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Abstract. In red-NIR reflectance space, the Modified Soil Adjusted Vegetation Index
(MSAVI) isolines, representing similar vegetation biophysical quantities, are neither
convergent to a point nor parallel to each other. Consequently, the treatment of the MSAVI
isolines is distinctly different from those of other vegetation index isolines, such as the
normalized difference vegetation index (NDVI), the perpendicular vegetation index (PVI),
and the soil-adjusted vegetation index (SAVI). In this study, the MSAVI isolines are shown to
be the tangent lines of the parabola, (NIR-0.5)*+2Red=0, and the values of the MSAVI
isolines are equal to the ordinates of their tangent points plus 0.5. These findings provide a
graphic interpretation of the MSAVI and are useful in understanding the biophysical
characteristics of the MSAVI. The MSAVI isolines are shown to better approximate field data
and simulated vegetation biophysical isolines than the other 2-band vegetation index isolines.
As the treatment of the MSAVI isolines can be depicted by the parabola curve, the MSAVI
can be referred to as a parabola-based vegetation index.

Keywords: vegetation indices, MSAVI, vegetation biophysical isolines, tangent lines of a
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1 INTRODUCTION

Vegetation indices (VIs) derived from satellite remote sensing data are one of the primary
sources of information for operational monitoring of the Earth’s vegetation cover [1]. Since
information contained in a single spectral channel is insufficient to characterize vegetation
status, vegetation indices are usually developed to extract vegetation information from two or
more spectral bands. The most commonly used VIs utilize the information contained in the
red (R) and near infrared (N) reflectances in the form of ratios, such as the normalized
difference vegetation index (NDVI)

N
NDVI = , (1)
N+R

or in linear combinations, as in the perpendicular vegetation index (PVI)
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where a and b are the slope and intercept of a soil line, respectively. These VIs have been
found to be well correlated with various vegetation biophysical variables such as leaf area
index (LAI), fractional vegetation cover, biomass, and the fraction of absorbed
photosynthetically active radiation (fapar), etc. (e.g., [2-8]). An optimal VI should be very
sensitive to the desired information (e.g., the amount of vegetation), and as insensitive as
possible to perturbing factors such as soil brightness changes or atmospheric variation [9].
Soil background conditions exert considerable influence on partial canopy spectra and the
calculated VIs [10]. In order to reduce the soil background effect, Huete [10] proposed using a
soil-adjustment factor, L, to account for first-order, vegetation-soil background
backscattering, and soil variation, and obtained a soil-adjusted vegetation index (SAVI)

PVI =

N-R
Savi =—————(1+1) . ?3)
N+R+L

Several modifications have been made to the SAVI equation and the transformed SAVI
(TSAVI) [3, 11], modified SAVI (MSAVI) [12], and optimized SAVI (OSAVI) [13] were
subsequently proposed. Recently, Gilabert et al. [1] developed a generalized SAVI (GESAVI)
based on a simple canopy reflectance model, which takes into account both linear and
nonlinear terms related to multiple scattering. Except for the MSAVI, all soil-adjusted VIs
have a constant soil-adjustment factor in their equations. The soil-adjustment factor L in the
SAVI equation is 0.5, factor X in the TSAVI equation is 0.08 [3], factor X in the OSAVI
equation is 0.16 [13], and factor Z in the GESAVI equation is 0.35 [1]. Huete [10] found the
optimal soil adjustment factor decreased with increases in vegetation amount. So a variable
soil adjustment factor could reduce the residual soil noise in the SAVI. The MSAVI was
developed with an iterative, variable L function that becomes

2N+1—J@N+ﬂz—dN—R)'
2

MSAVI =

“)

It is well recognized that canopy and soil background spectra mix nonlinearly. Whereas
the soil-adjusted VIs with a constant soil-adjustment factor treat this nonlinearity with a ratio
of reflectances, the MSAVI uses a square root of reflectances.

Soil background influences in VI values for any fixed amount of vegetation can be
depicted in red-NIR reflectance space by the discrepancies between VI equation isolines and
actual vegetation biophysical isolines [10, 14]. A VI equation isoline is defined by the line or
trace formed by all R and N reflectances that result in the same VI value, while a vegetation
biophysical isoline is defined as a set of points representing the same optical and structural
properties of the canopy, but different soil background brightness conditions [14]. Vegetation
biophysical isolines can be derived from reflectances measured over canopies with different
soil backgrounds (e.g. [15, 16]), or through canopy reflectances simulated by canopy
reflectance models with various input soil backgrounds [14, 17, 18]. The goal of an optimized
VI equation or model is for its isolines to approximate vegetation biophysical isolines. The
performance of a VI can thus be mostly determined by the accuracy with which the VI
isolines predict vegetation biophysical isolines. Understanding the pattern of VI isolines is
helpful in understanding the underlying principle or basis of a VI (e.g. how are VI isolines
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distributed and how are their values related), as well as its sensitivity to perturbing factors
such as soil background influence.

