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Many industrial decisions problems are decentralized in which decision
makers are arranged attwo levels, called bilevel decision problems. Bilevel
decision making may involve uncertain parameters which appear either
in the objective functions or constraints of the leader or the follower or
both. Furthermore, the leader and the follower may have multiple conflict
decision objectives that should be optimized simultaneously. This study
proposes an approximatiakith-best approach to solve the fuzzy multi-
objective bilevel problem. Two case based examples further illustrate how
to use the approach to solve industrial decision problems.

Keywords:  Bilevel programming, Fuzzy sets, Optimization, Multi-objective
decision making, Fuzzy programmingth-best approach.

1 INTRODUCTION

Bilevel programming (BP) is a special case of multilevel programming with

a two level structure to model bilevel decision problems. In a BP problem,
decision makers are arranged at two levels and both try to make decision
successively. When the leader at the upper level attempts to optimize his/her
objective(s), the follower at the lower level tries to find an optimized strat-
egy according to each of possible decisions made by the leader [3,4]. Here,
although each decision maker (the leader or the follower) tries to optimize
his/her own objective functions with partially or without considering the
objectives of the other level, the decision of each level affects the objec-
tive optimization of the other level [16]. The Stackelberg solution [33] has
been employed as a solution concept to bilevel programming problems, and
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206 JIELU et al.

a considerable number of approaches for obtaining the solution have been
developed [1,2,5-13,15,18-20,34].

To solve a real BP problem, a BP model needs to be established first. The
parameters in the objective functions and constraints of the leader and the
follower are required to be fixed at some values in an experimental and/or
subjective manner through the experts’ understanding of the nature of the
parameters in the problem-formulation process. It has been observed that, in
most real-world situations, the possible values of these parameters are often
only imprecisely or ambiguously known to the experts, such as planning of
land-use, transportation and water resource. With this observation, it would
be certainly more appropriate to interpret the experts’ understanding of the
parameters of a BP problem as fuzzy numbers [35]. Many researchers, such
as Sakawat al. [22-27], have formulated BP problems with fuzzy parame-
ters and propose fuzzy programming methods for fuzzy bilevel programming
problems. Our recent research work has extended Kuhn-Tukkieihest and
branch-and-bound approaches to solve BP problems with fuzzy parameters.

Another issue in bilevel decision practice is that multiple conflicting objec-
tives often need to be considered simultaneously by the leader, and/or the
follower. For example, a coordinator of a multi-division firm considers
three objectives in making an aggregate production plan: maximise net prof-
its, maximise quality of products, and maximise worker satisfaction. The
three objectives could be in conflict with each other, but must be consid-
ered simultaneously. Any improvement in one objective may be achieved
only at the expense of others. The normal multi-objective decision-making
problem has been well researched by many researchers such as Hwang and
Masud [14]. But in a bilevel model, the selection of a satisfactory solution
for the leader is imparted by his/her follower’s optimal reaction. Therefore,
how to find an optimal solution for the leader which has multiple objectives
under the consideration of both its constraints and its followers needs to be
explored.

Following our previous research results shown in [17,28-32,37-42],
this study aims at developing an approach to solve fuzzy multi-objective
linear bilevel programming (FMOLBP) problems. It first transforms a
FMOLBP problem into a non-fuzzy multi-objective linear bilevel program-
ming (MOLBP) problem. Based on the definition and related theorems [29,41],
it then solve the FMOLBP problem by solving the associated MOLBP prob-
lem. As this paper focuses a linear bilevel problem, so BP means linear BP in
the paper.

Following the introduction, Section 2 reviews related definitions, theo-
rems and properties of fuzzy numbers and a FMOLBP model [41]. A general
fuzzy number based approximati@th-best approach for solving FMOLBP
problems is presented in Section 3. Two case based examples are shown in
Section 4 for illustrating the proposed model and approach. Conclusions and
further study are discussed in Section 5.
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2 PRELIMINARIES

In this section, we present some basic concepts, definitions and theorems that
are to be used in the subsequent sections. The work presented in this section
also can be found from our recent papers in [36,41].

2.1 Fuzzy numbers

Let R be the set of all real number®” be rn-dimensional Euclidean space,
andx = (x1,x2, ..., x)7,y = (y1, v2, ..., ya)T € R" be any two vectors,
wherex;, y; € R,i = 1,2,...,n andT denotes the transpose of the vector.
Then we denote the inner productofindy by (x, y). For any two vectors
x,y € R",wewritex 2 yiff x;, > y;,Vi=212,...,n;x > yiff x 2 yand
x£y;x>yiff x; >y,Vi=212,...,n.

Definition 2.1. A fuzzy numbera is defined as a fuzzy set oR, whose
membership functiom; satisfies the following conditions:

1. g is a mapping fronR to the closed interval [0,1];

2. itisnormal, i.e., there exisise R such thaju;(x) = 1;

3. foranyi € (0, 1], a; = {x; uz(x) > A} is a closed interval, denoted
by [af, af].

Let F(R) be the set of all fuzzy numbers. By the decomposition theorem of
fuzzy sets, we have

a= U A[af,af],

Ar€[0,1]

for everya € F(R).
Let F*(R) be the set of all finite fuzzy numbers éh

Theorem 2.1. Let a be a fuzzy set on R, thena € F(R) if and only if u;
satisfies
1 x € [m, n]
ma(x)=1Lx) x<m
R(x) x>n

where L(x) is the right-continuous monotone increasing function, 0 <
L(x)<landlim,__o L(x) = 0, R(x) is the left-continuous monotone
decreasing function, 0 £ R(x) < 1andlim,_,» R(x) = 0.

