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Characterizing locally indistinguishable
orthogonal product states

Yuan Feng and Yaoyun Shi

Abstract—Bennett et al. [C. H. Bennett, D. P. DiVincenzo,
C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and
W. K. Wootters, “Quantum nonlocality without entanglement”,
Physical Review A, vol. 59, no. 2, p. 1070, 1999] identified a
set of orthogonal product states in the Hilbert space C3 ⊗ C3

such that reliably distinguishing those states requires non-local
quantum operations. While more examples have been found
for this counter-intuitive “nonlocality without entanglement”
phenomenon, a complete and computationally verifiable char-
acterization for all such sets of states remains unknown. In this
paper, we give such a characterization for both C3 ⊗ C3 and
C2 ⊗ C2 ⊗ C2.

Index Terms—Nonlocality without entanglement, locally distin-
guishability, rectangular representation, locally unitarily equiva-
lent.

I. INTRODUCTION

A pure quantum state |φ〉AB of a bipartite system AB is
said to be entangled if it is not a product state, i.e., it cannot
be represented as |α〉A ⊗ |β〉B , for some state |α〉A and |β〉B
of the system A and B, respectively. An entangled quantum
state may generate measurement statistics that are inherently
different from those generated by a classical process [1], [2].
This feature of entanglement is referred to as the nonlocality
of quantum states. Dual to the notion of state nonlocality is
the nonlocality of quantum operations. A natural definition of
a local quantum operation on a multipartite quantum system
is that of Local Operations and Classical Communication
(LOCC) protocols, in which each party may apply to his
system arbitrary quantum operations, while the inter-partite
communication must be classical. It follows from the definition
that if a quantum operation can be implemented by LOCC, it
cannot create quantum entanglement. However, the reverse is
false. That is, there exist quantum operations which cannot
create entanglement and cannot be implemented by LOCC.
This surprising fact was discovered by Bennett et al. [3]
and was formulated as a problem of reliably distinguishing
quantum states.

A set of state E = {|φi〉AB}i is said to be reliably
distinguishable by a quantum operation T if on each |φi〉AB ,
T outputs i with probability 1. The authors of [3] identified
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|φ9〉 = |1〉|1〉
|φ7,8〉 = |1± 2〉|0〉
|φ5,6〉 = |2〉|1± 2〉
|φ3,4〉 = |0± 1〉|2〉
|φ1,2〉 = |0〉|0± 1〉
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Fig. 1. The basis B9 for C3 ⊗ C3 and its rectangular representation
(R9, {|0〉, |1〉, |2〉}, {|0〉, |1〉, |2〉}, U, V ), where R9 = {Ri : 1 ≤ i ≤ 5},
VR1 , UR2 , VR3 , and UR4 are Hadamard and the other unitaries are Identities.

an orthonormal basis B9 for C3 × C3, illustrated in Fig. 1,
that cannot be reliably distinguished by LOCC. The important
feature of the basis is that each base vector is a product state,
thus the distinguishing operator cannot create entanglement.

The above property of nonlocal operations not necessarily
creating entanglement is referred to as “nonlocality without
entanglement”, and has been studied by many authors subse-
quently [3]–[21]. A related discovery made by Horodecki et al.
[22] is “more nonlocality with less entanglement” in the sense
that sometimes reducing entanglement from the states to be
distinguished can increase their indistinguishability. Formally,
an orthogonal product set (OPS) is a set of multipartite product
states that are pairwise orthogonal. An OPS that forms a
basis is also called an orthogonal product basis (OPB). Much
effort has been devoted to searching for additional LOCC-
indistinguishable OPSs. Besides B9, Ref. [3] also showed that
B9 − {|1〉|1〉} is not LOCC-distinguishable, either. All other
known LOCC-indistinguishable OPSs belong to the following
two classes.

Definition 1 ( [4]): An unextendable product basis (UPB)
is an OPS that is neither a complete basis nor a proper subset
of any other OPS.

If E is an OPS in a multipartite Hilbert space HA1
⊗HA2

⊗
· · · ⊗ HAn , then for each 1 ≤ i ≤ n denote by EAi =
{|αi〉 ∈ HAi : ∃|α1〉 ∈ HA1 , · · · , |αi−1〉 ∈ HAi−1 , |αi+1〉 ∈
HAi+1

, · · · , |αn〉 ∈ HAn
, such that |α1〉 · · · |αn〉 ∈ E}.

Definition 2 ( [11]): An OPS E in HA1
⊗ · · · ⊗ HAn

is
irreducible if none of the set EAi , 1 ≤ i ≤ n, can be
partitioned into two nonempty orthogonal subsets.

Theorem 3 ( [4], [5], [11]): The following OPSs are
LOCC-indistinguishable:

(1) An irreducible OPB ( [11]).
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(2) A UPB ( [4], [5]).

Ref. [11] indeed characterizes all LOCC-indistinguishable
OPBs.

Theorem 4 ( [11]): An OPB cannot be reliably distin-
guished by LOCC if and only if it contains an irreducible
subset that spans a product space.

A direct corollary of Theorem 4 is that an OPB in C3⊗C3

or C2 ⊗ C2 ⊗ C2 is LOCC-indistinguishable if and only if it
is irreducible.

