pareto optimal
solution to the MOLBP problem (2.4′).

Theorem 2.6. [41] For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parame-
ters ãij, b̃ij, ẽij, s̃ij, c̃ij , b̃1, b̃2 and d̃ij have piecewise trapezoidal membership
functions (2.3) in the FMOLBP problem (2.1), then (x∗, y∗) is a weak Pareto
optimal solution to the problem (2.1) if and only if (x∗, y∗) is a weak Pareto
optimal solution to the MOLBP problem (2.4′).

These definitions and theorems will be used in following sections to develop
an approach for solving the FMOLBP problems.

3 AN APPROXIMATION Kth-BEST APPROACH

To solve the FMOLBP problem (2.1), we need to solve its transformed
form (2.4′). For solving (2.4′), we can use the method of weighting [21]
to this problem, such that it becomes the following problem:

min
x∈X(F (x, y)) =

s∑
j=1

wj1

( n∑
i=0

(cL
1αi

x + dL
1αi

y)+
n∑

i=0

(cR
1αi

x + dR
1αi

y)

)
(3.1a)

subject toĀ1x + B̄1y � b̄1, (3.1b)

min
y∈Y (f (x, y)) =

t∑
j=1

wj2

( n∑
i=0

(cL
2αi

x + dL
2αi

y)+
n∑

i=0

(cR
2αi

x + dR
2αi

y)

)
(3.1c)

subject toĀ2x + B̄2y � b̄2. (3.1d)

In order to get a solution for above (3.1), we give a definition of optimal
solution and related theorems as follows.

Definition 3.1. (a) Constraint region of the linear BP problem:

S = {(x, y) : x ∈ X, y ∈ Y, Ā1x + B̄1y � b̄1, Ā2x + B̄2y � b̄2}
(b) Feasible set for the follower for each fixedx ∈ X:

S(x) = {y ∈ Y : B̄2y � b̄2− Ā2x}
(c) Projection ofS onto the leader’s decision space:

S(X) = {x ∈ X : ∃y ∈ Y, Ā1x + B̄1y � b̄1, Ā2x + B̄2y � b̄2}
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Follower’s rational reaction set forx ∈ S(X):

P(x) = {y ∈ Y : y ∈ argmin[(f (x, ŷ)) : ŷ ∈ S(x)]}
where argmin[f (x, ŷ) : ŷ ∈ S(x)] = {y ∈ S(x) : (f (x, y)) � (f (x, ŷ)),

ŷ ∈ S(x)}
(e) Inducible region:

IR = {(x, y) : (x, y) ∈ S, y ∈ P(x)}
The rational reaction setP(x) defines the response while the inducible region
IR represents the set over which the leader may optimize his objective. Thus
in terms of the above notations, the linear BP problem can be written as

min{F(x, y) : (x, y) ∈ IR}. (3.2)

Theorem 3.1. The inducible region can be written equivalently as piecewise
linear equality constraint comprised of supporting hyperplanes of constraint
region S.

Proof. Let us begin by writing the inducible region of Definition 3.1(e)
explicitly as follower:

IR = {(x, y) : (x, y) ∈ S,

d̄2y = min[d̄2ỹ : B̄i ỹ � b̄i − Āix, i = 1, 2, ỹ ≥ 0]}, (3.3)

wherec̄i = ci + cL
i0
+ cR

i0
, d̄i = di + dL

i0
+ dR

i0
, i = 1, 2. Now we define

Q(x) = min{d̄2y : B̄iy ≤ b̄i − Āix, i = 1, 2, y ≥ 0}. (3.4)

Let us define

B̄ =
(

B̄1

B̄2

)
, Ā =

(
Ā1

Ā2

)
, b̄ =

(
b̄1

b̄2

)
.