Corollary 2.1. For every a € F(R) and A1, A2 € [0, 1],if A1 < Ap, then
Ay, C ayy.
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Definition 2.2. For anya, b € F(R) and 0< A € R, the sum ofi andb and
the scalar product of anda are defined by the membership functions

Mg (1) = SUp,:TE){M(”)’ w0},
Hg_p(1) = Sup Min{ug(u), uz()},
Maa(t) = suppg(u).

t=Au

Theorem 2.2. Foranya, b € F(R)and0 < o € R,

N

+b= Alak +bE, al + bE,
r€[0,1]

a-b=a+(-by= |J raf —bf. af — b},

r€[0,1]
ad = U Maak, aal].
1€[0,1]
Definition 2.3. Let a; € F(R),i = 1,2,...,n. We definea = (ay,
az, ..., an)
u; - R" — [0, 1]
n
x> N\ pa, (x0),
i=1
wherex = (x1, x2, ..., x,)T € R", anda is called anm-dimensional fuzzy
number onR". If a; € F*(R),i = 1,2,...,n,a is called am-dimensional

finite fuzzy number orr”.
Let F(R") and F*(R") be the set of alk-dimensional fuzzy numbers and
the set of alk-dimensional finite fuzzy numbers @' respectively.

Proposition 2.1. For everya € F(R"), a isnormal.

Proposition 2.2. For every a € F(R"), the A-section of a is an n-
dimensional closed rectangular region for any A € (0, 1].

Proposition 2.3. For everya € F(R") and A1, A2 € [0, 1], if A1 < Ao, then
Ay, C ay,.

Definition 2.4. For everyn-dimensional fuzzy numbes, b, e F(R"), we
define

1. a=b iff a- = bl andaf = bR, 1 € (0, 1];
2. a>b iff ak>bFandaf > bR 1 € (0, 1];
3

. a>b iff ak > bl andaf > bR 1 € (0, 1].
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We call the binary relations, > and> a fuzzy max order, a strict fuzzy max
order and a strong fuzzy max order, respectively.

2.2 Fuzzy multi-objectivelinear bilevel programming model
Consider the following FMOLBP problem:

Forxe XCR',yeYCR",F:XxY — F*R"),
andf: X x Y — F*(R"),

)f;f;i}l’(\ F(x,y) = (C1x + duy, é21x + do1y, . .., éax +ds1y)’ (2.1a)

subject toA1x + By = by (2.1b)
'yT'Eip f(x,y) = (C12x + di2y, E2ox + doy, ..., Eox + dj2y)”

(2.1¢)

subject toAx + Boy = by (2.1d)

whereéi1, ;2 € F¥(R"), di1,dj2€ F¥(R™),i=1,2,...,s, j=1,2,...,1,
b1 € F*(RP), bp € F*(RY), A1 = (@) pxn, Gij € F*(R), BL = (bij) pxm
bij € F*(R), A2 = (€ij)gxn, €j € F*(R), B2 = (Sij)gxm, Sij € F*(R).

For the sake of simplicity, we s&f x ¥ = {(x, y); A1x + B1 = b1,
Aax + Bay = by} and assume thak x Y is compact. In a FMOLBP
problem, for eachlx,y) € X x Y, the value of the objective functions
F(x,y) = (Fi(x,y), Fa(x, y), ..., Fs(x,y)) and f(x,y) = (fi(x,y),
fo(x,y), ..., fi(x,y)) of the leader and the follower asedimensional and
t-dimensional fuzzy numbers, respectively. Thus, we introduce the following
concepts of optimal solutions to FMOLBP problems.

Definition 2.5. [41] Apoint (x*, y*) € X x Y is said to be a complete optimal
solution to the FMOLBP problem if it holds that(x*, y*) = F(x, y) and
Fx*, v = f(x,y) forall (x,y) € X x Y.

Definition 2.6. [41] A point (x*, y*) € X x Y is said to be a Pareto optimal
solution to the FMOLBP problem if there does not existy) € X x Y such
that F(x*, y*) = F(x,y) and f (x*, y*) = f(x, y) holds.

Definition 2.7. [41] A point (x*, y*) € X x Y is said to be a weak Pareto
optimal solution to the FMOLBP problem if there is (0, y) € X x Y such
that F(x*, y*) = F(x,y) andf(x*, y*) = f(x, y) holds.
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Associated with the FMOLBP problem, we now consider the following
MOLBP problem:

Forxe XCR', yeYCR", F:XxY— F*R,
andf: X xY — F*(R"),
min(F (v, y); " = ((Fae ) (Fa y)f o (FaGe )y

(Fs(x, )BT 1 €10, 1 (2.2a)

subject toAf; x + Bf; y < bk, AR x + BRy < bf 1 €10, 1] (2.2b)
L(R)

ryneip(f(x, ;N = (b, YE, (A, YR, - (fi(x, Y)E,

(fi e, BT 2 e[0,1] (2.2¢c)
subject toA%, x + B,y < bk, AR x + BEy < b§ .1 €10,1] (2.2d)

where (Fi(x, y)y = cfpx + dfy, (Fito,y)f = fx + df,y,
(fi, )y = chyx +diyy and fi(x, X = cfyx +dfiyy, & €
[0, 11, ¢fy,,, CileCjL'zw szx € R".dfy,, diliwdjsz dezzx € R", dfy,.df,,
digdfy, € R" i =1,2,...,5,j=12,...,1,b5,bf € RP, by, b}, €
RY, AL = (aile), AR = (a};) e R AL = (el.LjA), AR = (ef;k) € RI*",
B = (bfjk), BR = (bi’;) € RP*m BE = (sl.LjA), BE = (s,.’;.h) e RI*™,

For the sake of simplicity, we seXt x ¥ = {(x,y); AL x + Bf;, <
bL AR x +BR < bR, ALx+ BZL& < bﬁk AR x4+ BR < bX}and assume
thatX x Y is compact. ObviouslyX x ¥ = X x Y.