Furthermore, in order to effectively understand a VI, it is useful to characterize the VI
isolines in red-NIR reflectance space, i.e. graphically depict the isolines and establish their
relationships to biophysical properties. Ratio-based VIs, such as the NDVI, have isolines
convergent to the origin and their VI values can be calculated by the tangent functions of the
slope angles of the VI isolines (Fig. 1) [11, 19, 20]. Orthogonal-based VIs such as the PVI
have isolines parallel to a soil line and their VI values are determined by the distance between
VI isolines and the soil line. Except for the MSAVI, the soil-adjusted VIs mentioned above
assume isolines convergent to a single point away from the origin [1, 3, 10, 11, 13], and the
values of their isolines can be expressed as tangent functions of spectral angles in red-NIR
reflectance space [1, 20].
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Fig. 1. Vegetation index isolines in red-NIR reflectance space, (a) NDVI isolines,
(b) PVl isolines, (¢) SAVTI isolines, (d) MSAVI isolines.
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With a square root term, the MSAVI equation differs substantially from and is more
complex than the other VI equations. The MSAVI isolines are neither convergent to a point
nor parallel to each other since higher value isolines intersect the soil line more closely to the
origin than lower value isolines (Fig. 1d). The treatment of MSAVI isolines and their
biophysical relationships are less well studied and not well understood. The purpose of this
study is to provide a graphic interpretation of the MSAVI isolines in red-NIR reflectance
space and to evaluate the characteristics and properties of the MSAVI isolines.

2 DERIVATION OF THE MSAVI ISOLINES BASED ON A PARABOLA

In order to facilitate our analysis, Eq. (4) can be simplified as

MSAVI =N +0.5—+/(N—05) +2R , (5)

and the MSAVI isoline equation, i.e., the NIR reflectances expressed as a function of red
reflectances, can be resolved from Eq. (5)

1 MSAVI
R .

N = + (6)
1— MSAVI 2
Setting the square root term in Eq. (5) equal to 0, we obtained a parabola in red-NIR
reflectance space
2
(N—05f +2R=0. )

with the vertex of this parabola at the point (0, 0.5) and its opening toward the negative red
direction (Fig. 2). A tangent line of this parabola at a point on this parabola (R, Ny) becomes

N-Ny=—2>(R—R,) . ®)
1—2N,

Since the point (Ry, Ny) is on the parabola, Ry can be expressed as

2
R =— (N, —20.5) . o)

By substituting Eq. (9) into (8), the tangent line of the parabola becomes

1 Ny +0.5
N= R+ :

10
1— (N, +0.5) 2 1o

Ny can be expressed as a function of N and R according to Eq. (10)

Ny=N—+(N-05) +2R . (11)
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By comparing Eq. (5) and (11), the relationship between the MSAVI and Nj is
MSAVI = N, +0.5 . (12)

Substituting Eq. (12) into (10), the tangent line of the parabola, (N-0.5)*+2R=0, is found
to be the same as Eq. (6), i.e. the MSAVTI isoline. Figure 2 shows the MSAVI isolines as the
tangent lines of the parabola, and the values of the MSAVI isolines equal to the ordinates of
their tangent points plus 0.5. With increasing slopes of the MSAVI isolines, their tangent
points on the parabola shift upward and their MSAVI values increase. Each point with
positive red and near infrared reflectances corresponds to an Ny as well as an MSAVI value
according to a tangent line of the parabola through this point.
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Fig. 2. MSAVTI isolines as the tangent lines of a parabola in red-NIR reflectance
space.

3 COMPARISON WITH VEGETATION BIOPHYSICAL ISOLINES

3.1 Method and data

In order to compare the isolines of the NDVI, PVI, SAVI and MSAVI with vegetation
biophysical isolines, two ground-measured data sets and a simulated data set were used in this
study. The first data set were gathered by Huete et al. [15]. They utilized ground-measured
spectral reflectances collected over a series of cotton canopies to study vegetation biophysical
isolines in red-NIR reflectance space. Vegetation fraction increases from 0% to 100% in a full
growing season. At each canopy cover level, soil backgrounds were varied by inserting
different soils with a wide range of brightness underneath the vegetation canopies. The soil
color ranged from very dark to bright, and the soil moisture varied from wet to dry. The red
reflectance of soil background varied between 0.03 and 0.34. A detailed description of this
experiment can be found in [15].

