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Abstract—We focus on distinguishing two quantum
operations using parallel scheme. We prove that the
parallel distinguishability only depends on an opera-
tor subspace that is generated by their Choi-Kraus
operators. Moreover, when studying the parallel dis-
tinguishability, we can simply focus on the properties
of operator subspace rather than quantum operations
since any such operator subspace can be generated by
the Choi-Kraus operators of two quantum operations.
We provide a sufficient and necessary condition for
the parallel distinguishability of two classes of operator
subspaces, the one-dimensional operator spaces and
the Hermitian operator space. Specifically, we give an
optimal solution for one-dimensional case. However, we
construct a non-trivial example to show this condition
is only necessary in general.

I. Introduction

The distinguishability of quantum operations (or intu-
itively quantum devices) has received great interest in re-
cent years. Compared with the discrimination of quantum
states, which is completely characterized by their orthog-
onality, the distinguishability of quantum operations is
more complicated but interesting. In fact, we can choose
arbitrary input states as well as arbitrary schemes when
distinguishing them. It has been shown that the use of
entanglement can significantly improve the discrimination
efficiency [1], [2], [7], [8], [10]. Meanwhile, it has also been
shown that by using a sequential scheme, entanglement
is not always necessary when distinguishing unitary oper-
ations [3]. Thus there is an interesting trade-off between
the spatial resources (entanglement or circuits) and the
temporal resources (running steps or discriminating time)
when distinguishing quantum operations. More precisely,
we consider two basic strategies, the adaptive strategy and
the non-adaptive strategy [5]. Adaptive strategies allow
us to reuse the outputs of previous uses of the quantum
operation when preparing the input to subsequent uses;
While non-adaptive strategies require that the inputs to
all uses of the given operation are chosen before any of
them is applied with possible auxiliary systems.

It is worth noting that a sufficient and necessary con-
dition for the perfect distinguishability of quantum oper-
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Figure 1. A parallel scheme to distinguish an unknown quantum
operation O ∈ {E,F} with N uses, where IR represents the identity
operator on the auxiliary system R.

ations has been obtained when general adaptive discrimi-
nation strategy is used [4]. However, in practice available
resources for discrimination could be very limited and
it is not always possible to use adaptive strategies. For
instance, consider the scenario that Alice and Bob are sep-
arated by a long distance and share an unknown quantum
channel which needs to be identified. When an adaptive
protocol is applied, Bob needs to send the intermedi-
ate outputs back to Alice for preparing the next input,
which requires more resources and infeasible. Clearly non-
adaptive strategy would be more suitable in this situation.

In this paper we focus on non-adaptive strategy, or the
parallel scheme, which only allows to use the unknown
operation in parallel. An auxiliary system can also be
used if needed, as shown in Figure I. More precisely, we
consider distinguishing two quantum operations E and F
with respective Choi-Kraus operators {Ej : j = 1, . . . , n0}
and {Fk : k = 1, . . . , n1} in parallel. We first show that
parallel distinguishability is equivalent to the existence
of an integer N such that there is a density operator



ρ ∈ (S⊗NE,F )⊥, where

SE,F = span{E†jFk : j = 1, . . . , n0, k = 1, . . . , n1}.

We will also show that SE,F can be chosen as arbitrary
operator subspace. Moreover, we will propose a sufficient
and necessary condition for two classes of operator sub-
spaces, Namely the one-dimensional operator space and
the Hermitian operator space. Specifically, in both of these
cases we can always obtain the optimal number of times
which we need to tensor. However, this condition is only
necessary for general cases.

II. The characterization of parallel
distinguishability

Consider a d-dimensional Hilbert space Hd. The set of
all linear operators on Hd is denoted by B(Hd). A general
quantum state ρ on Hd is a density operator in B(Hd)
which is positive with trace unity. Moreover, a pure state
|ψ〉 is a unit vector in Hd and the set of all density opera-
tors in B(Hd) is denoted by D(Hd). Let ρ have the spectral
decomposition ρ =

∑d
k=1 λk |ψk〉 〈ψk|. The support of ρ is

defined by supp(ρ) = span{|ψk〉 : λk > 0}. Moreover, the
Hilbert-Schmidt inner product for A,B ∈ B(Hd) is given
by Tr(A†B).
A quantum operation E from B(Hd) to B(Hd′) is a

completely positive and trace-preserving (CPTP) map
with the form E(ρ) =

∑n
i=1EiρE

†
i , where {Ei : i =

1, . . . , n} are the Choi-Kraus operators of E satisfying∑n
i=1E

†
iEi = Id. An isometry operation is a quantum

operation with only one Choi-Kraus operator U such that
U†U = Id. U is a unitary operation when d = d′.

