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Abstract 

We consider an extension of the optimal searcher path problem (OSP), where a 
searcher moving through a discretised environment may now need to spend a non-
uniform amount of time travelling from one region to another before being able to 
search it for the presence of a moving target. In constraining not only where but when 
the search of each cell can take place, the problem more appropriately models the 
search of environments which cannot be easily partitioned into equally-sized cells. An 
existing OSP bounding method in literature, the MEAN bound, is generalised to 
provide bounds for solving the new problem in a branch and bound framework. The 
main contribution of this paper is an enhancement, Discounted MEAN (DMEAN), 
which greatly tightens the bound for the new and existing problems alike with almost 
no additional computation. We test the new algorithm against existing OSP bounding 
methods and show it leads to faster solution times for moving target search problems. 
 
Keywords: Search Theory; Branch and Bound; Global Optimization; Markov 
Processes 
 
1. Introduction  

We consider the search for a target moving between discrete regions of interest 
in a structured environment. At each time step, the target either stays in its current 
region or shifts to a different location according to a known Markov model. After 
searching a region for one time period, a searcher can continue in the same place or 
move to search an adjacent region instead. For each time step the searcher spends in 
the same region as the target, detection can occur with a given glimpse probability. A 
search plan respecting searcher travel constraints is sought to maximise the probability 
of detection within a specified time frame. Much work has been done in the past on 
this path constrained or optimal searcher path problem (OSP) (Stewart, 1979; Eagle 
and Yee, 1990; Dell et al. 1996; Hohzaki, 1997; Washburn 1998), for the specific case 
where the environment is discretised into a grid of identically-sized cells and a 
searcher can immediately search one cell after another in successive time periods. In 
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contrast, a platform searching a built environment cannot move from one region to 
another without expending some travel time for each transition. Moreover, the travel 
times required depend on the source and destination regions and may not be the same 
across all transitions; the effective total time available for searching therefore becomes 
linked to the choice of search actions itself. The purpose of this paper is to extend the 
idealised cell model in the optimal searcher path problem to incorporate non-uniform 
searcher travel time between cells, such that the formulation can model the search of 
regions in structured environments while preserving the underlying inter-region travel 
constraints. The main contribution is a branch and bound procedure using a new 
bounding method that not only generalises the MEAN method by Martins (1993) to 
solve the new problem, but also greatly tightens obtained bounds for the optimal 
searcher path problem in general with almost no added computation.  

Unlike earlier problems that assumed the ability to arbitrarily divide search 
effort between all regions within a single time period (Brown, 1980), the optimal 
searcher path problem accounts for cases where the speed of redeploying effort is slow 
with respect to the detection time interval and the searcher (e.g. a ship or manned 
patrol) cannot concurrently cover multiple regions. Not only is search effort indivisible 
in this sense, the location where it can be placed at a given time is also constrained by 
the region searched in the previous step. Although this formulation has mostly been 
used in literature for maritime scenarios, it is clear that similar constraints also apply 
for searches in terrestrial or structured settings. Instead of dividing an open area into a 
uniform grid of cells, a built environment can more sensibly be partitioned according 
to its structure such that the constituent regions (such as rooms or individual buildings) 
can then be independently searched. Nevertheless, a searcher, be it human or robotic, 
still occupies only one region at a time and travel between regions is limited by what 
the structure (in the form of obstacles and region connectivity) allows. The task of 
finding the best track through the regions remains.  

