
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.8, August 2008, pp.1920−1932 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.01920 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

一种用于 Marching-Graph 图形绘制的快速收敛布局算法
∗

全 武 1+, 黄茂林 2

1(School of Information Technologies, University of Sydney, NSW 2006, Australia)
2(Faculty of Information Technology, University of Technology, Sydney, NSW 2007, Australia)

A Fast Convergence Layout Algorithm for Drawing Graphs in Marching-Graph

QUAN Wu1+, HUANG Mao-Lin2

1(School of Information Technologies, University of Sydney, NSW 2006, Australia)
2(Faculty of Information Technology, University of Technology, Sydney, NSW 2007, Australia)

+ Corresponding author: E-mail: kevin.wuquan@gmail.com

Quan W, Huang ML. A fast convergence layout algorithm for drawing graphs in Marching-Graph. Journal
of Software, 2008,19(8):1920−1932. http://www.jos.org.cn/1000-9825/19/1920.htm

Abstract: Marching-Graph is a new visualization that integrates the graph metaphor and the spatial metaphor into
a single visualization. It provides users with highly interactive maps for accessing the logical structures of
information that has the geographical attributes. Instead of presenting known facts onto maps, it provides a
mechanism for users to visually analyze and seek unknown knowledge through effective human-map interaction and
navigation across different spaces. However, the traditional force-directed layout algorithms are very slow in
reaching an equilibrium configuration of forces. They usually spend tens of seconds making the layout of a graph
converge. Thus, those force-directed layout algorithms can not satisfy the requirement for drawing a sequence of
graphs rapidly, while the users are quickly marching through the geographic regions. This paper proposes a fast
convergence layout method that speeds up the interaction time while users are progressively exploring a sequence of
graphs through a series of force-directed layouts in Marching-Graph. It essentially combines a radial tree drawing
method and a force-directed graph drawing method to achieve the fast convergence of energy minimization.
Key words: graph and network visualization; graph drawing; information analytics; information visualization

systems; visual design

摘 要: Marching-Graph 是一种将图形隐喻技术和空间隐喻技术集成为一体的新的可视化方法.它为用户提供了

高度可交互性地图,使用户可访问那些具有地理属性的信息的逻辑结构.它通过有效的人图交互和跨空间浏览为用

户提供了一种可视分析和挖掘未知信息的机制,而不是将已知的信息呈现在地图上.然而,传统的 導力 向布局算法在

达到力量均衡配置方面非常的慢.为使一个图形布局收敛,它们通常需花费几十秒的时间.因此,当用户快速行进于

地理区间时,那些 導力 向布局算法就不能满足快速绘制一系列图形的要求.提出了一种快速收敛布局方法,当用户在

Marching-Graph 中通过 導力 向布局逐步探究一系列图形时,它可加速交互时间.通过结合辐射树绘图技术和力导向

图形绘制方法来取得能量最小化的快速收敛.
关键词: 图形和网络可视化;图形绘制;信息分析;信息可视化系统;可视设计

∗ Received 2008-01-08; Accepted 2008-04-18

全武 等:一种用于 Marching-Graph 图形绘制的快速收敛布局算法 1921

中图法分类号: TP391 文献标识码: A

1 Introduction

Many spatially-related information systems such as Geographic Information Systems (GIS) provide predefined
functions allowing the automatic generation of graphic maps to be used for viewing, exploring and manipulating the
data sets which contain spatial attributes. These maps usually employ interactive graphic techniques to enable their
interactive capacities. We call such maps the “spatial frame of references”. Displaying a familiar geometric map as
the background, on which spatial related data items are positioned, aims at amplifying the human cognition process.
In the design of user interfaces, while most existing spatial data mining methods consider the use of a spatial
metaphor (the graphic map) to amplify the cognition process in navigating the geographic data, they do not care
about the human factors involved in viewing and exploring mined data structures (such as a variety of output
patterns). In most cases, they usually use icon positioning, colour-coding and simple geometric symbols to visualize
the statistical results that associate with particular geographic regions. Alternatively, only a textual interface is
provided for users to exploit the underlying patterns. However, in many cases, the output patterns are complex, and
sometimes include multiple types of relationships. Much of these data is of multivariate nature, featuring from two
to hundreds of attributes. Therefore, a simple statistical or textual output cannot satisfy the need to unveil the
potential patterns. Hence there is an urgent need to find new efficient user interfaces that are human-centered.

