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l∞-Bounded Robustness for Nonlinear Systems :
Analysis and Synthesis

Shoudong Huang∗ M.R. James†

July 15, 2003

Abstract

The purpose of this paper is to describe systematic analysis and design tools
for robust control problems with l∞ criteria. We first generalize the Hill-Moylan-
Willems framework for dissipative systems to accommodate l∞ criteria, and then
derive state feedback and measurement feedback synthesis procedures for l∞ robust
control problems. The information state framework is used for the measurement
feedback robust control problem. Necessary and sufficient conditions are proved,
and new synthesis procedures using dynamic programming are presented.
Keywords: Nonlinear robust control, l∞ criteria, dissipative systems, information
states, dynamic programming, controller synthesis.

1 Introduction

Techniques for the design of robust control systems and indeed for optimal control in
general have primarily made use of integral-type performance criteria. These criteria
are sometimes referred to as soft criteria, since a bound on the performance integral
need not guarantee that a given output quantity meets absolute bound specifications or
constraints. In some applications it is important for outputs to meet hard constraints in
the time domain, such as applications where an absolute regulation error is required to
be always less than a specified amount. Further, persistent input signals may be present
that do not have finite energy. These situations can be formulated in terms of L∞-type
(or l∞-type) criteria, which might be called hard criteria.

Methods for analysis and design using hard criteria have been considered for some
time, mostly for linear systems. We mention here a small selection of results in the
literature. The state feedback control problem to force the state of the closed-loop system
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(with uncertainties) to stay in a specified region was considered in [3, 5]. The recursive
state estimation for linear system with bounded input disturbance and measurement noise
was studied in [4]. The l1 optimal control problem was introduced by [29], and solutions
were obtained using linear programming in [10], [11], [8], [9]. These solutions [27] can
be infinite dimensional and dynamic, although finite dimensional approximation methods
were developed. In [26], [27], near optimal memoryless nonlinear state feedback solutions
were obtained, using controlled invariance kernels and viability theory. These results were
very interesting, given that the plants were described by linear dynamics. More recently,
in [12] dynamic programming equations were derived for the state feedback problem for
linear systems. In [28] set-valued observers were considered, and a separation structure
controller was derived for linear systems. Here, the controller was a static function of the
set-valued observer state. Also, we mention the papers [13] and [24], which considered
the problems of L∞ worst-case analysis and rejection of persistent bounded disturbance
for nonlinear systems.

Our objective in this paper is to describe systematic analysis and design tools for
robust control problems with hard criteria. We begin by generalizing the Hill-Moylan-
Willems framework for dissipative systems, originally developed for integral performance
criteria, to accommodate l∞ criteria. This framework is powerful and widely used for a
range of stability and robustness problems. The generalization of the dissipation property
to the l∞ case is completely characterized in terms of a dynamic programming equation
(or inequality) related to equations [13, (14) and (15)]. This is done in a way which makes
use of a formal analogy between integrals and max-plus integrals (involving the (essential)
supremum of a function on an interval), with links to the optimal control problems studied
in [2], [7].

This analysis framework is then developed to derive state feedback and measurement
feedback synthesis procedures by exploiting connections with optimal control and game
theory. In the state feedback case, related results are available for linear systems, e.g.
[12, Section V]. For the measurement feedback l∞ robust control problem, we employ
the information state framework [21], [22], [15], and obtain dynamic controllers that feed
back the information state. The information state is a generalization of observer or filter,
with a state computable from measurement data. For the special case of what we refer
to as the uniform l∞ bounded dissipation problem (essentially specified in [28, Definition
4.1]), it is shown that the controllers can be chosen to feed back only a set-valued state
estimate, to which the information state reduces, consistent with the separation structure
of [28, Theorem 4.1].

The results in this paper are expressed in terms of dynamic programming equations
(or inequalities). We prove necessary and sufficient conditions in terms of them. Thus a
particular dynamic programming equation (or inequality) has a solution when the corre-
sponding control property holds or problem is solvable, as is the case with the bounded
real lemma and H∞ control, [14]. Conversely, if a given dynamic programming equation
(or inequality) has a solution (satisfying mild technical conditions), then the correspond-
ing control property holds or problem is solvable. We do not address the issue of finding
solutions to the dynamic programming equations (or inequalities); as is well known in
dynamic programming, explicit solutions are not generally available and approximate or
numerical methods are required, see, e.g. [6], [13]. We do, however, illustrate the syn-
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thesis procedure by applying it to simple linear and bilinear examples. Interestingly, the
certainty equivalence principle as used in linear H∞ control [21], [1], [15] does not in
general usefully apply in this l∞ context. Further applications and examples are reported
in the publications [18], [19].

This paper considers discrete time nonlinear systems for technical simplicity. We do,
however, present some of the analogous continuous time equations and inequalities for
comparison. The continuous time case is more technical and is considered in a separate
paper.

2 Analysis

2.1 l∞ Bounded Dissipation

Consider the nonlinear discrete-time system

ξk+1 = f(ξk, wk)
zk = g(ξk, wk)

(2.1)

Here, ξk ∈ Rn, wk ∈ W ⊂ Rs, and zk ∈ R are the state, disturbance input and perfor-
mance output quantity, respectively.

We employ the following notation:

w0,k−1 = {w0, · · · , wk−1},∀k ≥ 0,
W0,k−1 = {w0,k−1 : wi ∈ W, 0 ≤ i ≤ k − 1}, k ≥ 0,
W0,∞ = {w0,∞ : wi ∈ W}.

(2.2)

We adopt the convention that sets of signal sequences corresponding to the index k = 0
are empty, so that W0,−1 = ∅. We also take the supremum over an empty set to equal
−∞.

The following definition is motivated by the disturbance rejection problem specified
by [28, Definition 4.1], the worst case analysis of [13, Section IIB], the l1 performance
specification formulated in [29], [10], [11], [8], [9] and the cost functions in [2]. It is one
possible definition of dissipation-like properties with l∞ criteria. The dissipative systems
framework was developed by Willems, Hill and Moylan [31], [16], [17].

Definition 2.1 Given B0 ⊂ Rn, the system (2.1) is l∞-bounded (LIB) dissipative with
respect to B0 if there exists a β : B0 → R such that

zk ≤ β(x0), ∀ξ0 = x0 ∈ B0,∀w0,k ∈ W0,k,∀k ≥ 0. (2.3)

2.2 Storage Functions

Denote
R̄

4
= R ∪ {+∞} . (2.4)
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For a function V : Rn → R̄, denote

domV
4
= {x ∈ Rn : V (x) < +∞}. (2.5)

We denote T (A) = {f(x,w) : x ∈ A,w ∈ W} where A ⊂ Rn. A subset S ⊂ Rn is
called a T -invariant set if T (S) ⊂ S.

Definition 2.2 Let V : Rn → R̄, S ⊂ domV ⊂ Rn be a T -invariant set. For system
(2.1), V is called a storage function on S if

V (x) ≥ max{ max
0≤i≤k−1

g(ξi, wi), V (ξk)},∀x ∈ S, ∀w0,k−1 ∈ W0,k−1,∀k ≥ 0, (2.6)

where ξ· denotes the state trajectory of (2.1) with disturbance w and initial condition
ξ0 = x. Inequality (2.6) is called the LIB dissipation inequality.

In the general theory of dissipative systems, two particular storage functions are of
special interest, viz. the available storage and the required supply. In our present context,
the available storage Va : Rn → R̄ is defined by

Va(x) = sup
k≥0

sup
w0,k−1∈W0,k−1

max
0≤i≤k−1

g(ξi, wi), (2.7)

where ξ· denotes the state trajectory of (2.1) with disturbance w and initial condition
ξ0 = x (this is a generalization of the usual definition of available storage [31]).

Lemma 2.3 The available storage Va(x) is a storage function on domVa for the system
(2.1). Moreover, for any storage function V on S, we have

S ⊂ domVa, Va(x) ≤ V (x),∀x ∈ S. (2.8)

Proof. The proof of the fact that Va satisfies (2.6) is similar to the proofs of [31,
Theorems 1 and 2] and is omitted here. If x ∈ domVa, i.e. Va(x) < +∞, then from (2.6),
∀w ∈ W, Va(f(x,w)) ≤ Va(x) < +∞, i.e. f(x,w) ∈ domVa, so domVa is a T -invariant set.
The minimal property follows from the following observation. If V is a storage function
on S as in Definition 2.2, then by (2.6) ∀x ∈ S,

V (x) ≥ sup
k≥0

sup
w0,k−1∈W0,k−1

max
0≤i≤k−1

g(ξi, wi) = Va(x).