Viewed in this light, the situation in previous optimal searcher path problems 
can be seen as a searcher being able to expend some amount of time searching one 
region, with no intervening “travel time” necessary before effort is then immediately 
shifted to a neighbouring region. While adequate for searching open areas with a fast 
platform, this assumption is not directly suitable for our intended applications of 
searching an indoor area consisting of different-sized rooms or a cluster of separated 
buildings in a given area - a searcher in such cases would reasonably be expected to 
devote time moving from one region to another before resuming search.  
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Although many related problems in literature factor in some incurred costs 
from a searcher looking in each region, few cases exist where the specific travel times 
from one region or cell to another are directly taken into account. In one example, 
Hohzaki and Iida (1997) raised the idea of capturing the cost of travel between the 
successive cells in a search sequence. This was however envisioned as a purely 
financial expense, with no impact on the effective time available for further searches. 
The searching of different cells by Lössner and Wegener (1982), DasGupta et al. 
(2006) and our previous work (Lau et al., 2005) do incur such a switch time, but all 
dealt only with stationary targets. Interestingly, Dambreville and Le Cadre (2002) 
raised a Markovian target search formulation that allows a search resource to renew 
itself only after spending a certain amount of time for moving. The formulation is 
nevertheless concerned only with allocating an infinitely divisible search resource 
whose future availability is not conditioned on the searcher’s current position, and 
therefore still does not meet the travel requirements in the scenarios we consider. 
Existing optimal searcher path problem formulations can approximate the case of 
location-dependent, non-uniform travel times by first injecting additional identical 
cells to render travel times uniform, but this then assumes a very myopic sensor, does 
not take advantage of any inherent environment structure, and would therefore 
unnecessarily escalate the overall complexity. 

The rest of this paper is organised as follows. Section 2 reiterates the existing 
OSP problem formulation, while Section 3 describes a branch and bound procedure for 
the problem as well as the operation of MEAN, an existing bounding method proposed 
by Martins (1993). Section 4 introduces a new bounding method, Discounted MEAN 
(DMEAN), which is shown in Section 5 to be superior to other known linear bounds. 
Section 6 then generalises the OSP formulation to directly incorporate searcher travel 
times between cells, such that it better reflects the limits of a physically-situated 
searcher in structured or enclosed environments. The earlier branch and bound 
procedure and DMEAN method are also extended to find solutions for this Optimal 
Searcher Path Problem with non-uniform Travel times (OSPT). 
 
2. Optimal Searcher Path Problem Formulation 

The searcher and target move through an environment divided into a finite set 

of cells { }1C ,...,N= (see Figure 1). The target occupies one cell (representing a 

region) at a time and moves according to a specified Markov model at each time step; 
a matrix describes the probability that a target will move from any of the cells to Γ
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another at the next time step. A prior distribution 1 [ 1 1 2 1 1 ]p( , ) p( , ), p( , ),..., p( N , )⋅ =  

of the target at time 1 is initially supplied, where p( i,t )  is the probability that the 

target is in cell i  at time  without being detected by any searches before  In the 
absence of searches, the (possibly defective) distribution evolves according to the 
formula 

t .t

1 .p( ,t ) p( ,t )⋅ + = ⋅ ⋅ Γ  

 
Figure 1 Example OSP search grid and equivalent graph: edges show valid searcher transitions. 

Results will be illustrated with cases where the searcher begins in cell 1 and the target starts at the 
centre cell. 

 
Target detection is modelled as follows: if both the searcher and target are in 

region  during time detection occurs with a glimpse probability of  As an 

example, if 

i ,t .g( i,t )

[ 1 ]p( ,t ) p( ,t ),..., p( N ,t )⋅ =  and cell 1 is searched for one time step, then 

 The glimpse function may 

typically take the form of  (Dell et al., 1996, Eagle and Yee, 1990), 

with  being a measure of search effectiveness for a given cell  Any 

function  however can be used. This probability is assumed to be 

independent of past searches. 

1 [ 1 1 1 2 ]p( ,t ) p( ,t ) ( g( ,t )), p( ,t ),..., p( N ,t )⋅ + = ⋅ − ⋅ Γ.