Visual approaches to data exploration and analysis have arisen in many different areas and now been
effectively applied. The database community has coined the phrase “visual data mining” to describe their efforts,
while the terms “exploratory visual analysis” or “exploratory data analysis” are more common within the statistics
community. During the above visual exploratory process, graph visualization has been used as one of the primary
vehicles for the viewing, navigation and manipulation tasks through visual transformations.

Graph visualization uses a graph metaphor to map the extracted patterns onto one or more graphs, and then
applies the graphic rendering techniques to converting graphs into the visual structures for display. Graph
visualization concentrates on the automatic positioning of vertices and edges on the screen. A good layout of graph
allows users to understand data more easily. Moreover, using an interactive graphics will facilitate users to explore
the output patterns and discover the underlying information. Typical existing applications of visual spatial data
mining[1−3] combine the information visualization with the thematic maps for the exploration of both geographic
locations and analytical patterns.

However, most visual spatial data mining methods divide the spatial metaphor and the graph metaphor into
different visual objects (such as windows, widgets) for display (see Fig.1). The divided displaying approaches do
not explicitly represent the correlation between any two visual metaphors, which would possibly cause the
following problems:

• Lack of the overall context of visualization: if the entire visualization is separated into several pieces,
then the visualization will lose its completeness. This will greatly reduce the readability and
understandability of the overall visual structure. Shifting the focus across different pieces of
visualization will cost users extra cognitive effort.

• Inconvenience of cross navigation: it is inconvenient for users to navigate across different visual
metaphors that are located in different pieces of visualization.

1922 Journal of Software 软件学报 Vol.19, No.8, August 2008

Fig.1 A visualization screen collected from GroVISTA that divides the spatial
visual metaphor and other analytical visualizations into different windows

To solve the problems mentioned above, Kreuseler and Schumann proposed a new approach called Marching
Sphere[4] in 2002, which integrated the spatial metaphor and the graph metaphor into a single visualization. In order
to implement the combination of both embodiments of graphs and spatial frame of reference, Marching Sphere
renders the two-dimensional map onto a virtual 3D scene. It represents the complex relational information structures
by using 3D graphs that are just located above the areas where the interactive map is displayed. This approach
achieves the unique mapping between graph-structured information and spatial references. While Marching Sphere
is a good solution to combining two visual metaphors in visualizing complex information, it has the following
weaknesses: 1) the implementation of 3D graphics is computationally expensive on desktop PCs; 2) it is practically
difficult to navigate across 2D and 3D visual metaphors.

Therefore, we proposed a new fused visual metaphor, called Marching-Graph[5] in 2005, which replaced 3D
spheres with 2D graphs, for the exploration of spatially related data. We drew the abstract data structure (as a graph)
in a 2D circular geometric area above a focused geospatial region linking to that area. At any instant of time, we
only showed the detailed layout of one particular graph above a geospatial area of interest to present the relational
data associated with this area. It allowed the user to “march” on the whole geospatial map region by region, through
the opening and displaying of a series of graphs. Moreover, it provided a variety of 2D interactive methods (include
zooming, filtering, highlighting, coloring etc.) allowing users to interactively read and interpret the spatially
referenced data through the rich graphical representations (see Fig.2). Since both of the spatial metaphor and the
graph metaphor were represented in 2D graphical spaces, this approach was much easier and straightforward to be
implemented and used than the Marching Sphere approach.

Force-directed layout algorithms[6−9] are very popular in graph visualization due to their flexibility, ease of
implementation, and the aesthetically pleasant drawings they produce. These algorithms always seek an equilibrium
configuration of forces to reach a locally minimized energy of layout. This is usually achieved by using a simple
“follow your nose” algorithm that smoothly moves all nodes from their initial positions to the final positions
through iterations towards an equilibrium configuration of forces. In general, the “follow your nose” algorithm
works as follows, with nodes initially placed at random locations of a geometrical plane. At each iteration (that
could be implemented as an animation loop), the total force applied on each node is computed, and each node is
moved in the direction of the force by a small amount, thus maintaining the human mental map.

