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Abstract

This paper describes a simultaneous localization and mapping algorithm for use in unstructured environments that is effective
regardless of the geometric complexity of the environment.Features are described using B-splines as modeling tool, and the set of
control points defining their shape is used to form a completeand compact description of the environment, thus making it feasible
to use an extended Kalman filter based SLAM algorithm. This method is the first known EKF-SLAM implementation capable of
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Extending the Limits of Feature-Based SLAM
With B-Splines

I. I NTRODUCTION

One of the current key challenges of the simultaneous lo-
calization and mapping (SLAM) problem, is the development
of appropriate parameterizations to represent environments of
increasing complexity. While a substantial body of literature
exists in methods for representing unstructured environments,
most of them are not suitable for use in one of the common
frameworks developed during the past decades, as it is the
solution based on an extended Kalman filter (EKF). For
example, the use of occupancy grids [1], based on dividing the
environment into small cells of predefined size, and classifying
them as occupied or not, and its many variants, would result
in an impracticably large state vector. The importance and
effectiveness of these techniques is undeniable, but we propose
a different approach to the problem.

Much of the early SLAM work relied on simple point
features for describing the environment [2], [3], [4]. While this
approach simplifies the formulation of the SLAM estimator,
two main disadvantages arise when relying solely on this
representation. The first and obvious problem emerges when
the environment does not have sufficient structure to robustly
extract point features; for example in an underground mine [5].
The second and more significant issue is the fact that only a
small fraction of information available from popular sensors
such as laser range finders is exploited. Much of the data that
do not correspond to the expected features are discarded.

A number of SLAM algorithms that do not use use a specific
geometric model have recently emerged. Here, the complete
robot trajectory is present in the state vector, and the raw
sensor information from different robot poses is processed
to obtain an accurate relationship between these poses [6].
Equivalent versions of fastSLAM that exploits complete laser
scans have also been presented [7], [8]. While these strategies
have been successfully used to generate accurate visualizations
of complex structures and detailed maps of the environments,
they can not exploit the inherent information gain available in
feature based SLAM, where map quality is increased due to
precise mathematical description of features, stochasticinfor-
mation relating all of them is available, and the interpretability
of the map is increased.

Several strategies for incorporating a larger fraction of the
information gathered by the sensors, using more complex
geometric primitives, have recently been reported. The use
of line segments [9], [10], [11], and polylines [12], while
promising, raise some issues related to the consistency of
the solution and require further work. While segment based
solutions have been successful in typical indoor environments,
the increasing presence of curved geometries, more popular
every day in modern constructions, can create significant

problems. In particular, attempting to interpret information
using an incorrect geometric model is one of the major causes
of failure of many estimation algorithms. Some efforts have
been made when circle features are available [13], but that is
still a major simplification. Thus more generic representations
of the environment can potentially improve the robustness,
effectiveness and reliability of the SLAM implementations.

A hybrid strategy consists of modeling the region sur-
rounding a point feature using a shape model in a coordinate
frame attached to the feature [14], allowing the point features
map to be updated while the shape models are only used to
increase the information content of the observation. A full
parameterization which captures all the information available
in the observations, able to be updated in a statistically
consistent manner, remains an interesting challenge.

Recently, we presented a novel feature based solution to the
SLAM problem, based on the utilization of B-spline curves
to represent the boundary between occupied and unoccupied
regions in complex environments [15]. B-splines provide
naturally compact descriptions for both straight and curved
geometries, consisting of a set of control points defining their
shape. These points, grouped in a state vector, which conveys
no angular information for the static elements of the map, fully
describe the environment. In [15], computationally efficient
strategies for (a) initializing and extending the state vector, (b)
formulating a suitable observation equation, and (c) evaluation
of appropriate Jacobians for easy implementation of EKF
equations, were introduced.

This work extends those results presenting additional exper-
imental evidences, using both real and simulated data, making
an emphasis on the importance of some critical aspects: (i) a
study of the impact of the defining elements of B-spline curves
on the expected performance of the algorithm, (ii) provide
some general guidelines to adequately choose the parameters
involved in the segmentation process, and (iii) a deep consis-
tency analysis, showing the limitations of the algorithm, as
occurs with any other EKF-SLAM implementation [16].

The paper is organized as follows. Section II introduces
fundamental concepts regarding the extense theory of B-
spline curves. Section III shows how these powerful tools
naturally fit into the EKF-SLAM framework. Finally, extensive
experimental results and conclusions are presented in sections
IV and V.

II. BASIC THEORY OF SPLINES

In this section, some fundamental concepts of the B-splines
theory are presented. The termsplinerefers to a wide class of
functions that are used in a range of technical and scientific
applications, where interpolation or smoothing of noisy data
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in a flexible yet computationally efficient way is required. A
spline of degreeκ (order κ − 1) is a piecewise polynomial
curve; i.e. a curve composed by several polynomial pieces of
degreeκ. Their most common representation is based on the
linear combination of a special type of basis functions, known
as B-spline basis functions.