One of the main objectives of this line of research is to
identify additional LOCC-indistinguishable OPSs, or more
ambitiously, to give a complete and computationally verifiable
characterization of all such OPSs. Clearly, any OPS in a 1⊗n
system, n ≥ 1, is LOCC-distinguishable. It was also known [3]
that the same is true for any 2⊗n system, n ≥ 1. Thus C3⊗C3

and C2⊗C2⊗C2 are two of the smallest dimensional spaces
where such a characterization was not known. In this paper,
we obtain such characterizations for both spaces. Specifically,
we show in Sec. II that when restricted to the C3 ⊗ C3

space, the generalizations of B9 − {|1〉|1〉}, together with
irreducible OPBs and UPBs, are the only possible LOCC-
indistinguishable OPSs. A key step in the proof is to show
that all irreducible OPBs in C3 ⊗C3 must have a rectangular
representation similar to that of B9. In Sec. III, we give a
similar characterization of LOCC-indistinguishable OPSs in
C2 ⊗ C2 ⊗ C2 space by proving that all irreducible OPBs in
this space must be locally unitarily equivalent to a particular
basis.

We introduce some notions for the rest of the paper. For
two vectors |α〉 and |α′〉, we write |α〉 = |α′〉 if there exists
a non-zero c ∈ C such that |α〉 = c|α′〉. Two product states
|α1〉 · · · |αn〉 and |α′1〉 · · · |α′n〉 in HA1

⊗ · · · ⊗ HAn
are said

to align on Ai’s component if |αi〉 = |α′i〉.

II. CHARACTERIZATION OF LOCALLY INDISTINGUISHABLE
OPS IN C3 ⊗ C3

To characterize all locally indistinguishable OPSs in C3 ⊗
C3, we first generalize the set B9−{|1〉|1〉} to a broader class
of OPSs having a similar structure.

Let m,n ≥ 1 be integers. If E is an OPS in the m ⊗ n
dimensional space and |E| = mn− 1, then E can be extended
to an OPB [5]. Denote by E⊥ the unique product state that
extends E to a basis.

Lemma 5: Let m,n ≥ 1 be integers. An OPS described
below is LOCC-indistinguishable:

(3) An irreducible OPS E in Cm ⊗ Cn with |E| = mn − 1
such that E⊥ does not align on either component with any
element in E .

Proof: Denote by HA and HB the state space of Alice
and and Bob, respectively. Suppose E = {|αi〉|βi〉 : 1 ≤ i ≤
mn− 1} and E⊥ = |α0〉|β0〉. Suppose that E can be reliably
distinguished by an LOCC protocol. Fix such a protocol P
that takes the smallest number of rounds of communication.
Without loss of generality, assume that Alice sends the first

message, which is the measurement outcome k of a Positive-
Operator-Valued Measure (POVM)

M def
= {Mk : HA → H′A}k,

where H′A is Alice’s state space after applying M and the
operators Mk satisfy∑

k

M†kMk = IHA
.

If for each k, there exists µk > 0 such that M†kMk = µkIHA
,

then
∑

k µk = 1 and each Mk is an isometric embedding.
ThusM can be implemented by having Bob send the message
instead: he generates a random number k with probability µk,
sends it to Alice, who applies Mk to HA. This contradicts
the assumption that P takes the smallest number of rounds.
Therefore, there exists a k such that M†kMk has k0 ≥ 2
number of distinct eigenvalues. Fix such a k for the rest of
the proof.

Since the post-measurement states must remain orthogonal
so that they can be reliably distinguished by the remaining
steps of P , we have

〈αi|〈βi|(M†kMk ⊗ IHB
)|αj〉|βj〉 = 0

for all 1 ≤ i < j ≤ mn− 1. Note that E ′ def
= E ∪ {E⊥} is an

OPB, thus for each i, 1 ≤ i ≤ mn−1, there exist λi, λ0i ∈ C,
such that

(M†kMk ⊗ IHB
)|αi〉|βi〉 = λi|αi〉|βi〉+ λ0i |α0〉|β0〉.

Applying 〈α0| ⊗ IHB
on both components, we have

〈α0|M†kMk|αi〉|βi〉 = λi〈α0|αi〉|βi〉+ λ0i |β0〉.
It follows that λ0i = 0, since |βi〉 6= |β0〉. Therefore, EA is a
set of eigenstates of M†kMk.

If EA does not span HA, let |α〉 ∈ HA be a state orthogonal
to span(EA). Let |β〉 ∈ HB be orthogonal to |β0〉. Such |β〉
must exist since otherwise dim(HB) = 1, and E would be
reducible. Then |α〉|β〉 is orthogonal to E ′, a contradiction to
E ′ being a basis for HA ⊗ HB . Therefore, EA spans HA,
and is a complete spectrum of M†kMk. It follows that EA
can be partitioned into k0 number of pair-wise orthogonal
subsets, each of which corresponds to a distinct eigenvalue
of M†kMk. Since k0 ≥ 2, this contradicts the assumption that
E is irreducible. Therefore, E is LOCC-indistinguishable.