全武 等:一种用于 Marching-Graph 图形绘制的快速收敛布局算法 1923

Fig.2 An illustration of the Marching-Graph that consists of several graphs
with one opened in a green circular region and others closed

However, as a tradeoff of such animated positioning, most of force-directed layout algorithms are slow in
reaching an equilibrium configuration of forces. In other words, the convergence time spent in moving nodes from
their initial positions to their final positions is quite long. It usually takes tens of seconds to complete an equilibrium
configuration of forces to reach the final layout.

In many real world applications when users
want to use graph visualization to build their
interactive user interfaces which involve the
changes of navigational views during the
exploration of data, the convergence time of
force-directed drawing algorithms becomes a
crucial issue affecting the efficiency (or the speed)
of the navigation. For example, in Marching-
Graph, a sequence of graphs G1,G2,…,Gn
associated with the corresponding geographical
regions need to be drawn and displayed when users
“marching” through the map (see Figs.2 & 3). This
requires the layouts D(G1),D(G2),…,D(Gn) to be
computed as quickly as possible, to respond to the
users’ interaction in real-time. If we use a
force-directed algorithm to draw a sequence of
graphs, then each time when opening a new graph,
the convergence time spent in moving vertices of
that new graph from their randomly generated

Fig.3 A graph layout produced by Force-Directed

Algorithm in Marching-Graph

1924 Journal of Software 软件学报 Vol.19, No.8, August 2008

positions to their final positions is significant. This will greatly slow down the real-time response during navigation.
In this paper, we propose a fast convergence method for drawing force-directed layout graphs. This algorithm

is effective in speeding up the interaction time when users explore a series of graphs G1,G2,…,Gn by displaying a
sequence of corresponding force-directed layouts D(G1),D(G2),…,D(Gn). We essentially combine a radial tree
drawing method and a force-directed graph drawing method to achieve the fast convergence of energy
minimization. The transformation of the radial drawing of a graph G to the final force-directed layout will not only
greatly reduce the convergence time of the drawing, but also preserve the user’s mental map when moving from one
view to another.

2 Method

Assuming a connected and tree-like graph G={V,E}, G contains a backbone tree T′={r,V′,E′}, where r is the
root of T′; V′=V; and E′⊆E is a set of tree edges. As a tree-like graph, G consists of a small set of non-tree edges E″,
where E″=E−E′. Thus, graph G could be approximately defined as G={T′,E″}, where E″⊂E is a non-tree edge set.
The tree-like graphs widely exist in social networks which are examined in Marching-Graph. For example, the
graphs with 129 and 160 vertices, which are used in the following experimental evaluation, are a friendship network
and a network of websites respectively. We first extract the backbone tree T′={r,V′,E′} from G. This can be done
through a breadth-first search.

Since the radial drawing algorithm is straightforward and computationally inexpensive, we then use a radial
drawing algorithm to draw T’ as the backbone layout of graph G. Another reason that we choose the radial drawing
method to create the initial layout of graphs is this method satisfies the domain requirements of our initial
application: Marching-Graph. Marching-Graph uses a series of circular areas to display graphs. Therefore, the
pattern of a series of concentric rings used in radial drawings is very close to the expected final layout of graphs in
the Marching-Graph application.

Once the backbone layout of G is calculated, we simply draw all edges in E’’ into the layout as a set of
straight-lines linking between each pair of start-node and end-node, without changing any node positions predefined
in the backbone layout.

In the final step, we apply a force-directed drawing algorithm to the above layout to replace the initial radial
drawing of graph G. We aim to smooth the transition between two layouts when switching from the radial drawing
to the final force-directed drawing of G.

After the switch, we could incrementally explore the graph G through the change of views by using an on-line
animated force-directed graph drawing method[10]. The pipeline of this fast convergence layout algorithm is
diagrammed in Fig.4. We now discuss these steps one by one in details.