Hence S ⊂ domVa. ¤
The following theorem shows how storage functions characterize the LIB dissipation

property.

Theorem 2.4 The system (2.1) is LIB dissipative with respect to B0 ⊂ Rn if and only if
there exists a function V : Rn → R̄ and a T -invariant set S satisfying B0 ⊂ S ⊂ domV
such that V is a storage function on S.
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Proof. If system (2.1) is LIB dissipative with respect to B0, then there exists a
β : B0 → R such that

g(ξk, wk) = zk ≤ β(x0), ∀x0 ∈ B0,∀w0,k ∈ W0,k,∀k ≥ 0,

hence from (2.7) we have Va(x0) ≤ β(x0) for all x0 ∈ B0. Thus B0 ⊂ domVa, and from
Lemma 2.3, Va is a storage function on domVa with B0 ⊂ domVa, as required.

Conversely, if V is a storage function on S, then

zk = g(ξk, wk) ≤ max
0≤i≤k

g(ξi, wi) ≤ V (x0) < +∞, ∀x0 ∈ S, ∀w0,k ∈ W0,k,∀k ≥ 0,

Since B0 ⊂ S, β(x0)
4
= V (x0) satisfies (2.3). ¤

Corollary 2.5 System (2.1) is LIB dissipative with respect to B0 if and only if B0 ⊂
domVa.

2.3 Dynamic Programming Inequality

We now give an “infinitesimal”, or, precisely, a one-step, dynamic programming inequal-
ity that characterizes storage functions, and hence by Theorem 2.4 the LIB dissipation
property.

For V : Rn → R̄ and S ⊂ domV ⊂ Rn, the LIB dynamic programming equation is

V (x) = sup
w∈W

max{g(x,w), V (f(x,w))}, ∀x ∈ S. (2.9)

The analogous LIB dynamic programming inequality is

V (x) ≥ sup
w∈W

max{g(x,w), V (f(x,w))},∀x ∈ S. (2.10)

Remark 2.6 The analogous LIB dynamic programming equation for the continuous time
system ξ̇ = f(ξ, w), z = g(ξ, w), is the partial differential equation [20] (see also [2], [7],
[13]):

sup
w∈W

max{g(x,w)− V (x), ∇V (x)f(x,w)} = 0, ∀x ∈ S ⊂ domV. (2.11)

¤

Theorem 2.7 Given a function V : Rn → R̄ and a T -invariant set S ⊂ domV , V is a
storage function on S if and only if (V, S) is a solution of (2.10).

Proof. The necessity is obvious. Now consider the sufficiency, assume (V, S) sat-
isfying (2.10). Let k ≥ 0 and select w0,k−1 ∈ W0,k−1 and x0 ∈ S. This determines a
trajectory ξi, 0 ≤ i ≤ k. Since S is a T -invariant set, iterating (2.10) we find that

V (x0) ≥ V (ξi), ∀ 0 ≤ i ≤ k; V (ξi) ≥ g(ξi, wi), ∀ 0 ≤ i ≤ k − 1.

Therefore V (x0) ≥ V (ξk) and V (x0) ≥ max
0≤i≤k−1

g(ξi, wi). This implies (2.6). ¤
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Theorem 2.8 (Necessity) If system (2.1) is LIB dissipative with respect to B0, then the
available storage Va defined by (2.7) satisfies

(i) B0 ⊂ domVa;

(ii) Va(x) ≥ sup
w∈W

g(x,w), ∀x ∈ Rn;

(iii) domVa is a T -invariant set and the dynamic programming relation holds:

Va(x) = sup
w0,j−1∈W0,j−1

max{ max
0≤i≤j−1

g(ξi, wi), Va(ξj)}, ∀x ∈ domVa,∀j ≥ 0. (2.12)

i.e. Va solve the dynamic programming equation (2.9) with S = domVa.

(iv) If (V, S) satisfies the LIB dynamic programming inequality (2.10), then

S ⊂ domVa, Va(x) ≤ V (x), ∀x ∈ S.

(Sufficiency) If there exists V : Rn → R̄ and T -invariant set S satisfying the LIB dynamic
programming inequality (2.10), then for system (2.1),

zk ≤ V (x0), ∀ξ0 = x0 ∈ S, ∀w0,k ∈ W0,k,∀k ≥ 0.

Moreover, if B0 ⊂ S, then system (2.1) is LIB dissipative with respect to B0.

Proof. (i) and (ii) are obvious by the definition of Va, and (iv) follows from Lemma
2.3 and Theorem 2.7. Part (iii) follows from Lemma 2.3 and standard dynamic program-
ming techniques. The proof of the sufficiency assertion comes directly from Theorem 2.4
and Theorem 2.7. ¤

2.4 Performance and Stability

The notion of LIB dissipation abstracts the approach to worst case analysis in [13]; the
definition (2.7) of available storage corresponds to the function defined by equations (2)
and (3) in [13]. Storage functions for LIB dissipative systems can be used to analyze L∞

gain functions and induced L∞ gains over bounded signals [13].

In many applications asymptotic stability to an equilibrium, or stability about an
equilibrium, is an issue. We say that the system (2.1) has an equilibrium at x = 0 if
0 ∈ W, f(0, 0) = 0, g(0, 0) = 0. The next theorem is an example of a stability theorem
for LIB dissipative systems.

Theorem 2.9 Let V be a storage function on a T -invariant set S ⊂ domV for an LIB
dissipative system (2.1) with equilibrium x = 0, where g(x,w) = |x|.

(i) If x0 ∈ S, then the state is bounded as follows:

|ξk| ≤ V (ξk) ≤ V (x0), ∀k ≥ 0 (2.13)

whenever w0,∞ ∈ W0,∞.
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(ii) Assume in addition that V is continuous and V (0) = 0. Then for any w0,∞ ∈ W0,∞
the system (2.1) is stable, and V is a positive definite Lyapunov function.

(iii) Assume in addition that V (f(x, 0)) = V (x) ⇒ x = 0, and that f(x, 0) is continuous.
Then the system (2.1) is asymptotically stable when w = 0.

Proof. Since V is a storage function on S, from Definition 2.2, if ξ0 = x0 ∈ S, then
∀k ≥ 0, ξk ∈ S and

|ξk| = g(ξk, wk) ≤ V (ξk); V (ξk) ≤ V (x0).

This immediately implies (2.13).

If also V is continuous and V (0) = 0, then given ε > 0 there exists δ > 0 such that
|x0| < δ implies V (x0) < ε. Then (2.13) implies |ξk| < ε for all k ≥ 0.

Since V (x0) ≥ |x0| and V (ξk+1) ≤ V (ξk),∀k ≥ 0, V is a positive definite Lyapunov
function.

When V (f(x, 0)) = V (x) ⇒ x = 0, f(x, 0) is continuous and w = 0, since ξk is
bounded, from the Invariance Principle [23, Chapter 1, Theorem 6.3], ξk → 0 as k →∞.
So the system is asymptotically stable when w = 0. ¤

3 State Feedback Synthesis

With the tools developed in the previous section in hand, we turn to the problem of
finding state feedback controllers achieving LIB dissipation for the closed loop.

3.1 Problem

Consider the nonlinear discrete-time system

ξk+1 = f(ξk, uk, wk)
zk = g(ξk, uk, wk)

(3.1)

Here, ξk ∈ Rn, uk ∈ U ⊂ Rm, wk ∈ W ⊂ Rs and zk ∈ R are the state, control input,
disturbance and performance output quantity, respectively. In addition to the notation
of the previous section, we define x0,k,X0,∞, u0,k, U0,k, U0,∞, analogously to (2.2).

Assumption 3.1 Assume that

ğ(x)
4
= inf

u∈U
sup
w∈W

g(x, u, w) > −∞, ∀x ∈ Rn. (3.2)

An admissible state feedback controller is a causal map K : X0,∞ → U0,∞, meaning that
for each time k ≥ 0 if x1, x2 ∈ X0,∞ and x1

l = x2
l for all 0 ≤ l ≤ k then K(x1)k = K(x2)k,

i.e., the control at time k is independent of future states. Denote by Ksf the class of
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such admissible state feedback controllers. We sometimes abuse notation by writing
uk = K(x0,k) or u = K(x).