As mentioned above, the C3 ⊗ C3 space is one of the
smallest spaces having LOCC-indistinguishable OPSs. We also
know the following useful facts.

Proposition 6 ( [5]): An OPS E in C3 ⊗ C3 is LOCC-
distinguishable if |E| ≤ 4.

Theorem 7 ( [4], [5]): Any UPB in C3 ⊗ C3 must have
exactly 5 elements.
In what follows, we completely characterize all LOCC-
indistinguishable OPSs in C3 ⊗ C3.

Theorem 8 (Main Theorem of Sec. II): An OPS in C3⊗C3

is LOCC-indistinguishable if and only if it belongs to one of
the three classes (1), (2), and (3).

Combining the above three results, an LOCC-
indistinguishable OPS in C3 ⊗ C3 must have precisely
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5, 8, or 9 elements, each of which corresponds to belong to
the classes (2), (3) and (1), respectively. Whether or not an
OPS is irreducible can be checked from the pairwise inner
products of the state components. The same information can
be used to determine if an OPS is an UPB in C3 ⊗ C3 [4],
[5]. Therefore, whether or not an OPS belongs to (1), (2), or
(3) can be determined computationally.

To prove Main Theorem 8, we first generalize the rectangu-
lar representation for B9 and derive some useful properties of
the generalization. Let I and J be two sets. A subset R ⊆ I×J
is a rectangle if R = A × B for some A ⊆ I and B ⊆ J .

If R = A × B, denote by I(R)
def
= A and J(R)

def
= B. A

rectangular decomposition of I × J is a partition of I × J
into rectangles. Fig. 1 illustrates a rectangular decomposition
for {0, 1, 2}×{0, 1, 2}. We refer to this decomposition as R9

and use the labeling scheme in the Figure for its elements.

Definition 9: Let m,n ≥ 1 be integers, I def
= {0, 1, · · · , n−

1}, and J def
= {0, 1, · · · ,m−1}. Let E be an OPB of a product

space HA ⊗HB with dim(HA) = n and dim(HB) = m. A
rectangular representation of E is a quintuple (R, α, β, U, V )
such that:

(a) R is a rectangular decomposition of I × J .
(b) α = {|α0〉, |α1〉, · · · , |αn−1〉} is an orthonormal basis for
HA, and similarly, β = {|β0〉, |β1〉, · · · , |βm−1〉} is an
orthonormal basis for HB .

(c) U assigns each R ∈ R a unitary operator UR on
span{|αi〉 : i ∈ I(R)}, and similarly, VR a unitary
operator on span{|βj〉 : j ∈ J(R)}.

(d) E = {(UR|αi〉)⊗ (VR|βj〉) : R ∈ R, (i, j) ∈ R}.
It can be verified by direct inspection from Fig. 1 that
B9 has a rectangular representation of which the rectangular
decomposition is R9 and the unitary transformations are either
Identity operators or Hadamard. Removing any state other than
|1〉|1〉 from B9 results in an LOCC-distinguishable set. The
same is true for any OPB having a rectangular representation
using R9.

Proposition 10: Let E be an OPB in C3⊗C3 having a rect-
angular representation (R9, α, β, U, V ). Suppose |α1〉|β1〉 ∈ B
is the state corresponding to the 1×1 rectangle. Then any OPS
obtained from E by removing some state other than |α1〉|β1〉
is LOCC-distinguishable.

Proof: We denote the states in E by {|φi〉 : 1 ≤ i ≤ 9}
using the labeling scheme in Fig. 1. Without loss of generality,
assume that |φ1〉 is the only state in E missing in E ′. By
direct inspection, the following LOCC protocol identifies an
unknown input state from E ′. Bob starts the protocol by
measuring

{|β0〉〈β0|, I − |β0〉〈β0|} .

If the measurement outcome corresponds to the first operator,
Alice measures{

|α0〉〈α0|, UR4 |α1〉〈α1|U†R4
, UR4 |α2〉〈α2|U†R4

}
,

concluding that the input state is |φ2〉, |φ7〉, or |φ8〉 accord-
ingly. In the other case, the protocol continues using a similar
strategy.

We now present our Main Lemma of this section, which
characterizes irreducible OPBs (thus LOCC-indistinguishable
OPBs) in terms of rectangular representations.

Lemma 11 (Main Lemma of Sec. II): Any irreducible OPB
in C3 ⊗ C3 has a rectangular representation using R9.

Proof: Let E = {|αi〉|βi〉 : 1 ≤ i ≤ 9} be an irreducible
OPB in the 3 ⊗ 3 dimensional space HA ⊗ HB . We will
construct a rectangular representation

P = (R9, {|0〉A, |1〉A, |2〉A}, {|0〉B , |1〉B , |2〉B}, U, V )

for E . For the sake of simplicity, in the following when |αi〉 =
|αj〉, we denote the state by |αi,j〉.