We first consider the condition under which two quan-
tum operations E and F from B(Hd) to B(Hd′) can be
distinguished with one single use. In other words, we
want to find a normalized pure input (possibly entan-
gled) state |φ〉RQ such that (IRd ⊗ EQ)(|φ〉 〈φ|RQ) and
(IRd ⊗FQ)(|φ〉 〈φ|RQ) are orthogonal, whereHRd denote the
auxiliary system andHQd is the principle system under con-
sideration. Moreover, we assume |φ〉RQ = (IR ⊗ XQ) |Ψ〉
where X satisfies Tr(X†X) = 1 and |Ψ〉 =

∑d−1
i=0 |iR〉 |iQ〉

which is the (un-normalized) maximally entangled state
between HRd and HQd . By substituting E and F with
their Choi-Kraus operators {Ej : j = 1 . . . n0} and
{Fk : k = 1 . . . n1} and using the Hilbert-Schmidt inner
product over B(Hd ⊗H′d), we obtain∑

j,k

Tr(E†jFkXX
†)Tr(F †kEjXX

†) = 0,

which immediately implies that XX† is orthogonal to
{E†jFk : j = 1 . . . n0, k = 1 . . . n1}. Noticing XX† is always
positive and trace unity, XX† ∈ D(Hd).
When multiple uses of the unknown quantum operation

is considered, the calculation is similar and we obtain the
following theorem

Theorem 1. Let E and F be two quantum operations from
B(Hd) to B(Hd′) with Choi-Kraus operators {Ej : j =
1 . . . n0} and {Fk : k = 1 . . . n1}, respectively. They can
be distinguished by N uses in parallel if and only if there
exists a density operator ρ ∈ (span{E†jFk : j = 1 . . . n0, k =
1 . . . n1}⊗N )⊥.

This theorem shows that the parallel distinguishability
is only determined by the operator subspace SE,F =
span{E†jFk : j = 1 . . . n0, k = 1 . . . n1}. Moreover,
we can easily derive a necessary condition for parallel
distinguishability:

Corollary 1. If E and F can be perfectly distinguished
with finite uses using parallel scheme, then there is no
positive definite operator in SE,F .

Meanwhile, we are curious about what kind of operator
subspace can be generated by two quantum operations.
The following theorem shows that the operator subspace
can be chosen freely.

Theorem 2. For any subspace T ⊂ B(Hd), there are two
quantum operations E and F from B(Hd) to B(Hd′) such
that T = SE,F .

Proof. We first assume T is spanned by a finite set of
operators {T1, T2, . . . , TN} where N ≤ d2 is the dimension
of T . Moreover, we assume T †i Ti ≤ Id for i = 1, . . . , N . We
will show that for each Ti, there exists two isometries Ui
and Vi from Hd to Hd′ where d′ ≥ 2d such that Ti = U†i Vi.
To see this, let Ti have the singular value decomposition∑ni
k=1 σ

k
i |ψki 〉 〈φki |, where 0 ≤ σki ≤ 1.

Define Ui =
∑ni
k=1 |αki 〉 〈ψki | and Vi =

∑ni
k=1 |βki 〉 〈φki |.

For each i, {|αki 〉 : 1 ≤ k ≤ ni} and {|βki 〉 : 1 ≤ k ≤ ni} are
two sets of orthonormal vectors in Hd′ to be determined.
To make Ui and Vi satisfy Ti = U†i Vi, we need:

〈αji |β
k
i 〉 = 0 and 〈αki |βki 〉 = σki , for any j, k = 1, . . . ni.