Problem: Given B0 ⊂ Rn, find a state feedback controller K ∈ Ksf such that the
closed-loop system is LIB dissipative with respect to B0.

For the closed-loop system, we define

βK
a (x)

4
= sup

k≥0
sup

w0,k∈W0,k

{g(ξk, uk, wk) : u = K(ξ)}, ∀x ∈ Rn
(3.3)

where ξ· denotes the corresponding state trajectory of (3.1) with disturbance w and initial
condition ξ0 = x. In fact, βK

a (x) is the available storage of the closed-loop system (with
controller K).

Further define the state feedback value function

Va(x) = inf
K∈Ksf

βK
a (x), ∀x ∈ Rn. (3.4)

By Assumption 3.1, Va(x) ≥ inf
u∈U

sup
w∈W

g(x, u, w) = ğ(x) > −∞,∀x ∈ Rn. i.e. Va : Rn →
R̄.

3.2 Dynamic Programming Solution

In Section 2.3 we saw the importance of the LIB dynamic programming inequality (2.10)
and equation (2.9) in characterizing LIB dissipation. A similar inequality and equation
arises when dynamic programming techniques are applied to the minimax game specified
by (3.4). As we shall see, it will be useful to consider the dynamic programming equation
or inequality as holding on a subset of the domain of the solution function V .

Let V : Rn → R̄ and S ⊂ domV ⊂ Rn. The state feedback dynamic programming
equation is

V (x) = inf
u∈U

sup
w∈W

max{g(x, u, w), V (f(x, u, w))},∀x ∈ S. (3.5)

The analogous state feedback dynamic programming inequality is

V (x) ≥ inf
u∈U

sup
w∈W

max{g(x, u, w), V (f(x, u, w))}, ∀x ∈ S. (3.6)

Remark 3.2 The analogous partial differential equation for the continuous time system
ξ̇ = f(ξ, u, w), z = g(ξ, u, w), is

inf
u∈U

sup
w∈W

max{g(x, u, w)− V (x), ∇V (x)f(x, u, w)} = 0, ∀x ∈ S ⊂ domV. (3.7)

¤

The main results of state feedback case are listed below. The proofs are similar to the
proofs of corresponding results in [22] and are omitted here due to the limited space, see
also [15] and the proofs of the results of measurement feedback case, Section 4.
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Theorem 3.3 (Necessity) If there exists a state feedback controller K0 ∈ Ksf such that
the closed-loop system (with K = K0) is LIB dissipative with respect to B0, then the
function Va : Rn → R̄ defined by (3.4) satisfies:

(i) B0 ⊂ domVa;

(ii) Va(x) ≥ ğ(x), ∀x ∈ Rn, where ğ(x) is defined in (3.2);

(iii) The dynamic programming relation holds

Va(x) = inf
K∈Ksf

sup
w0,j−1∈W0,j−1

{max{ max
0≤i≤j−1

g(ξi, ui, wi), Va(ξj)} : ξ0 = x, ui = K(ξ0,i)},
∀x ∈ domVa, ∀j ≥ 0,

(3.8)
i.e. Va solves the dynamic programming equation (3.5), with S = domVa.

Definition 3.4 Given a function V : Rn → R̄ and a nonempty set S ⊂ domV ⊂ Rn,
the pair (V, S) is called a good solution of the dynamic programming inequality (3.6) if it
satisfies

(i) (V, S) is a solution of the dynamic programming inequality (3.6) and there exists
u∗ : S → U such that

sup
w∈W

max{g(x,u∗(x), w), V (f(x,u∗(x), w))}
= inf

u∈U
sup
w∈W

max{g(x, u, w), V (f(x, u, w))},∀x ∈ S.
(3.9)

(ii) S is an invariant set under the closed-loop dynamics when the controller is u∗(x),
i.e. ∀x ∈ S, ∀w ∈ W, f(x,u∗(x), w) ∈ S.

A controller K∗ ∈ Ksf can be defined by K∗(x·)k = u∗(xk), for x· ∈ X0,∞ (static state
feedback). In this definition, if S 6= Rn we specify u∗(x) arbitrarily for x 6∈ S.

Theorem 3.5 (Sufficiency) If (V, S) is a good solution of the dynamic programming in-
equality (3.6), then the closed-loop system (with K = K∗) satisfies

zk ≤ V (x0), ∀x0 ∈ S, ∀w0,k ∈ W0,k,∀k ≥ 0.

Moreover, if B0 ⊂ S, then the closed-loop system is LIB dissipative with respect to B0.

Corollary 3.6 If (V, S) is a good solution of the dynamic programming inequality (3.6),
then we have

S ⊂ domVa; Va(x) ≤ V (x),∀x ∈ S. (3.10)

where Va is the state feedback value function defined in (3.4).
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4 Measurement Feedback Synthesis

We turn now to the measurement feedback synthesis problem for the LIB dissipation
property. The solution to the problem requires suitable state estimation, in addition to
some concepts from the state feedback solution.

4.1 Problem Statement

Consider the nonlinear discrete-time system:

ξk+1 = f(ξk, uk, wk)
zk = g(ξk, uk, wk)
yk = h(ξk, uk, wk)

(4.1)

Here, ξk ∈ Rn, uk ∈ U ⊂ Rm, wk ∈ W ⊂ Rs, yk ∈ Rp and zk ∈ R are the state, control
input, disturbance input, measurement output and performance measure, respectively.

We continue to make Assumptions 3.1. We also denote:

Y = range{h}. (4.2)

In addition to the notation of the previous sections, we define y0,k, Y0,k, Y0,∞, analogously
to (2.2).

An admissible measurement feedback controller is a causal map K : Y0,∞ → U0,∞,
meaning that for each time k > 0 if y1, y2 ∈ Y0,∞ and y1

l = y2
l for all 0 ≤ l ≤ k − 1

then K(y1)k = K(y2)k, i.e., the control at time k is independent of current and future
measurements. Denote by Kmf the class of such admissible controllers. We sometimes
abuse notation by writing uk = K(y0,k−1) or u = K(y).

Problem: Given B0 ⊂ Rn, find a measurement feedback controller K ∈ Kmf such
that the closed-loop system is LIB dissipative with respect to B0.

For a given controller K ∈ Kmf , the available storage of the closed-loop system is

βK
a (x0) = sup

k≥0
sup

w0,k∈W0,k

g(ξk, uk, wk), ∀x0 ∈ Rn (4.3)

where ξ· denotes the state trajectory of (4.1) with input u = K(y), disturbance w and
initial condition ξ0 = x0.

Problem Restatement: Given B0 ⊂ Rn, choose K ∈ Kmf such that B0 ⊂ domβK
a .

4.2 Problem Restatement in Terms of a Cost Function

We will solve the optimal K problem using a minimax cost function and information
state methods in subsequent sections. The aim of this section is to define a suitable cost
function and relate it to LIB dissipation.
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Denote
R̃

4
= R ∪ {−∞} ∪ {+∞} . (4.4)

and
χ̃
4
= {p : Rn → R̃}. (4.5)

For p ∈ χ̃, denote

〈p〉 4= sup
x∈Rn

p(x) (4.6)

Notice that −∞ ≤ 〈p〉 ≤ +∞. For p ∈ χ̃, denote

supportp
4
= {x ∈ Rn : p(x) > −∞} (4.7)

Also, for nonempty set M ⊂ Rn, denote

δM(x)
4
=

{
0, if x ∈ M,
−∞, if x /∈ M.

(4.8)

Then δM ∈ χ̃, 〈δM〉 = 0 and supportδM = M .

Define, for p ∈ χ̃ and u ∈ U, y ∈ Y,

G(p, u, y)
4
= sup

x∈Rn

sup
w∈W

{p(x) + g(x, u, w) : h(x, u, w) = y}. (4.9)

Similar to ğ(x) in the state feedback case, for p ∈ χ̃, we define

Ğ(p)
4
= inf

u∈U
sup
y∈Y

G(p, u, y). (4.10)

We can prove from Assumption 3.1 that Ğ(p) = −∞⇔ p ≡ −∞.