Information
repository Graph data

Abstract
Radial tree

Impose tree
structure

Radial graph

Add Non-
tree edges

Force-directed
layout

Apply fore-directed
method Interact with

Users

Fig.4 Pipeline of fast convergence layout algorithm

全武 等:一种用于 Marching-Graph 图形绘制的快速收敛布局算法 1925

2.1 Data abstraction

The first step of visualization abstracts a graph G from a given spatial referenced information repository. The
data will be stored in XML files in the XGMML-format. XGMML (eXtensible Graph Markup and Modelling
Language) is an XML application based GML standard that is commonly used for graph description. This modelling
language uses tags to describe vertices and edges of a graph. Using XGMML to describe graphs enables graph data
to be exchanged between different authoring and browsing tools.

In many cases, the information repository we want to visualize could store mined data which may contain
complex relational structures and from which we might abstract more than one graph. Furthermore, in most cases
this information repository could be dynamic so that the content of the repository may update from time to time
corresponding to the data mining process. Therefore, the use of an online visualization method as a part of the
visual data process is more appropriate.

2.2 Imposing a tree structure

We assume that the given graph G=(V,E) is connected and has a set of vertices V={v1,v2,…,vn} and a set of
edges E⊆V×V. To use the existing radial tree drawing algorithm to create the backbone layout of G, we have to
extract a tree T′={r,V′,E′} from G. This can be done through a breadth-first search to establish a new edge set E′ in
which each edge ei is in tree T’.

In order to extract tree structures from arbitrary graphs, we use a series of adjacent link lists AdjLinkedLists to
record each pair of connected vertices in graph G. We then choose a vertex vi∈V as the root r. Note that we usually
choose a vertex vi which has the highest degree as the root. Starting from this root vertex, we apply a breadth-first
search algorithm to these AdjLinkedLists.
After the search, we obtain a series of
parent-child lists ChildLinkedLists which
record the parent-child relationships of all
vertices in tree T’ ⊆G where
ChildLinkedLists ⊆AdjLinkedLists.

Then the parent-child relationships are
recorded in the ChildLinkedLists which is
the data structure of T’. The vertex
neighboring relationships recorded in the
AdjLinkedLists but not in the
ChildLinkedLists are non-tree edges. The
breadth-first search by using adjacent link
lists can be finished in time O(V+E).

tree edge

non-tree edge

Fig.5 An example of the radial drawing of G rooted at vertex “A”

For example, Fig.5 shows an instance
of applying the above algorithm to a small
graph G rooted at vertex “A”. We can see
that after the breadth-first search a tree T’ is
extracted from the graph G, where edges
(B1, B2), (B5, C1), (B2, C3), (B4, C5), (C7,
C8), coloured in light gray, are collected in
the edge set E’’ as non-tree edges while the

1926 Journal of Software 软件学报 Vol.19, No.8, August 2008

others are collected into E’ as tree edges.

2.3 Radial layout of tree T’

Once the implicit tree structure is extracted, we can now apply the traditional radial tree drawing method to the
tree T’. We place each vertex vi∈V on one of the sequential concentric circles C1,C2,…,Ck centred in the display
medium, depending on the graph-theoretic distance d(r, vi). The algorithm for radial drawing is adapted from[11,12]
and stated below:

Algorithm DrawSubTree (v, ri, α1, α2) {
 // the point with polar coordinates
ρ(v) = poloar(ri, (α1+α2)/2);

 s=(α2−α1)/ w(v);
 α=α1;

 Iterator itr = v.getChildren();
 While(itr.hasnext()) {
 //get vertex v′s child u

Node u = (Node) itr.next();
DrawSubTree(u, ρ+δ, α, α+s*w(u));
α = α + s*w(u);

}
}

In the above algorithm, v is the root of a sub-tree of T′ that is drawn in the current recursion; ri is the radius of

circle Ci on which the vertex v lies. ρ(v) is the location of vertex v; α1 and α2 are the start and end angles
respectively, which compose the annulus wedge in which the vertices of sub-tree rooted at v locate; w(v) represents
the number of leaves in the sub-tree rooted at vertex v. The δ is a constant denoting the distance between two
consecutive concentric rings. We call the procedure DrawSubTree(r,0,0,2π) to draw the entire radial tree T′ on the
plane. The overall running time of this algorithm is O(V). Figure 5 shows the example of such drawings. This radial
drawing of T′ is used as the backbone layout of G.