The second data set was measured over a developing corn canopy by Bausch [21]. The
procedure of this experiment was similar to the procedure of experiment conduced by Huete
et al. [15], but with different vegetation canopies. Spectral reflectances of corn canopies over
different soil backgrounds were measured in a nadir view angle at different Leaf Area Index
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(LAI) levels during a growing season. The red reflectance of soil background varied between
0.08 and 0.31. All the spectral data were collected with similar sun zenith and azimuth angles.

The GeoSail model [22] was used to simulate canopy reflectances, generating the third
data set. This model combines the SAIL (scattering from arbitrary inclined leaves) canopy
radiative transfer model [23] with the Jasinski canopy geometric model [24-26] to simulate
canopy spectral reflectances for discontinuous tree canopies. The SAIL model provides the
within-tree radiative transfer calculations and Jasinski's model combines the SAIL results into
a scene reflectance. Scene reflectance is determined in the model by calculating an area-
weighted average of three landscape components: illuminated canopy, illuminated
background, and shadowed background.

The input parameters to the GeoSail model are listed in Table 1. Leaf optical properties
and sun zenith angle were followed as [22]. A soil line, NIR=1.062Red+0.026, is assumed
and the red reflectance of the soil background was varied between 0.05 and 0.37. A
planophile leaf angle distribution function is used and the shape of canopies is cylinder. As
the trees grow, they become taller and wider to occupy space within the canopy [22]. Thus,
the vegetation fraction (i.e. fraction area covered by tree canopies) increases with the increase
of leaf area index (LAI). A nonlinear relationship between vegetation fraction, f, and LAI is
assumed as

f=1-exp(-0.522L41) . (13)

Table 1. Input parameters used in the GeoSail model.

Parameters Values

Red reflectance and transmittance of leaf ~ 0.07 and 0.032

NIR reflectance and transmittance of leaf ~ 0.505 and 0.407

Leaf angle distribution Planophile

Soil line NIR=1.062Red+0.026
Red reflectance of soil background 0.05-0.37

Sun zenith angle 42°

Height to width ratio of canopies 1

Shape of canopies Cylinder

3.2 Results

The vegetation biophysical isolines for the three canopies are presented in Fig. 3. The isoline
for 0% vegetation cover is the bare soil line (Fig. 3a, 3c). The biophysical isoline of the corn
canopy with least LAI (0.004) approximate the bare soil, given the negligible quantity of
plants [21]. For the three canopy cases, increases in the vegetation fraction or LAI resulted in
vegetation biophysical isolines that increased in slope, decreased in length, and shifted
upward in the positive NIR and negative red directions. The decreases in isoline ‘length’ are
associated with a declining influence of the soil background with increases in vegetation
cover.

The biophysical isolines simulated from the GeoSail model are not straight lines and a
small curvature can be observed at intermediate vegetation levels. However, these biophysical
isolines can be approximated by straight lines fairly accurately, with R*>0.99. Yoshioka et al.
[14, 17] derived linear vegetation biophyscial isolines by separating the first-order
interactions of spectra between vegetation canopy and its soil background from higher-order
interactions, and found the contribution of the higher-order interactions were less than 5%.

VI isoilnes do not overlap biophysical isolines at all vegetation density levels, resulting in
soil background effects on VIs. The discrepancy between a biophysical isoline and a VI
isoline can be represented by the angles between the biophysical isoline and the VI isoline
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across the mid-point of each vegetation fraction (or LAI) isoline, calculated by the VI isoline
slope angle minus the biophysical isoline slope angle (Fig. 4).

0.7 . . T osf (de T T T T T ]
1‘00 /253 1.43
06} 19 o ; e LAl
90 75 Vegetation fraction (%) 04+ 058 031 0.1 002
0.5} // 60 J 0.004
40
@ 25 )
2 2 S o3l .
8 041 0o 1 g -
® 03} . S o2
o ) 9 ’
= \
Z o2f Y 1 =
0.1 -
0.1F b
0 L 1 L 1 L 1 L 0 N 1 N 1 N 1 N
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
Red reflectance Red reflectance
(@) (b)
)
05 ° 7
'S
/ ) Vegetation fraction (%)
04///@“’%@Q e ® ® S 0]
3 /
§
5 03r 7
Q
®
X 02r 1
z
0.1 b
0 | | |
0 0.1 0.2 0.3 0.4
Red reflectance
(©

Fig. 3. Vegetation biophysical isolines at different vegetation density (vegetation
fraction or LAI) levels. (a) cotton biophysical isolines (Huete et al., 1985), (b) corn
biophysical isolines (Bausch, 1993), (c) simulated tree biophysical isolines.