We rewrite (3.4) as follows

Q(x) = min{d̄2y : B̄y � b̄ − Āx, y ≥ 0}. (3.5)

For each value ofx ∈ S(X), the resulting feasible region to problem (2.3) is
nonempty and compact. ThusQ(x), which is a linear program parameterized
in x, always has a solution. From duality theory, we get

max{u(Āx − b) : uB̄ � −d̄2, u ≥ 0}, (3.6)

which has the same optimal value as (3.1) at the solutionu∗. Let u1, . . . , us

be a listing of all the vertices of the constraint region of (3.6) given by
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U = {u : uB̄ � −d̄2, u ≥ 0}. Because we know that a solution to (3.6)
occurs at a vertex ofU , we get the equivalent problem

max{uj (Āx − b̄) : uj ∈ {u1, . . . , us}}, (3.7)

which demonstrates thatQ(x) is a piecewise linear function. RewritingIR as

IR = {(x, y) ∈ S : Q(x)− d̄2y = 0}, (3.8)

yields the desired result. �

By this theorem, we give the following corollaries:

Corollary 3.1. The linear BP problem (3.1) is equivalent to minimizing F

over a feasible region comprised of a piecewise linear equality constraint.

Proof. From (3.2) and Theorem 2.6, we have the desired result. �

Corollary 3.2. A solution for the linear BP problem occurs at a vertex of IR.

Proof. A linear BP programming can be written (3.2). SinceF is linear, if a
solution exists, one must occur at a vertex ofIR. The proof is completed.�

Now, we give a very important theorem which is the core for proposing an
approximationKth-best approach.

Theorem 3.2. The solution (x∗, y∗) of the linear BP problem occurs at a
vertex of S.

Proof. Let (x1, y1), . . . , (xr , yr ) be the distinct vertices ofS. Since any point
in S can be written a convex combination of these vertices, let(x∗, y∗) =∑r

i=1 αi(x
i, yi), where

∑r
i=1 αi = 1, αi ≥ 0, i = 1, . . . , r̄ and r̄ ≤ r. It

must be shown that̄r = 1. To see this let us write the constraints to (2.3) at
(x∗, y∗) in their piecewise linear form (2.4′).

0= Q(x∗)− d̄2y
∗

= Q

(∑
i

αix
i

)
− d̄2

(∑
i

αiy
i

)

≤
∑

i

αiQ(xi)−
∑

i

αi d̄2y
i

by convexity ofQ(x)

=
∑

i

αi(Q(xi)− d̄2y
i).

But by definition,

Q(xi) = min
y∈S(xi )

d̄2y ≤ d̄2y
i.
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Therefore,Q(xi)− d̄2y
i ≤ 0, i = 1, . . . , r̄. Noting thatαi ≥ 0, i = 1, . . . , r̄,

the equality in the preceding expression must hold or else a contradiction
would result in the sequence above. Consequently,Q(xi)− d̄2y

i = 0 for all i.
This implies that(xi, yi) ∈ IR, i = 1, . . . , r̄ and(x∗, y∗) can be written as
a convex combination of points inIR. Because(x∗, y∗) is a vertex ofIR, a
contradiction results unlessr̄ = 1. �

We therefore give the following corollary.

Corollary 3.3. If x is an extreme point of IR, it is an extreme point of S.

Proof: Let (x∗, y∗) be an extreme point ofIR and assume that it is not an
extreme point ofS. Let (x1, y1), . . . , (xr , yr ) be the distinct vertices ofS.
Since any point inS can be written a convex combination of these vertices, let
(x∗, y∗) = ∑r

i=1 αi(x
i, yi), where

∑r
i=1 αi = 1, αi ≥ 0, i = 1, . . . , r̄ and

r̄ ≤ r. It must be shown that̄r = 1. To see this let us write the constraints
to (2.3) at(x∗, y∗) in their piecewise linear form (2.4′).

0= Q(x∗)− d̄2y
∗

= Q

(∑
i

αix
i

)
− d̄2

(∑
i

αiy
i

)

≤
∑

i

αiQ(xi)−
∑

i

αi d̄2y
i

by convexity ofQ(x)

=
∑

i

αi(Q(xi)− d̄2y
i).

But by definition,

Q(xi) = min
y∈S(xi )

d̄2y ≤ d̄2y
i.