2.4 The radial drawing of complete G

Once the backbone layout of G is drawn, we could add edges in E″ to the layout without changing any vertex
positions predefined in the backbone layout. In the example shown in Fig.5, we could simply add 5 non-tree edges
(B1, B2), (B5, C1), (B2, C3), (B4, C5) and (C7, C8) to the layout.

As assumed at the beginning, we mainly deal with tree-like graphs that contain only a small number of
non-tree edges. Therefore, the addition of several non-tree edges will not affect the quality of the layout
significantly, in terms of the aesthetic rules and readability.

2.5 Switching to force-directed drawing

While the radial layout algorithm is good for drawing small static graphs in Marching-Graph application, it is
unsuited for incremental drawing of large (or dynamic) graphs. For example, Yee et al. proposed an animated
exploration of radial layout graphs[13], which linearly interpolates the polar coordinates of the vertices during the

全武 等:一种用于 Marching-Graph 图形绘制的快速收敛布局算法 1927

transition of views. As a result of using that technique, the layout changes greatly when moving from an old focus
vertex to a new one during the navigation of a graph. Thus, the broken connection between two layouts will
significantly increase the cognition overload for the user to understand the changes between views.

We therefore hand over the initial radial layout to a force-directed layout, whose effectiveness in view of
transformation through its own animation loops and incremental explorations has been demonstrated in our initial
experiments[10].

In the final step, we apply a force-directed drawing algorithm to the above layout to replace the initial radial
drawing. Although, an improved force-directed layout algorithm has a running time equivalent to O(V2logV). The
use of a radial drawing as the initial layout of the force-directed drawing algorithm can greatly reduce the number of
iterations to make the drawing to convergent status. However, simply applying a force-directed method to a radial
graph drawing could cause a highly disoriented rearrangement. To overcome the disorientation for the viewer, we
enforce the following constraints when switching to the force-directed layout:

1) We use the length of each edge produced in the initial radial drawing as the resting length of its spring
in the force-directed drawing.

2) Considering the repulsion force between two vertices as the inverse of their squared separation, the
major repulsion force exerted on a vertex v comes from the other vertices that are close to v. In order to
prevent the vertices from separating too far due to the repulsion force, we make the coefficient of each
spring proportional to the total descendant amount of next
two hops of the two vertices connected by that spring.
With the exception of the most outer fringe vertices, we
apply a constant spring coefficient to keep those vertices
from spreading out of the display area.

3) A tree-like graph usually contains a small number of
non-tree edges. In order to minimize the layout alteration
between the final force-directed drawing and the original
radial drawing, we waive the spring forces applied on
non-tree edges. These non-tree edges without spring forces
may create edge crossings. However, this influence can be
ignored, as the number of non-tree edges is small.

By applying these constraints, the radial layout can be smoothly
transformed to the force-directed layout. These not only facilitate to
reduce the convergence time to reach the energy minimization in
force-directed drawings, but also preserve the user’s mental maps. We
can see from Fig.6 that after switching from the radial drawing of the
example graph shown in Fig.5 to the force-directed drawing of the same graph, the layout transition is minimized
and the change between the two layouts is minimal.

Fig.6 The final force-directed layout of
the same graph shown in Fig.5 after being

transformed from its original radial
drawing. The change of layout is minimal

3 An Experimental Evaluation

In this section, we evaluate our new fast convergence layout algorithm by comparing the experimental results
with other traditional force-directed methods, in which the initial positions of vertices are usually defined either
randomly or at the centre of the display medium.

We evaluate our method against three measurements in terms of convergence time: time consumption, average

1928 Journal of Software 软件学报 Vol.19, No.8, August 2008

vertex position variance, and average vertex travel length. This experimental evaluation was carried out with four
data sets consisting of 24, 65, 129 and 160 vertices. These four data sets have 28, 73, 161, 212 edges respectively.
The final layouts of these data sets generated by our algorithm are presented in Fig.7.