We first note that there exist two states |α1〉|β1〉 and
|α2〉|β2〉 in E that are aligned on one component. (In fact,
we can prove that in the C3 ⊗ C3 space, there are at most
5 orthogonal product states such that no pair of them align
on either component.) Assume that |α1〉 = |α2〉 = |α1,2〉;
the other case would lead to the same conclusion. Then
|β1〉 ⊥ |β2〉. If there are 6 states whose component inHA is or-
thogonal to |α1,2〉, then they must span (span{|α1,2〉})⊥⊗HB ,
contradicting the assumption that E is irreducible. Thus there
are |α3〉, |α4〉 ∈ EA with 〈α1,2|α3〉 6= 0 and 〈α1,2|α4〉 6= 0.
This implies

|β3〉 ⊥ span{|β1〉, |β2〉},
|β4〉 ⊥ span{|β1〉, |β2〉}

and then |β3〉 = |β4〉 = |β3,4〉.
Repeating the above argument, we find in E pairs of states

{|α5,6〉|β5〉, |α5,6〉|β6〉} and {|α7〉|β7,8〉, |α8〉|β7,8〉} where
|β5〉 ⊥ |β6〉 and |α7〉 ⊥ |α8〉. By direct inspection, |αi〉|βi〉,
1 ≤ i ≤ 8, must be distinct. Denote the remaining state in E
by |α9〉|β9〉.

Let
SA

def
= {|α1,2〉, |α9〉, |α5,6〉}.

We show that SA is an orthonormal basis for HA. If |β9〉 =
|β3,4〉, then the set {|α3〉|β3,4〉, |α4〉|β3,4〉, |α9〉|β9〉} would
span HA ⊗ span{|β3,4〉}, contradicting E being irreducible.
Thus |β9〉 6= |β3,4〉, implying that for some i ∈ {1, 2},
〈βi|β9〉 6= 0. Thus |α9〉 ⊥ |α1,2〉. Similarly, |α9〉 ⊥ |α5,6〉.
If |α1,2〉 6⊥ |α5,6〉, then the states in {|βi〉 : i = 1, 2, 5, 6}
would be mutually orthogonal, contradicting dim(HB) = 3.
Thus |α1,2〉 ⊥ |α5,6〉. Therefore, SA is an orthonormal basis
for HA. Similarly,

SB
def
= {|β7,8〉, |β9〉, |β3,4〉}

is orthonormal in HB . Relabel SA as {|i〉A : 0 ≤ i ≤ 2}
and SB as {|j〉B : 0 ≤ j ≤ 2} such that |0〉A = |α1,2〉,
|0〉B = |β7,8〉, etc.

Define the following unitaries as the Identity operator on
the corresponding dimension 1 space: UR1 , VR2 , UR3 , VR4 ,
UR5

, and VR5
. Define

VR1

def
= |β1〉〈0|+ |β2〉〈1|, UR2

def
= |α3〉〈0|+ |α4〉〈1|,

VR3

def
= |β5〉〈1|+ |β6〉〈2|, UR4

def
= |α7〉〈1|+ |α8〉〈2|.

This completes the construction of P . By direct inspection, P
is a rectangular representation of E .
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We are now ready to prove Main Theorem 8.

Proof of Theorem 8. Since the “if” direction is precisely the
combination of Theorem 3 and Lemma 5, we need only to
prove the “only if” direction. Suppose there exists an LOCC-
indistinguishable OPS E in C3 ⊗ C3 not belonging to any
of (1), (2), and (3). Then by Proposition 6 and the corollary
of Theorems 4, we have 5 ≤ |E| ≤ 8. Furthermore, from
Theorem 7, E is extensible to an OPB E ′. Since E ′ must
be LOCC-indistinguishable (and thus irreducible), it has a
rectangular representation using R9, by Lemma 11. Since E
does not belong to Class (3), there exists a state |α〉|β〉 in
E ′−E not contained in the rectangle R5. Thus E ′−{|α〉|β〉}
is LOCC-distinguishable, by Proposition 10. So must be E
since E ⊆ E ′ − {|α〉|β〉}, which is a contradiction. Thus any
LOCC-indistinguishable OPS must belong to (1), (2), or (3).

ut
Our method can also be used to give an alternative proof

for the fact that there is no LOCC-indistinguishable OPSs
in 2 ⊗ n spaces observed in Ref. [3]. It remains an open
problem to extend our result to the complete collection of
LOCC-indistinguishable OPSs in spaces of a dimension higher
than 3 ⊗ 3. To this end, it may be difficult to extend our
technique as the rectangular representation lemma is not true
for all dimensions. For example, for any θ, 0 < θ < π/2 and
θ 6= π/4, one can show that the following OPB in the 2 ⊗ 4
dimensional space does not have a rectangular representation:

|ψ1〉 = |0〉 ⊗ |0 + 1〉,
|ψ2〉 = |0〉 ⊗ |0− 1〉,
|ψ3〉 = |1〉 ⊗ (cos θ|0〉+ sin θ|1〉),
|ψ4〉 = |1〉 ⊗ (sin θ|0〉 − cos θ|1〉),
|ψ5〉 = |0 + 1〉 ⊗ |2 + 3〉,
|ψ6〉 = |0 + 1〉 ⊗ |2− 3〉,
|ψ7〉 = |0− 1〉 ⊗ (cos θ|2〉+ sin θ|3〉)
|ψ8〉 = |0− 1〉 ⊗ (sin θ|2〉 − cos θ|3〉).