A. B-Splines Definition

Letting s (t) be the position vector along am-dimensional
curve as a function of the parametert ∈ <, a spline curve of
order κ, with control pointsxi ∈ <m (i = 0 . . . n) and knot
vectorΞ = {ξ0, . . . , ξn+k} can be expressed as:

s (t) =
n∑

i=0

xiβi,κ (t) (1)

beingβi,κ (t) the normalized B-spline basis functions of order
κ. These functions are defined by the Cox-de Boor recursion
formulae [17], [18]:

βi,1 (t) =

{
1 if ξi ≤ t < ξi+1

0 otherwise
(2)

and for allκ > 1

βi,κ(t)=
(t−ξi)

ξi+κ−1−ξi

βi,κ−1(t)+
(ξi+κ−t)

ξi+κ−ξi+1
βi+1,κ−1(t) (3)

The knot vectorΞ is any nondecreasing sequence of real
numbers (ξi ≤ ξi+1 for i = 0, . . . , n + κ − 1) and its
structure can lie in two different categories:clamped, when
the multiplicity of the extreme knot values is equal to the
orderκ of the curve, andunclampedwhen this does not occur
[17], [19]. When clamped knot vectors are used, first and last
control points are coincident, respectively, with the beginning
and end of the spline curve, as Fig. 1 illustrates.
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Fig. 1. Examples of cubic splines (κ = 4) and their corresponding basis
functions usinga) a clampedknot vector (Ξc : ξ0 = . . . = ξ3 ≤ . . . ≤
ξ6 = . . . = ξ9), b) an unclampedknot vector (Ξu : ξ0 ≤ . . . ≤ ξ9). Knots
locations are represented as circles and control points as squares. The dashed
blue line is the spline control polygon, which joins all the control points.

B. Properties of Spline Curves

B-splines exhibit many interesting mathematical and geo-
metrical properties. For their special significance in following
discussions, some of them are enumerated here:

1) The maximum order of the curve equals the number
of control points. Equivalently, the minimum number of

control points equals the order of the curve. This means,
for example, that a cubic B-spline requires at least4
control points to be defined.

2) The curve generally follows the shape of the control
polygon.

3) Any affine transformation is applied to the curve by
applying it to the control polygon.

4) Each basis functionβi,κ (t) is a piecewise polynomial
of orderκ with breaksξi, . . . , ξi+κ that vanishes outside
the interval[ξi, ξi+κ) and is positive on the interior of
that interval:

βi,κ (t) > 0 ⇔ ξi ≤ t < ξi+κ (4)

5) As a consequence of property 4, the value ofs (t) at a
given parameter locationξj ≤ t ≤ ξj+1 for somej ∈
{κ − 1, . . . , n} depends only onκ of the coefficients:

s (t) =

j
∑

i=j−κ+1

xiβi,κ (t) (5)

6) When clamped knot vectors are used, the sum of all the
B-spline basis functions for any value of the parameter
t is 1:

n∑

i=0

βi,κ (t) = 1 (6)

7) The derivative of a spline of orderκ is a spline of one
orderκ − 1. The control points of the derived function
can be obtained by differencing the original ones [18].

ds (t)

dt
=s′ (t)=(κ − 1)

n∑

i=0

xi − xi−1

ξi+κ−1 − ξi

βi,κ−1 (t) (7)

For further information and justification of these properties,
please see [17], [18], [19] and [20].

C. Curve Fitting

One of the greatest appeals of splines curves, is their ability
for approximating noise-contaminated data. In this section we
consider the problem of obtaining a spline curve that fits a
set of data pointsdj , j = 0 . . .m. If a data point lies on the
spline curve, then (1) must be satisfied:

dj = β0,κ (tj)x0 + . . . + βn,κ (tj)xn, j = 0 . . .m

This system of equations can be more compactly written as

d = Bx







d =
[

d0 d1 . . . dm

]T

x =
[

x0 x1 . . . xn

]T

B =






β0,κ (t0) . . . βn,κ (t0)
...

. . .
...

β0,κ (tm) . . . βn,κ (tm)






(8)

Matrix B is usually referred to as thecollocation matrix. For
each of its rows has at mostκ non-null values (recall property
4). The parameter valuetj defines the position of each data
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point dj along the curve, and can be approximated by the
cumulated chord length between consecutive data points:

t0 = 0

tj =
∑j

s=1 ‖ds − ds−1‖ , j ≥ 1

}

(9)

being‖·‖ the euclidean norm. The total length of the curve is

` =

m∑

s=1

‖ds − ds−1‖ (10)

which is taken as the maximum value of the knot vector.
When fitting noisy data acquired by a laser range finder, the

most general case occurs for2 ≤ κ ≤ n + 1 < m + 1; the
problem is overspecified and a least squares solution can be
obtained using the pseudo inverse matrix ofB:

x =
[
BTB

]−1
BTd = Φd (11)

If the order of the spline curve is predefined, the number
of control pointsn + 1 (or equivalently the number of knots
n+κ+1), and the parameter values along the curve are known
as indicated in (9), then the basis functionsβi,κ (tj) and hence
the matrixB can be obtained.

In BS-SLAM, clamped knot vectors are generated taking the
total length of the curvè, and defining a knot spacingρ which
depends on the complexity of the environment. Recall that
knots are the joints of the individual polynomial pieces a spline
is composed of, so complex environments containing objects
with high curvatures need a small spacing (high knot density),
while straight features can be described properly using longer
polynomial pieces (lower knot density).

To show the effects of both the curve order and the knot
spacing on the quality of the fitting, we performed experiments
with a simulated static robot in front of a curved wall. This
unique feature was described by the polar equation:

z = 5 + 0.5 · sin (5ϕ) (12)

wherez is the distance in meters from the curve to the origin,
andϕ is the polar angle. The simulated range-bearing sensor
had a forward-facing180◦ field-of-view and maximum range
of 8 meters. For each measure across the angular range of
the sensor, with a resolution of1, synthetic noise with normal
distributionN (0, σL = 5mm) was added to the ideal measure
computed using (12).

