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ABSTRACT. ‘Natural’ lithography was used to prepare arrays of nanoscale capacitors on 

silicon. The capacitance was verified by a novel technique based on the interaction of a 

charged substrate with the electron beam of a scanning electron microscope. The ‘nano-

capacitors’ possessed a capacitance of ~1 x 10-16 F and were observed to hold charge for 

over an hour. Our results indicate that fabricating nanostructures using natural lithography 

may provide a viable alternative for future nano-electronic devices. 
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The progressive miniaturization of electronic devices is a significant challenge. Although the 

mainstream approach is to extend conventional optical lithography into the deep ultra-violet 

range, there are diverse other schemes under investigation including x-ray lithography, ion 

beam lithography, electron beam lithography, and laser interference lithography. 

‘Nanosphere lithography’ (NSL) or ‘natural lithography’  offers a surprisingly simple, albeit 

rather limited, alternative, which is suitable particularly for periodic arrays of nanometer-scale 

structures. This technique appears to been pioneered by Deckman in the 1980s1, 2 (as 

‘natural lithography’) and picked up (and renamed to ‘nanosphere lithography’) by Van 

Duyne, Hulteen and co-workers, in the mid 1990s3. These schemes have been used to make 

nano-caps and semi-shells,4-8 diffraction gratings,9 light emitting surfaces,10 and molecular 

biosensors.11-13 However, as far as we can determine, NSL has not previously been used to 

prepare working circuit elements. Here we describe how the technique can be used to 

fabricate tiny capacitors and diodes.  

The principle of NSL is illustrated and explained in Fig. 1. The templating sphere is usually 

silica or polystyrene, with a diameter in the 50 to 500 nm range. The diameter of the spheres 

must be nearly monodisperse, or else an ordered colloidal crystal template will not form. 

Here our interest has been in the structures developed on the silicon substrate lying 

underneath the mask, but the process can also be used to develop semi-shells and other 

interesting shapes on top of the template spheres.4, 7 

 

In the present work we used NSL to lay down an array of triangular Au-Al2O3-Au 

nanocapacitors on the {100} surface of n-doped silicon. Polystyrene latex spheres of 200 nm 

diameter were used as the mask. The Au layers were applied at 10 nm thickness with high 

vacuum DC magnetron sputtering, and the Al2O3 was deposited at a nominal 5 nm thickness 

using a high vacuum RF magnetron sputterer. The techniques used are described in detail in 

the Methods section. Verification of charge storage (ie. the capacitance) required the 

development of a new technique, which we describe fully here. The array of Au/Al2O3/Au 
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nanocapacitors is depicted in Fig. 2. The nanostructures have in-plane widths of roughly 100 

nm, and an out-of-plane height of about 25 nm, as determined by AFM.     

 

ba cba c

 

Figure 1. Schematic illustration of the process of nanosphere lithography (NSL). (a) A 

mono- or bi-layered colloidal crystal of a suitable templating particle is developed on 

the substrate by some suitable means, (b) The template is top-coated with one or more 

materials of interest, usually by physical vapor deposition. Some of the material 

deposited penetrates through the interstices and down onto the substrate. (C) The 

template is removed, leaving only the material deposited on the substrate.  
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Figure 2. Nanoscale capacitors produced by nanosphere lithography. (a) Low 

magnification image produced using AFM. (b) High magnification image produced 

using AFM. (c) Low magnification image obtained using STM. (d) High Magnification 

image obtained using STM.  

 

Figs. 3 (panels A to H) show secondary electron (SE) images of an array of Au/Al2O3/Au 

nanocapacitors (small grey dots) on the Si substrate, acquired as a function of time (t) at a 

primary electron (PE) energy, EPE = 0.3 keV; PE beam current, IPE = 100 pA; working 

distance, and WD = 3 mm. It can be seen that as the PE beam scans the magnified area of 

the image each nanocapacitor becomes increasingly brighter, indicating that the net surface 

potential on the top Au electrode is becoming more negative with time (see Materials and 

Methods section). It is obvious from the images that the rate at which each nanocapacitor 

charges is much greater that the rate at which they discharge as each nanocapacitor 

appears brighter with time and hence electron injection dosage. This experiment was 

repeated several times for reproducibility. The effect seen in Fig. 3 clearly demonstrates that 
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each of the nanocapacitors is storing charge and therefore acting as a capacitive device. It 

should be noted that the leakage current of each nanocapacitor is very small as they 

remained bright for several hours to days after they were charged by the PE beam. 

Assuming that the detection system used to generate SE images efficiently discriminates 

against backscattered electrons (BSEs), such as the in-lens SE detector used in this work, a 

plot of the grayscale intensity (GSI) versus time with the PE beam on (when brightness and 

contrast settings of the in-lens SE detector remain constant) can be used to represent the 

change in the SE emission coefficient and hence the charging characteristics of a 

nanocapacitive device (i.e. the rate of charge storage/leakage or the characteristic time 

constant (RC)). 