1≤

1 ( i ,t )g( i,t ) e ω−= −

0( i,t )ω ≥ .i

0 g( i,t )≤

The searcher’s path is constrained by the structure of the environment. Let 
 be the set of cells that a searcher can directly move to from cell  If the 

searcher is in cell  at time  it can only start searching the next cell 

S( i ),i C∈ .i

i ,t j S( i )∈  at time 

  1.t +

Given  time steps to find the target, let T ψ  denote a valid search plan 

represented by a series of cells searched in one time unit increments. A searcher 
following plan ψ  first moves to and searches cell 1( )ψ  for one time period, then 

travels to search cell 2( )ψ  for another time step, and continues for the remaining cells 

until  time periods in total have been expended. For convenience, we use T 0( )ψ  to 

hold the searcher’s given initial position prior to the first search. 
Taking into account target motion and the effects of previous cell searches, the 

undetected target probability mass in a cell at each time period is determined by: 
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1 ( t )t 1p( ,t ) p( ,t ) M , t Tψ⋅ + = ⋅ ⋅ ⋅ Γ ≤ <        (1) 

Where  is an  identity matrix with the ( t )tMψ N N× th( t )ψ  diagonal element set to 

1 .g( ( t ),t )ψ−   

The objective for the Optimal Searcher Path problem (OSP) is to find the 
search plan ψ  that maximises the cumulative probability of detection PD( )ψ  within 

the T  time steps, which can then be stated as: 

1

T

t

max PD( ) p( ( t ),t ) g( ( t ),t )
ψ

ψ ψ ψ
=

= ⋅∑  

Subject to: 
1 0( t ) S( ( t )), t ,...,T 1ψ ψ+ ∈ ∈ −         (2) 

The glimpse functions g( ( t ),t )ψ  are given and the undetected target 

probability p( ( t ),t )ψ  can be obtained using equation (1). Alternative formulations 

exist in literature for the OSP (Thomas and Eagle 1995; Washburn, 1995), but the 
above, similar to that used in Dell et al. (1996), is chosen here to make clear the 
intended generalisation in Section 6. 
 
3. Branch and Bound for the OSP 

The complexity of the problem arises because the usefulness of searching an 
individual cell towards maximising the cumulative probability of detection is governed 
by the probability of the undetected target being present at that time, which in turn is a 
function of all previous search actions thus far. Branch and bound approaches 
(Stewart, 1979; Washburn, 1995; Hohzaki, 1997), which implicitly enumerate feasible 
searcher actions, have been popular for optimally solving the NP-complete (Trummel 
and Weisinger, 1986) OSP. Instead of examining every possible solution, the 
technique takes advantage of the fact that all extensions of a partial search sequence 
can be ruled out together if they cannot possibly lead to the optimal outcome. Central 
to the approach is estimating the best payoff achievable from any valid continuation of 
a given search plan – if the value does not exceed the best known solution, an entire 
“branch” of related plans can then be safely abandoned.  

The algorithm below adopts the approach used in Washburn (1995).  is a 

set of 3-tuples {  representing path continuations yet to be 

explored after a particular sequence of 

K( s )

nextcell ,time,upperbound }

s  cells have been searched. The first field 
refers to the next cell to search for one time step, the second field is the total time 
expended once the specified cell is searched, and the third contains the upper 
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cumulative probability of detection (PD) bound associated with this particular 
extension. p*  holds the best detection probability hitherto found. 

 
Algorithm for Branch and Bound (OSP): 

1. Let 0 0 .( )σ ψ=  Set  and 0 0 0ss ,K( s ) {{ , , }σ= = } p*  to a value below 0. 

2. If  is empty, let  else go to 4. K( s ) 1,s s= −

3. If go to 9, else go to 2. 0,s =

4. Selection: Choose a tuple s s s{ , , pσ τ }  in  according to a selection 

criterion and remove it from the set.

K( s )

   

5. If ,sp p*≤  this extension can be fathomed. Go to 2. 

6. Else Branch: For each cell  if  obtain ,c sS( )σ σ∈ ,s Tτ < ,cp  the upper PD 

bound for any plan beginning with the path  Add tuple 

 to  

0 .s c{ ,..., , }σ σ σ

1c s c{ , , pσ τ + } 1 .K( s )+

7. If no tuples were added to  in 6, the current extension is a leaf and no 

more searches can be done. Let 

1K( s )+

sp* p=  and store 0 s{ ..., }σ σ  as the new 

incumbent best path. Go to 2. 
8. Else let  go to 4. 1,s s= +

9. Stop, the last saved path is optimal with the maximum PD of .p*  

 
The algorithm employs an eager depth-first branch and bound approach as per 

Washburn (1995). The selection of partial plans for branching in step 4 can be 

arbitrary; for the purpose of the examples in this paper, the tuple s s s{ , , pσ τ }  in  

with the highest bound 

K( s )

sp  is always chosen. It is assumed that bounds for a plan which 

cannot be extended to include more searches will always equal its actual PD. Step 7 
can directly store the new incumbent without checking as its superiority is implied by 
step 5.  
 