For p ∈ χ̃, controller K ∈ Kmf , define the cost function

Jp(K)
4
= sup

k≥0
sup

x0∈Rn

sup
w0,k∈W0,k

{p(x0) + g(ξk, uk, wk)} (4.11)

where ξ· denotes the state trajectory of (4.1) with input u = K(y), disturbance w and
initial condition ξ0 = x0.

The cost function Jp(K) enjoys the following simple properties, and in particular
encodes the LIB dissipation property. (see also Lemmas 3.1.2 and 3.1.3 in [15])

Lemma 4.1 For p ∈ χ̃, the cost function satisfies

Jp(K) = sup
x0∈supportp

{
p(x0) + βK

a (x0)
}

. (4.12)

Proof. By the definition of Jp(K), if x0 /∈ supportp, then p(x0) = −∞ and

sup
k≥0

sup
w0,k∈W0,k

{p(x0) + g(ξk, uk, wk)} = −∞.

If x0 ∈ supportp, then

sup
k≥0

sup
w0,k∈W0,k

{p(x0) + g(ξk, uk, wk)} = p(x0) + βK
a (x0).

Hence the equality (4.12) holds. ¤
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Lemma 4.2 The function p → Jp(K) satisfies (i) Domination. Jp(K) ≥ Ğ(p), where

Ğ(p) is defined in (4.10); Jp(K) = −∞ ⇔ p ≡ −∞. (ii) Monotonicity. p1 ≥ p2 =⇒
Jp1(K) ≥ Jp2(K). (iii) Additive homogeneity. ∀c ∈ R, Jp+c(K) = Jp(K) + c.

Proof. These structural properties come directly from Lemma 4.1 and the definition
of Ğ(p) in (4.10). ¤

Lemma 4.3 The closed-loop system (with controller K ∈ Kmf) is LIB dissipative with
respect to B0 ⊂ Rn, if and only if ∃p ∈ χ̃ with supportp = B0 such that

Jp(K) ≤ 0. (4.13)

Proof. From Lemma 4.1,

Jp(K) ≤ 0 ⇔ sup
x0∈supportp

{
p(x0) + βK

a (x0)
} ≤ 0

⇔ βK
a (x0) ≤ −p(x0),∀x0 ∈ supportp

⇔ βK
a (x0) ≤ −p(x0) < +∞,∀x0 ∈ B0

¤
Problem Restatement I: Given B0 ⊂ Rn, choose controller K ∈ Kmf such that

Jp(K) ≤ 0 (4.14)

for some p ∈ χ̃ with supportp = B0.

Optimal K Problem I: Choose controller K ∈ Kmf such that Jp(K) is the smallest
(over Kmf ) for some p ∈ χ̃ with supportp = B0.

4.3 Equivalent Formulation Using Information States

To solve the LIB problem, we introduce a state estimator quantity from which a suitable
controller can be determined. This state quantity must be computable from the measure-
ments (u·, y·) available to the controller, and it must characterize the LIB property. The
information state framework of [21], [22], [15] is employed, and we recast the measurement
feedback LIB dissipation problem in terms of an equivalent state feedback problem, where
the new state is an information state.

Definition 4.4 For p0 ∈ χ̃, j ≥ 0, u0,j−1 ∈ U0,j−1, y0,j−1 ∈ Y0,j−1, we define the infor-
mation state pj : Rn → R̃ by

pj(x) = sup
w0,j−1∈W0,j−1

sup
x0∈Rn

{p0(x0) : ξ0 = x0, ξj = x, h(ξi, ui, wi) = yi, 0 ≤ i ≤ j−1} (4.15)

where ξi satisfies
ξi+1 = f(ξi, ui, wi), 0 ≤ i ≤ j − 1. (4.16)

12



The next lemma shows that the information state characterizes the LIB dissipation
property.

Lemma 4.5 The closed-loop system (with controller K ∈ Kmf) is LIB dissipative with
respect to B0 ⊂ Rn, if and only if there exists p0 ∈ χ̃ with supportp0 = B0 such that

G(pk, uk, yk) ≤ 0, ∀k ≥ 0, (4.17)

where pk is defined by (4.15) with initial state p0 and u = K(y), y is the measurement
output of (4.1) for any initialization x0 ∈ B0 and disturbance w, and G(p, u, y) is defined
in (4.9).

Proof. Assume (4.17) holds as stated. ∀x0 ∈ B0,∀k ≥ 0,∀w0,k ∈ W0,k, denote by
ξk, uk and yk the corresponding state, control and measurement output trajectories of the
closed-loop system. By Definition 4.4 we have

p0(x0) + g(ξk, uk, wk) ≤ pk(ξk) + g(ξk, uk, wk) ≤ G(pk, uk, yk) ≤ 0.

i.e.
zk = g(ξk, uk, wk) ≤ −p0(x0).

This implies that the closed-loop system is LIB dissipative with respect to B0 where
β(x0) = −p0(x0).

Conversely, suppose that the closed-loop system is LIB dissipative with respect to B0

and β(x0). Choose p0(x0) = −β(x0), then supportp0 = B0 and ∀k ≥ 0,

G(pk, uk, yk)
= sup

x∈Rn

sup
w∈W

{pk(x) + g(x, uk, w) : h(x, uk, w) = yk}
= sup

x∈Rn

sup
wk∈W

{ sup
w0,k−1

sup
x0∈Rn

{p0(x0) : ξ0 = x0, ξk = x, h(ξi, ui, wi) = yi, 0 ≤ i ≤ k − 1}
+g(x, uk, wk) : h(x, uk, wk) = yk}

= sup
w0,k

sup
x0∈Rn

{p0(x0) + g(ξk, uk, wk) : ξ0 = x0, h(ξi, ui, wi) = yi, 0 ≤ i ≤ k}
= sup

w0,k

sup
x0∈B0

{g(ξk, uk, wk)− β(x0) : ξ0 = x0, h(ξi, ui, wi) = yi, 0 ≤ i ≤ k}
≤ 0.

¤
It can be readily checked that the information state satisfies a recursion of the form

pj+1(x) = F (pj, uj, yj)(x), j ≥ 0 (4.18)

where
F (p, u, y)(x) = sup

w∈W
sup
ξ∈Rn

{p(ξ) : f(ξ, u, w) = x, h(ξ, u, w) = y} (4.19)

(see, e.g., [22, Lemma 4.4]).
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Remark 4.6 The analogous partial differential equation for the continuous time system
ξ̇ = f(ξ, u, w), z = g(ξ, u, w), y = h(ξ, u, w) is

∂

∂t
pt(x) = sup{−∇pt(x) · f(x, u, w) : w ∈ W and y = h(x, u, w)} (4.20)

Thus
ṗ = F (p, u, y)

where F is defined by the RHS of (4.20). ¤

In the definition of information state, u and y are independent. Now consider the case
when the controller K is known, and u = K(y).

For p ∈ χ̃, define

J̄p(K)
4
= sup

k≥0
sup

y0,k∈Y0,k

{G(pk, uk, yk) : p0 = p, u = K(y)} (4.21)

where pk(x) are information states obtained by (4.15), and G(p, u, y) is defined in (4.9).

The relation between the cost function and the information state is given in the fol-
lowing theorem. The proof is similar to the proof of [15, Theorem 3.1.8] and is omitted
here.

Theorem 4.7 We have, for all K ∈ Kmf ,

J̄p(K) = Jp(K). (4.22)

Problem Restatement II: Given B0 ⊂ Rn, choose a controller K ∈ Kmf such that

J̄p(K) ≤ 0.

for some p ∈ χ̃ with supportp = B0.

Optimal K Problem II: Choose a controller K ∈ Kmf such that J̄p(K) is the
smallest for some p ∈ χ̃ with supportp = B0.

4.4 Dynamic Programming Solution

In this section we show how to synthesize LIB dissipative controllers by finding optimal
minimax controllers solving the Optimal K Problem II. We will make use of a dynamic
programming equation and inequality analogous to (3.5) and (3.6).