For the cotton canopy, the NDVI isolines deviated significantly from the biophysical
isolines at vegetation fractions less than 75%, with smaller deviations at higher vegetation
fractions (Fig. 4a). The largest discrepancy occurred at 40% vegetation fraction. Positive
deviations indicate slope angles of NDVI isolines are larger than those of vegetation
biophysical isolines. The angles between the PVI isolines and vegetation biophysical isolines
became greater with increases of vegetation fraction and the slope angles of biophysical
isolines. Because the PVI isolines are parallel to the soil line, slope angles of biophysical
isolines are larger than those of PVI isolines, particularly at high vegetation density levels.
The SAVI produced small and positive angle differences when vegetation fractions are below
40%, and produced negative angle differences when vegetation fractions are more than 60%.
In contrast, the angle differences produced by the MSAVI were smaller than those of the
SAVI at all vegetation fractions.

Similar angle differences were found over the corn canopy and the simulated tree canopy
for the four VIs (Fig. 4b, 4c). The NDVI produced significant, positive angle differences. The
largest difference occurred when LAI is about 1 for corn canopies, and when vegetation
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fraction is 55% for the simulated canopies. Increasing angle differences produced by the PVI
were also observed with increases in vegetation density. The angle differences for SAVI and
MSAVI switched from positive to negative as vegetation amount increases, but the
differences remained small. The angle differences for MSAVI were the smallest over the full
range of vegetation density levels, indicating that the MSAVI isolines matched the vegetation
biophysical isolines the best.
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Fig. 4. Angles between vegetation biophysical isolines and VI isolines across the
mid-points of vegetation fraction (or LAI) isolines, (the VI isoline slope angle minus
the biophysical isoline slope angle) (a) cotton canopy, (b) corn canopy, (c) simulated

tree canopy.

In order to compare soil influences in the four VIs, a relative soil noise value for each
vegetation density level was defined as

Relative soil noise = (VI dark ~ Vprighi )/ (Vlmax - Vlmm) , (14)

where Vg and Vlygye are the VI values for constant vegetation canopies over the darkest
and brightest soil backgrounds used in the experiments, and VI, and VI;, are the maximum
and minimum VI values for each data set, respectively. The NDVI produced significant soil
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noise when vegetation fractions were less than 60% or LAI was less than 1.5, and was
maximum at vegetation fractions between 20% and 40% or LAI between 0.5 and 1 (Fig. 5).
The positive noise indicates NDVI overestimated vegetation amount over dark soil
background.
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Fig. 5. Relative soil noise in the four VIs at various vegetation fractions or LAI
levels over (a) cotton canopy, (b) corn canopy, (c¢) simulated tree canopy.

The PVI produced significant soil noise at intermediate vegetation levels, not at the
highest density levels, because the lengths of the vegetation biophysical isolines at high
fractional covers or LAI became very small (Fig. 3), i.e. soil background produced
insignificant effects on canopy reflectances at high vegetation levels, even though the angle
differences between PVI isolines and biophysical isolines are greatest at highest vegetation
density. Soil noise of a VI is the synergistic result of angle difference between the VI isolines
with the biophysical isolines and the lengths of the biophysical isolines. Negative soil noise
indicates the PVI underestimated vegetation amount over dark soil background.

The SAVI and MSAVI produced small positive soil noise at low vegetation levels and
small negative soil noise at high vegetation levels. The soil noise of the MSAVI was smallest
among the three canopy cases.
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4 CONCLUSION

In red-NIR reflectance space, the treatment of the MSAVI isolines was shown to be distinctly
different from the isoline patterns of the other VIs. The treatment of the MSAVI isolines can
be graphically determined by a parabola curve with the location of the vertex and curvature of
the parabola influencing the arrangement of the isolines. The MSAVI isolines were
determined to be the tangent lines of the parabola, (N-0.5)*+2R=0, with the values of the
MSAVI isolines equal to the ordinates of their tangent points plus 0.5. In this sense, the
MSAVI can be referred to as a parabola-based VI.

These findings provide a graphic interpretation of the MSAVI for an improved
understanding of the biophysical characteristics of the MSAVI. The most significant
difference between the MSAVI isolines and other soil-adjusted VIs is that the MSAVI
isolines are not necessarily convergent to a single point, resulting in more flexibility and
better agreement with vegetation biophysical isolines, and further reducing soil background
influences. We found MSAVI isolines to closely approximate field-measured and modeled
canopy biophysical isolines over differing canopy structures and a wide range vegetation
fraction, LAI, and soil conditions, indicating the robust nature of the MSAVI.

Further studies encompassing different vegetation canopies would be beneficial to more
completely evaluate the performance of these VIs. The data sets used in this study were at the
ground level without consideration of atmospheric effects. Studies evaluating atmospheric and
bidirectional (view and sun angle) effects on the MSAVI biophysical isolines, such as those
reported by Huete and Liu [27], will improve our understanding of performance of these
indices.
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