3.1 Obtaining bounds for the OSP 

The purpose of finding an upper bound (step 6 in the Algorithm for Branch and 
Bound) is to quickly estimate the best achievable payoff in a given solution subspace 
without exhaustively examining each full plan. The tighter a bound is in relation to the 
actual achievable PD, the more branches can be fathomed in advance. On the other 
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hand, a tight bound which requires too much effort to calculate may actually slow 
down the whole solution process. 

Different aspects of the OSP can be relaxed to facilitate bound evaluation. 
Washburn (1995, 1998) details a number of known bounding techniques and examines 
the trade off between bound tightness and calculation speed. The methods reviewed 
will be referred to by the same names in this paper for consistency. In Stewart (1979)’s 
depth-first branch and bound framework, path constraints were simplified such that a 
searcher can visit any cell reachable from the starting location by a given time, even if 
it is not directly connected to the last cell searched. Although a problem with this 
distribution of effort relaxation was then iteratively solved with the Forward and 
Backward (FAB) algorithm (Brown, 1980), the resultant solutions gave heuristic 
bounds not guaranteed to find the optimal answer. When the searcher is permitted to 
span multiple cells at the same time, the FAB algorithm itself leads to a true and tight 
bound. Eagle and Yee (1990) also solved a relaxed problem made convex by no longer 
confining the searcher to be in one cell at a time. Eschewing sharpness for calculation 
speed, Martins (1993)’s MEAN method made linear relaxations through transforming 
the OSP into a longest path problem maximising the expected number of detections 
that preserves both searcher indivisibility and path constraints. When the path 
constraints are relaxed to form a reward collection problem, the more easily evaluated 
bound PROP (Washburn, 1998) is obtained. Lastly, ERGO2 (Washburn, 1998) 
estimates bounds with even less computation by directly using a stationary target 
distribution rather than the actual distribution at each time.  

As the MEAN bound is also amenable to the new problem to be defined in 
Section 6, its operation will be described in more detail before an improvement, 
DMEAN, is introduced in Section 4. 

 
3.2 The MEAN bound for the OSP  

The MEAN bound functions by maximising the expected number of detections 

in the remaining time steps until  Following Martins (1993), define  as 

the probability that 

.T P( D x )ψ =

x  detections occur when the searcher follows a sequence ψ  from 

time 1 to  Taking an expectation of the number of detections yields: .T

1 1

T T

x x

ED( ) xP( D x ) P( D x ) PD( )ψ ψψ ψ
= =

= = ≥ = =∑ ∑       (3) 
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Since the expected number of detections (ED) for a particular plan cannot be 
smaller than the corresponding probability of detection (PD), the maximal ED across 
all search plans also provides an upper bound for PD itself.  

Under this modified objective, the utility of searching a cell at a given time 
only depends on the probability of the target being there and is independent of any 
previous searches that might have already occurred. Prior actions only play a role in 
limiting where the next searches could take place due to the cell connectivity 
constraints; calculating the MEAN bound’s value can thus be modelled as finding a 
longest path in a directed acyclic graph (DAG).  