Therefore,Q(xi)− d̄2y
i ≤ 0, i = 1, . . . , r̄. Noting thatαi ≥ 0, i = 1, . . . , r̄,

the equality in the preceding expression must hold or else a contradiction
would result in the sequence above. Consequently,Q(xi)− d̄2y

i = 0 for all i.
This implies that(xi, yi) ∈ IR, i = 1, . . . , r̄ and(x∗, y∗) can be written as a
convex combination of points inIR. Because(x∗, y∗) is an extreme point of
IR, a contradiction results unlessr̄ = 1. This means that(x∗, y∗) is an extreme
point ofS. The proof is completed. �

Theorem 2.6 and Corollary 3.3 have provided theoretical foundation for
our new approach. It means that by searching extreme points on the constraint
regionS, we can efficiently find an optimal solution for a linear BP problem.
The basic idea of our extended properties approach is that according to the
objective function of the upper level, we descendent order all the extreme
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points onS, and select the first extreme point to check if it is on the inducible
region IR. If yes, the current extreme point is the optimal solution. If not,
select the next one and check.

More specifically, let(x[1], y[1]), . . . , (x[N ], y[N ]) denote theN ordered
extreme points to the linear programming problem

min{c̄1x + d̄1y : (x, y) ∈ S}, (3.9)

such that

c̄1x[i] + d̄1y[i] ≤ c̄1x[i+1] + d̄1y[i+1], i = 1, . . . , N − 1.

Let ỹ denote the optimal solution to the following problem

min(f (x[i], y) : y ∈ S(x[i])). (3.10)

We only need to find the smallesti(i ∈ {1, . . . , N}) under whichy[i] = ỹ.
Let write (3.10) as follows

minf (x, y)

subject toy ∈ S(x)

x = x[i].

From Definition 3.1(a) and (c), we have

minf (x, y) = c̄2x + d̄2y (3.11a)

subject toĀ1x + B̄1y ≤ b̄1 (3.11b)

Ā2x + B̄2y ≤ b̄2 (3.11c)

x = x[i] (3.11d)

y ≥ 0. (3.11e)

To solve (3.11), the first is select one ordered extreme point(x[i], y[i]), then
solve (3.11) to obtain the optimal solutioñy. If ỹ = y[i], (x[i], y[i]) is the
global optimum to (3.1). Otherwise, check the next extreme point.

Based on above definition of optimal solution and Theorem 3.2, we propose
an approximationKth-best approach for solving FMOLBP problem (2.1) as
follows.

The approximation Kth-best approach:
Step 1 Given weightswj1(j = 1, 2, . . . , s) andwj2(j = 1, 2, . . . , t) for

the objectives of the leader and the follower respectively and let∑s
j=1 wj1 = 1and

∑t
j=1 wj2 = 1.

Step 2 Transform the problem (2.1) to the problem (2.4′).
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Step 3 Setl = 1 and a range of errorsε > 0.

Step 4 Let the interval [0, 1] be decomposed into 2l−1 equal sub-intervals
with (2l−1 + 1) nodesλi(i = 0, . . . , 2l−1) which are arranged in
the order of 0= λ0 < λ1 < · · · < λ2l−1 = 1.

Step 5 Transform the problem (2.4′) to the problem (3.1) by the weighting
method and solve (MOLBP)l2, i.e. (3.1) by using the extendedKth-
best approach [29] for obtaining an optimal solution(x, y)2l .

Step 6 Puti ← 1. Solve (3.9) with the simplex method to obtain the optimal
solution(x[1], y[1]). LetW = {(x[1], y[1])} andT = φ. Go to Step 7.

Step 7 Solve (3.11) with the bounded simplex method. Letỹ denote the
optimal solution to (3.11). If̃y = y[i] stop;(x[i], y[i]) is the global
optimum to (3.1) withK∗ = i. Otherwise, go to Step 8.

Step 8 LetW[i] denote the set of adjacent extreme points of(x[i], y[i]) such
that (x, y) ∈ W[i] implies c̄1x + d̄1y ≥ c̄1x[i] + d̄1y[i]. Let T =
T ∪ {(x[i], y[i])} andW = (W ∪W[i])\T . Go to Step 9.

Step 9 Seti ← i+1 and choose(x[i], y[i])so thatf x[i]+gy[i] = min{c̄1x+
d̄1y : (x, y) ∈ W }. Go to Step 7.

Step 10 l = l + 1, repeat Step 4 to Step 9 to solve (MOLBP)2l+1.