Definition 2.8. [41] A point (x*, y*) € X x Y is said to be a complete
optimal solution to the MOLBP problem if it holds tha&tF;(x*, y*))f,
(FLO*, yDR L (Fe(e, y D, (Fs (%, y" )BT < ((Fux, y)E, ((Fax,
IR, (Fs(e, y)5, (Fs (e, yNHT and((fa(x*, y N5, (™, y)R, ...,
SOy NE (LS y DT = (A, )y, (Al R, .. ((filx,
L (fie, yHT fora € [0, 1] and(x, y) € X x Y.

Definition 2.9. [41] A point (x*, y*) € X x Y is said to be a Pareto opti-
mal solution to the MOLBP problem if there is n@, y) € X x Y such
that (FL(x*, y )&, (F1(e*, y) R, o (Fs (e y )k, (F(x*, y" )T >
((FLe, )E, (Falxe, yDR, o (Fe(e, )5 (Fs (e, y )BT or ((fulx*, y )k,
(SO, yNR, L,y e (e, y DT > ((falx, y)E, (falx,
IR D), (fie, y)ET hold.

Definition 2.10. [41] A point (x*, y*) € X x Y is said to be a weak Pareto
optimal solution to the MOLBP problem if there is 1t@, y) € X x Y such



Fuzzy MULTIOBJECTIVE DECISION MAKING 211

that ((Fo(x*, y)E, (Fr(x*, y) R, o (B, y ) E, (Fo(e, y BT >
(FLx, )E, (Falxe, YR, oo (Fy (e, y)E (Fs (e, y DT or ((frae®, y)E,
L, yNR ARG yDE, (G yDDT > (Al y)E, (fi(x,
R LG yE (i yDBT hold.

Theorem 2.3. [41] Let (x*, y*) betheoptimal solution oftheMOLBP problem
defined by (2.2). Then it is also an optimal solution of the FMOLBP problem
defined by (2.1).

Theorem 2.4. [41]For x € X C R",y € Y C R™, if all the fuzzy parame-
ters ajj, b.,, &ij., Sij, Cij» b1, bo and d.J have plece\leetrapezmdal member ship
functions in the FMOLBP problem (2.1),

0 < Zéo

a1 — g
—F U —Z (644 Loy = Z

L Y oto) + éo St< 51
Z(x]_ Z(xo

o1 — oo
57 U—Z 1 Loq = Z

T () e o S <
2L — 2L

- — L R
pz(t) = o Zg, St <24 (2.3)

Op — Qp—1
I I Rev
Z(’Cn—l - Z(xn

oo — o1
< (1) + a0 za St <28
Loy %)

Zon <

0 X <t

where z denotes ajj, l;ij , €ij, Sij» Cij, 151, l;z and d~ij respectively, then, (x*, y*)
isa complete optimal solution to the problem (2.1) if and only if (x*, y*) isa
complete optimal solution to the MOLBP problem:

mi)r(](Fi(x,y)) _Cllax+dlla y, i=12...,5,j=0,1,...,n
xe

min(Fi(x,y))gj =ciRlafx+d£ajy, i=12,...,5,j=0,1,...,n
subjecttoA x+31ay—b1a» j=01...,n
A x+BlDly<b10t’ ]:0,1,...,”1 (2.4b)

mlp(fi(x,y))aj = o X+l v, =125 j=01...n

mln(f,(x y)) lzax—i—dlzay, i=12,...,5,j=01,...,n
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subject toA%aix + BzLajy < b%a/_, ji=0,1...,n

Agaj'x—i_BZR;)(jyébZRaj? ‘]:0’ 1,...,”. (24d)
We note
Alx + Bly < 51 (2.4p")
Axx + Boy < by (2.44")
where
L L L L
Al"‘O AZ&O Blao BZozo
. AL . AL _ BL i} BL
Av= g | A= | L5 [ Br= | gr | Be= | g |
AlO‘O AZO(O BlOlo BZ()[O
R R R R
lay,? AZotn lay, BZOln
L
blao bzao
B bL B bL
bl = R s bz = %a"
blao b 200
R R
bla" bZa,l

Then we can re-write (2.4) by using

mi}r(l(F,-(x,y)) —cllax—i—dlla y, i=12,...,5,j=0,1,....n
xXe

min(Fi(x,y))OIf, =cfla_x—|—d£a_y, i=12...,5,j=01,...,n
xeX J J J

subject toA1x + B1y < by, (2.4'b)
mi}r)(f,-(x,y)) —czu x—l—dlza y, i=12...,5,j=0,1,....n

mln(f,(x y)) 2ax+d,2ay, i=12...,5,j=01,...,n
(24¢c)
subject toAox + Boy < bo. (2.44d)

Theorem 25. [41] Forx € X C R",y € Y C R™, if all the fuzzy parame-
ters ajj, b”, éij, Sij, Cij, b1, by and d., have piecewise trapezoidal membership
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functions (2.3) in the FMOLBP problem (2.1), then (x*, y*) isa Pareto opti-
mal solution to the problem (2.1) if and only if (x*, y*) is a Pareto optimal
solution to the MOLBP problem (2.4').