Consider the calculation illustrated in the following 1-dimensional example 
where a searcher can either stay in its current cell or move sideways towards an 
adjacent one at each time step. Let  be a fixed sequence of  one-time-unit searches 

such that the search of cell  takes place at time  We wish to find the maximum 

ED possible for any extension of this plan from time  up to time  which can 

then be added to the known PD for searches during times 1  to give the upper PD 

bound for any sequence beginning with the partial plan   

σ k

( k )σ .k

1k + ,T

,...,k

.σ
Time Period

k k+1 k+2 k+3 T

1

2

3

4

5

RMEAN(1,k+1)

1 2 3 4 5

Example search grid

 
Figure 2 MEAN bound calculation for the OSP ( ). Arcs indicate feasible searcher 

movements. 
2( k )σ =

 
Figure 2 shows how the MEAN bound can be found through solving a longest 

path problem in a network where each node represents the search of a cell at a 
particular time. Starting with the constraining node { (  denoting the last fixed 

searcher position, let directed arcs indicate the valid searcher movements from one 
time to the next. To determine the maximum ED for the interval from time  to  

we associate a reward for searching a cell with the arc entering the corresponding 
node. Let  be the undetected target probability mass at time  taking into effect 

the searches of  through to  By letting  is 

k ),k }σ

1k + ,T

( k )π ,k

1( )σ .( k )σ , ,t kP( ,t ) ( k ) t kπ −⋅ = ⋅ Γ > P( j,t )
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then the probability that the target was not detected by any searches up to time  and 

is now in cell 

k

j  at time  Accordingly, each arc heading into node 

 is given a weight of 

.t

1{ j,t }, j C,t { k ,...,T }∈ ∈ + ,MEANR ( j,t ) P( j,t ) g( j,t )= ⋅  

reflecting the contribution towards the total ED if cell j  is searched at time  A 

standard DAG longest path algorithm such as in Cormen et al. (1990) can then be 
applied on the network to maximise the total reward and obtain an upper bound on the 
achievable PD. The steps for obtaining the MEAN bound are summarised as follows. 

.t

 
Algorithm for the MEAN Bound 

1. For each time step from  to  create a graph node per cell at that time. Mark 

node { (  as valid. 

k ,T

k ),k }σ

2. Use  to calculate  for  t kP( ,t ) ( k )π −⋅ = ⋅ Γ P( ,t )⋅ .k t T< ≤

3. From each valid node  extend arcs of weight  to all 

nodes  Mark the head nodes  valid.    

,{ i,t } 1 1P( j,t ) g( j,t+ ⋅ + )

1 .1{ j,t }, j S( i ), t T+ ∈ + ≤ 1{ j,t }+

4. Repeat 3 until arcs have been extended from all valid nodes. 
5. Apply a DAG longest path algorithm to find the maximum length of paths 

leading from node  Add this value to the PD of following sequence 

to form the upper PD bound of any continuation. 

.{ ( k ),k }σ

1( ),..., ( k )σ σ

 
4. The Discounted MEAN Bound for the OSP 
4.1 Motivation 

The efficiency of computing MEAN comes from decoupling the reward 
attributed to an action (i.e., the corresponding arc’s weight) from past search history, 
by assuming that searching a cell does not change the target probability distribution. 
However, this deliberate forgetfulness comes at a cost when the searcher has a low 
chance of non-detection or can always visit cells with high target probability. Consider 
the extreme case where both a searcher with a 100% glimpse probability and all of a 
stationary target’s probability mass begin the same cell. While the maximum PD is 
clearly 100%, the maximum ED would increase for each additional time period 
available for search. 

Viewed in the context of the longest path problem in Figure 2, the bound’s 
looseness is linked to each arc weight’s overestimation of the probability of detecting 
the target with the corresponding search. In the limit, one can assign accurate weights 
that fully account for all the cells previously inspected by the searcher, but not without 
regaining the computational complexity of maximising PD itself. A closer examination 
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of the MEAN bounding method however shows that information already available can 
be leveraged to cheaply reduce the overestimation of arc weights. 

 
4.2 Method 

This section presents an improved bounding technique, Discounted MEAN 
(DMEAN), which greatly sharpens the MEAN bound at little cost by retaining a 
limited memory of past actions. Although Martins (1993) calculated the MEAN bound 
with an ED network that assigned the reward for searching a cell to the weight of a 
node’s outgoing arc, we have thus far employed an equivalent graph where this value 
is accrued on the arc heading into the corresponding node instead. Each arc’s weight is 
therefore now clearly linked to the paired actions of visiting one particular cell after 
another, rather than just the current cell in isolation. This suggests that one may 
discount from the reward of searching the current cell an amount that is known to have 
already been claimed when the previous cell was searched. 