Step 11 If‖(x, y)2l+1 − (x, y)2l‖ < ε, then the solution(x∗, y∗) of the
FMOLBP problem is(x, y)2l+1, otherwise, updatel to 2l and go
back to Step 10.

Step 12 Show the result of problem (2.1), stops.

4 ILLUSTRATIVE EXAMPLES

We give examples here to illustrate how to use the proposed FMOLBP model
and the approximationKth-best approach solving a FMOLBP problem in
practice. Example 1 mainly shows how to build a FMOLBP model for a real
problem, and Example 2 gives all details to solve a FMOLBP problem by the
proposed approximateKth-best approach.

Example 1. In a company, the CEO is as the leader, and the heads of branches
of the company are as the follower in making an annual budget for the company.
Obviously, the leader (the CEO)’s decision will be affected by the reactions
of the follower (heads of branches). Each of the CEO’s possible decisions is
influenced by the various reactions of the heads. In order to arrive an optimal
solution (better strategies) for the CEO’s decision on the annual budget, we
establish a bilevel decision making model.
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The CEO has two main objectives: 1) to maximize the net profits, represented
by F1(x, y) and 2) to maximize the quality of products, byF2(x, y), but
subject to some constraints including the requirements of material, marking
cost, labor cost, working hours and so on. The heads of branches, as the
follower, attempts to 1) maximize their net profit,f1(x, y), and 2) maximize
work satisfactoryf2(x, y). The CEO understands that for each policy he may
make, these heads will have a new reaction to deal with by optimizing their
objective maxy∈Y (f1(x, y), f2(x, y)).

When modeling the bilevel decision problem, the main difficulty is to set
up parameters for the objectives and constraints of both the leader and the
follower. We can only estimate some values such as material cost, labor cost,
according to our experience and previous data. For some items, the values can
be only assigned by linguistic terms, such as ‘about $1000’. This is a com-
mon case in any organizational decision practice. By using fuzzy numbers to
describe these uncertain values and linguistic terms in parameters, a FMOLBP
model can be established for this decision problem.

Let x = (x1, x2)
T ∈ R2 be the CEO’s decision variables, andy =

(y1, y2, y3)
T ∈ R3 be the branch heads’decision variables, andX = {x ≥ 0},

Y = {y ≥ 0}, we can build the following model for the decision problem:

max
x∈X F1(x, y) = (1̃, 9̃)(x1, x2)

T + (1̃0, 1̃, 3̃)(y1, y2, y3)
T

max
x∈X F2(x, y) = (9̃, 2̃)(x1, x2)

T + (2̃, 7̃, 4̃)(y1, y2, y3)
T

subject to(3̃, 9̃)(x1, x2)
T + (9̃, 5̃, 3̃)(y1, y2, y3)

T ≤ 1̃039

(−4̃,−1̃)(x1, x2)
T + (3̃,−3̃, 2̃)(y1, y2, y3)

T ≤ 9̃4

max
y∈Y f1(x, y) = (4̃, 6̃)(x1, x2)

T + (7̃, 4̃, 8̃)(y1, y2, y3)
T

max
y∈Y f2(x, y) = (6̃, 4̃)(x1, x2)

T + (8̃, 7̃, 4̃)(y1, y2, y3)
T

subject to(3̃,−9̃)(x1, x2)
T + (−9̃,−4̃, 0̃)(y1, y2, y3)

T ≤ 6̃1

(5̃, 9̃)(x1, x2)
T + (1̃0,−1̃,−2̃)(y1, y2, y3)

T ≤ 9̃24

(3̃,−3̃)(x1, x2)
T + (0̃, 1̃, 5̃)(y1, y2, y3)

T ≤ 4̃20

In this model, the unified form for all membership functions of the
parameters of the objective functions and constraints is as follows:

µα̃(x) =


0 x < a or c < x

(x2− a2)/(b2− a2) a ≤ x < b

1 b

(c2− x2)/(c2− d2) b < x ≤ c
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c̃ij 1 2 3 4 5