Theorem 2.6. [41] For x € X C R",y € Y C R™, if all the fuzzy parame-
ters ajj, b.J , €ij, Sij, Cij, b1, by and d.J have p|ecevwsetrape20|dal member ship
functions (2.3) in the FMOLBP problem (2.1), then (x*, y*) is a weak Pareto
optimal solution to the problem (2.1) if and only if (x*, y*) is a weak Pareto
optimal solution to the MOLBP problem (2.4).

These definitions and theorems will be used in following sections to develop
an approach for solving the FMOLBP problems.

3 AN APPROXIMATION Kth-BEST APPROACH

To solve the FMOLBP problem (2.1), we need to solve its transformed
form (2.4'). For solving (24'), we can use the method of weighting [21]
to this problem, such that it becomes the following problem:

N n n
min(F (x, y)) = 3w jl( D (el x+di )+ Y (cf x+df y))
j=1 i=0 i=0
(3.1a)

subject toA1x + B1y < by, (3.1b)

mln(f(x y) = Z “’12(2(% x + dza y) + Z(Cza x + dza y)>

j=1 i=0 i=0
(3.1¢c)

subject toAox + Boy < by. (3.1d)

In order to get a solution for above (3.1), we give a definition of optimal
solution and related theorems as follows.

Definition 3.1. (a) Constraint region of the linear BP problem:
S={(x,y):xeX,yeV¥, Aix + B1y < b1, Aox + Boy < by}
(b) Feasible set for the follower for each fixed: X:
S(x) = {y €Y : Boy < bp — Apx)
(c) Projection ofS onto the leader’s decision space:

S(X)={xeX:3yeY, Aix + B1y < by, Aox + Boy < by}
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Follower’s rational reaction set far e S(X):
P(x)={yeY:yeargmin[(f(x,y)) :J € S(x)]}
where argmin f(x, ) : § € SX)] = {y € S&x) : (f(x,y) = (f(x, D)),

y e S}
(e) Inducible region:

IR={(x,y): (x,y) €S,y € P(x)}

The rational reaction sét(x) defines the response while the inducible region
IR represents the set over which the leader may optimize his objective. Thus
in terms of the above notations, the linear BP problem can be written as

min{F (x,y) : (x,y) € IR} (3.2)

Theorem 3.1. Theinducible region can be written equivalently as piecewise
linear equality constraint comprised of supporting hyper planes of constraint
region S.

Proof. Let us begin by writing the inducible region of Definition 3.1(e)
explicitly as follower:

IR={(x,y):(x,y) €8,
doy =min[doy : Bij < bj — Aix,i = 1,2, 5 > 0]}, (3.3)

wherec; = ¢; + ¢k 4+ cR di = d; + df +df,i = 1,2. Now we define

Q(x) =min{day : Bjy <b; — A;jx,i =1,2,y > 0}. (3.4)

= (5) A=(5) =)

We rewrite (3.4) as follows
Q(x) = min{day : By < b — Ax,y > 0}. (3.5)

Let us define

For each value of € S(X), the resulting feasible region to problem (2.3) is
nonempty and compact. Thgi(x), which is a linear program parameterized
in x, always has a solution. From duality theory, we get

max{u(Ax — b) : uB = —do, u > 0}, (3.6)

which has the same optimal value as (3.1) at the solutiorLetu?®, ..., u*
be a listing of all the vertices of the constraint region of (3.6) given by
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U= {u:uB > —dy,u > 0}. Because we know that a solution to (3.6)
occurs at a vertex df, we get the equivalent problem

max{u’ (Ax — b) : u’ € (ut, ..., u*}}, (3.7)
which demonstrates th&l(x) is a piecewise linear function. Rewriting as
IR={(x,y) € S: Q(x) — d2y = 0}, (3.8)
yields the desired result. O

By this theorem, we give the following corollaries:

Corollary 3.1. The linear BP problem (3.1) is equivalent to minimizing F
over afeasible region comprised of a piecewise linear equality constraint.

Proof. From (3.2) and Theorem 2.6, we have the desired result. O
Corallary 3.2. Asolution for the linear BP problem occurs at a vertex of IR.

Proof. Alinear BP programming can be written (3.2). Singes linear, if a
solution exists, one must occur at a vertexRfThe proof is completed.O

Now, we give a very important theorem which is the core for proposing an
approximationk th-best approach.

Theorem 3.2. The solution (x*, y*) of the linear BP problem occurs at a
vertex of S.

Proof. Let(x1, y1),..., (x", y") be the distinct vertices . Since any point

in § can be vyritten a convex combination of these vertices(i&t y*) =
Yoi_qei(x',y), where)_jo; =1 > 0,i =1,...,Fandi < r. It
must be shown that = 1. To see this let us write the constraints to (2.3) at
(x*, y*) in their piecewise linear form ().

0= Q(x*) — doy”
ofge) a2
=D w06 =) aidzy'
by convexity of O (x)
=D _ai(Q(h) —doy").
But by definition, |

Q(x')= min day < day'.
yes(x)
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ThereforeQ(x’) —doy’ <0,i =1,...,7. Notingthatw; > 0,i =1, ..., 7,
the equality in the preceding expression must hold or else a contradiction
would resultin the sequence above. Conseque@tly; ) — d2y' = 0 for alli.