In our experiment, each data set is drawn by three force-directed methods.
a) The fast convergence layout algorithm (FC method),
b) The force-directed drawing method that places the initial position of vertices randomly (FR method)
c) The force-directed drawing method that places the initial position of vertices at the origin (centre) of

the display coordinates (FO method)
The forces used in all the force-directed methods are the same. The total force exerted on vertex v is:

() ,
() uv uv

u N v u V u v
f v f

∈ ∈ ≠

= +∑ ∑ g (1)

(a) (b)

(c) (d)

Fig.7 The final force-directed layouts of four data sets consisting of
24 (28), 65 (73), 129 (161) and 160 (212) vertices (edges) generated by our algorithm

全武 等:一种用于 Marching-Graph 图形绘制的快速收敛布局算法 1929

where fuv is the force exerted on v by the spring between v and u∈N(v) which is the direct neighbourhood set of v;
guv is the n-body force exerted on v by one of the other vertices u∈V. We use a quad-tree based implementation of
the Barnes-Hut algorithm[14] for this n-body force calculation efficiently.

We used an IBM ThinkPad T30 Laptop (CPU 1.80GHz, Memory 256 MB) to run this experiment. The display
resolution was configured to 1024×768 pixels. All the graphs were drawn in a 700×700 pixels square region.

Time Consumption Time Consumption or TC is the run-time spent in drawing a graph from its initial state
to the end state, which is crucial to measuring the efficiency of force-directed graph drawing. Fast graph drawing is
essential for exploring through a series of data sets with real-time response. Therefore, our objective in this research
is to layout graphs as fast as possible. The proposed FC method attempts to speed up the convergence of traditional
force-directed drawing methods, to suit the force-directed methods for interactive graph drawings. Since the
convergence procedure of force-directed algorithms involves an infinite loop, we need to define a constant to form a
convergence condition that will terminate the drawing. Given a graph G, which consists of n vertices, the average
force AF acting on every vertex is calculated by the following formula:

1

1 ()
n

i
i

AF f
n =

= ∑ v (2)

We assume that when AF is less than a small force constant, the drawing of the graph reaches almost to the
final layout. Therefore, we terminate the convergence procedure when AF<1E−5f becomes true. We can then use the
system clock to easily count the consumed time, TC=t1–t0, where t0 is the beginning time of drawing and t1 is the
time at which AF<1E−5f stands.

The total time consumed for a FC run Rfc consists of two parts
 TC(Rfc)=TC(Rrd)+TC(Rfd) (3)

where TC(Rrd) is the time spent on calculating the initial radial drawing and TC(Rfd) is that on running the
force-directed drawing. Since neither the FR and the FO methods involves radial drawings, the accumulated time
for a FR run (or a FO run) is equal to TC(Rfd).

Due to the unpredictability of the outcomes of force-directed drawing, the convergence time of every run
varies. To accurately evaluate these methods in terms of their convergence time, we conduct ten runs R1,R2,…,R10
for each method and take the average time as the vector to measure these methods. The average TC of each method
is thus:

∑
=

=
10

110
1

i
iaverage TCTC (4)

The outcome of comparisons is illustrated in Fig.9(a). We can see that the overall performance of our FC
method is superior over the other two methods, as FC improves significantly in convergence of energy
minimization. For example, to draw Graph2 with 65 vertices, FC takes only 2.07 seconds. In contrast, FR and FO
take 8.37 and 7.88 seconds respectively, both about four times as long as the time spent by our new method. FC
outperforms FR and FO even more for drawing large graphs. When drawing Graph4 that consists of 160 vertices,
FC takes only 4.86 seconds, less than a quarter of time spent by the other two methods.

Average Vertex Position Variance Vertex Position Variance or VPV indicates the position change of a
vertex between its end position and its start position in the drawing. As shown in Fig.8(a), a VPV(vi) of vertex vi is
defined as the geometric distance between the end position Pe(vi) and the start position Ps(vi). So, the average value
of vertex position variance AVPV of G can be expressed below:

1

1() () ()
n

e i s i
i

AVPV G P v P v
n =

= −∑ (5)

1930 Journal of Software 软件学报 Vol.19, No.8, August 2008

The larger the value of AVPV (G) is, the more greatly the mental map of the graph G changes. Therefore, to
effectively preserve the mental map of layout of G after the view transformation, we should minimize the value of
AVPV(G).