1 (0, 1, 2) (8, 9, 12) (9, 10, 13) (0.5, 1, 2.5) (2, 3, 6)
2 (8, 9, 12) (1, 2, 5) (1, 2, 5) (6, 7, 10) (3, 4, 7)
3 (2, 4, 5) (4, 6, 7) (5, 7, 8) (2, 4, 5) (6, 8, 9)

(4, 6, 7) (2, 4, 5) (6, 8, 9) (5, 7, 8) (2, 4, 5)

TABLE 4.1
Membership functions of fuzzy objective functions’ parameters

ãij 1 2 3 4 5

1 (2, 3, 5) (8, 9, 11) (8, 9, 11) (4, 5, 7) (2, 3, 5)
2 (−6,−4,−3) (−2,−1,−0.5) (2, 3, 5) (−5,−3,−2) (−4,−2,−1)
3 (2, 3, 5) (−11,−9,−8) (−11,−9,−8) (−6,−4,−3) (0, 0, 0)
4 (4, 5, 7) (8, 9, 11) (9, 10, 12) (0.5, 1, 2) (−4,−2,−1)
5 (2, 3, 5) (−5,−3,−2) (0, 0, 0) (0.5, 1, 2) (4, 5, 7)

TABLE 4.2
Membership functions of fuzzy constraints’ parameters

b̃i 1

1 (1038, 1039, 1041)
2 (93, 94, 96)
3 (60, 61, 63)
4 (923, 924, 926)
5 (419, 420, 422)

TABLE 4.3
Membership functions of fuzzy right-hand-side’s parameters

For simplicity, we only represent the above form of membership function as
(a, b, c). Then, for the example, all membership functions of fuzzy parameters
of the objective functions and constraints are to be represented in the quadruple
pair form and listed in Tables 4.1, 4.2, and 4.3, respectively.

Now, We first given the weights for the two fuzzy objectives of the leader
are (0.5, 0.5) and of the follower (0.5, 0.5) and the interval [0, 1] be decom-
posed into 2l−1 mean sub-intervals with (2l−1+1) nodesλi(i = 0, . . . , 2l−1)

which is arranged in the order of 0= λ0 < λ1 < · · · < λ2l−1 = 1 and a
range of errorsε = 10−6 > 0. Then we can solve this problem by using the
proposed approximationKth-best approach. The solution of the problem is
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x1 = 146.2955, x2 = 28.9394 andy1 = 0, y2 = 67.9318,y3 = 0 such that

max
x∈X F1(x, y) = 164.2955× 1̃+ 28.9394× 9̃+ 67.9318× 1̃

max
x∈X F2(x, y) = 164.2955× 9̃+ 28.9394× 2̃+ 67.9318× 7̃

min
y∈Y f1(x, y) = 164.2955× 4̃+ 28.9394× 6̃+ 67.9318× 4̃

min
y∈Y f2(x, y) = 164.2955× 6̃+ 28.9394× 4̃+ 67.9318× 7̃.

Example 2. Consider the following FMOLBP problem withx ∈ R1, y ∈ R1,
andX = {x ≥ 0}, Y = {y ≥ 0},

min
x∈X F1(x, y) = −1̃x + 2̃y

min
x∈X F2(x, y) = 2̃x − 4̃y

subject to− 1̃x + 3̃y ≤ 4̃

min
y∈Y f1(x, y) = −1̃x + 2̃y

min
y∈Y f2(x, y) = 2̃x − 1̃y

subject to1̃x − 1̃y ≤ 0̃

− 1̃x − 1̃y ≤ 0̃

where

µ1̃(t) =


0 t < 0

t2 0 � t < 1

2− t 1 � t < 2

0 2 � t

, µ2̃(t) =


0 t < 1

t − 1 1 � t < 2

3− t 2 � t < 3

0 3 � t

,

µ3̃(t) =


0 t < 2

t − 2 2 � t < 3

4− t 3 � t < 4

0 4 � t

, µ4̃(t) =


0 t < 3

t − 3 3 � t < 4

5− t 4 � t < 5

0 5 � t

,

µ0̃(t) =


0 t < −1

t + 1 −1 � t < 0

1− t2 0 � t < 1

0 1 � t

.

We now solve this problem by using the proposed approximationKth-best
approach.
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Step 1 Given the weights for the two fuzzy objectives of the leader are (0.5,
0.5) and of the follower (0.5, 0.5).