More specifically, the DMEAN relaxation relates the weight of an arc from 
node  to  to the search of both the corresponding cells, while still 

ensuring the longest path through the network produces a valid upper bound. Based on 
the previous observation, we can safely reduce the weight to: 

{ i,t } 1{ j,t }+

 1 1DMEAN ij 1R ( j,t ) ( P( j,t ) P( i,t ) g( i,t ) ) g( j,t )+ = + − ⋅ ⋅Γ ⋅ +     (4) 

 
Algorithm for the DMEAN Bound 
The new procedure is obtained by changing step 3 of the Algorithm for the MEAN 
Bound in Section 3 to: 

3’.  From each valid node  extend arcs to all nodes  ,{ i,t } 1 ,{ j,t }+

1 .j S( i ), t T∈ + ≤  Mark the head nodes  valid.  1{ j,t }+

If  assign a weight of  for each new arc. Else use ,t k= 1P( j,t ) g( j,t )+ ⋅ +1

1 .1 1DMEAN ijR ( j,t ) ( P( j,t ) P( i,t ) g( i,t ) ) g( j,t )+ = + − ⋅ ⋅Γ ⋅ +   

 
Whereas  is the remaining target probability assuming no searches after 

 the discounted term  in step 3’ denotes the 

probability that the target has survived the additional search of cell i  at time  before 

reaching cell 

1P( j,t )+

,k 1 ijP( j,t ) P( i,t ) g( i,t )+ − ⋅ ⋅ Γ

t

j  and time  Not only is the longest path in the discounted network 

likely to be much shorter in comparison, its length can never exceed the maximum ED. 

1.t +
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The DMEAN method thus produces a consistently tighter bound than MEAN 
regardless of problem parameters. 

 
4.3 Proof of guaranteed upper bound and computational complexity 

Proof: Let  indicate detection after time  when following a given plan J k ψ  

and tI  be a random variable indicating detection on the  look by the searcher at time 
1

tht

tT = t

t

, disregarding any detections made before that time.  

1
1

1 1t u k t u
t k t k t kk u t k u t

E( J ) E( I ( I )) E( I I ( I )) E( I
∞ ∞

+
> > +< < < <

= − = + − ≤∑ ∑∏ ∏ )
∞

>
∑

,

 then reiterates 

MEAN’s rationale that the PD of a plan is bounded by the corresponding ED. The 

DMEAN relaxation on the other hand corresponds to 1 1
1

1k t t
t k

E( I I ( I ))
∞

+ −
> +

+ −∑  which 

therefore necessarily lies between the two values. Evaluating 

 instead of  does not however require much 

extra computation, as it can be seen that:  
11t t t t tE( I ( I )) E( I ) E( I I )− −− = − ⋅ 1

.

tE( I )

1 1 1 11 1t t t t ( t ) ( t ) tE( I I ) P( ( t ),T ) g( ( t ),T ) g( ( t ),T )ψ ψψ ψ ψ− − − −⋅ = − ⋅ − ⋅Γ ⋅  

Since DMEAN and MEAN differ only in the above calculation of each arc’s 
weight, both methods share a complexity linear to the network size of  

(Martins, 1993) in scenarios where each cell is connected to at most  others. 