This can be done by choosing ni two-dimensional sub-
spaces in Hd′ which are mutually orthogonal, and denote
them by Kj

i with j = 1, . . . , ni. In each Kj
i we choose

a basis {|αji 〉 , |β
j
i 〉} such that Kj

i = span{|αji 〉 , |β
j
i 〉} and

〈αji |β
j
i 〉 = σji . This can be done since 0 ≤ σji ≤ 1. (In the

special case of σji = 1, Kj
i is one-dimensional). Note that

we can let d′ ≥ 2d ≥ max{2ni : i = 1, 2, . . . , N} so such
{Kj

i } always exist.
Now we construct two quantum operations E and F

with Choi-Kraus operators {Ej : j = 1, . . . , N} and
{Fk : k = 1, . . . , N} such that T = SE,F . This can be
done by choosing Ej = 1√

N
Uj ⊗|j〉 and Fk = 1√

N
Vk⊗|k〉,

where j, k = 1, · · · , N .

We say an operator subspace S has parallel distinguisha-
bility, if there exists a finite positive integer N such that
there is a non-zero positive operator in the orthogonal
complement of S⊗N . In such a case, we know that for all
quantum operations E and F such that SE,F = S, they
can be perfect distinguished by N uses in parallel.



III. Parallel distinguishability of two kinds of
operator subspaces

The parallel distinguishability is more difficult than
the perfect distinguishability introduced in [4], since only
limited resources can be used. We want to find some
efficient method to check if an operator subspace has
parallel distinguishability. By Corollary 1, we know that
the operator space should not have a positive definite oper-
ator. We will introduce two families of operator subspaces
such that the parallel distinguishability is only determined
by the existence of positive definite operator.

First, we consider the condition that dim(S) = 1. One
simple case is S = span{U}, where U is a unitary operator.
In this situation E and F can be chosen as different unitary
operations. Clearly they can be distinguished in parallel [2]
if and only if U 6= Id. Let us consider S = span{A} where
A ∈ B(Hd) is not a unitary operator and not positive
definite. We will use the theory of numerical range in our
study. For A ∈ B(Hd), let

W (A) = {〈ψ|A |ψ〉 : |ψ〉 ∈ Hd, 〈ψ|ψ〉 = 1}.

be the numerical range of A, which has been researched
for decades. It is known that the numerical range of an
operator A is always convex by the celebrated Toeplitz-
Hausdorff Theorem; for example see [6, Chapter 1]. It
is also known that the numerical range of a normal
operator is just the convex hull of its eigenvalues, and
W (I ⊗ A) = W (A). Moreover, we can define the angular
numerical range:

Definition 1. For a linear operator A ∈ B(Hd), the
angular numerical range of A is defined as follows:

W(A) = ∪t>0W (tA).

By the convexity ofW (A),W(A) can be C, a half space
with a straight line passing through 0 as the boundary, or
a pointed cone with 0 as the vertex. We can define the
field angle of A according to these cases as follows.:

Definition 2. For a linear operator A ∈ B(Hd), the field
angle of A, denoted by Θ(A), is defined as follows:
1) If W(A) = C, Θ(A) = 2π;
2) If W(A) is a half space, then Θ(A) = π;
3) If W(A) is a pointed cone, then Θ(A) is the angle

between the two boundary rays of the cone.

Theorem 3. Consider S = span{A} where A ∈ B(Hd).
Then S has parallel distinguishability if and only if for any
real t, eitA is not positive definite.

Proof. Suppose W (A) ⊆ eit(0,∞) for some real t, i.e.
e−itA is positive definite. Then for any positive integer
N ,W ((e−itA)⊗N ) ⊆ (0,∞). Thus S does not have parallel
distinguishability.

If 0 ∈W (A), i.e. there is |ψ〉 such that Tr(A |ψ〉 〈ψ|) = 0.
In this situation choose ρ = |ψ〉 〈ψ| and we are done.

If 0 6∈ W (A) and W (A) 6⊆ eit(0,∞) for any real t, then
there exists a cone inC with vertex 0 containingW (A). So,
there are µ1 = r1e

iθ1 , µ2 = r2e
iθ2 ∈ W (A) with r1, r2 > 0

and θ1 < θ2 < θ1 + π so that θ1 ≤ arg(µ) ≤ θ2 for all
µ ∈ W (A). Notice that Θ(A) = θ2 − θ1. We may replace
A by e−i

θ1+θ2
2 A and assume that

W (A) ⊆ {µ ∈ C : −Θ(A)
2 ≤ arg(µ) ≤ Θ(A)

2 }.