 

Figure 3. SE images of Au(10 nm)-Al2O3(5 nm)-Au(10 nm) nanocapacitors acquired as 

a function of time illustrating dynamic charging. (a) t = 0 s; (b) t =  41 s; (c) t = 75 s; (d) 

t = 108 s; (e) t = 143 s; (f) t = 177 s; (g) t = 212 s; (h) t = 246 s. [EPE = 0.3 keV, IPE = 100 

pA, WD = 3 mm] 

 

In order to estimate the increase in charge stored in each of the nanocapacitors as a function 

of time the average GSI, calculated from the consecutive images shown in Fig. 3, has been 

plotted versus time, in Fig. 4. The GSI values were measured using Scion Image (Scion 

Image for Windows Beta 4.0.2, Scion Corporation, Frederick, MD) for each particular 
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nanocapacitor and were averaged over the entirety of its ~100 nm diameter surface.  It can 

be seen that the GSI increases with time as a first order exponential function of decreasing 

gradient which levels off after approximately 100-150 seconds. This is in agreement with the 

electron irradiation experiments of Cazaux et al.15 who found that the negative surface 

potential on floating Ag-coated MgO reached steady state in around 75-150 seconds. 

Cazaux16 theoretically confirmed these observations by showing that the secondary electron 

yield is directly related to the surface potential when the PE penetration range is much less 

than the material thickness. The experimental GSI data (square dots) of Fig. 4 was fitted 

using the exponential function (dark line), 

RC

t

AeGSItGSI

−

∞ −=)(         (1) 

 where A is a fitting constant, GSI∞ is equal to the steady state value of GSI and RC is the 

characteristic charging time constant of the nanocapacitor; R being the bulk resistance of the 

Al2O3 layer and C the capacitance of the nanocapacitor. The values of GSI∞ and RC, 

obtained by fitting the exponential function above to the experimental data, were determined 

to be 75 ± 1 and 61 ± 5 seconds, respectively. The room temperature volume resistivity of 

the high purity (99%) Al2O3, used to fabricate the capacitive nanostructures herein, was ~1012 

Ωm  which gives the resistance of the 5 nm thick and 100 nm diameter Al2O3 core of each 

nanocapacitor to be 6.4x1017 Ω and therefore a capacitance of (9.6 ± 0.8) x 10-17 farads. 
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Figure 4. Graph of average grayscale intensity (GSI) versus time for a Au(10 nm)-

Al2O3(5 nm)-Au(10 nm) nanocapacitor. 

 

The capacitance of a plane parallel capacitor can be described by the well-known equation 

C = εoεrA/L            (2) 

where ε0 is the permittivity of free space, εr is the relative permittivity of the dielectric medium 

between the electrodes of the capacitor, A is the cross-sectional area of the dielectric and L 

is the electrode gap distance.  The bulk resistance of the dielectric layer within a capacitor is 

R = ρL/A                                                                     (3) 

where ρ is the bulk resistivity of the dielectric. It can therefore be seen from equations (2) and 

(3) that the time constant of a plane parallel plate capacitor is 

RC = ρεoεr                                                                   (4) 

The relative permittivity of the high purity Al2O3 used to fabricate the capacitive 

nanostructures was εr = 9.0. Substituting this value and the value for ρ shown previously into 

equation (4) gives the theoretical time constant of the nanocapacitors to be 79 seconds, 

which is in reasonable agreement with the experimental value of 61 ± 5 seconds obtained. 

Equation (1) gives the theoretical capacitance of the nanocapacitors to be 12 x 10-17 farads, 

which is also in reasonable agreement with the experimental value of (9.6 ± 0.8) x 10-17 

farads. 
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Monte Carlo simulations of a scanning electron beam incident on a 10 nm Au layer 

(representing the top Au electrode) were performed using CASINO.17 The simulations 

showed that the maximum penetration range of the 0.3 kV PE beam was 3 nm below the 

surface of the 10 nm upper Au electrode. This demonstrates that the nanocapacitors studied 

were behaving capacitatively as the increase in pixel intensity, or SE emission, seen in 

Figures 3 and 4 was indeed due to an increase in the surface potential of the top Au 

electrode rather than an electrostatic field effect from direct charge buildup within the Al2O3 

core.  

 

In conclusion, we have demonstrated how nanosphere lithography can be used to fabricate 

ordered arrays of capacitive circuit elements, spaced about 100 nm apart. The capacitance 

of the Au-Al2O3-Au nanocapacitors was obtained from transient GSI measurements, and was 

determined to be (9.6 ± 0.8) x10-17 farads. This is in good agreement with the theoretical 

value of 12 x 10-17 farads. The dynamic charging experiments presented above qualitatively 

demonstrate that the nanocapacitive structures fabricated in this work are capable of storing 

useable amounts of charge for sufficient periods of time. These results imply that fabricated 

nanocircuit elements of these types could be incorporated into nanosized electronic circuits, 

potentially bringing benefits in terms of a reduction in power requirements and size.  