This implies that(x’, y') € IR,i = 1,...,7 and(x*, y*) can be written as
a convex combination of points ifR. Becausegx*, y*) is a vertex oflR, a
contradiction results unlegs= 1. m]

We therefore give the following corollary.
Coroallary 3.3. If xisan extreme point of IR, it is an extreme point of S.

Proof: Let (x*, y*) be an extreme point dR and assume that it is not an
extreme point ofS. Let (x1, y1),..., (x", y") be the distinct vertices of.
Since any point ir§ can be written a convex combination of these vertices, let
*y") =Y o (xf, y)), where)} ! o = 1,04 > 0,i = 1,...,7 and

F < r. It must be shown that = 1. To see this let us write the constraints
to (2.3) at(x*, y*) in their piecewise linear form (2').

0= Q(x*) — doy*
-0 (Zaix’) —dy (Zaiyi)
=D @G = ) jaidzy’
by convexity ofQ(x)
=2 ai(Q0h) —d2y").

But by definition,

Q(x") = min day < dpy'.
yeS(x)

ThereforeQ(x’) —doy’ <0,i =1,...,7. Notingthatw; >0,i =1, ...,F,

the equality in the preceding expression must hold or else a contradiction
would result in the sequence above. Consequegtly!) —d»>y' = 0 for alli.

This implies that(x?, y') € IR, i = 1,...,7 and(x*, y*) can be written as a
convex combination of points iFR. Because&x™, y*) is an extreme point of

IR, a contradiction results unlegs= 1. This means that*, y*) is an extreme
point of S. The proof is completed. ]

Theorem 2.6 and Corollary 3.3 have provided theoretical foundation for
our new approach. It means that by searching extreme points on the constraint
regionsS, we can efficiently find an optimal solution for a linear BP problem.
The basic idea of our extended properties approach is that according to the
objective function of the upper level, we descendent order all the extreme
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points onS, and select the first extreme point to check if it is on the inducible
regionlR. If yes, the current extreme point is the optimal solution. If not,
select the next one and check.

More specifically, let(x1y, yr1), - - - » (x{n7, ya7) denote theN ordered
extreme points to the linear programming problem

min{cix 4+ d1y : (x, y) € S}, (3.9)
such that
cuxpy + diyiy < eaxpieny +dayiva, i=1,..., N -1
Let y denote the optimal solution to the following problem
min(f (x[il, y) : y € Sxpip). (3.10)

We only need to find the smallegi € {1, ..., N}) under whichyy;; = 3.
Let write (3.10) as follows

min f(x, y)
subject toy € S(x)

X = X[i]-

From Definition 3.1(a) and (c), we have

min f(x, y) = ¢ox + day (3.11a)
subject toA1x + Byy < by (3.11b)
Aox + Boy < b (3.11c)
¥ = X (3.11d)
y > 0. (3.11e)

To solve (3.11), the first is select one ordered extreme g@jnt yji)), then
solve (3.11) to obtain the optimal solution If 3 =y, (xg, yip) is the
global optimum to (3.1). Otherwise, check the next extreme point.

Based on above definition of optimal solution and Theorem 3.2, we propose
an approximatiork'th-best approach for solving FMOLBP problem (2.1) as
follows.

The approximation Kth-best approach:
Step 1 Given weight®;j1(j = 1,2,...,s) andwj2(j = 1,2,...,1) for
the objectives of the leader and the follower respectively and let

Step 2 Transform the problem (2.1) to the problerd/)2
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Step 3 Set = 1 and a range of errots> O.

Step 4 Let the interval [0, 1] be decomposed intol2qual sub-intervals
with (2=1 4+ 1) nodesx; (i = 0, ..., 2~1) which are arranged in
the orderof O=21p < A1 < -+ < Agi-1 = 1.

Step 5 Transform the problem.&) to the problem (3.1) by the weighting
method and solve (MOLBF‘Z)_ i.e. (3.1) by using the extendecth-
best approach [29] for obtaining an optimal solutiany).:.

Step 6 Put < 1. Solve (3.9) with the simplex method to obtain the optimal
solution(xpay, yp17). LetW = {(x[1), yj1)} andT = ¢. Goto Step 7.

Step 7 Solve (3.11) with the bounded simplex method. jLeenote the
optimal solution to (3.11). I§ = yy;; stop; (xgi1, ypi) is the global
optimum to (3.1) withK* = i. Otherwise, go to Step 8.

Step 8 LetW[;; denote the set of adjacent extreme pointé«f, y;;) such
that (x, y) € Wy impliescix + d1y > ¢i1xy + diypip- Let T =
T U {(xpi1, yip )} andW = (W U W;p\T. Go to Step 9.

Step 9 Set < i+1andchoosér;, yji1) sothatfx+gyi = min{cix+
diy:(x,y) € W}.Goto Step 7.

Step 107 =1 + 1, repeat Step 4 to Step 9 to solve (MOLBR).

Step 11 If||(x, y)u+1 — (x, y)a|l < &, then the solutionx*, y*) of the
FMOLBP problem is(x, y),i+1, otherwise, updatéto 2 and go
back to Step 10.

Step 12 Show the result of problem (2.1), stops.

4 ILLUSTRATIVE EXAMPLES

We give examples here to illustrate how to use the proposed FMOLBP model
and the approximatiork th-best approach solving a FMOLBP problem in
practice. Example 1 mainly shows how to build a FMOLBP model for a real
problem, and Example 2 gives all details to solve a FMOLBP problem by the
proposed approximat&th-best approach.