Fig. 2 shows the effect of varying the knot spacing used
in the data fitting with a cubic spline. For each experiment,
the average value of the mean squared error (MSE) over 50
Monte Carlo experiments was computed. The residuals are the
differences between the real distance from the sensor to the
wall and the distance from the sensor to the obtained spline
for the same laser beam. It is clear that, as the number of
polynomial pieces increases, the approximation is better.

Fig. 3 shows similar experiments for different orders of the
spline used in the fitting process. Here the knot spacing is
constant (ρ = 2.92 m). The average MSE over 50 runs of a
Monte Carlo simulation is clearly smaller for the cubic spline
given a fixed knot density. Better results could be obtained for
the quadric spline by decreasing the knot density. However,for
each additional knot a new control point should be introduced,

increasing the number of necessary elements for describing
this shape as compared to the cubic spline.

In general, cubic splines offer a fairly good compromise
between mathematical complexity and geometric flexibility,
and are the most widely used in technical and scientific
applications. Most of the experimental results presented in this
paper will use cubic splines for modeling the environment.
However, it will be shown how easily linear splines (order 2)
can be used for constructing maps of environments with flat
features. The interested reader is referred to [21], [20], [19],
where more information about curve fitting methods can be
found.

III. SOLVING THE SLAM PROBLEM WITH B-SPLINES

In this section, all the procedures and formulae, necessaryto
make the splines theory fit into the EKF-SLAM framework are
described in detail. Firstly, a simple though effective segmen-
tation mechanism is presented, followed by the descriptionof
a robust method to perform the always delicate process of data
association. Finally, suitable state and observation models are
developed, and the necessary Jacobians for applying an EKF
based SLAM algorithm, and building the map as new areas of
the environment are explored, are presented.

A. Laser Scan Segmentation

The most commonly exterioceptive sensor used in mobile
robotics, for its properties of accuracy, speed and resolution,
is the laser range-finder. This sensor provides for each obser-
vation a set ofm data pointsdi ∈ <2 (bounding the problem
to a 2D scenario). In this section, the necessary proceduresfor
extracting a set of splines representing the detected physical
objects are presented.

The main difference between the SLAM methodology pre-
sented in this paper, and traditional feature-based algorithms,
is that we are not relying on a specific geometry to be detected.
We attempt to describe the environment as accurately as
possible, making no assumptions or dangerous simplifications.
This segmentation methodology is based on the analysis of
the relative positions of two consecutive laser data points. We
define a set ofm−1 vectors connecting the raw data (see Fig.
4):

pi = di − di−1 (13)

Then, the following comparisons are performed:

|αi| ≤ αmax ⇔ cos (αi) ≥ cos (αmax) (14)

max (‖pi‖ , ‖pi+1‖) ≤ η · min (‖pi‖ , ‖pi+1‖) (15)

Typically, αmax ∈ [0, π/4] and η ∈ [1.5, 2] are fairly
good values. When a set ofmF consecutive data points
accomplish with both previous relationships, they are assumed
as belonging to the same feature, and a fitting process is
performed as described in section II-C. Additional restrictions
can eventually be imposed, as demanding a minimum number
of data points to be fitted, or a minimum total length for the
obtained curve. This two last additional restrictions usually
become indispensable for rejecting dynamic objects, as people,
avoiding their inclusion in the map.
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Fig. 3. Fitting of noisy data with a) cubic, b) quadratic and c) linear B-splines.

Fig. 4.a illustrates the process with a laser sample obtained
from a real data set. In this case, a total number of 4
features have been detected. Note thatF2 and F4 would be
certainly difficult to describe with traditional feature based
map representations, as segments or even circles. Fig. 4.b
and Fig. 4.c show the effects of choosing incorrect values
for αmax. High values of this angular threshold produce the
incorrect identification of important locations, such as corners,
whereas too small values produce excessive segmentation, and
the wasting of many data points that are not assigned to any
feature.

B. Data Association With Splines

At each sampling time, a new set of splines is obtained
as described before, being necessary to establish a corre-
spondence between theN features contained in the map
(sm,1, . . . , sm,N ), and theNo features detected by the robot
(so,1, . . . , so,No

).
Possibly the main drawback of using splines as modeling

tool, is that control points are not observable. For any given
geometry, there are infinite ways of describing its shape
depending on the chosen knot vector and the particular area
of the feature detected by the sensors.

The proposed matching process is described with the help of
Fig. 5 and the pseudocode in Fig. 6. First, the distances from
the control points of each of the detected splines to the control
points of the splines contained in the map are calculated (map
can be simplified choosing only features that are close to
the robot position). This way, couples of matching candidates
are identified by simple calculation of the euclidean distance
between their control points. A distance threshold of half the
knot spacing (dmincp = ρ/2) is enough for this preliminary
association.

If a spline is close enough to a map feature, then it
is necessary to obtain a matching between their points, as
depicted in Fig. 5.b. The process is as follows:

• One of the end points of the observed spline is considered
(point a)

• The closest point on the map spline to the pointa is
calculated (pointb)

• If b is one of the end points of the map spline, then, the
closest point tob on the observed spline is calculated
(point c).

• The process is repeated using as starting point the other
extreme of the observed spline (pointd in the picture,
which is associated with pointe).