( NcT )Ο

c

 
5. Comparisons and Results 
5.1 Uniform OSP search grid 

We use the search grids from Eagle and Yee (1990) to compare DMEAN’s 
performance against known OSP bounds. An area is divided into a square of 

cells (see N n n= × Figure 1), where at each time step the searcher can only search its 

current cell or an adjacent (vertical or horizontal) neighbour. The target remains in its 
cell with a probability  in each step and with the remaining probability moves to one 

of the adjacent cells at random. Detection occurs with a glimpse probability of and 

the sets  are formed according to the depicted connectivity. For the 

purpose of the examples here, the searcher initially begins in cell 1 (

d

g

S( i ), i C∀ ∈

0( ) 1ψ = ) while 

the target starts at the centre cell S (e.g., for in an odd-numbered grid 13S = 25)N =

                                                 
1 Notation used to also cover the case of non-uniform searcher travel times in Section 6. 
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( 1 1 1 0 1 \ ).p( S , ) , p( i, ) , i { ...N } S= = ∀ ∈  Grids with 11×11 and 15×15 cells will be 

used.  
5.2 Comparison with previous OSP bounds 

Tables 1 and 2 show the branch and bound solution times when using DMEAN 
alongside that of the best bound methods reviewed in Washburn (1998), for a number 
of uniform search grids with different parameters. In particular the DMEAN, MEAN, 
PROP and FABC algorithms are implemented and compared. FABC (Washburn, 
1995) applies one iteration of the FAB algorithm to solve a version of the problem 
with the aforementioned distribution of effort and convexity relaxations. It is 
nevertheless by far the slowest of the tested bounds to individually compute. The 
PROP method (Washburn, 1998) can be seen as a simplified MEAN bound in which 
the most profitable node is chosen at each time step without regard to path constraints. 
While PROP, MEAN and DMEAN all belong to a class of easy to compute linear 
bounds, the removal of the longest path problem makes a PROP bound the fastest of 
the three to individually calculate. ERGO2, another linear bound also reviewed in 
Washburn (1998), is omitted here due to it being dominated by either PROP or FABC 
in the respective moving and near-stationary target test cases. 

The number of bound fathoming attempts (i.e., the number of times that step 5 
of the Algorithm for Branch and Bound is executed) in solving the problems with the 
various bounds are also listed for comparison. Results were obtained using a 
MATLAB implementation2 on a 2.6-GHz Opteron 152 processor; values for problem 
grid size and time horizon were chosen to allow for test completion within reasonable 
time. Note that the FABC implementation used had not been fully optimised, although 
the results shown are nevertheless indicative of relative performance. The reader is 
referred to Washburn (1995, 1998) for performance comparisons between the existing 
OSP bounding techniques with 1-dimensional problems. 

 

                                                 
2 Source code is available on request. 
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 0 3g( , ) .⋅ ⋅ =  0 6g( , ) .⋅ ⋅ =  0 9g( , ) .⋅ ⋅ =  
 d=0.3 d=0.6 d=0.9 d=0.3 d=0.6 d=0.9 d=0.3 d=0.6 d=0.9 

DMEAN 2.54 
(10216) 

2.91 
(11074) 

14.52 
(51322) 

3.03 
(10594) 

3.14 
(10079) 

68.21 
(256794) 

3.13 
(9744) 

7.24 
(17204) 

206.81 
(941615) 

MEAN 5.51 
(34329) 

8.90 
(37054) 

72.02 
(341929) 

12.31 
(57924) 

12.27 
(45457) 

324.19 
(1980086) 

17.77 
(79512) 

13.59 
(49037) 

323.98 
(1981951) 

PROP 4.65 
(34329) 

6.12 
(37054) 

54.90 
(341929) 

9.04 
(57924) 

8.16 
(45457) 

281.48 
(1980086) 

12.96 
(79512) 

9.01 
(49037) 

281.05 
(1981951) 

FABC 40.14 
(96244) 

18.69 
(38354) 

9.31 
(19684) 

216.41 
(403667) 

62.64 
(94034) 

13.47 
(26849) 

2353.84 
(3645611) 

835.99 
(1011430) 

65.28 
(92687) 

Table 1 Branch and bound solution times (in seconds) and number of bounding attempts (shown 
in brackets) for the 11×11 OSP search grid with T = 15.  The optimal path is 2, 3, 4, 15, 26, 37, 48, 
49, 60, 61, 72, 73, 62, 61, 50 with a detection probability of 0.26491 for the case when glimpse 
probability g = 0.6 and target stay probability d = 0.6. 
 