Let A = H + iG, where H and G are Hermitian. Then
H is positive definite. Suppose U ∈ B(Hd) is unitary such
that

A0 = U†H−1/2AH−1/2U

= U†(Id + iH−1/2GH−1/2)U
= diag(1 + a1i, . . . , 1 + adi)

with a1 ≥ · · · ≥ ad. Then W(A) = W(A0) and a1 =
tan Θ(A)

2 and ad = − tan Θ(A)
2 . Furthermore,

W(A⊗N ) =W(A⊗N0 ) =W(D⊗N ),

where D = diag(1 + a1i, 1 + adi). Hence 0 ∈ W(A⊗N ) if
and only if 0 ∈ W(D⊗N ). Therefore there is a non-zero
positive operator in {A⊗N}⊥ if and only if N ≥ π

Θ(A) ,
which is always finite. Choose N = d π

Θ(A)e and this will
be the smallest N such that there is a non-zero positive
operator in S⊗N . Since for any positive integer K smaller
than N , 0 6∈W (D⊗K). Thus there is no non-zero positive
operator in S⊗K .

Moreover, we have the following:

Corollary 2. For quantum operations E and F such that
SE,F = span{A} where A ∈ B(Hd). They can be parallel
distinguished within finite use if and only if for any real
t, eitA is not positive definite. Moreover, the minimum
number of using the unknown device is d π

Θ(A)e.

Another family of operator subspace, the operator space
spanned by a set of Hermitian operators, which has paral-
lel distinguishability if there is no positive definite operator
in this space. We have the following:

Theorem 4. For an operator subspace S such that S = S†

where S† = {E† : E ∈ S}, S has parallel distinguishability
if and only if there is no positive definite operator in S.

Proof. Assume {A1, . . . , AN} is a set of Hermitian opera-
tors such that S = span{A1, . . . , AN}. By Farkas lemma
of semi-definite programming [9], either
• There is a linear combination of A1, . . . , AN equal to

a positive definite operator; or
• There is a non-zero positive operator ρ such that

Tr(Aiρ) = 0 for i = 1, . . . , N .
The first statement is equivalent to the existence of

a positive definite operator in S and the second one is
equivalent to ρ ∈ S⊥. Thus if there is no positive definite
operator in S, we can always find a non-zero positive
operator in S⊥.



IV. Nonexistence of a positive definite
operator is not always sufficient

For arbitrary operator subspace, we are curious about if
the nonexistence of positive definite operator is sufficient
for checking the parallel distinguishability. Unfortunately,
there exists operator subspace S such that there is no
positive definite operator in S but S does not have parallel
distinguishability.

Theorem 5. Let S = span{A1, A2} ∈ B(H3) with
A1 = |0〉 〈0| + i |1〉 〈1| and A2 = |1〉 〈1| + i |2〉 〈2|, where
{|0〉 , |1〉 , |2〉} is an orthonormal basis of H3. Then for any
positive integer N , there is no non-zero positive operator
in the orthogonal complement of S⊗N .

Proof. It is easy to verify that there is no positive definite
operator in S, we will show that for arbitrary integer N ,
there is no density operator in (S⊗N )⊥ by mathematical
induction. When N = 1, by simple calculation there is no
density operator in S⊥. Assume for N = k, there is no
density operator in (S⊗k)⊥, consider tensor k+ 1 times of
S, notice that S⊗k+1 = span{Ai⊗M : i = 1, 2,M ∈ S⊗k}.
If there exists a density operator ρ ∈ (S⊗k+1)⊥, we have

Tr(ρ(A1 ⊗M)) = 0, Tr(ρ(A2 ⊗M)) = 0,

where M ∈ S⊗k Since A1 and A2 are diagonal, we may
assume ρ = |0〉 〈0|⊗ρ0 + |1〉 〈1|⊗ρ1 + |2〉 〈2|⊗ρ2 where ρ0,
ρ1 and ρ2 are positive operators and at least one of them
is non-zero. By substitution we have:

Tr(ρ0M) + iTr(ρ1M) = 0, −iTr(ρ1M) + Tr(ρ2M) = 0.