One may generalize the notion of rectangular representations
through a recursive definition. Unfortunately, there also exist
OPBs that do not admit such a generalized rectangular rep-
resentation. We note that an even more general concept is
that of unwindability, defined by DiVincenzo and Terhal [23].
Therefore, a deeper understanding of unwindable OPSs may
lead to a better understanding of LOCC-indistinguishable
OPSs in higher dimensions.

III. CHARACTERIZATION OF LOCALLY
INDISTINGUISHABLE OPS IN C2 ⊗ C2 ⊗ C2

This section is devoted to a complete characterization of
LOCC-indistinguishable OPS in C2⊗C2⊗C2 space. Known
facts parallel to Proposition 6 and Theorem 7 in Sec. II are:

Proposition 12 ( [5]): An OPS E in C2⊗C2⊗C2 is LOCC-
distinguishable if |E| ≤ 3.

Theorem 13 ( [24]): Any UPB E in C2 ⊗ C2 ⊗ C2 has
exactly 4 elements.

Let B8 = {|ψi〉 : 1 ≤ i ≤ 8} be an (irreducible) OPB in
C2 ⊗ C2 ⊗ C2 where

|ψ1〉 = |0〉 ⊗ |0〉 ⊗ |γ〉,
|ψ2〉 = |0〉 ⊗ |0〉 ⊗ |γ⊥〉,
|ψ3〉 = |1〉 ⊗ |0〉 ⊗ |0〉,
|ψ4〉 = |1〉 ⊗ |β〉 ⊗ |1〉,
|ψ5〉 = |1〉 ⊗ |β⊥〉 ⊗ |1〉,
|ψ6〉 = |0〉 ⊗ |1〉 ⊗ |1〉,
|ψ7〉 = |α〉 ⊗ |1〉 ⊗ |0〉,
|ψ8〉 = |α⊥〉 ⊗ |1〉 ⊗ |0〉,

and |x〉 6= |0〉, |1〉 for x = α, β, γ. For any state |x〉 in a two
dimensional Hilbert space, denote by |x⊥〉 the unique state
which is orthogonal to |x〉. Let

B6 = {|ψi〉, i = 1, 2, 4, 5, 7, 8}.
Proposition 14: A subset of B8 is LOCC-indistinguishable

if and only if it contains B6.
Proof: For the “if” direction, we prove by contradiction

that B6 is LOCC-indistinguishable. Suppose that B6 can be
distinguished by an LOCC protocol. Without loss of generality,
assume that the first step in the protocol is for Alice to apply a
non-destructive measurement with the measurement elements
M0 and M1, such that M†0M0 6= 0 and M†1M1 6= 0. Since
|ψ7〉 and |ψ8〉 overlap on both Bob and Carol’s components,
|α〉 and |α⊥〉 must remain orthogonal after the measurement.
Therefore

{M†0M0,M
†
1M1} = {|α〉〈α|, |α⊥〉〈α⊥|}.

Since |α〉, |β〉, |γ〉 6= |0〉, |1〉, 〈0|M†0M0|1〉 6= 0, 〈0|β〉〈γ|1〉 6=
0. Thus 〈ψ1|M†0M0|ψ4〉 6= 0, contradicting to the assumption
that |ψ1〉 and |ψ4〉 are be perfectly distinguished at the end of
the protocol. Therefore B6 is LOCC-indistinguishable.

To prove the “only if” direction, we give an LOCC protocol
to distinguish {|ψi〉 : 2 ≤ i ≤ 8} as follows; other cases
are similar. Carol first performs a projective measurement
according to the computational basis {|0〉, |1〉} and broadcasts
the measurement outcome to Alice and Bob. If the outcome
corresponding to |0〉 is observed, then Alice and Bob know
that the state they share is among the set

{|0〉|0〉, |1〉|0〉, |α〉|1〉, |α⊥〉|1〉}
which can be further distinguished by LOCC between them.
Similarly, if the outcome of |1〉 is observed, Alice and Bob
can also determine the state by LOCC.

In what follows, we completely characterize all LOCC-
indistinguishable OPSs in C2⊗C2⊗C2. Two sets of multipar-
tite states E and E ′ in Hilbert space HA⊗HB⊗HC are said to
be locally unitarily equivalent if there exist unitary operators
UA, UB , and UC acting on HA, HB , and HC , respectively,
such that

E ′ = {UA|α〉 ⊗ UB |β〉 ⊗ UC |γ〉 : |α〉|β〉|γ〉 ∈ E}.
Note that locally unitarily equivalent sets have the same
LOCC-distinguishability.
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Theorem 15 (Main Theorem of Sec. III): An OPS in C2 ⊗
C2⊗C2 is LOCC-indistinguishable if and only if it is a UPB
or locally unitarily equivalent to a subset of B8 containing B6.