Once checked the last final conditions in Fig. 6
(avoiding, for example, matching an observation with
the hidden side of a wall), the association is estab-
lished. At the end of this process, not only correspon-
dent pairs of points(c ≡ so,1 (uini) ,b ≡ sm,1 (tini)) and
(d ≡ so,1 (ufin) , e ≡ sm,1 (tfin)) are obtained, but also a
correspondence between the map spline parametert and the
observed spline parameteru. This information is very useful
when a spline extension is required, and for the observation
model we propose.

The described data association process, though quite simple
and based only upon euclidean distance metric, has performed
very robustly in our experiments.

C. The State Model

The state of the system is composed by the robot pose (the
only non-static element) and all the map features, which are
modeled as B-spline curves. When a spline curve is expressed
as linear combination of B-splines, its state can be described
by the positions of its control points. Remember from section
II that a spline is defined by both the control points and the
knot vector, but this last element is considered fixed, defined
during the feature initialization stage, and only modified when
the element is enlarged, as will be described in section III-F.

Referring all the positions and orientations to a global
reference frame{uW ,vW }, and letting the robot be the
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first feature in the map (F0) the following expressions fully
describe the state of the system at a certain timek:

xF0
= xr = [xr, yr, φr]

T (16)

xFi
= xsi

= [xi,0, . . . , xi,ni
, yi,0, . . . , yi,ni

]
T (17)

i = 1, . . . , N

and finally

x =
[
xT

r ,xT
s1

, . . . ,xT
sN

]T
(18)

In the previous equations,N is the number of map static
elements, defined each of them byni + 1 control points.
Note that the number of control points for each of the splines
contained in the map is not bound to be fixed. Splines can be
prolonged, their knot vectors can be extended and, therefore,
new control points can eventually be inserted in the map when

 

for (i = 1 → No)         % for all observations 

for (j = 1 → Nm)       % for all (close) map features 
 if (min(dist(xo

i, xm
j),) < dmincp)  

% features are close (control points comparison) 
   % initial points matching 

   uini = first(Ξo,i);      % first knot of so,i(u) 
   sm,j(tini) = nearest in sm,j(t) to so,i(uini); 
   if ((tini == first(Ξm,j)) || (tini == last(Ξm,j))) 
    so,i(uini) = nearest in so,i(u) to sm,j(tini);  % uini update 
   end; 
   % final points matching 

   ufin = last(Ξo,i);      % last knot of so,i(u) 
   sm,j(tfin) = nearest in sm,j(t) to so,i(ufin); 
   if ((tini == first(Ξm,j)) || (tini == last(Ξm,j))) 
    so,i(ufin) = nearest in so,i(u) to sm,j(tfin); % ufin update 
   end; 
   % final check: 

if   ((dist(so,i(uini), sm,j(tini)) < dmatch) && 
  (dist(so,i(uini), sm,j(tini)) < dmatch) &&  
  (tfin > tini) && (ufin > uini)) 
  CORRECT MATCHING! 
end; 

  end;           % end if proximity 
 end ;            % end for j 
end ;             % end for i 

Fig. 6. Pseudocode for data association.

new areas of the environment are explored, as we will see
further on. The state of the system is assumed to follow a
normal random distribution with mean value

x̂ (k|k) =
[

x̂r (k|k) x̂s1
(k|k) . . . x̂sN

(k|k)
]

(19)

and coavariance matrix

P (k|k)=








Prr (k|k) Prs1
(k|k) . . . PrsN

(k|k)
Ps1r (k|k) Ps1s2

(k|k) . . . Ps1sN
(k|k)

...
...

. . .
...

PsN s1
(k|k) PsN s2

(k|k) . . . PsN sN
(k|k)








(20)

D. The Observation Model

Using an Extended Kalman Filter for solving the SLAM
problem requires an observation model; i.e. some expression
which allows to predict the measurements that are likely to
be obtained by the robot sensors given the robot pose and the
current knowledge of the environment. As mentioned before,
control points of map splines are not observable.

However, it is still possible to predict every single laser
measurement for each position of the laser beam across
its angular range. This way, the problem is reduced to the
calculation of the intersection of the straight line definedby
a laser beam (for each angular positionp) with the splines
contained in the map.

Unfortunately, calculating the intersection of a straightline
with a parametric curve, in the forms (t) = [sx (t) , sy (t)]

T

is not suitable for an explicit mathematical formulation. This
problem is known in the literature asray tracing [22], and is
schematically depicted in Fig. 7.

In BS-SLAM, the predicted measurement is calculated
making use of the following two elements:

• Property 3 in section II-B, which states that any affine
transformation can be applied to a spline curve by apply-
ing it to its control points.
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• The Newton-Raphson method, for calculating the roots
of a function.

The first step is to define an orthonormal reference frame
{up,vp}, centered in the robot reference frame{ur,vr} and
with up defined by the laser beam direction and orientation
(see Fig. 7depicting an arbitrary laser beam and its inter-
section with a spline curve that needs to be computed). Let
s̄ (x̄i (xi,xr) , t) be the position vector along a spline curve
expressed in such a reference system (we are making here
explicit the functional dependency between a spline and its
control points). The relationship between control pointsxi =
[xi, yi]

T and x̄i = [x̄i, ȳi]
T , i = 0 . . . n, is given by:

[
x̄i

ȳi

]

=

[
cosµp sinµp

−sinµp cosµp

] [
xi − xr

yi − yr

]

(21)

where µp is the angle of the considered laser beam in the
global reference frame.