Step 2 The FMOLBP problem is first transformed to the following associated
MOLBP problem by using Theorem 2.3

min
x∈X(F1(x, y))Lλ = (−1̃)Lλ x + 2̃L

λ y, λ ∈ [0, 1]

min
x∈X(F1(x, y))Rλ = (−1̃)Rλ x + 2̃R

λ y, λ ∈ [0, 1]

min
x∈X(F2(x, y))Lλ = 2̃L

λ x + (−4̃)Lλ y, λ ∈ [0, 1]

min
x∈X(F2(x, y))Rλ = 2̃R

λ x + (−4̃)Rλ y, λ ∈ [0, 1]

subject to(−1̃)Lλ x + 3̃L
λ y � 4̃L

λ , (−1̃)Rλ x + 3̃R
λ y � 4̃R

λ , λ ∈ [0, 1]
min
y∈Y (f1(x, y))Lλ = 2̃L

λ x + (−1̃)Lλ y, λ ∈ [0, 1]

min
y∈Y (f1(x, y))Rλ = 2̃R

λ x + (−1̃)Rλ y, λ ∈ [0, 1]

min
y∈Y (f2(x, y))Lλ = (−1̃)Lλ x + 2̃L

λ y, λ ∈ [0, 1]

min
y∈Y (f2(x, y))Rλ = (−1̃)Rλ x + 2̃R

λ y, λ ∈ [0, 1]

subject to1̃L
λ x + (−1̃)Lλ y � 0̃L

λ , 1̃R
λ x + (−1̃)Rλ y � 0̃R

λ , λ ∈ [0, 1]
(−1̃)Lλ x + (−1̃)Lλ y � 0̃L

λ , (−1̃)Rλ x + (−1̃)Rλ y

� 0̃R
λ , λ ∈ [0, 1]

Step 3 Setl = 1 andε = 10−6 > 0.

Step 4 Let the interval [0, 1] be decomposed into 2l−1 equal sub-intervals
with (2l−1 + 1) nodesλi(i = 0, . . . , 2l−1) which is arranged in the order of
0= λ0 < λ1 < · · · < λ2l−1 = 1. We get the following MOLBP problem

min
x∈X(F1(x, y))

L(R)
1 = −1x + 2y

min
x∈X(F1(x, y))L0 = −2x + y

min
x∈X(F1(x, y))R0 = 0x + 3y

min
x∈X(F2(x, y))

L(R)
1 = 2x − 4y

min
x∈X(F2(x, y))L0 = 1x − 5y



“MVLSC” — “72i-f1” — 2007/12/17 — 10:33 — page 223 — #19

Fuzzy Multiobjective Decision Making 223

min
x∈X(F2(x, y))R0 = 3x − 3y

subject to− 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

min
y∈Y (f1(x, y))

L(R)
1 = 2x − 1y

min
y∈Y (f1(x, y))L0 = 1x − 2y

min
y∈Y (f1(x, y))R0 = 3x − 0y

min
y∈Y (f2(x, y))

L(R)
1 = −1x + 2y

min
y∈Y (f2(x, y))L0 = −2x + 1y

min
y∈Y (f2(x, y))L0 = 0x + 3y

subject to 1x − 1y ≤ 0

0x − 2y ≤ −1

2x − 0y ≤ 1

− 1x − 1y ≤ 0

− 2x − 2y ≤ −1.

Step 5 We solve this MOLBP problem by using the extendedKth-best
approach [29] and the method of weighting.

min
x∈X F(x, y) = 3x − 6y

subject to− 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

min
y∈Y f (x, y) = 3x + 3y

subject to 1x − 1y ≤ 0

0x − 2y ≤ −1

2x − 0y ≤ 1

− 1x − 1y ≤ 0

− 2x − 2y ≤ −1.
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According to the extendedKth-best approach, let us rewrite it as follows
in (3.7)

minF(x, y) = 3x − 6y

subject to− 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

1x − 1y ≤ 0

0x − 2y ≤ −1

2x − 0y ≤ 1

− 1x − 1y ≤ 0

− 2x − 2y ≤ −1

x ≥ 0, y ≥ 0.