The comparisons are illustrated in Fig.9(b). We can see that all AVPV values of four graphs generated by FC
method are greatly reduced in comparison with the other two methods. For example, the convergence procedure of
FC produces a low AVPV(Graph1) value of 17.86, in contrast to the values of 267.44 and 106.73, produced by the
other two methods. The result shows that the FC method could preserve the mental map much better, and hence
require less cognition overload for identifying view changes.

 (a) (b)
Fig.8 The picture (a) defines the VPV that equals to the distance between Ps and Pe.

(0,0)

Ps

Pe

P2

Pj 1

Pj

(0,0)

Ps(x0, y0)

Pe(x1, 1)

di
sta

nc
e

The picture (b) defines the VTL that equals to the length of total travel path Ps,P2,…, Pe

Average Vertex Travel Length Vertex Travel Length or VTL is the length of the entire path a vertex
travelled from its start position to its end position. VTL consists of a series of turning points Ps,P2,…,Pj−1,Pj,…,Pe,
see Fig.8(b). This measurement is important in determining the convergence time. A vertex travel length VTL is
calculated by accumulating each path segment (Pj−1,Pj) travelled in each animation loop j, see Fig.8(b). Suppose that
m iterations are required for the convergence, the VTL of a vertex vi is:

 1
1

() ()
m

i j
j

jL v P P −
=

= −∑VT (6)

Thus, the Average Vertex Travel Length AVTL of G can be calculated by the following formula:

1

1() ()
n

i
i

AVTL G VTL v
n =

= ∑ (7)

A large value of AVTL(G) implies that a particular layout method needs long time to reach the convergence
when drawing G and the average vertex position adjustment of each iteration is great as well.

Figure 9(c) shows that the overall AVTL value in our FC method is very small in contrast to the other two
methods. For example, for the largest one of the four graphs, the convergence procedure of FC produces a low
AVTL(Graph4) value of 158.88. In contrast, the other two methods produce the values of 796.14 and 768.06. This
result indicates that our FC method could greatly shorten the convergence time in drawing force-directed graphs.

Furthermore, we found that the three measurements are comparatively consistent among ten runs of our FC
method for each of the four data sets. In contrast, the runs of the FR and FO methods vary greatly. For example, we
can see from the Fig.10 that the AVTL curves produced by our FC method for each data set are nearly level with tiny
variance. However, the values generated by the other two methods fluctuate greatly. This implicates that the layouts

全武 等:一种用于 Marching-Graph 图形绘制的快速收敛布局算法 1931

produced by the FC method are more predictable and consistent, which can considerably relief the cognition
overload for users.

Time consumption

0

10

20

30

Graph1 Graph2 Graph3 Graph4

Ti
m

e
(1

00
0

m
s) FC

FR

FO

Average vertex position variance

0
100
200
300
400

Graph1 Graph2 Graph3 Graph4

D
is

ta
nc

e
(P

ix
el

s)

FC
FR
FO

(a) Time Consumption (b) Average Vertex Position Variance

Average vertex travel length

0
200
400
600
800

1000

Graph1 Graph2 Graph3 Graph4

Le
ng

th
 (P

ix
el

s) FC
FR
FO

(c) Average Vertex Travel Length

Fig.9 A summary of the experimental results of four data sets

Average vertex travel length (FC)

0

100

200

300

1 2 3 4 5 6 7 8 9 10
Run

Le
ng

th
 (P

ix
el

s) G1

G2

G3

G4

Average vertex travel length (FR)

0

500

1000

1 2 3 4 5 6 7 8 9 10

Run

Le
ng

th
 (P

ix
el

s) G1

G2

G3

G4

(a) (b)

Average vertex travel length (FO)

0
500

1000

1 2 3 4 5 6 7 8 9 10

Run

Le
ng

th
 (P

ix
el

s) G1

G2

G3

G4

(c)

Fig.10 Ten runs of AVTL using three methods for each of the four data sets

4 Conclusions

We have presented a Fast Convergence (FC) graph drawing method for force-directed graph layouts.
Particularly, we integrated the radial drawing algorithm into the traditional force-directed algorithm to produce fast