To prove this Main Theorem, we present first a lemma.
Lemma 16: Let E be a 2⊗2⊗2 dimensional OPS in which

any two states align on at most one component. Then |E| ≤ 5.
Proof: First fix a state, say, |ψ0〉 = |α0〉|β0〉|γ0〉 ∈ E . Let

E1 = {|α〉|β〉|γ〉 ∈ E : |α〉 = |α⊥0 〉},
E2 = {|α〉|β〉|γ〉 ∈ E : |β〉 = |β⊥0 〉},
E3 = {|α〉|β〉|γ〉 ∈ E : |γ〉 = |γ⊥0 〉}.

Then E = {|ψ0〉} ∪ E1 ∪ E2 ∪ E3. Without loss of generality,
assume |E1| ≥ |E2|, |E3|. We claim that |E1| ≤ 2. Otherwise
|E ′1| ≥ 3 where

E ′1 = {|β〉|γ〉 : |α⊥0 〉|β〉|γ〉 ∈ E1}.
From orthogonality, we can easily show that there are two
states in E ′1 which align on Bob’s or Carol’s component, so
the corresponding states in E align on at least two components,
contradicting the assumption of E . Furthermore, if |E1| ≤ 1
then we are done since |E| ≤ 4. So we need only consider the
case when |E1| = 2. Let us assume

E1 = {|α⊥0 〉|β1〉|γ1〉, |α⊥0 〉|β⊥1 〉|γ2〉}
where |γ1〉 6= |γ2〉. There are two cases to consider.

Case 1. E1 ∩ E2 = ∅. In this case, |β0〉 6= |β1〉, |β⊥1 〉. Then
for any |α〉|β⊥0 〉|γ〉 ∈ E2, we have |α〉 = |α0〉 since |γ〉 6⊥ |γi〉
must hold for either i = 1 or 2. Thus |E2| ≤ 1. If E2 = ∅
then we are done. Otherwise let E2 = {|α0〉|β⊥0 〉|γ3〉} where
|γ3〉 6= |γ0〉. Then for any |α〉|β〉|γ⊥0 〉 ∈ E3 − E1, from

|α〉|β〉|γ⊥0 〉 ⊥ |α0〉|β⊥0 〉|γ3〉
we have |β〉 = |β0〉 since |α〉 6= |α⊥0 〉. Thus |E3 − E1| ≤ 1,
and then |E| ≤ 5.

Case 2. E1∩E2 6= ∅. In this case |β0〉 = |β1〉 or |β⊥1 〉. Let us
assume the former case. Then |γ0〉 6= |γ1〉 and |E2 − E1| ≤ 1.
Furthermore, for any |α〉|β〉|γ⊥0 〉 ∈ E3 − E2, from

|α〉|β〉|γ⊥0 〉 ⊥ |α⊥0 〉|β0〉|γ1〉
we have |α〉 = |α0〉 since |β〉 6= |β⊥0 〉. Thus |E3 − E2| ≤ 1,
and then |E| ≤ 5.

The next lemma characterizes all irreducible OPBs (thus
LOCC-indistinguishable OPBs) in C2 ⊗ C2 ⊗ C2 space.

Lemma 17 (Main Lemma of Sec. III): Any irreducible
OPB in C2 ⊗C2 ⊗C2 space is locally unitarily equivalent to
B8.

Proof: Let E = {|ψi〉 = |αi〉|βi〉|γi〉 : i = 1, . . . , 8} be
an irreducible OPB in C2 ⊗C2 ⊗C2. First, from Lemma 16,
we assume |ψ1〉 = |0〉|0〉|γ〉 and |ψ2〉 = |0〉|0〉|γ⊥〉 (We can
always make such an assumption because of the local unitary
equivalence). Let

E1 = {|ψi〉 ∈ E : |αi〉 = |1〉},
E2 = {|ψi〉 ∈ E : |βi〉 = |1〉}.

Then E1∪E2 = {|ψi〉 : i = 3, . . . , 8}. Assume |E1| ≥ |E2|. We
have |E1| ≤ 4 from the constraint of dimension. Furthermore,

if |E1| = 4 then for any |ψi〉 ∈ E2 − E1, |αi〉 = |0〉 by |ψi〉 ⊥
E1, contradicting E being irreducible. Then we have |E1| = 3,
and so |E2| = 3 and E1 ∩ E2 = ∅.

Next we will show that there are exactly 1 state in E2 having
|0〉 on Alice’s component. Let

E ′2 = {|ψi〉 ∈ E2 : |αi〉 = |0〉}.
Then |E ′2| < 3 from the assumption that E is irreducible. If
|E ′2| = 0, then for any |α〉|β〉|γ〉 ∈ E2, |α〉 6= |0〉, so |β〉|γ〉
must be the unique state orthogonal to the set {|βi〉|γi〉 : |ψi〉 ∈
E1}. So |E2| ≤ 2, a contradiction. Furthermore, if |E ′2| = 2
and let E ′2 = {|0〉|1〉|γi〉 : i = 1, 2} where |γ1〉 ⊥ |γ2〉, then
for the state |ψk〉 ∈ E2 − E ′2, |γk〉 should be simultaneously
orthogonal to |γ1〉 and |γ2〉 (note that E1 ∩ E2 = ∅), which is
impossible. So we conclude that |E ′2| = 1. Similarly, |E ′1| = 1
where E ′1 = {|ψi〉 ∈ E1 : |βi〉 = |0〉}.