In this context, the measurement predictionẑp = h (xi,xr)
is given by s̄x (x̄i (xi,xr) , t∗), wheret∗ is the value of the
parametert that makes̄sy (ȳi (xi,xr) , t∗) = 0.

Despite the lack of an explicit observation model, it is
possible to compute its derivatives with respect to the state
in an approximate way. Once calculated the valuet∗ which
makess̄y (t∗) = 0, the expected measurement in the nearness
of this parameter location, assuming small perturbations in the
state vector, can be approximated by (subindexp is omitted
in the following equations):

h (xi,xr)= s̄x

(

x̄i (xi,xr) , t∗−
s̄y (ȳi (xi,xr) ,t∗)

s̄′y (ȳi (xi,xr) ,t∗)

)

(22)

Derivating with respect to the control points positions, and
making use of (1) and (21) we can write [15]:

∂h

∂xi

= βi,k (t∗)

[

cosµ +
sinµ

tan (η − µ)

]

(23)

∂h

∂yi

= βi,k (t∗)

[

sinµ −
cosµ

tan (η − µ)

]

(24)

Similarly, making use of property 6, (1) and (21), we obtain:

∂h

∂xr

= −cosµ −
sinµ

tan (η − µ)
(25)

∂h

∂yr

= −sinµ +
cosµ

tan (η − µ)
(26)

∂h

∂φr

=
ẑ

tan (η − µ)
(27)

These formulas will allow the efficient calculation of the
relevant Jacobians in the following sections.

E. Applying the EKF

In this section, all previously obtained results are combined
in the working frame of the Extended Kalman Filter [2], al-
lowing the incremental building of the map of an environment,
where all features are modeled using cubic splines.

1) Kalman Filter Prediction:Between the timesk andk+1
the robot makes a relative movement, given by the stochastic
variable

u (k + 1) ∼ N (û (k + 1) ,Q (k + 1)) (28)

Under the hypothesis that the only moving object in the
map is the robot, the a priori estimation of the state at time
k + 1 is given by:

x̂r (k + 1|k) = fr (x̂r (k|k) , û (k + 1)) (29)

x̂si
(k + 1|k) = x̂si

(k|k) (30)

wherefr is the motion model, which depends on the mobile
platform being used, and its covariance:

P (k + 1|k) = Fx (k + 1)P (k|k)FT
x (k + 1) +

+Fu (k + 1)Q (k + 1)FT
u (k + 1) (31)

The Jacobian matrices are

Fx (k + 1)=









∂fr
∂xr

∣
∣
∣
x̂r(k|k),û(k+1)

0 . . . 0

0 In1
. . . 0

...
...

. . .
...

0 0 . . . InN









(32)

Fu (k + 1)=








∂fr
∂u

∣
∣
x̂r(k|k),û(k+1)

0
...
0








(33)

2) Kalman Filter Update: Once obtained the expected
measurements for each of the laser beams positions of an
observation associated with a map spline, the innovation
covariance matrix is given by [2]:

S (k + 1) = Hx (k + 1)P (k + 1|k)HT
x (k + 1) + R (k + 1)

(34)
whereR is the sensor covariance matrix, and the Jacobian is:

Hx (k + 1) =
[

∂h
∂xr

0 . . . 0 ∂h
∂xsi

0 . . . 0
]

(35)
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In the previous equation, the term∂h
∂xr

is calculated making
use of (25), (26) and (27), and∂h

∂xsi

is calculated from (23)
and (24). The gain matrix is calculated as follows:

W (k + 1) = P (k + 1|k)HT
x (k + 1)S−1 (k + 1) (36)

Finally, the state estimation and its covariance are updated
according to:

x̂ (k+1|k+1)=x̂ (k+1|k)+W (k+1) ν (k+1) (37)

P (k+1|k+1)=[I−W (k+1)Hx (k+1)]P (k+1|k)(38)

with the innovation calculated as:

ν (k + 1) = z (k + 1) − ẑ (k + 1|k) (39)

F. Map Enlargement

The stochastic map is incrementally built in two different
ways: adding new objects, and extending objects already
contained in the map. In this section, algorithms for both
initializing new objects, and prolonging existing features as
new areas are explored are described in detail.

1) Adding New Objects to the Map:Observations that
cannot satisfy the association procedure described in section
III-B are considered as a newly discovered features, and the
splines defining their shapes must be added to the map.
Given a map containingN static features, and a set of
measurementsz = {zi, i = p . . . p + q} obtained for the laser
angular positions in the robot reference frame (see Fig. 7)
corresponding to a new featureFN+1, the augmented state
vector can be computed as:

xa = g (x, z) ⇔







xa
r = xr

xa
si

= xsi
,i = 1, . . . , N

xa
sN+1

= gsN+1
(xr, z)

(40)

This means that the fact of adding a new object does not
change the current map structure (the robot pose and the con-
trol points of theN existing features). FunctiongsN+1

(xr , z)
is the fitting function of theq+1 new data points as described
in section II-C. This way, we can obtain the control points of
the new feature as a linear functioin of the data points and the
robot pose.






xN+1,0

...
xN+1,nN




 = Φ






xr + zp cos (φr + τp)
...

xr + zp+q cos (φr + τp+q)




 (41)






yN+1,0

...
yN+1,nN




 = Φ






yr + zp sin (φr + τp)
...

yr + zp+q sin (φr + τp+q)




 (42)

The new covariance matrix for the augmented state vector
is:

Pa = GxPGT
x + GzRGT

z (43)

and the JacobiansGx = ∂g

∂x
andGz = ∂g

∂z
:

Gx =










Ir 0 . . . 0

0 In1
. . . 0

...
...