1932 Journal of Software 软件学报 Vol.19, No.8, August 2008

convergence and predictable force-directed graph layouts. We believe that FC is an effective way for drawing a
series of graphs G1,G2,…,Gn in a variety of applications, where real-time responses are required. The FC method is
originally designed to satisfy the real-time interaction requirements in a spatially referenced information
visualization called Marching-Graph that allows users to “march” through a series of graphs G1,G2,…,Gn that are
related to particular geographic regions on a map. The “marching” requires fast drawings of the graphs. The
efficiency of navigation relies largely on the convergence time (or TC) spent in drawing those graphs. This method
can also be applied to other visualization applications that require the navigation of a series of graphs in real-time.

To evaluate the FC method, we have conducted an experimental comparison between our method and two
traditional force-directed drawing methods by running four data sets consisting of 24, 65, 129 and 160 data items.
The comparisons show that the FC method achieves a significant improvement in terms of the convergence time
spent for energy minimization and the preservation of the mental map.

In the next phase, we plan to carry out more formal evaluation experiments to investigate the
scalability and applicability of the FC method. Furthermore, we will continuously investigate other
alternative methods for speeding up the convergence procedures in force-directed graph drawing
algorithms.

References:
[1] Fuchs G, Schumann H. Visualizing abstract data on maps. In: Proc. of the Information Visualization, Eighth Int’l Conf. on

Information Visualization (IV 2004). London: 2004. 139−144.

[2] Keim DA, Noth SC, Panse C, Schneidewind J. Visualizing geographic information: VisualPoints vs CartoDraw. Information

Visualization, 2003,2:58−67.

[3] Andrienko GL, Andrienko NV. Interactive maps for visual data exploration. Int’l Journal for Geographical Information Science,

1999,13(4):355−374.

[4] Kreuseler M, Schumann H. A flexible approach for visual data mining. IEEE Trans. on Visualization and Computer Graphics, 2002,

8(1):39−51.

[5] Quan W, Huang ML. Dynamic visualization of spatially referenced information. In: Proc. of the Int’l Symposium on Visual

Computing. LNCS 3804, 2005. 642−646.

[6] Davidson R, Harel D. Drawing graphs nicely using simulated annealing. ACM Trans. on Graphics, 1996,15(4):301−331.

[7] Eades P. A heuristic for graph drawing. Congressus Numerantium, 1984,42:149−160.

[8] Frick A, Ludwig A, Mehldau H. A fast adaptive layout algorithm for undirected graphs. In: Proc. of the Symp. Graph Drawing

GD’93. 1994. 389−403.

[9] Fruchterman T, Reingold E. Graph drawing by force-directed placement. Software-Practice & Experience, 1991,21:1129−1164.

[10] Huang ML, Eades P, Wang JH. On-line animated visualization of huge graphs using a modified spring algorithm. Journal of Visual

Languages and Computing, 1998,9:623−645.

[11] Battista GD, Eades P, Tamassia R, Tollis IG. Graph Drawing: Algorithms For The Visualization Of Graphs. Englewood Cliffs, NJ:

Prentice-Hall, 1999.

[12] Eades P. Drawing free trees. In: Bulletin of the Institute of Combinatorics and its Applications. 1992. 10−36.

[13] Yee KP, Fisher D, Dhamija R, Hearst MA. Animated exploration of dynamic graphs with radial layout. InfoVis’01, 2001. 43−50.

[14] Barnes JE, Hut P. A hierarchical O(N log N) force-calculation algorithm. Nature, 1986,324(6270):446−449.

QUAN Wu HUANG Mao-Lin is a senior lecturer and
doctoral supervisor at the Faculty of
Information Technology, University of
Technology, Sydney, Australia. His
researches areas are graph drawing and
information visualization.

	Ruanjian Xuebao.pdf
	2008000714OK
	Introduction
	Method
	Data abstraction
	Imposing a tree structure
	Radial layout of tree T’
	The radial drawing of complete G
	Switching to force-directed drawing

	An Experimental Evaluation
	Conclusions