Summarizing all the conditions derived above, we can
assume that

|ψ1〉 = |0〉 ⊗ |0〉 ⊗ |γ〉,
|ψ2〉 = |0〉 ⊗ |0〉 ⊗ |γ⊥〉,
|ψ3〉 = |1〉 ⊗ |0〉 ⊗ |0〉,
|ψ4〉 = |1〉 ⊗ |β4〉 ⊗ |γ4〉,
|ψ5〉 = |1〉 ⊗ |β5〉 ⊗ |γ5〉,
|ψ6〉 = |0〉 ⊗ |1〉 ⊗ |γ6〉,
|ψ7〉 = |α7〉 ⊗ |1〉 ⊗ |γ7〉,
|ψ8〉 = |α8〉 ⊗ |1〉 ⊗ |γ8〉,

where none of |α7〉, |α8〉, |β4〉, |β5〉 equals |0〉 or |1〉. Then we
have |γ4〉 = |γ5〉 = |1〉 from the fact that

|ψ3〉 ⊥ {|ψ4〉, |ψ5〉},
and then |β4〉 ⊥ |β5〉. Similarly, we can prove that |γ7〉 =
|γ8〉 = |γ⊥6 〉 and |α7〉 ⊥ |α8〉. Furthermore, we find that |γ8〉 =
|0〉 from the orthogonality of |ψ4〉 and |ψ8〉.

Let |α7〉 = |α〉 and |β4〉 = |β〉. Notice that the irreducibility
of E implies |x〉 6= |0〉, |1〉 for x = α, β, γ. So E is locally
unitarily equivalent to B8.

We are now ready to prove Main Theorem 15.

Proof of Theorem 15. The “if” part is precisely the combi-
nation of Theorem 3 (2) and Proposition 14, and the simple
fact that locally unitarily equivalent sets have the same LOCC-
distinguishability, so we need only to prove the “only if” part.

Suppose there exists an LOCC-indistinguishable OPS E in
C2 ⊗ C2 ⊗ C2 which is neither a UPB nor locally unitarily
equivalent to a subset of B8 containing B6. Then by Proposi-
tion 12 and the corollary of Theorems 4, we have 4 ≤ |E| ≤ 7.
Furthermore, from Theorem 13, E can be extended to an OPB
E ′. Since E ′ must be LOCC-indistinguishable (and thus irre-
ducible), it is locally unitarily equivalent to B8, by Lemma 17.
Let UA⊗UB ⊗UC be the local unitary transformation which
relates E ′ to B8. Then there exists a state |α〉|β〉|γ〉 in E ′ −E
such that UA|α〉⊗UB |β〉⊗UC |γ〉 is neither |ψ3〉 nor |ψ6〉. Thus
E ′−{|α〉|β〉|γ〉} is LOCC-distinguishable, by Proposition 14.
So must be E since E ⊆ E ′ − {|α〉|β〉|γ〉}, which is a
contradiction. ut
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Combining Theorems 13 and 15, an LOCC-
indistinguishable OPS in the C2 ⊗ C2 ⊗ C2 space must
have precisely 4, 6, 7, or 8 elements. Similar to the
argument presented in Sec. II, whether or not an OPS
in C2 ⊗ C2 ⊗ C2 is LOCC-indistinguishable can also be
determined computationally.

IV. CONCLUSION

We present in this paper a complete and computationally
verifiable characterization of all LOCC-indistinguishable OPSs
in both C3 ⊗ C3 and C2 ⊗ C2 ⊗ C2 spaces. Our result
can be interpreted as an indication that LOCC protocols are
quite powerful. Along this line, Walgate et al. [15] proved
that LOCC is sufficient to reliably distinguish two multi-
partite orthogonal pure states, even when they are entangled.
When the two states are not orthogonal, LOCC protocols can
reach the global optimality in either conclusive discrimination
[16] or inconclusive but unambiguous discrimination [17].
Therefore, perhaps the whole class of LOCC-indistinguishable
OPSs has much simpler structure than one may fear.

There are multipartite operators other than those distinguish-
ing OPSs that do not create entanglement. Thus it remains an
open problem to characterize all such operators that cannot be
realized by LOCC, even in the 3⊗ 3 and 2⊗ 2⊗ 2 dimension
case.

We observe that if an OPB has a rectangular representation
(R, α, β, U, V ), then there is a simple LOCC protocol to
identify an unknown state given two copies of it: the first
copy is projected to the bases α and β so that the rectangle
R containing the state is identified, then the second copy is
measured in the product basis {UR|αi〉⊗VR|βj〉 : (i, j) ∈ R}.
Given an OPS, determining the number of copies of an
unknown state necessary to admit an LOCC distinguishing
protocol is an interesting generalization of determining if it is
LOCC-distinguishable.

Another interesting generalization is to determine the opti-
mal probability of identifying an unknown state from a given
OPS by LOCC. Finally, it remains possible that an operator
cannot be realized by LOCC yet may be approximated to an
arbitrary precision. Identifying such an operator or proving
that none exists is a fascinating open problem.