. . .
...

0 0 . . . InN

∂gsN+1

∂xr
0 . . . 0










,Gz =










0

0
...
0

∂gSN+1

∂z










(44)

with

∂gsN+1

∂xr

=













Φ






1 0 −zp sin µp

...
...

...
1 0 −zp+q sin µp+q






Φ






0 1 zp cosµp

...
...

...
0 1 zp+q sinµp+q


















(45)

∂gsN+1

∂z
=













Φ






cosµp . . . 0
...

. . .
...

0 . . . cosµp+q






Φ






sin µp . . . 0
...

. . .
...

0 . . . sinµp+q


















(46)

2) Extending Map Objects:Frequently, observations are
only partially associated with a map feature (as in Fig. 5.b).
This means that a new unexplored part of a map object is being
detected and, consequently, this spline must be extended. Take
for instance the situation displayed in Fig. 8, where thej-th
map spline has been partially associated with an observation,
and the information contained in a new set ofm + 1 data
points

di =

[
dx

i

dy
i

]

=

[
xr + zi cosµi

yr + zi sin µi

]

, i = q, . . . , q + m (47)

must be integrated into the map feature. The extended state
vector will be:

xe = ge (x, z) ⇔







xe
r = xr

xe
si

= xsi
, i 6= j

xe
sj

= ge
sj

(xr,xj , z)
(48)

Functionge
sj

(xr,xj , z) is constructed following a similar
scheme to the one used in the data fitting process.
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Fig. 8. Map spline extension with new data after Kalman filterupdate. a)
The original splinesj (t) needs to be unclamped and last 3 control points are
displaced, allowing the insertion of the new data in the extended knot vector.
b) A new knotξ11 is inserted at the end of the extended curves

e
j (t), which

is defined using a clamped knot vector.

In [19] an iterative unclamping algorithm is proposed, which
is successfully applied in [23] with the goal of extending a B-
spline curve to a single target points, inserting one additional
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control point and one additional knot for each extension. Our
problem is to extend a map spline given a new set of measured
data points, and maintaining the strictly necessary number
of new control points bounded. The combination of the un-
clamping algorithm with the approximation scheme previously
proposed, makes possible to extend the map features as new
measurements are obtained. Given a spline curve, defined by a
set of control pointsxi and clamped knot vector in the form:

Ξ : ξ0 = . . . = ξκ−1
︸ ︷︷ ︸

κ

≤ ξκ ≤ . . . ≤ ξn ≤ ξn+1 = . . . = ξκ+n
︸ ︷︷ ︸

κ

the unclamping algorithm proposed in [19] calculates the new
control points corresponding to the unclamped knot vectors:

Ξr: ξ0 = . . . = ξκ−1
︸ ︷︷ ︸

κ

≤ ξκ ≤ . . . ≤ ξn ≤ ξ̄n+1 ≤ . . . ≤ ξ̄κ+n

Ξl: ξ̄0 ≤ . . . ≤ ξ̄κ−1 ≤ ξκ ≤ . . . ≤ ξn ≤ ξn+1 = . . . = ξκ+n
︸ ︷︷ ︸

κ

The particularization of the iterative algorithm for a given
spline order, permits to obtain linear relationships between the
old and new control points values. The trivial case occurs for
linear splines (orderκ = 2). Here, the control points of the
unclamped curved remain unchanged.

Here we show the adaptation of the algorithm for cubic
splines, but similar expressions can be obtain for other orders,
if desired. The right-unclamping algorithm (on the side cor-
responding to higher values for the parametert) of a cubic
spline (orderκ = 4, converting the knot vectorΞ into Ξr, and
obtaining the new control points

xr
i = xi, i = 0, . . . , n − 2

xr
n−1= −Γ2

n−1xn−2+ 1
γ2

n−1

xn−1

xr
n= Γ2

nΓ2
n−1xn−2−

(
Γ2

n

γ2
n−1

+
Γ1

n

γ2
n

)

xn−1+ 1
γ1

nγ2
n
xn







(49)

being

γj
i = ξ̄n+1−ξ̄i

ξ̄i+j+1−ξ̄i
and Γj

i =
1−γ

j

i

γ
j

i

(50)

Similar results can be obtained when converting a clamped
knot vectorΞ into a left-unclamped oneΞl:

xl
0 = 1

ω1
0
ω2

0

x0 −
(

Ω2
0

ω2
1

+
Ω1

0

ω2
0

)

x1 + Ω2
0Ω

1
0x2

xl
1 = 1

ω2
1

x1 − Ω2
1x2

xl
i = xi, i = 2, . . . , n







(51)

with
ωj

i = ξ̄κ−1−ξ̄i+κ

ξ̄i+κ−j−1−ξ̄i+κ
and Ωj

i =
1−ω

j

i

ω
j

i

(52)

These results can be combined with the methodology pro-
posed in section II-C for obtaining new splines as new data is
acquired, being aware of the following considerations:

• New data points must be associated with the existing
parameterization of the map spline. This relation can be
obtained from the data association stage.

• The knot vector needs to be unclamped and might need to
be extended with additional knots in order to make room
for the new span being added. The number of new knots
is chosen taking into account the specified knot spacing,
and the final length of the curve.