Let W : χ̃ → R̃, and define

domW
4
= {p ∈ χ̃ : −∞ < W (p) < +∞} (4.23)

where χ̃ is the function space defined by (4.5). Let S̃ ⊂ domW ⊂ χ̃. The measurement
feedback dynamic programming equation is

W (p) = inf
u∈U

sup
y∈Y

max{G(p, u, y),W (F (p, u, y))}, ∀p ∈ S̃, (4.24)
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where G(p, u, y) and F (p, u, y) are defined in (4.9) and (4.19). The measurement feedback
dynamic programming inequality is

W (p) ≥ inf
u∈U

sup
y∈Y

max{G(p, u, y),W (F (p, u, y))}, ∀p ∈ S̃. (4.25)

Remark 4.8 Notice that (3.5), (3.6) and (4.24), (4.25) have the same form, respectively.

Remark 4.9 The analogous partial differential equation for the continuous time system
ξ̇ = f(ξ, u, w), z = g(ξ, u, w), y = h(ξ, u, w) is

inf
u∈U

sup
y∈Y

max{G(p, u, y)−W (p),∇W (p)F (p, u, y)} = 0, ∀p ∈ S̃ ⊂ domW. (4.26)

¤

4.4.1 Necessity

For p ∈ χ̃, define the measurement feedback value function

Wa(p)
4
= inf

K∈Kmf

J̄p(K) = inf
K∈Kmf

sup
k≥0

sup
y0,k∈Y0,k

{G(pk, uk, yk) : p0 = p, u = K(y)} (4.27)

where the minimization ranges over the class of all the admissible measurement feedback
controllers Kmf . Notice that Wa : χ̃ → R̃, i.e., −∞ ≤ Wa(p) ≤ +∞.

For a given controller K ∈ Kmf and B ⊂ Rn, denote

Y0,k(K,B)
4
= {y0,k : ∃x0 ∈ B, ∃w0,k ∈ W0,k, s.t. yi = h(ξi, ui, wi), 0 ≤ i ≤ k} . (4.28)

i.e. Y0,k(K,B) denotes all the possible measurement output y0,k of the closed-loop system
(with controller K ∈ Kmf ) where the initial state x0 contains in the set B.

Theorem 4.10 Assume that there exists an admissible measurement feedback controller
K0 such that the closed-loop system is LIB dissipative with respect to B0 ⊂ Rn, βK0(x0).
Then:

(i) The set domWa is nonempty, p0 = −βK0 ∈ domWa.

(ii) The following structural properties hold:

(ii-a) Wa dominates Ğ: Wa(p) ≥ Ğ(p),∀p ∈ χ̃, where Ğ(p) is defined in (4.10);
Wa(p) = −∞⇔ p(x) ≡ −∞.

(ii-b) Wa is monotone: ∀p1, p2 ∈ χ̃, if p1 ≥ p2, then Wa(p1) ≥ Wa(p2). Moreover, if
p1 ∈ domWa and 〈p2〉 > −∞, then p2 ∈ domWa.

(ii-c) Wa is additive homogeneous: ∀c ∈ R,∀p ∈ domWa,Wa(p + c) = Wa(p) + c.
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(iii) Fix p ∈ χ̃ and assume J̄p(K0) is finite, then

J̄p(K0) ≥ max{ max
0≤i≤j−1

G(pi, ui, yi),Wa(pj)} and pj ∈ domWa,

∀j ≥ 0,∀y0,j−1 ∈ Y0,j−1(K0, supportp), u = K0(y), p0 = p.
(4.29)

where Y0,k(K, B) is defined by (4.28).

(iv) Fix p ∈ domWa, if Kε is an ε-optimal controller (i.e., J̄p(Kε) ≤ Wa(p) + ε), then

Wa(p) + ε ≥ max{ max
0≤i≤j−1

G(pi, ui, yi),Wa(pj)} and pj ∈ domWa,

∀j ≥ 0,∀y0,j−1 ∈ Y0,j−1(Kε, supportp), u = Kε(y), p0 = p.
(4.30)

(v) The dynamic programming relation holds:

Wa(p) = inf
K∈Kmf

sup
y0,j−1∈Y0,j−1

{max{ max
0≤i≤j−1

G(pi, ui, yi), Wa(pj)} : p0 = p, u = K(y)},
∀p ∈ domWa, ∀j ≥ 0

(4.31)
i.e. Wa solves the dynamic programming equation (4.24), with S̃ = domWa.

Proof. (i) From Lemma 4.2 and Theorem 4.7, ∀p ∈ χ̃, ∀K, J̄p(K) = Jp(K) ≥ Ğ(p),
hence

Wa(p) = inf
K∈Kmf

J̄p(K) ≥ Ğ(p).

For p0 = −βK0 ,

−∞ < Ğ(−βK0) = Ğ(p0) ≤ Wa(p0) = inf
K∈Kmf

J̄p0(K) ≤ J̄p0(K0) ≤ 0 (4.32)

hence p0 ∈ domWa, so domWa is nonempty.

(ii-a) The domination is proved in (i). If p(x) ≡ −∞, then J̄p(K) = −∞ for any K,

hence Wa(p) = −∞. If 〈p〉 > −∞, then Wa(p) ≥ Ğ(p) > −∞.

For (ii-b), from Lemma 4.2, p1 ≥ p2 ⇒ ∀K, J̄p1(K) ≥ J̄p2(K) ⇒ Wa(p1) ≥ Wa(p2).

Moreover, if p1 ∈ domWa and 〈p2〉 > −∞, then −∞ < Ğ(p2) ≤ Wa(p2) ≤ Wa(p1) < +∞,
hence p2 ∈ domWa. (Notice that for p ∈ χ̃, 〈p〉 > −∞ if and only if Ğ(p) > −∞.)

(ii-c) is obvious since ∀K ∈ Kmf , J̄p+c(K) = J̄p(K) + c. (Lemma 4.2)

(iii) If j = 0, J̄p(K0) ≥ Wa(p0) ≥ Ğ(p0) = Ğ(p) > −∞, hence p0 ∈ domWa. (If
p ≡ −∞, then J̄p(K0) = −∞ is not finite, so 〈p〉 > −∞)

Now fix j > 0 and fix y0,j−1 ∈ Y0,j−1(K0, supportp), then we can obtain pj by p0 = p
and ui = K0(y0,i−1), 0 ≤ i ≤ j − 1. From y0,j−1 ∈ Y0,j−1(K0, supportp), 〈pj〉 > −∞.

For any k ≥ 0 and any ỹ0,k, denote

ŷi =

{
yi, 0 ≤ i ≤ j − 1
ỹi−j, i ≥ j

(4.33)

and
Kj

0(ỹ0,k−1) = K0(ŷ0,k+j−1), k ≥ 0. (4.34)
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Then we can prove that

J̄p(K0) = sup
k≥0

sup
ȳ0,k

{G(pk, uk, ȳk) : p0 = p, u = K0(ȳ)}
≥ sup

k≥0
sup
ŷ0,k

{G(pk, uk, ŷk) : p0 = p, u = K0(ŷ)}
= max{ sup

0≤k≤j−1
{G(pk, uk, yk) : p0 = p, ui = K0(y0,i−1), 0 ≤ i ≤ j − 1},

sup
k≥j

sup
ŷ0,k

{G(pk, uk, ŷk) : p0 = p, u = K0(ŷ)}}
= max{{ max

0≤k≤j−1
G(pk, uk, yk) : p0 = p, ui = K0(y0,i−1), 0 ≤ i ≤ j − 1},

sup
k≥0

sup
ỹ0,k

{
G(pk, uk, ỹk) : p0 = pj, u = Kj

0(ỹ)
}}

= max{{ max
0≤k≤j−1

G(pk, uk, yk) : p0 = p, ui = K0(y0,i−1), 0 ≤ i ≤ j − 1}, J̄pj
(Kj

0)}
≥ max{{ max

0≤k≤j−1
G(pk, uk, yk) : p0 = p, ui = K0(y0,i−1), 0 ≤ i ≤ j − 1},Wa(pj)}.

Hence
+∞ > J̄p(K0) ≥ Wa(pj) ≥ Ğ(pj) > −∞

and pj ∈ domWa.

(iv) Apply part (iii) with K0 = Kε.