Example 1. Inacompany, the CEO is as the leader, and the heads of branches
ofthe company are as the follower in making an annual budget for the company.
Obviously, the leader (the CEO)’s decision will be affected by the reactions
of the follower (heads of branches). Each of the CEO’s possible decisions is
influenced by the various reactions of the heads. In order to arrive an optimal
solution (better strategies) for the CEO’s decision on the annual budget, we
establish a bilevel decision making model.
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The CEO has two main objectives: 1) to maximize the net profits, represented
by Fi(x, y) and 2) to maximize the quality of products, Bg(x, y), but
subject to some constraints including the requirements of material, marking
cost, labor cost, working hours and so on. The heads of branches, as the
follower, attempts to 1) maximize their net proff(x, y), and 2) maximize

work satisfactoryfz(x, y). The CEO understands that for each policy he may
make, these heads will have a new reaction to deal with by optimizing their
objective maxey (f1(x.y). f2(x, y)).

When modeling the bilevel decision problem, the main difficulty is to set
up parameters for the objectives and constraints of both the leader and the
follower. We can only estimate some values such as material cost, labor cost,
according to our experience and previous data. For some items, the values can
be only assigned by linguistic terms, such as ‘about $1000’. This is a com-
mon case in any organizational decision practice. By using fuzzy numbers to
describe these uncertain values and linguistic terms in parameters, a FMOLBP
model can be established for this decision problem.

Let x = (x1,x2)7 € R? be the CEO’s decision variables, apd=
(y1, y2, ¥y3)T € R3be the branch heads’ decision variables, &ng {x > 0},

Y = {y > 0}, we can build the following model for the decision problem:

maxFy(x, y) = 1, 9(x1, x2)" + (10,1, 3)(y1, y2, y3)"
MmaxFy(x, y) = 9, 2)(x1, x2)T + 2, 7, H(y1, y2, y3) T

subject to3, 9) (x1, x2)” + (8, 5, 3)(y1. y2. y3)” < 1039
(=4, =) (x1, x2)7 + B, =3, 2)(y1. y2. y3) < 94

max fi(x, y) = (4,6)(x1, x2)" + (7, 4,8)(y1, y2, y3)"
Teayxfz(x, y) = (6,4 (x1,x2)" + 8, 7.9 (y1, y2. v3)"

subject to(3, —=9)(x1, x2)” + (=9, =4, 0)(y1, y2. y3)" < 61
(5, 9)(x1, x2)T + (10, -1, =2)(y1, y2, y2)" < 924
(B, =3)(x1, 27 + 0,1, 5)(y1, y2, y2)T <420

In this model, the unified form for all membership functions of the
parameters of the objective functions and constraints is as follows:

0 xX<aorc<x
(xz—az)/(bz—az) a<x<b
Mg (x) = 1 b

(®>—=x)/(c®>—d> b<x<c



220 JIELU et al.

Gij 1 2 3 4 5

1 (0,1,2) (89 12) (9,10,13) (0.51,25) (2 3,6)
2 (8,9,12) (1,2,5 (1,2,5) (6,7,10) (3,4,7)
3 (2,45 (467 (57,8 (245 (68,9)

4,6,7 (2,45 (6,89 (57,8 (24,5

TABLE 4.1
Membership functions of fuzzy objective functions’ parameters

ij 1 2 3 4 5

1 (2,35) (8,9, 11) (8,9, 11) 4,5,7) (2,3,5)
2 (-6-4-3) (-2,-1,-05)  (2,3,5) ¢5,-3,-2) (-4,-2,-1)
3 (23,5 ¢11,-9,-8) (-11,-9,-8) (-6,—-4,-3) (0,0, 0)

4 (4,57 (8,9, 11) (9,10, 12) (05,1,2) —4,—2,-1)
5 (2,3,5) (5,-3,-2) (0,0, 0) (05,1, 2) 4,5,7)
TABLE 4.2

Membership functions of fuzzy constraints’ parameters

1

bi

1 (1038, 1039, 1041)
2 (93, 94, 96)

3 (60, 61, 63)

4 (923,924, 926)
5 (419, 420, 422)

TABLE 4.3
Membership functions of fuzzy right-hand-side’s parameters

For simplicity, we only represent the above form of membership function as
(a, b, ¢). Then, for the example, all membership functions of fuzzy parameters
ofthe objective functions and constraints are to be represented in the quadruple
pair form and listed in Tables 4.1, 4.2, and 4.3, respectively.

Now, We first given the weights for the two fuzzy objectives of the leader
are (0.5, 0.5) and of the follower (0.5, 0.5) and the interval [0, 1] be decom-
posed into 2-1 mean sub-intervals with {21 + 1) nodest; (i =0, ..., 2/~
which is arranged in the order of & A9 < A1 < -+ < Ay-1 = 1 and a
range of errors = 10~® > 0. Then we can solve this problem by using the
proposed approximatioK th-best approach. The solution of the problem is
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x1 = 1462955 x, = 289394 andy; = 0, y» = 67.9318,y3 = 0 such that
maxFi(x, y) = 1642955x 1+289394x 9+ 67.9318x 1
xXe

maxFa(x, y) = 164.2955x 9+ 28.9394x 2 + 67.9318x 7
xe
mi;l f1(x, y) = 1642955x 4 + 289394 x 6+ 67.9318x 4
ye
mip fo(x, y) = 1642955x 6+ 289394 x 4 + 67.9318x 7.
ye