Step 6 Let i = 1, and solve the above problem with the simplex method to
obtain the optimal solution(x[1], y[1]) = (0, 1.25). Let W = {(0, 1.25)} and
T = φ. Go to Step 7.

Loop 1:
Step 7 By (3.9), we have

minf (x, y) = 3x + 3y

subject to− 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

1x − 1y ≤ 0

0x − 2y ≤ −1

2x − 0y ≤ 1

− 1x − 1y ≤ 0

− 2x − 2y ≤ −1

x = 0

y ≥ 0.

Using the bounded simplex method, we haveỹ = 0.5. Because of̃y �= y[i],
we go to Step 8.

Step 8 We haveW[i] = {(0.5, 1.25), (0, 0.5), (0, 1.25)}, T = {(0, 1.25)} and
W = {(0, 0.5), (0.5, 1.25)}, then go to Step 9.
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Step 9 Updatei = 2, and choose(x[i], y[i]) = (0.5, 1.25), then go to Step 7.

Loop 2:
Step 7 By (3.9)

minf (x, y) = 3x + 3y

subject to− 1x + 3y ≤ 4

− 2x + 2y ≤ 3

0x + 4y ≤ 5

1x − 1y ≤ 0

0x − 2y ≤ −1

2x − 0y ≤ 1

− 1x − 1y ≤ 0

− 2x − 2y ≤ −1

x = 0.5

y ≥ 0.

Using the bounded simplex method, we haveỹ = 0.5. Because of̃y �= y[i],
we go to Step 5.

Step 8 We haveW[i] = {(0.5, 1.25), (0.5, 0.5), (0, 1.25)}, T = {(0, 1.25),
(0.5, 1.25)} andW = {(0, 0.5), (0.5, 0.5)}, then go to Step 9.

Step 9 Updatei = 3, and choose(x[i], y[i]) = (0, 0.5), then go to Step 7.

Loop 3:
Step 7 By (3.9), we have

minf (x, y) = 3x + 3y

subject to−1x + 3y ≤ 4
−2x + 2y ≤ 3
0x + 4y ≤ 5
1x − 1y ≤ 0
0x − 2y ≤ −1
2x − 0y ≤ 1
−1x − 1y ≤ 0
−2x − 2y ≤ −1
x = 0
y ≥ 0.

Using the bounded simplex method, we haveỹ = 0.5. Because of̃y = y[i],
we stop here.(x[i], y[i]) = (0, 0.5) is the global solution to this Example.
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By examining above procedure, we found that the optimal solution occurs at
the point(x∗, y∗) = (0, 0.5) with

min
x∈X F1(x, y) = 1x − 2y = −1

min
x∈X F2(x, y) = 0x − 3y = −1.3

min
x∈X F3(x, y) = 2x − 1y = −0.5

min
y∈Y f1(x, y) = 0.5

min
y∈Y f2(x, y) = 1

Step 10 Setl = 2 and we solve the following MOLBP problem

min
x∈X(F1(x, y))

L(R)
1 = −1x + 2y

min
x∈X(F1(x, y))L1

2
= −3

2
x + 3

2
y

min
x∈X(F1(x, y))L0 = −2x + 1y

min
x∈X(F1(x, y))R1

2
= −
√

2

2
x + 5

2
y

min
x∈X(F1(x, y))R0 = 0x + 3y

min
x∈X(F2(x, y))

L(R)
1 = 2x − 4y

min
x∈X(F2(x, y))L1

2
= 3

2
x − 9

2
y

min
x∈X(F2(x, y))L0 = 1x − 5y

min
x∈X(F2(x, y))L1

2
= 5

2
x − 7

2
y

min
x∈X(F2(x, y))R0 = 3x − 3y

subject to− 1x + 3y ≤ 4

− 3

2
x + 5

2
y ≤ 7

2

− 2x + 2y ≤ 3

−
√

2

2
x + 7

2
y ≤ 9

2
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0x + 4y ≤ 5

min
y∈Y (f1(x, y))