(v) ∀p ∈ domWa,Wa(p) is finite, ∀ε > 0, ∃Kε such that J̄p(Kε) ≤ Wa(p) + ε (Kε is an
ε-optimal controller), from (iv), ∀j ≥ 0,

Wa(p) + ε ≥ max{ max
0≤i≤j−1

G(pi, ui, yi),Wa(pj)},
∀y0,j−1 ∈ Y0,j−1(Kε, supportp), p0 = p, u = Kε(y).

hence

Wa(p) + ε

≥ sup
y0,j−1∈Y0,j−1(Kε,supportp)

{
max{ max

0≤i≤j−1
G(pi, ui, yi),Wa(pj)} : p0 = p, u = Kε(y)

}

= sup
y0,j−1∈Y0,j−1

{
max{ max

0≤i≤j−1
G(pi, ui, yi), Wa(pj)} : p0 = p, u = Kε(y)

}

certainly

Wa(p) + ε ≥ inf
K∈Kmf

sup
y0,j−1∈Y0,j−1

{max{ max
0≤i≤j−1

G(pi, ui, yi),Wa(pj)} : p0 = p, u = K(y)}

since ε is arbitrary, we have

Wa(p) ≥ inf
K∈Kmf

sup
y0,j−1∈Y0,j−1

{max{ max
0≤i≤j−1

G(pi, ui, yi),Wa(pj)} : p0 = p, u = K(y)}.
(4.35)

To prove the opposite inequality, for p ∈ domWa, j ≥ 0, define

R(p) = inf
K∈Kmf

sup
y0,j−1∈Y0,j−1

{max{ max
0≤i≤j−1

G(pi, ui, yi),Wa(pj)} : p0 = p, u = K(y)}. (4.36)
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From (4.35), R(p) ≤ Wa(p) < +∞. Moreover, R(p) ≥ Ğ(p) > −∞, So R(p) is a finite
number.

Let ε > 0, choose K1 such that

R(p)

≥ sup
y0,j−1∈Y0,j−1

{
max{ max

0≤i≤j−1
G(pi, ui, yi),Wa(pj)} : p0 = p, u = K1(y)

}
− ε

= sup
y0,j−1∈Y0,j−1(K1,supportp)

{
max{ max

0≤i≤j−1
G(pi, ui, yi),Wa(pj)} : p0 = p, u = K1(y)

}
− ε.

(4.37)
(Therefore we have pj ∈ domWa, ∀y0,j−1 ∈ Y0,j−1(K

1, supportp), u = K1(y).)

∀q ∈ domWa, ∃K2
q such that

Wa(q) ≥ J̄q(K
2
q )− ε.

Define K3 by

K3(y0,i−1) =

{
K1(y0,i−1), 0 ≤ i ≤ j − 1
K2

pj
(yj,i−1), i ≥ j

(4.38)

Then ∀k ≥ j, ∀y0,k ∈ Y0,k(K
3, supportp), we have y0,j−1 ∈ Y0,j−1(K

1, supportp) and

R(p) ≥ {max{ max
0≤i≤j−1

G(pi, ui, yi),Wa(pj)} : p0 = p, u = K1(y)} − ε

≥ {max{ max
0≤i≤j−1

G(pi, ui, yi), J̄pj
(K2

pj
)} : p0 = p, u = K1(y)} − 2ε

≥ { sup
0≤i≤k

G(pi, ui, yi) : p0 = p, u = K3(y)} − 2ε.

(4.39)

So we have
R(p) ≥ J̄p(K

3)− 2ε

and hence
Wa(p) ≤ J̄p(K

3) ≤ R(p) + 2ε.

Since ε is arbitrary, we have
Wa(p) ≤ R(p). (4.40)

From (4.35) and (4.40), the proof is completed. ¤

4.4.2 Information State Controllers

In state feedback synthesis of Section 3.2, the optimal controller was obtained by mini-
mizing the RHS of the dynamic programming equation or inequality over u, to yield a
static state feedback controller. We follow the same procedure in the measurement feed-
back case (next subsection), and obtain an optimal controller defined in terms of a static
function of the information state. This gives a dynamic controller, a causal function of
the measurements, of the type we now describe.

Let u be a function
u : χ̃ → Rm. (4.41)
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For p0 ∈ χ̃, define
uk = u(pk), k ≥ 0, (4.42)

where pi+1 = F (pi, ui, yi), ∀i ≥ 0. Since pk+1 = F (pk,u(pk), yk), the information state
pk+1 can be regarded as a function of y0,k and uk is a function of y0,k−1. This leads us to
define the measurement feedback controller Ku

p0
∈ Kmf by

Ku
p0

(y·)k = Ku
p0

(y0,k−1) = u(pk). (4.43)

This information state feedback controller is a special kind of measurement feedback con-
troller.

4.4.3 Sufficiency

We will show how to obtain the optimal information state controller from dynamic pro-
gramming inequality.

Definition 4.11 Given a function W : χ̃ → R̃ and a nonempty set S̃ ⊂ domW ⊂ χ̃, the
pair (W, S̃) is called a good solution of the dynamic programming inequality (4.25) if

(i) (W, S̃) is a solution of (4.25) and there exists u∗ : S̃ → U such that ∀p ∈ S̃,

sup
y∈Y

max{G(p,u∗(p), y),W (F (p,u∗(p), y))}
= inf

u∈U
sup
y∈Y

max{G(p, u, y),W (F (p, u, y))}. (4.44)

(ii) S̃ is an invariant set under the closed-loop dynamics when the controller is u∗(p),∀p ∈
S̃. i.e. ∀p ∈ S̃, ∀y ∈ Y0,0(K

u∗
p , supportp), F (p,u∗(p), y) ∈ S̃ (here Ku∗

p is defined in
(4.43) and Y0,k(K, B) is defined by (4.28)).

Theorem 4.12 Assume that (W, S̃) is a good solution of the dynamic programming in-
equality (4.25) and p0 ∈ S̃. Then the closed-loop system with the controller defined by

uk = u∗(pk) (4.45)

satisfies ∀x0 ∈ supportp0,∀k ≥ 0,∀w0,k ∈ W0,k,

zk ≤ W (p0)− p0(x0). (4.46)

Moreover, if B0 ⊂ supportp0, then the closed-loop system is LIB dissipative with respect
to B0 where β(x0) = W (p0)− p0(x0).

Proof. Let Ku∗
p0

denote the information state controller obtained by (4.45). (Notice
that Ku∗

p0
depends on the initial information state p0 though u∗(·) doesn’t.) Now from

(4.25) and (4.44), we have

W (p) ≥ sup
y∈Y

W (F (p,u∗(p), y)), ∀p ∈ S̃.
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Hence ∀j ≥ 0, ∀y0,j−1 ∈ Y0,j−1(K
u∗
p0

, supportp0),

W (pi) ≥ W (pi+1), 0 ≤ i ≤ j − 1, p0 = p0, u = Ku∗
p0

(y)

and certainly
W (pj) ≤ W (p0).

Also from (4.25) and (4.44), we have

G(pj,u
∗(pj), yj) ≤ W (pj),

hence
Jp0(K

u∗
p0

) = J̄p0(K
u∗
p0

) = sup
j≥0

sup
y0,j

G(pj,u
∗(pj), yj) ≤ W (p0).

For the closed-loop system, ∀x0 ∈ supportp0,∀k ≥ 0,∀w0,k ∈ W0,k,

p0(x0) + zk ≤ pk(ξk) + g(ξk,u
∗(pk), wk) ≤ G(pk,u

∗(pk), yk) ≤ Jp0(K
u∗
p0

) ≤ W (p0)

and hence (4.46) holds. Moreover, when B0 ⊂ supportp0,

zk ≤ W (p0)− p0(x0), ∀x0 ∈ B0,∀k ≥ 0, ∀w0,k ∈ W0,k.

Therefore the closed-loop system is LIB dissipative with respect to B0 where β(x0) =
W (p0)− p0(x0). ¤

Corollary 4.13 If (W, S̃) is a good solution of the dynamic programming inequality
(4.25), then we have

S̃ ⊂ domWa, Wa(p) ≤ W (p), ∀p ∈ S̃. (4.47)

where Wa is the measurement feedback value function defined in (4.27).

Proof. From the proof of Theorem 4.12, ∀p0 ∈ S̃,

J̄p0(K
u∗
p0

) = Jp0(K
u∗
p0

) ≤ W (p0).

Hence
Wa(p0) ≤ J̄p0(K

u∗
p0

) ≤ W (p0) < +∞.