Example 2. Consider the following FMOLBP problem withe R, y € R,
andX ={x >0}, Y ={y >0},

min F1(x, y) = —1x + 2y

xeX

min Fa(x, y) = 2x — Zly

xeX

subjectto— 1x + 3y < 4
min fi(x, y) = —Ix + 2y
yeY
min fa(x, y) = 2x — 1y
yey

subject tolx — 1y < 0

—ix—lyf()
where

0 <0 0 r<1
) = ?  0sr<1 = lim1 1si<2
P = 0y 1< <20 MW7 )32 2<i <3

0 2<1t 0 351t

0 t<2 0 t <3
)= r—2 2<t<3 )= t—3 3<t<4
HEU =4y 3<i<a MY 7 )52 a<i<5

0 4<y¢ 0 551t

0 t<-1
(1) = t+1 -1<¢r<0
FolV=11_42 0<r<1

0 15t

We now solve this problem by using the proposed approximakitimbest
approach.
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Sep 1 Given the weights for the two fuzzy objectives of the leader are (0.5,
0.5) and of the follower (0.5, 0.5).

Sep 2 The FMOLBP problem is first transformed to the following associated
MOLBP problem by using Theorem 2.3

min(Fa(x, E = (DEx+2ky, 1 e10,1]

min(F1(e, y)f = (~Dfx +2fy, 1 €0.1)

min(Fo(x, y)E = 2Lx + (=dLy, 1 €10, 1]

eX 2(x, y A )L'x )Ly7 )

min(Fa( R_2Rx + (—HRy, 1 €10, 1]

it 2)57)’)))L =4 X ( ))Ly» € 1V,

subjectto(—1)lx +3Fy < 4L (—D)Rx + 3Ry <48 10 1)
min(f1(x, L =2lx+ (=DFy, »el0,1]
)7
min(fi(x, )3 =2Z'x + =Dy, »€(0,1]
ye
min(f2(x, i =(DEx +2ky, 2 e10,1]
y
min(f2(x, )3 = (=Dix +2fy, 2 €(0,1]
ye

subject tollx + (=1)Ly < 0, 18x + (=D)Xy <0, 1 €10, 1)

(~Dix+ (=Dfy =0, Dfx + =Dy
<0f, »€[0,1]
Qep 3 Set/ =1 ande =10 > 0.
Sep 4 Let the interval [0, 1] be decomposed intb 2 equal sub-intervals

with (2=1 + 1) nodes\; (i =0, ..., 2~1) which is arranged in the order of
0=Xp <A1 <--- < Ag-1 = 1. We get the following MOLBP problem

min(F1(x, y)i® = —1x 4+ 2y
xeX

min(F1(x, y)5 = —2x +y
xeX
min(F1(x, y))§ = Ox + 3y
xeX

L(R)

in(F: =2x —4
Q}g( 2(x, ¥))q 2x — 4y

min(Fa2(x, y))§ = 1x — 5y
xeX
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min(Fa(x, y))§ = 3x — 3y
xeX

subjectto— 1x + 3y <4
—2x+2y <3
Ox +4y <5

min(f1(x, ) = 2¢ — 1y
yeY
min(f1(x, y))§ = 1x — 2y
yeY

min(f1(x, y)§ = 3x — 0y
yeY

min(f2(x, y)E® = —1x + 2y
yeY

@wﬁmw%=—b+n
min(f2(x. y))g = Ox + 3y
subjectto X — 1y <0
Ox —2y<-1
2x—0y<1
—1r—1y <0
—2x — 2y < -1

Sep 5 We solve this MOLBP problem by using the extend&dh-best
approach [29] and the method of weighting.

min F(x, y) = 3x — 6y
xeX

subjectto— 1x + 3y < 4
—2x+2y <3
Ox +4y <5
rynei)r)f(x,y) =3x + 3y

subjecttox — 1y <0

Ox —2y<-1
2x—0y<1
—Ix—1y <0

—2x -2y < -1
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According to the extendedth-best approach, let us rewrite it as follows
in (3.7)
min F(x, y) = 3x — 6y
subjectto— 1x + 3y <4
—2x+2y <3
Ox +4y <5
Ix—-1y <0
Ox -2y <-1
2x—0y<1
—1Ix-1y <0
—2x—-2y<-1
x>0,y>0.
Sep 6 Leti = 1, and solve the above problem with the simplex method to

obtain the optimal solutionxp1;, yr17) = (0, 1.25). Let W = {(0, 1.25)} and
T =¢.Goto Step 7.

Loop 1:
Sep 7 By (3.9), we have
min f(x,y) = 3x + 3y
subjectto— 1x + 3y <4
—2x+2y <3
Ox +4y <5
Ix—1y <0
Ox -2y <-1
2x—0y<1
—Ix—-1y <0
—2x—2y<-1
x=0
y=0.
Using the bounded simplex method, we have- 0.5. Because of # yj,
we go to Step 8.

Sep 8 We haveW|;; = {(0.5, 1.25), (0, 0.5), (0, 1.25)}, T = {(0, 1.25)} and
W ={(0, 0.5), (0.5, 1.25)}, then go to Step 9.
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Sep 9 Updatei = 2, and chooséxy;y, yip) = (0.5, 1.25), then go to Step 7.