 

METHODS  

The silicon wafer used presented a surface with {100} orientation and n-type doping. 

Samples measuring approximately 1 x 1 cm were cut from the wafer and cleaned by 

immersion in ‘piranha solution’ at 65 °C for ~15 min. The substrates were rinsed copiously 

with high purity water (18 MΩ resistivity), rinsed with absolute ethanol, and dried with 

nitrogen gas. Aqueous suspensions of polystyrene spheres with mean diameters of 200 nm 

(Spherotech Inc.) were further diluted in a solution of Triton X-100X-100/methanol (1:400 by 

volume).  
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The nanosphere lithography (NSL) masks were created by spin coating the suspension of 

polystyrene nanospheres onto the silicon substrates at 3600 rpm using a custom-built spin 

coater. The entire substrate was spin coated with the nanospheres for 40 seconds. 

The specimens were then placed in a high vacuum vapor deposition system, which was 

evacuated for a minimum of four hours to yield a base pressure of ~10-4 Pa (10-6 Torr). 

Multilayer structures of Au/Al2O3/Au were deposited using high vacuum DC sputtering for the 

Au, and RF magnetron sputtering for the Al2O3.  The sputtering targets were 99.999% pure 

discs (50mm diameter), placed 150 mm away from the substrate.  Sputtering was carried out 

in presence of flowing Ar, at a pressure of 0.3 Pa (2 mTorr). The thickness of Au used was 

the minimum required to produce electrical continuity. An in situ electrical measurement was 

used to monitor the Au film during deposition. The method has been described previously.18 

The thickness of the Al2O3 layer was monitored by a quartz crystal mounted in the chamber. 

After the coating, the substrate was washed with ethanol, and then the polystyrene 

nanospheres were removed by placing each specimen in dichloromethane and sonicating for 

a minimum of 2 hours. 

 

AFM measurements 

A Digital Instruments Multimode Nanoscope III scanning force microscope was used to 

obtain topographic data. Imaging was conducted in tapping mode, with 512 x 512 data 

acquisitions at a scan speed of 1.4 Hz at room temperature in air. Oxide-sharpened silicon 

nitride tips with integrated cantilevers with a nominal spring constant of 0.38 N/m were used. 

The gold nanostructure dimensions were measured by a pair of cursors along a reference 

line. The cross-sectional and horizontal distances between each pair of cursors were defined 

as the width and length of the different nano structures, respectively. The data were obtained 

from at least 15 sections of several conjugated gold nanostructures and the average data are 

reported here. 

The scanning tunneling microscopy was performed at several locations on the 

nanostructures and on the clean Si(100) surface using Multimode Nanoscope III. AFM/STM 
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Images were manipulated with the Scanning Probe Image Processor (SPIP) software. 

Contrast-enhanced images were obtained by applying a correlation averaging procedure to 

analyze repeat particles units and by a applying low-pass filter. 

 

Estimation of charge and leakage currents 

There are several approaches to investigate transient charging or discharging within 

insulating materials or devices. One approach is to measure the leakage (current flow to 

ground) and displacement currents (time variation of trapped charge induced in an external 

circuit) from a sample using conventional electrometers. This approach is often 

unsatisfactory with nanostructures, as the leakage current is difficult to measure accurately 

due to the small size of the device which causes difficulty in connecting the electronic 

apparatus. The substrate (e.g. silicon) is often much larger than each nanocapacitor so that 

charging/discharging characteristics measured via the specimen current will be those from 

the substrate. Another approach is to use electrostatic mirror and deflection techniques.19 

Negative charge is first implanted in an insulating sample using a highly energetic electron 

beam. The beam energy is then reduced and the electrostatic repulsion of primary electrons 

from the charge implanted regions produces mirroring and distortion effects within SEM 

images. This is used to provide quantitative spatial and temporal information of the trapped 

charge. This technique is also difficult to perform on nanocapacitors due to their small size 

and the consequent inability to insert a measurement apparatus, such as a fine conducting 

mesh, between them and the substrate.  Therefore, an alternative approach is required to 

measure dynamic charging within very small devices such as the present ‘nanocapacitors’.  

A simple, but rather crude, approach is to monitor the brightness (greyscale intensity (GSI)) 

of pixels on a particular nanocapacitor as a function of time. Once a calibrated relationship 

between the GSI and time is obtained for a particular nanocapacitor this can then be 

implemented into theoretically derived expressions that relate the net trapped charge to 

emissive SE and BSE signals. As will be revealed, such a technique enables the relative 
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magnitude of the net charge trapped in a nanocapacitor to be determined as a function of 

time and hence the time constant for charging can be evaluated.  