Since we also have Wa(p0) ≥ Ğ(p0) > −∞, (4.47) holds. ¤

Remark 4.14 We know from Theorem 4.10 that (Wa, domWa) is a solution to the dy-
namic programming inequality (4.25), so it follows that if (Wa, domWa) is in fact a good
solution, then the controller K∗

a(y·)k = u∗a(pk) obtained from it achieves the best LIB per-
formance possible (i.e. it achieves the smallest bound β(x0) = Wa(p0) − p0(x0) possible
in (2.3) (see Definition 2.1). If the LIB dissipation control problem is solvable by some
measurement feedback controller, then it is also solvable by an information state feed-
back controller whenever a good solution to the dynamic programming inequality (4.25)
exists. (Wa, domWa) will be a solution, and its “goodness” depends on the attainment of
the infimum in item (i) of Definition 4.11. Similar comments can be made for the state
feedback case. ¤

Remark 4.15 It will be of particular interest to find good solutions (W , S̃) with S̃ finite
dimensional (see Sections 5.1 and 5.2). ¤
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4.5 Special Case: Uniform LIB

In [28], the authors formulate the problem of obtaining uniform bounds on the LIB per-
formance. In this section, we consider this uniform LIB case. The results of Section 4.4
simplify, and the connection with the Shamma-Tu separation structure [28] is given.

Problem: Given B0 ⊂ Rn, find a measurement feedback controller K ∈ Kmf such
that the closed-loop system is uniform LIB dissipative with respect to B0, i.e. there exists
a β ∈ R such that

zk ≤ β, ∀x0 ∈ B0,∀w0,k ∈ W0,k,∀k ≥ 0. (4.48)

For this special problem, since β does not depend on x0, we can constrain the infor-
mation states in the subset

S̄
4
= {δX : X ⊂ Rn} ⊂ χ̃, (4.49)

where δM is defined in (4.8). Notice that S̄ is an invariant set under the recursion (4.18).
Write

S̄ ′
4
= {subsets of Rn}. (4.50)

Then it is easy to check that F (δX , u, y) ∈ S̄ for all X ∈ S̄ ′, u ∈ U and y ∈ Y.

Now we choose the initial information state

p0(x) = δX0(x)

where X0 ⊂ Rn (i.e. X0 ∈ S̄ ′). Then we have

pk(x) = δXk
(x)

where
Xk = supportpk (4.51)

and x ∈ Xk if and only if there exists a trajectory ξ· of (4.1) with ξ0 ∈ X0 that is consistent
with the given signals u, y (satisfying (4.1)). This is the set-valued observer in [28, page
259].

The set-valued state estimate Xk can be computed from the recursion

Xk+1 = F̂ (Xk, uk, yk)
4
= F (δXk

, uk, yk) (4.52)

where, given X ∈ S̄ ′, u ∈ U, y ∈ Y, x ∈ F̂ (X, u, y) if and only if there exists x′ ∈ X,
w ∈ W such that f(x′, u, w) = x and h(x′, u, w) = y (cf. [28, equation (6)]).

These considerations allow us to restrict our attention to the “smaller” space S̄ ′ ≈ S̄,
in place of χ̃. Any function W : χ̃ → R̃ projects to (or defines) a function Ŵ : S̄ ′ → R̃
via

Ŵ (X)
4
= W (δX)

for X ∈ S̄ ′. Now, denote

Ĝ(X, u, y)
4
= G(δX , u, y), (4.53)

and
˘̂
G(X)

4
= Ğ(δX). (4.54)
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Let Ŵ : S̄ ′ → R̃, and define

domŴ
4
=

{
X ∈ S̄ ′ : −∞ < Ŵ (X) < +∞

}
. (4.55)

Let Ŝ ⊂ domŴ ⊂ S̄ ′. The measurement feedback dynamic programming equation (4.24)
becomes

Ŵ (X) = inf
u∈U

sup
y∈Y

max{Ĝ(X, u, y), Ŵ (F̂ (X, u, y))}, ∀X ∈ Ŝ, (4.56)

The measurement feedback dynamic programming inequality (4.25) becomes

Ŵ (X) ≥ inf
u∈U

sup
y∈Y

max{Ĝ(X, u, y), Ŵ (F̂ (X, u, y))}, ∀X ∈ Ŝ. (4.57)

The results of Section 4.4 become the following.

Lemma 4.16 The closed-loop system (with controller K ∈ Kmf) is uniform LIB dissipa-
tive with respect to B0 ⊂ Rn if and only if there exists β ∈ R such that

Ĝ(Xk, uk, yk) ≤ β, ∀k ≥ 0, (4.58)

where Xk is defined by (4.52) with initial state X0 = B0, u = K(y) and y is the measure-
ment output of (4.1) for any initialization x0 ∈ B0 and disturbance w.

We define the value function Ŵa : S̄ ′ → R̃ by

Ŵa(X)
4
= inf

K∈Kmf

sup
k≥0

sup
y0,k∈Y0,k

{
Ĝ(Xk, uk, yk) : X0 = X, u = K(y)

}
. (4.59)

Theorem 4.17 (Necessity) Assume that there exists a controller K0 such that the closed-
loop system is uniform LIB dissipative with respect to B0 ⊂ Rn. Then the value function
Ŵa(X) defined by (4.59) satisfies:

(i) domŴa is nonempty, B0 ∈ domŴa;

(ii) Ŵa(X) ≥ ˘̂
G(X),∀X ⊂ Rn, where

˘̂
G(X) is defined in (4.54). Ŵa(X) = −∞ ⇔

X = ∅; X1 ⊂ X2 ⇒ Ŵa(X1) ≤ Ŵa(X2), if X1 ⊂ X2, X1 6= ∅ and X2 ∈ domŴa,
then X1 ∈ domŴa;

(iii) Ŵa(X) satisfies the dynamic programming relation

Ŵa(X) = inf
K∈Kmf

sup
y0,j−1∈Y0,j−1

{max{ max
0≤i≤j−1

Ĝ(Xi, ui, yi), Ŵa(Xj)} : X0 = X, u = K(y)},
∀X ∈ domŴa, ∀j ≥ 0.

(4.60)
i.e. Ŵa(X) is a solution of the dynamic programming equation (4.56) with Ŝ =
domŴa.
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Definition 4.18 Given a function Ŵ : S̄ ′ → R̃ and a nonempty set Ŝ ⊂ domŴ ⊂ S̄ ′,
the pair (Ŵ , Ŝ) is said to be a good solution of the dynamic programming inequality (4.57)
provided

(i) (Ŵ , Ŝ) is a solution of (4.57) and ∀X ∈ Ŝ, there exists û∗ : Ŝ → U such that

sup
y∈Y

max{Ĝ(X, û∗(X), y), Ŵ (F̂ (X, û∗(X), y))}
= inf

u∈U
sup
y∈Y

max{Ĝ(X, u, y), Ŵ (F̂ (X, u, y))},∀X ∈ Ŝ.
(4.61)

(ii) Ŝ is an invariant set under the closed-loop dynamics when the controller is û∗(X), ∀X ∈
Ŝ. i.e. ∀X ∈ Ŝ, ∀y ∈ Y0,0(K

û∗
X , X), F̂ (X, û∗(X), y) ∈ Ŝ (here K û∗

X is defined simi-
larly as (4.43) and Y0,k(K, B) is defined by (4.28)).

Theorem 4.19 (Sufficiency) Assume that (Ŵ , Ŝ) is a good solution of the dynamic pro-
gramming inequality (4.57) and X0 ∈ Ŝ. Then the closed-loop system with the controller
defined by

uk = û∗(Xk) (4.62)

satisfies ∀x0 ∈ X0,∀k ≥ 0,∀w0,k ∈ W0,k,

zk ≤ Ŵ (X0). (4.63)

Moreover, if B0 ⊂ X0, then the closed-loop system is uniform LIB dissipative with respect
to B0 and β = Ŵ (X0).

Corollary 4.20 If (Ŵ , Ŝ) is a good solution of the dynamic programming inequality
(4.57), then we have

Ŝ ⊂ domŴa, Ŵa(X) ≤ Ŵ (X), ∀X ∈ Ŝ. (4.64)

where Ŵa is the value function defined in (4.59).