Let σ = (ρ0 + ρ2)/Tr(ρ0 + ρ2), then Tr(σM) = 0. If ρ0 +
ρ2 6= 0, then σ is a non-zero positive operator in (S⊗k)⊥,
which is a contradiction. Thus ρ0 = ρ2 = 0. But then, we
can conclude that ρ1 is non-zero and Tr(ρ1M) = 0 for all
M ∈ S⊗k, again a contradiction.

In general, the parallel distinguishability of an opera-
tor subspace can be checked by the following system of
equations:

Tr(ρAj1 ⊗ · · · ⊗AjN ) = 0 for k = 1, . . . , N, (1)
Tr(ρ) = 1, ρ ≥ 0,

where Ajk ∈ S for k = 1, . . . , N for arbitrary N . Notice
that this can be treated as a semi-definite programming
(SDP) problem. In fact, it is still not easy to check even
we reduce it to a linear programming (LP) problem. We
will show this by constructing a family of operator spaces
with a parameter α, let

Sα = {A1 = |0〉 〈0|+ eiα |1〉 〈1| , A2 = |1〉 〈1|+ eiα |2〉 〈2|}.

Let α ∈ [π/2, π] to guarantee there is no positive definite
operator in S and {|0〉 , |1〉 , |2〉} is an orthonormal basis
of H3. Notice that Sα is just an operator space spanned
by two 3 × 3 diagonal operators, which seems easy to be
solved. By simple calculation we can obtain that there is

a non-zero positive operator in S⊥α if and only if α = π.
Consider Sα⊗2, the above system of linear equations has
a positive solution if and only if α ∈ [ 3π

4 , π], and we can
choose the diagonal entries of ρ to be:

(1,− cosα, cos 2α,− cosα, 1,− cosα, cos 2α,− cosα, 1).

However, for N > 2, the number of equations is 2N
and the number of variables is 3N , this procedure will
not be efficient. We are going to simplify the problem by
using the symmetry. The basic idea to decrease the number
of variables is to classify them into different types and
assume the variables in each type shares the same value.
More precisely, let us consider a fixed N and represent
the index of variables p0, . . . , p3N−1 by ternary numbers
0 . . . 0︸ ︷︷ ︸
N

, . . . , 2 . . . 2︸ ︷︷ ︸
N

. We denote the ternary expansion of k

by k and the numbers of 0, 1 and 2 in k as k0, k1 and k2.
In fact, we assume all the index with same number of 0, 1
and 2 are equal, i.e. pk = pk′ if ki = k′i for i = 0, 1, 2. This
can be done since S⊗N is invariant under any permutation
with order N on its subsystems. Thus if it has a solution it
must have a symmetric solution which is invariant under
permutations of order N . Moreover, we assume:

pk = k0!k1!k2!
N ! ak0,k1,k2

. (2)

By this substitution we can reduce the number of variables
to O(N2). Moreover, we can also use this symmetry to
reduce the number of equations. Considering the diagonal
elements of A⊗N1 , it is easy to see the index will be all
the binary number from 0 to 2N − 1. Denote the binary
expansion of k by k̂ and the number of 1 in k̂ by k̂1
similarly. We can rewrite the equation Tr(A⊗N1 ρ) = 0 by:

2N−1∑
j=0

eiĵ1αpj = 0 (3)

Moreover, let Jr = {j : ĵ1 = r, 0 ≤ j ≤ 2N − 1}, then
|Jr| =

(
N
r

)
and

(
N
r

)
pj = aN−r,r,0 if j ∈ Jr. Thus we can

rewrite the above equation as:
N∑
r=0

eirαaN−r,r,0 = 0.