ACKNOWLEDGMENTS

We thank Runyao Duan and Zhengwei Zhou for discus-
sions, and for pointing out related works. Y. Shi thanks Peter
Shor for hosting him at MIT, where part of this work was
done.

REFERENCES

[1] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical de-
scription of physical reality be considered complete?” Physical Review,
vol. 47, no. 10, p. 777, 1935.

[2] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics, vol. 1,
no. 3, p. 195, 1964.

[3] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W.
Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without
entanglement,” Physical Review A, vol. 59, no. 2, p. 1070, 1999.

[4] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and
B. M. Terhal, “Unextendible product bases and bound entanglement,”
Physical Review Letters, vol. 82, no. 26, p. 5385, 1999.

[5] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal,
“Unextendible product bases, uncompletable product bases and bound
entanglement,” Communications in Mathematical Physics, vol. 238,
no. 3, pp. 379–410, 2003.

[6] S. Ghosh, G. Kar, A. Roy, A. Sen, and U. Sen, “Distinguishability of
bell states,” Physical Review Letters, vol. 87, no. 27, p. 277902, 2001.

[7] S. Ghosh, G. Kar, A. Roy, D. Sarkar, A. Sen, and U. Sen, “Local
indistinguishability of orthogonal pure states by using a bound on
distillable entanglement,” Physical Review A, vol. 65, no. 6, p. 062307,
2002.

[8] J. Walgate and L. Hardy, “Nonlocality, asymmetry, and distinguishing
bipartite states,” Physical Review Letters, vol. 89, no. 14, p. 147901,
2002.

[9] P. BadziaŁg, M. Horodecki, A. Sen, and U. Sen, “Locally accessible
information: How much can the parties gain by cooperating?” Physical
Review Letters, vol. 91, no. 11, p. 117901, 2003.

[10] P.-X. Chen and C.-Z. Li, “Distinguishing the elements of a full product
basis set needs only projective measurements and classical communi-
cation,” Physical Review A (Atomic, Molecular, and Optical Physics),
vol. 70, no. 2, pp. 022 306–4, 2004.

[11] S. De Rinaldis, “Distinguishability of complete and unextendible product
bases,” Physical Review A (Atomic, Molecular, and Optical Physics),
vol. 70, no. 2, pp. 022 309–5, 2004.

[12] H. Fan, “Distinguishability and indistinguishability by local operations
and classical communication,” Physical Review Letters, vol. 92, no. 17,
pp. 177 905–4, 2004.

[13] ——, “Distinguishing bipartite states by local operations and classical
communication,” Physical Review A (Atomic, Molecular, and Optical
Physics), vol. 75, no. 1, pp. 014 305–4, 2007.

[14] J. Watrous, “Bipartite subspaces having no bases distinguishable by
local operations and classical communication,” Physical Review Letters,
vol. 95, no. 8, pp. 080 505–4, 2005.

[15] J. Walgate, A. J. Short, L. Hardy, and V. Vedral, “Local distinguishability
of multipartite orthogonal quantum states,” Physical Review Letters,
vol. 85, no. 23, p. 4972, 2000.

[16] S. Virmani, M. F. Sacchi, M. B. Plenio, and D. Markham, “Optimal
local discrimination of two multipartite pure states,” Physics Letters A,
vol. 288, no. 2, pp. 62–68, 2001.

[17] Y.-X. Chen and D. Yang, “Optimal conclusive discrimination of two
nonorthogonal pure product multipartite states through local operations,”
Physical Review A, vol. 64, no. 6, p. 064303, 2001.

[18] ——, “Optimally conclusive discrimination of nonorthogonal entangled
states by local operations and classical communications,” Physical
Review A, vol. 65, no. 2, p. 022320, 2002.

[19] Z. Ji, H. Cao, and M. Ying, “Optimal conclusive discrimination of two
states can be achieved locally,” Physical Review A (Atomic, Molecular,
and Optical Physics), vol. 71, no. 3, pp. 032 323–5, 2005.

[20] R. Duan, Y. Feng, Z. Ji, and M. Ying, “Distinguishing arbitrary
multipartite basis unambiguously using local operations and classical
communication,” Physical Review Letters, vol. 98, no. 23, pp. 230 502–
4, 2007.

[21] S. M. Cohen, “Local distinguishability with preservation of entangle-
ment,” Physical Review A (Atomic, Molecular, and Optical Physics),
vol. 75, no. 5, pp. 052 313–19, 2007.

[22] M. Horodecki, A. Sen, U. Sen, and K. Horodecki, “Local indistin-
guishability: More nonlocality with less entanglement,” Physical Review
Letters, vol. 90, no. 4, p. 047902, 2003.

[23] D. P. DeVincenzo and B. M. Terhal, “Product bases in quantum
information theory,” in Proceedings of the XIII International Congress
on Mathematical Physics. London: Int. Press, Boston, 2000, pp. 399–
407.

[24] S. B. Bravyi, “Unextendible product bases and locally unconvertible
bound entangled states,” Quantum Information Processing, vol. 3, no. 6,
pp. 309–329, 2004.



“© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works.”


	Pages from 2008007819-2
	Pages from 2008007819