Remark 4.21 The above results are consistent with [28, Theorem 4.1] which asserts,
in our terminology, that if there exists a measurement feedback controller achieving the
uniform LIB dissipation property, then there exists a separation structure controller that
feeds back the set-valued observer state and also achieves uniform LIB dissipation. ¤

5 Examples

5.1 Example 1 - A System with Linear Dynamics

Consider one-dimensional discrete-time system with linear dynamics:




ξk+1 = aξk + buk + wk

zk = |ξk|
yk = ξk + wk

(5.1)
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where ξk, wk, uk, yk, zk ∈ R, 1 < a ≤ 2, b > 0. Notice that when uk = wk = 0, k ≥ 0, the
open-loop system is unstable. We consider the uniform LIB dissipation problem described
in Section 4.5. Suppose B0 = [a0l, a0r] ⊂ R,W = [−d, d], d > 0,U = [−δ, δ], δ > 0.

We first consider state feedback synthesis. Assume that

δ ≥ ad

b
; max{|a0l| , |a0r|} ≤ bδ − d

a− 1
. (5.2)

The state feedback value function Va(x) is given by

Va(x0) = max{|x0| , d}, ∀x0 ∈ domVa = [−bδ − d

a− 1
,
bδ − d

a− 1
], (5.3)

and the corresponding optimal state feedback controller is

u∗(x)
4
=





δ, if x ∈ (−∞,− bδ
a
)

−a
b
x, if x ∈ [− bδ

a
, bδ

a
]

−δ, if x ∈ ( bδ
a
, +∞)

(5.4)

It is easy to prove that this Va is a solution of (3.5) (such equations could have multiple
solutions).

The dynamic programming equation (3.5) was also solved numerically (a = 2, b =
1, d = 0.5, δ = 2). These numerical results correspond to the analytical solution above
for the value function Va and corresponding controller. The results are shown in (a), (c)
Figure 5.1.

Theorem 3.5 asserts that the closed-loop system should be LIB dissipative. Indeed,
it is not difficult to verify the uniform LIB dissipation with respect to B0 = [a0l, a0r] and
β = max{|a0l| , |a0r| , d}, provided that the assumption (5.2) holds. This is illustrated in
(b), (d) Figure 5.1 (B0 = [−1.5, 1.5], β = 1.5, x0 = 1.5, Va(x0) = 1.5).

We turn now to measurement feedback synthesis. Assume that

δ ≥ ad

b
; max{|a0l| , |a0r|} ≤ bδ − d

a− 1
; a0r − a0l ≤ 2(bδ − ad)

a(a− 1)
. (5.5)

We set
X0 = B0 = [a0l, a0r]. (5.6)

Then the set-valued state estimate is an interval given by

Xk = [akl, akr], k ≥ 0. (5.7)

where
a(k+1)l = yk + buk + (a− 1) max{akl, yk − d},
a(k+1)r = yk + buk + (a− 1) min{akr, yk + d}. (5.8)

This means that when X0 is of the form (5.6), the results of Section 4.5 apply on a
two-dimensional space Ŝ ⊂ S̄ ′.
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(a) Value function Va. Note that when x <
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(b) Trajectory of disturbance w.
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(c) Optimal state feedback controller.
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(d) State trajectory of close-loop system: a0l =
−1.5, a0r = 1.5, β = 1.5, x0 = 1.5, Va(x0) =
1.5.

Figure 5.1: Example 1 - system with linear dynamics - state feedback synthesis.
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The measurement feedback value function Ŵa(X) is

Ŵa(X)
4
= Wa(δX) = Ŵa(al, ar) = max{|al| , |ar| , d +

a

2
(ar − al)},∀X = [al, ar] ∈ Ŝ

where

Ŝ
4
=

{
[al, ar] : [al, ar] ⊂ [−bδ − d

a− 1
,
bδ − d

a− 1
], ar − al ≤ 2(bδ − ad)

a(a− 1)

}
,

and the corresponding optimal information state controller is given by

uk = û∗(Xk) = û∗(akl, akr)
4
=





δ; if (akl + akr) < −2bδ
a

− a
2b

(akl + akr); if |akl + akr| ≤ 2bδ
a

−δ; if (akl + akr) > 2bδ
a

(5.9)

It can be proved that this Ŵa(al, ar) is a solution of (4.56) (such equations could have
multiple solutions). If [a0l, a0r] /∈ Ŝ, then Ŵa(a0l, a0r) = +∞, so the uniform LIB problem
is not solvable when the assumption (5.5) does not hold.

The dynamic programming equation (4.56) was also solved numerically (a = 2, b =
1, d = 0.5, δ = 2). These numerical results correspond to the analytical solution above
for the value function Ŵa and corresponding controller. The results are shown in (a), (c)
Figure 5.2.

Theorem 4.12 asserts that the closed-loop system should be LIB dissipative. Indeed,
when the assumption (5.5) holds, it is easy to verify the uniform LIB dissipation with
respect to B0 = [a0l, a0r] and β = max{|a0l| , |a0r| , a

2
(a0r − a0l) + d}. This is illustrated in

(b), (d) Figure 5.2 (B0 = [−0.5, 0.5], β = 1.5).

Remark 5.1 In contrast to the H∞ problem, the certainty equivalence principle [1], [21],
[15] can not be usefully applied for the linear system given in this example. Indeed,
W0(p) = 〈p + Va〉 (where Va is the state feedback value function defined by (5.3)) only
satisfies the dynamic programming equation on a very special set

˜̃S =

{
[al, ar] : al = ar ∈ [−bδ − d

a− 1
,
bδ − d

a− 1
]

}
.

The set ˜̃S is too small to be used for the measurement feedback synthesis. In fact, for
any 0 < ε ≤ bδ−ad

a(a−1)
, W0([−ε, ε]) = max{ε, d} < Ŵa([−ε, ε]) = max{ε, aε + d}, so it is

impossible for W0(p) to be an measurement feedback value function. ¤

5.2 Example 2 - A System with Bilinear Dynamics

Consider one-dimensional system with bilinear dynamics





ξk+1 = ξk + b1ξkuk + b2uk + wk

zk = |ξk|
yk = ξk + wk

(5.10)
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(b) Trajectory of disturbance w.
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(c) Optimal measurement feedback controller.
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(d) State and estimate trajectory of close-loop
system: a0l = −0.5, a0r = 0.5, β = 1.5, x0 =
−0.3.

Figure 5.2: Example 1 - system with linear dynamics - measurement feedback synthesis.
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where ξk, wk, uk, yk, zk ∈ R, b1 > 0, b2 > 0. We again consider the problem of uniform
LIB synthesis. We suppose B0 = [a0l, a0r] ⊂ R,W = [−d, d], d > 0,U = [−δ, δ], δ > 0.
Assume that

δ >
1

b1

; d ≤ b2δ

b1δ + 1
. (5.11)

We first consider state feedback synthesis. We do not have an analytical solution to
the dynamic programming equation (3.5). The dynamic programming equation (3.5) was
solved numerically (b1 = 1, b2 = 1, d = 0.5, δ = 2). The results are shown in (a), (c)
Figure 5.3.

A simulation of the closed-loop system is illustrated in (c), (d) Figure 5.3 (b1 =
1, b2 = 1, d = 0.5, δ = 2), consistent with the uniform LIB dissipation with respect to
B0 = [−1.2, 1.2] and β = 1.5 (x0 = −1.2, Va(x0) = 1.5).

We now consider measurement feedback synthesis. As with Example 1, we can explic-
itly solve for the information state in terms of a set-valued state estimate, an interval.

Choose X0 = [a0l, a0r] = B0. The set-valued state estimate is given by

Xk = [akl, akr], k ≥ 0. (5.12)

where when b1uk ≥ 0,

a(k+1)l = yk + b2uk + b1uk max{akl, yk − d},
a(k+1)r = yk + b2uk + b1uk min{akr, yk + d}.

and when b1uk < 0

a(k+1)l = yk + b2uk + b1uk min{akr, yk + d},
a(k+1)r = yk + b2uk + b1uk max{akl, yk − d}.

We do not have an analytical solution to the dynamic programming equation (4.56). The
dynamic programming equation (4.56) was solved numerically (b1 = 1, b2 = 1, d = 0.5, δ =
2). The results are shown in (a), (c) Figure 5.4.

A simulation of the closed-loop system is illustrated in (b), (d) Figure 5.4, consistent
with the uniform LIB dissipation with respect to B0 = [−2, 2], β = 2.

Acknowledgements. We wish to thanks M.C. Smith and I.R. Petersen for helpful
discussions and indicating to us several useful references.
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