This way, system (8) is written for the new data points,
extended with the unclamping equations 49, 50, and/or 51,
52, and its least-squares solution provides a matrix-form linear
relationship between the old control pointsxj and the sampled
datadi, and the new control pointsxe

j . For example, for a
right-extension we can obtain:






xe
j,0
...

xe
j,nj+p




=Φe













dx
q

...
dx

q+m

xj,0

...
xj,nj













,






ye
j,0
...

ye
j,nj+p




=Φe













dy
q

...
dy

q+m

yj,0

...
yj,nj













(53)

where Φe is a constant matrix, which depends only on the
configuration of the new knot vector. The new covariance
matrix after extending thej-th spline is:

Pe = Ge
xPGe

x
T + Ge

zRGe
z
T (54)

where the involved JacobiansGe
x = ∂ge

∂x
andGe

z = ∂ge

∂z
have

the following appearance:

Ge
x =














Ir 0 . . . 0 . . . 0

0 In1
. . . 0 . . . 0

...
...

. . .
...

...
ge

sj

∂xr
0 . . .

∂ge
sj

∂xsj

. . . 0

...
...

...
. . .

...
0 0 . . . 0 . . . InN














,Ge
z =














0

0
...

∂ge
sj

∂z
...
0














(55)

being

∂ge
sj

∂xr

=

















Φe








1 0 −zq sin µq

...
...

...
1 0 −zq+m sin µq+m

0 0 0








Φe








0 1 zp cosµp

...
...

...
0 1 zp+q sin µp+q

0 0 0
























,
∂ge

sj

∂xsj

=







Φe

[
0 0

Inj
0

]

Φe

[
0 0

0 Inj

]







and

∂ge
sj

∂z
=

















Φe








cosµq . . . 0
...

. . .
...

0 . . . cosµq+m

0 . . . 0








Φe








sin µq . . . 0
...

. . .
...

0 . . . sinµq+m

0 . . . 0
























IV. EXPERIMENTAL RESULTS

Several experiments have been performed with both real
and simulated data in order to validate the methodologies and
algorithms presented in this paper. In all the experiments,the
following motion model has been used:
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Fig. 9. Synthetic environments for consistency experiments.

xr,k+1|k = xr,k|k + ∆xrcos
(
φr,k|k

)
− ∆yrsin

(
φr,k|k

)

yr,k+1|k = yr,k|k + ∆xrsin
(
φr,k|k

)
+ ∆yrcos

(
φr,k|k

)

φr,k+1|k = φr,k|k + ∆φr

A. Simulation Experiments

It is well known that one of the main limitations of the
EKF solution to the SLAM problem is the inconsistency of
the algorithm due to linearization errors [24], that can lead to
catastrophic failure when the true uncertainty of the robot’s
orientation exceeds a limit [16]. The source and factors of
inconsistency when landmarks convey angular information
have also been thoroughly studied, as it is the case when indoor
walls are modeled as segments [25].

In this section, several experiments are performed showing
the limitations of BS-SLAM from the point of view of the
filter consistency.

1) Consistency of BS-SLAM:For consistency experiments,
three synthetic environments have been generated combining
both straight and curved features (Fig. 9). A simulated mobile
robot performs a double loop in each of these environments,
and odometry and laser measurements are contaminated with
gaussian noise with mean 0 and covariances detailed in Fig. 9.
In all cases laser sensor is simulated with a maximum range
of 8 m.

Results of these simulations are displayed in Fig. 10. In
experiments E1.A, E2.A and E3.A map splines are progres-
sively extended as new areas of the environment are explored,
while in experiments E1.B, E2.B and E3.B splines are not
extended, and new features are added to the stochastic map
when no matching is successful. It can be clearly seen how
extra simplifications introduced during the extension process
produce a much earlier appearance of inconsistency, being the
filter optimistic; i.e. the real location uncertainty is greater than
the estimated.

2) One symptom of inconsistency: excessive information
gain: As Bailey et al. pointed out in [16], one symptom of
inconsistency is the excessive information gain, which makes
any EKF-SLAM implementation to become optimistic after a
certain period of time (the estimated covariance is less than the
true covariance). To analyze this effect in BS-SLAM, a static
robot has been placed in the curved environment defined by
(12) that can be seen in Figs. 2 and 3. The observation noise
is σL = 5mm for the laser distance readings. Having a static
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Fig. 11. Information gain in heading for a stationary vehicle. The estimated
standard deviationσφ decreases after several updates. The results show the
average values for 50 Monte Carlo simulations, for three different inicial
values.

vehicle making successive observations of this environment,
its true uncertainty may never decrease.

Fig. 11 shows the results of this experiment, using different
initial values for the heading typical deviation of the robot
(σφ (0|0) = 0.01rad., σφ (0|0) = 0.05rad., andσφ (0|0) =
0.2rad.). The graphic shows the mean result for 50 runs of a
Monte Carlo simulation for each initial value. For each case,
the heading standard deviation shows an immediate abrupt
decrease, and the larger initial uncertainties tend to produce
the smallest final estimations.

3) Motecarlo tests of filter consitency:The experimental
results in Fig. 10 suggest that the splines extension has some
impact on the consistency properties of the algorithm. This
section analyzes this effect using an environment of the shape
depicted in Fig. 9.b, fora = 14 m, b = 10 m, r1 = 4 m, and
r2 = 2 m. The process noise standard deviations are:σx =
5+0.1∆x mm,σy = 5+0.1∆y mm, andσφ = 0.02+0.1∆φ
rad., and the typical deviation of a laser range finder with a
forward 180◦ field of view and maximum range of 8 meters
is σL = 5 mm.