Moreover, by the symmetry we can ignore the place
of A2 when we substitute it with A1. We only need to
consider equations Tr(A⊗l2 ⊗A

⊗N−l
1 ρ) = 0 for l = 0, . . . , N ,

which reduce the number of equations to O(N). Fur-
thermore, the substitution of A1 by A2 will permute the
index of variables in Equation 3 but remain the coefficient
unchanged. More precisely, for an index k with ternary
expansion k = xN−13N−1 + · · ·+x13+x0, if we substitute
the first l A1 by A2, the index after substitution will
be kl = (xN−1 + 1)3N−1 + · · · + (xN−l + 1)3N−l +
xN−l−13N−l−1 + · · · + x0. Noticing that we use binary
number k̂ = xN−12N−1 + · · ·+x12 +x0 in Equation 3, we
define the following map f to transfer a binary number k̂



to a ternary number f(k̂) = xN−13N−1 + · · · + x13 + x0.
Thus Tr(A⊗l2 ⊗A

⊗N−l
1 ρ) = 0 can be rewriten as:

2N−1∑
j=0

eiĵ1αpf(ĵ)l = 0 (4)

Since we are going to use Equation 2 to represent pf(ĵ)l .
We consider the elements in Jr. Denote the number of 0
in the first l positions of j ∈ Jr by s, where 0 ≤ s ≤
N−r. After the substitution we obtain

(
l
s

)(
N−l

N−r−s
)
ternary

numbers with value of
(N − r − s)!(2s+ r − l)!(l − s)!

N ! pN−r−s,2s+r−l,l−s.

Thus we rewrite Equation 4 as:
N∑
r=0

eirα
[N−r∑
s=0

(
2s+ r − l

s

)
aN−r−s,2s+r−l,l−s

]
=0.

After the above procedure, we can easily obtain the ex-
plicit solution for N = 3, 4:
For N = 3, we have the following solution:
• a0,3,0 = 0;
• a3,0,0 = a0,0,3 = a1,2,0 = a0,2,1 = sinα;
• a2,1,0 = a0,1,2 = − sin 2α;
• a1,1,1 = −2 sin 2α;
• a1,0,2 = a2,0,1 = sin 3α.

When α ∈ [ 2π
3 ,

3π
4 ], the above values are all non-negative.

When α ∈ [ 3π
4 , π], we can simply use the solution for N =

2 to construct the solution.
For N = 4, we have the following solution:
• a4,0,0 = a0,0,4 = a0,4,0 = 1;
• a0,2,2 = a2,2,0 = 2;
• a0,1,3 = a3,1,0 = a0,3,1 = a1,3,0 = −2 cosα;
• a1,1,2 = a2,1,1 = 2 cos 3α;
• a2,0,2 = −2 cos 4α;
• All the rest entries are 0.

When α ∈ [ 5π
8 ,

2π
3 ], the above values are all non-negative.

Though when N is large we seem can use numerical
method to find the solution, it is not efficient since there
are combination numbers in the equations. We are only
able to test N up to 18. However, we find an interesting
conjecture which may lead to a full characterization of the
parallel distinguishability for this special case:

Conjecture 1. For operator space Sα = {|0〉 〈0| +
eiα |1〉 〈1| , |1〉 〈1| + eiα |2〉 〈2|} with α ∈ [π2 , π], there is a
density operator in the orthogonal complement of (Sα)⊗N
if and only if α ∈ [π2 + π

2N , π].

Interstingly, we have already show that this conjecture
is true when N →∞. Since Sπ

2
is the case in Theorem 5,

we have already show that the desired N does not exist.

V. Conclusion
In this paper we discuss the problem of parallel distin-

guishability of general quantum operations. It is illustrated
that the parallel distinguishability is determined by an

operator subspace generated by their Choi-Kraus opera-
tors. Meanwhile, we show that the operator subspace can
be chosen as an arbitrary operator subspace. We introduc
the parallel distinguishability of an operator subspace and
focus on characterizing operator subspaces which have this
property. Furthermore, we show the parallel distinguisha-
bility of one-dimensional operator subspace and Hermitian
operator space can be verified by checking if there exists
a positive definite operator. However, we construct an
explict example to show that this condition is not always
sufficient. In general, we find a family of operator sub-
spaces and obtaine some analytical and numerical result
as well as a conjecture about the full characterization of
the parallel distinguishability of these operator spaces.
Unfortunately, verifying the parallel distinguishability of
these operator subspaces is still difficult.
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