In conventional high vacuum SEM an increase in the SE emission coefficient or yield (δ) 

(brightening of pixels) following electron irradiation represents negative sample charging20. 

The resulting negative surface potential (VS) caused by the net increase in the amount of 

negative charge injected into the sample surface by the PE beam increases δ by (i) 

effectively reducing the work function for SEs16, 20-23 and (ii) retarding the landing energy of 

the primary beam, producing more SEs within the escape depth. Brightening of pixels with 

time represents dynamic negative charging. Conversely, darkening of pixels corresponds to 

the sample losing negative charge in the charge layer, i.e. positive charging. According to the 

‘total yield approach’ and the charge conservation law,24 a dynamic equilibrium (steady state 

charging condition) is attained when the total electron emission yield from the sample 

reaches unity.16, 23, 25 The total emission yield (σ) being the sum of δ and the backscattered 

electron (BSE) yield (η). The condition where σ = δ + η = 1 occurs at one of two critical 

emission points E1 and E2 on a plot of σ versus electron energy (E), where E2 > E1 
16, 21-24. An 

insulating sample charges negatively (σ < 1) when either EPE < E1  or EPE > E2. Conversely, 

an insulating sample charges positively (σ > 1) when E1 <  EPE < E2  
16, 23, 24.  Theoretical work 

detailing the electric fields, surface potentials and transients associated with charging of 

dielectrics and conducting materials can be found in the literature.16, 19-24 

When an insulating specimen is coated with a floating metallic conductor, such as the 

nanocapacitive devices studied here, the total yield approach fails to correctly describe the 

charging mechanisms that actually occur. This phenomenon was experimentally justified by 

Cazaux15 who reported a negative surface potential for a floating Ag-coating on MgO sample 

at PE beam energies of 2-5 keV even though the total yield approach predicts that a positive 

surface potential, and hence positive charging occurs. Figure M1 illustrates this by showing a 

plot of the surface potential versus PE beam energy, obtained by Cazaux for a 3 nm floating 

Ag layer. Hofmann26 reported similar findings, in which the surface potential on ZrO2-coated 

alumina was always found to be negative for PE beam energies of 0.2-10 keV. Furthermore, 
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Jbara et al.27 have demonstrated that the surface potential is always negative for a floating 

metallic coating on an insulating material and that the surface potential on a floating metallic-

coated insulator is more negative than for the same uncoated insulator.   

 

Figure M1. Surface potential (VS) versus primary electron (PE) beam energy (EPE) for a 

3 nm floating Ag-coating on MgO (adapted from Cazaux et al.15).    

 

When the PE penetration range is much smaller than the thickness of the floating metallic 

coating, which is the case for the nanocapacitors studied in this work, the injected charge 

from the PE beam will redistribute on the surfaces of the Au nanodot electrode. 

Consequently the negative surface potential generated on the electrode will be equivalent to 

that of a plane parallel capacitor: 

r

s

L
V

εε

σ

0

−

=            (7) 

where σ-  is the surface charge density on the surface of the metallic coating, L is the 

thickness of the dielectric layer, ε0 is the permittivity of free space and εr  is the dielectric 

constant of the insulator.15, 23  
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FIGURE CAPTIONS 

 

Figure 1. Schematic illustration of the process of nanosphere lithography (NSL). (a) A 

mono- or bi-layered colloidal crystal of a suitable templating particle is developed on 

the substrate by some suitable means, (b) The template is top-coated with one or more 

materials of interest, usually by physical vapor deposition. Some of the material 

deposited penetrates through the interstices and down onto the substrate. (C) The 

template is removed, leaving only the material deposited on the substrate. 

 

Figure 2. Nanoscale capacitors produced by nanosphere lithography. (a) Low 

magnification image produced using AFM. (b) High magnification image produced 

using AFM. (c-d) High magnification image obtained using STM.  

 

Figure 3. SE images of Au(10 nm)-Al2O3(5 nm)-Au(10 nm) nanocapacitors acquired as 

a function of time illustrating dynamic charging. (a) t = 0 s; (b) t =  41 s; (c) t = 75 s; (d) 

t = 108 s; (e) t = 143 s; (f) t = 177 s; (g) t = 212 s; (h) t = 246 s. [EPE = 0.3 keV, IPE = 100 

pA, WD = 3 mm]. 

 

Figure 4. Graph of average grayscale intensity (GSI) versus time for a Au(10 nm)-

Al2O3(5 nm)-Au(10 nm) nanocapacitor. 

 

Figure M1. Surface potential (VS) versus primary electron (PE) beam energy (EPE) for a 

3 nm floating Ag-coating on MgO (adapted from Cazaux et al.15).   
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