When the true state of the vehiclexr (k) is known, the
normalized estimation error squared (NEES) can be used to
characterize the filter performance [16]:

ε (k) = (xr (k) − x̂r (k|k))
T

P−1
r (k|k) (xr (k) − x̂r (k|k))

(56)
The average NEES overN Monte Carlo simulations, under

the hypotheses of a consistent and approximately linear-
Gaussian filter, is aχ2 distribution withdim (xr (k)) degrees
of freedom. Hence, the average value ofε (k) tends towards
the dimension of the state (3, considering the robot pose). Fig.
12 shows the average results for these experiments after 50
Monte Carlo runs. The95% probability concentration region
is bounded by the interval [2.36, 3.72].

Fig. 12.a shows the results when splines are not extended.
Fig. 12.a shows the results when splines are not extended
and an inflated sensor covariance is used, multiplying by a
factor of 3 matrixR in (34), and Fig. 12.c shows the results
when splines are extended and the true matrixR is used. In
all the cases the filter become optimistic when 50 samples
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have been processed, and the fact of raising the covariance
of the observation model does not ameliorate the result. The
appearance of inconsistency is even more abrupt when splines
are extended.

B. Experiments With Real Data

Several experiments have been carried out with data ob-
tained from real environments. Fig. 13 shows a map rep-
resenting an environment with predominantly flat features
(segments), which are modeled using linear splines (order
κ = 2). The map contains 83 linear splines (166 control
points). An alternative map, using cubic splines can be found
in [15] (in that case 81 splines defined by 332 control points
were necessary to describe the environment).

Fig. 14 depicts the map of a bigger and more complex
environment with a mixture of both straight and curved
features. In this case 461 control points defining a total of
96 cubic splines are necessary. In experiments of Fig. 13 and
Fig. 14, a B21r robot with a SICK laser was used for the
data acquisition with a sampling frequency of 5 Hz. A knot
spacing ofρ = 2 m. was used for knot vectors generation.
Please, note that no geometric constraints have been used in
the map building process.

When building large maps, computational cost (quadratic
with the size of the environment) arises as an unavoidable
problem. With the aim of demonstrating the accuracy of the
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Fig. 13. Map of a fair held at the School of Industrial Engineering of the
Universidad Politécnica de Madrid.

proposed methodology, which allows the exploitation of the
majority of the rich information provided by a laser range
finder, the map in Fig. 15 is provided. This map shows the
interior of the Intel Research Lab in Seattle. The data set was
obtained from the Robotics Data Set Repository [26] (thanks
go to Dieter Fox for providing this data). It is built using only
the localization method; i.e. the only feature in the stochastic
map is the robot, and features are added to the map with
zero uncertainty. The low cumulated localization error allows
the good results obtained. An alternative representation using
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Fig. 12. Monte Carlo experiments for consistency (50 runs).The first column displays the mean localization error vs.2σx, 2σy and2σφ (linear dimensions
are in meters and angular dimensions in radians). The secondcolumn is the NEES and the third column the Mean Squared Error. a) No extensions are
performed. b) No extensions are performed and sensor noise is inflated by a factor of 3 in the filter. d) Extensions are performed.

occupancy grid maps can be found in [7].
We want to call the attention of the reader to the detail

view in Fig. 15. The fact of using a fixed degree for the spline
curves, reduces the performance of the method increasing
the strictly necessary density of control points for describing
simple geometries as segments. The minimum number of
control points for a spline of degreeκ is preciselyκ. We are
using in this map only cubic splines, but it is clear that for
the correct description of flat features a lower degree (κ = 2)
should suffice, as occurs in the map in Fig. 10. Videos of the
experiments can be downloaded from [27].

V. CONCLUSION

A new methodology for simultaneous localization and map-
ping in complex environments with a mixture of flat and
curved geometries has been described and experimentally
tested. The power and computational efficiency of spline
curves, has been used in an EKF-SLAM framework allow-
ing the representation of complex structures in a parametric
way. BS-SLAM provides a set of simple and easily pro-
grammable matrix-form expressions, allowing a successful
symbiosis between EKF-SLAM and B-splines theory. When
simple descriptions of the environment are insufficient or
unfeasible, any other SLAM algorithm could benefit from this
new representation.

Control points contained in the stochastic map incrementally
encapsulate all the uncertainties conveyed in the odometry
and laser sensor readings. Finally, this new representation
constitutes a big step forward compared to current SLAM
techniques based on geometric maps: where no other feature
based algorithm could the mathematical interpretation and
reasoning over the map features, regardless of their shape,is
now possible once they are described as parametric functions.

Our current research involves further extension of the ideas
presented in this paper on the following topics:

• Improvement of segmentation strategies, developing more
sophisticated clustering techniques, and enhancing the
detection and isolation of features, previously to the curve
fitting process.

• Intelligent control points selection, making the most of
spline management techniques: degree elevation, degree
reduction, knot insertion and knot deletion. The aim is to
use only the strictly necessary degree for correct features
description, deleting unnecessary knots and introducing
new ones when a shape refinement is necessary.

• Exploitation of the parametric feature representation in
the data association process.

• Finally, we believe that techniques and concepts pre-
sented here could find a natural extension to a 3D
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Fig. 14. Left: Map of the Museum of Science “Prı́ncipe Felipe” (Valencia,
Spain). Right: Two detail views and picture of the museum.
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Fig. 15. Intel Laboratories map and detail view showing control points.

scenario, given the similiarities in the formulations for
spline curves and spline surfaces.
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