L(R)
1 = 2x − 1y

min
y∈Y (f1(x, y))L1

2
= 3

2
x − 3

2
y

min
y∈Y (f1(x, y))L0 = 1x − 2y

min
y∈Y (f1(x, y))R1

2
= 5

2
x −
√

2

2
y

min
y∈Y (f1(x, y))R0 = 3x − 0y

min
y∈Y (f2(x, y))

L(R)
1 = −1x + 2y

min
y∈Y (f2(x, y))L1

2
= −3

2
x + 3

2
y

min
y∈Y (f2(x, y))L0 = −2x + 1y

min
y∈Y (f2(x, y))R1

2
= −
√

2

2
x + 5

2
y

min
y∈Y (f2(x, y))R0 = 0x + 3y

subject to 1x − 1y ≤ 0
√

2

2
x − 3

2
y ≤ −1

2

0x − 2y ≤ −1

3

2
x −
√

2

2
y ≤
√

2

2

2x − 0y ≤ 1

− 3

2
x − 3

2
y ≤ −1

2

− 1x − 1y ≤ 0

−
√

2

2
x −
√

2

2
y ≤
√

2

2

− 2x − 2y ≤ −1.
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We solve this MOLBP problem by using the extendedKth-best approach and
the method of weighting.

min
x∈X F(x, y) =

(
3+ 5−√2

2

)
x − 10y

subject to− 1x + 3y ≤ 4

− 3

2
x + 5

2
y ≤ 7

2

− 2x + 2y ≤ 3

−
√

2

2
x + 7

2
y ≤ 9

2

0x + 4y ≤ 5

min
y∈Y f (x, y) =

(
5−√2

2
+ 3

)
x +

(
5−√2

2
+ 3

)
y

subject to 1x − 1y ≤ 0
√

2

2
x − 3

2
y ≤ −1

2

0x − 2y ≤ −1

3

2
x −
√

2

2
y ≤
√

2

2

2x − 0y ≤ 1

− 3

2
x − 3

2
y ≤ −1

2

− 1x − 1y ≤ 0

−
√

2

2
x −
√

2

2
y ≤
√

2

2

− 2x − 2y ≤ −1

The optimal solution occurs at the point(x∗, y∗) = (0, 0.5) with

min
x∈X (F1(x, y))

L(R)
1 = 1

min
x∈X (F1(x, y))L1

2
= 0.75

min
x∈X (F1(x, y))L0 = 0.5

min
x∈X (F1(x, y))R1

2
= 1.25
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min
x∈X (F1(x, y))R0 = 1.5

min
x∈X (F2(x, y))

L(R)
1 = −2

min
x∈X (F2(x, y))L1

2
= −2.25

min
x∈X (F2(x, y))L0 = −2.5

min
x∈X (F2(x, y))L1

2
= −1.75

min
x∈X (F2(x, y))R0 = −1.5

min
y∈Y (f1(x, y))

L(R)
1 = −0.5

min
y∈Y (f1(x, y))L1

2
= −0.75

min
y∈Y (f1(x, y))L0 = −1

min
y∈Y (f1(x, y))R1

2
= −
√

2

4

min
y∈Y (f1(x, y))R0 = 0

min
y∈Y (f2(x, y))

L(R)
1 = 1

min
y∈Y (f2(x, y))L1

2
= 0.75

min
y∈Y (f2(x, y))L0 = 0.5

min
y∈Y (f2(x, y))R1

2
= 1.25

min
y∈Y (f2(x, y))R0 = 1.5.

Step 10 Whenx = 0, y = 0.5, we have‖(x, y)22 − (x, y)21‖ = 0 < ε.

Step 11 The solution of the problem isx = 0, y = 0.5 such that

min
x∈X F1(x, y) = 0.5× 2̃

min
x∈X F2(x, y) = −0.5× 4̃

min
y∈Y f1(x, y) = 0.5× 2̃

min
y∈Y f2(x, y) = −0.5× 1̃.
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5 CONCLUSION AND FURTHER STUDY

Following our previous research [29,31,41], this paper proposes a fuzzy
number based approximateKth-best approach to solve proposed FMOLBP
problem. Two examples are given to illustrate how to establish a FMOLBP
model and how to use the proposed approach. Further study will include the
development of fuzzy multi-objective multi-follower bilevel programming
problems.
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