Loop 2:
Sep 7 By (3.9)
min f(x, y) = 3x + 3y
subjectto— 1x + 3y <4
—2x+2y<3
Ox +4y <5
Ix—1y <0
Ox —2y <-1
2x—0y<1
—Ix—1y <0
—2x—2y<-1
x =05
y>0.

Using the bounded simplex method, we hgve: 0.5. Because of # y,
we go to Step 5.

Sep 8 We haveW;; = {(0.5, 1.25), (0.5,0.5), (0, 1.25)}, T = {(0, 1.25),
(0.5, 1.25} andW = {(0, 0.5), (0.5, 0.5)}, then go to Step 9.

Sep 9 Updatei = 3, and chooséx;y, ;i) = (0, 0.5), then go to Step 7.

Loop 3
Sep 7 By (3.9), we have

min f(x, y) = 3x 4+ 3y

subjectto—1x + 3y <4
—2x+2y <3
Ox +4y <5
Ix—1y <0
Ox —2y <-1
2x—-0y<1
—Ix—-1y <0
—2x—-2y<-1
x=0
y > 0.

Using the bounded simplex method, we have- 0.5. Because of = yj;],
we stop here(xj;}, yi1) = (0,0.5) is the global solution to this Example.
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By examining above procedure, we found that the optimal solution occurs at
the point(x*, y*) = (0, 0.5) with

min Fi(x,y) =1x — 2y = -1
xeX

min Fo(x,y) = 0x — 3y = —1.3
xeX

min F3(x,y) = 2x — 1y = —0.5
xeX

min f1(x,y) = 0.5

yeY

min fo(x,y) =1
yey
Sep 10 Set! = 2 and we solve the following MOLBP problem

min(F1(x, y)§ ™ = —1x + 2y
xeX

min(Fy (x ))L——§x+§
yex  HEOYDE=ToEES)

min(Fi(x, y))§ = —2x + 1y
xeX

J2 5
in(F R__V*= =
)rcry}r;( 1(x,y))% > x+ >V

min(Fi(x, y))g = Ox + 3y
min(Fy(x. Iy ® = 2¢ — 4y

min(Fa(x, )t = S gy
xeX 2 2 2
min(Fa(x, y))g = 1r — 5y
min(Fa(x, y)i = 2 Zy
xeX 2 2 2
min(Fa(x, y))g =3x — 3y
xeX

subjectto— 1x + 3y < 4
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Ox +4y <5

min(f1(x, 5™ = 2x — 1y
yey

fynelp(fl(x, Y))% = 2x 2)’
min(f1(x, y))§ = 1x — 2y
yey

5 2
Min(fa(ry) = 5% = 5

min(f1(x, y))§ = 3x — Oy
yeYy

min(f2(x, )y ® = —1x + 2y
yey

min( f2(x ))L——i‘)’eri3
yey 2 G = TR SY

min(f2(x, y))§ = —2x + 1y
yey

v2 5
min(fa(e, )f = =% + 5y
min( f2(x, y))§ = Ox + 3y
yeyY
subjecttox — 1y <0

v2 3 1
27 2Y="3
Ox —2y < —1

3 V2 <ﬁ
YT V=
2% —0y<1

3 3 1
¥ T3
—Ix—-1y <0
V22 V2
T TRV Eg
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We solve this MOLBP problem by using the extendéth-best approach and
the method of weighting.

. 5-42
min F(x, y) = (3—|— f) x — 10y
xeX 2

subjectto— 1x + 3y <4

min £ (x, y) = (5_ﬁ+3)x+<5_ﬁ+3>y
yeY 2 2

subjectto X —1y <0

—1lr—1y<0
V2 VB3

T2 TR e
—2x—-2y<-1
The optimal solution occurs at the poiat*, y*) = (0, 0.5) with
. L(R)
Q'Q (Fi(x,y), =1
min (F1(x, y))¥ = 0.75
xeX 2
min (F1(x, y))5 = 0.5
xeX

min (F1(x, )X = 1.25
xeX 2
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min (F1(x, y)& =15
xeX( 1(x y))o
. L(R)
min (Fa(x, =-2
min (Fa(x, )1
min (Fa(x, y))i = —2.25
xeX 2
min (Fo(x, y))5 = —2.5
min (F2(x. y))§
min (Fa(x, y))§ = —=1.75
xeX 2
min (Fo(x, y)& = —-15
min (F2(x. )6
min (f1(x, y);® = —05
yeY

min (f1(x, y))7 = —0.75
yey 2

min (fa(x, W =-1

min (f1(x, y)§ = —
yey 2

a
min (f1(x, y))g =0
yeyY
min (f(x. iR =1

min (f2(x, y))§ = 0.75

yeY 2

min (f2(x. y))g =05

min (f2(x, y)§ = 1.25

yeyY 2

min (f2(x, y)§ = 1.5.

yeY
Sep 10 Whenx = 0, y = 0.5, we have|(x, y)2 — (x, )] =0 < &.
Sep 11 The solution of the problem is = 0, y = 0.5 such that

min Fi(x, y) = 0.5 x 2

xeX

min Fa(x, y) = —0.5 x 4

xeX

min f1(x, y) =05 x 2

yeyY

min fo(x, y) = —0.5 x 1.
yeY
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5 CONCLUSION AND FURTHER STUDY

Following our previous research [29,31,41], this paper proposes a fuzzy
number based approximatéth-best approach to solve proposed FMOLBP
problem. Two examples are given to illustrate how to establish a FMOLBP
model and how to use the proposed approach. Further study will include the
development of fuzzy multi-objective multi-follower bilevel programming
problems.
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