 0 3g( , ) .⋅ ⋅ =  0 6g( , ) .⋅ ⋅ =  0 9g( , ) .⋅ ⋅ =  
 d=0.3 d=0.6 d=0.9 d=0.3 d=0.6 d=0.9 d=0.3 d=0.6 d=0.9 

DMEAN 14.56 
(58349) 

14.53 
(52394) 

157.30 
(380974) 

19.07 
(49779) 

23.76 
(47489) 

730.96 
(2185136) 

21.55 
(45029) 

30.58 
(59547) 

2902.27 
(11299324) 

MEAN 47.62 
(263314) 

41.76 
(159392) 

708.66 
(2526216) 

74.01 
(313227) 

71.57 
(166645) 

3114.58 
(14733399) 

131.51 
(446140) 

113.60 
(269479) 

11912.70 
(74459729) 

PROP 37.98 
(263314) 

27.43 
(159392) 

466.23 
(2526216) 

51.50 
(313427) 

37.20 
(167350) 

2380.86 
(14738284) 

82.02 
(446340) 

60.23 
(269479) 

10438.66 
(74469799) 

FABC 416.95 
(939229) 

135.57 
(244199) 

29.26 
(45974) 

2184.70 
(3694435) 

352.96 
(451797) 

131.20 
(209634) 

30297.75 
(40372593) 

7512.15 
(7746490) 

396.67 
(429665) 

Table 2 Branch and bound solution times (in seconds) and number of bounding attempts (shown 
in brackets) for the 11×11 OSP search grid with T = 17. The optimal path is 2, 3, 4, 15, 26, 37, 48, 
49, 60, 61, 72, 73, 62, 51, 50, 61, 60 with a detection probability of 0.29785 for the case when g = 0.6 
and d = 0.6. 
 

The above confirms that using the DMEAN bound would outperform MEAN 
across the board. DMEAN bounds also tend to be much tighter than FABC when 

 despite being significantly easier to compute. As noted by 

Washburn (1995, 1998), FABC becomes quite effective when the target is less mobile 
(i.e.  has a large value). Nevertheless, even in the case of  DMEAN is still 
superior to the linear PROP and MEAN bounds, due to its ability to mitigate the 
redundant counting of searched target probability mass.  

0 3 and 0 6,d . d .= =

d 0 9d .=

Figures 3, 4 and 5 show the computation times for example problems in a 
11×11 grid with increasing time horizons, where  and the target stay 

probability  is set at 0.3, 0.6 and 0.9, respectively. When the target is energetic 
(

0 6g( , ) .⋅ ⋅ =

d

Figure 3), DMEAN is seen to further outperform the other methods as the time 
horizon expands. While its performance gap against PROP in the problems where 

 varied occasionally in 0 6d .= Figure 4, the advantages appear to hold over time. Note 
from the number of bounding attempts for MEAN and PROP in Tables 1 and 2 that the 
problems are already structured to favour the PROP method – PROP bounds are 
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approximately as tight as MEAN when the target roughly follows a random walk and 
become very loose when for example the target zig-zags from side to side (Washburn, 
1998). It needs to be mentioned that in similar comparisons done with a 1-dimensional 
example and a slower target (Washburn, 1998), FABC computation times exhibited a 
much more favourable nonlinear growth and eventually fell below that of PROP. The 
results of Figure 5 confirm FABC’s relative sharpness when the target is near 
stationary and time horizons are large. 
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Figure 3 Computation times versus horizon, for 11×11 OSP grid where g(.,.)= 0.6 and d=0.3. 
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Figure 4 Computation times versus horizon, for 11×11 OSP grid where g(.,.)= 0.6 and d=0.6. 
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Figure 5 Computation times versus horizon, for 11×11 OSP grid where g(.,.)= 0.6 and d=0.9. 

 
To better illustrate the scope within which the approach remains feasible on a 

midrange single-processor computer, Figure 6 plots the computation times with the 
linear bounds for a number of moving target examples on a larger 15×15 grid, using an 
unoptimised C++ implementation of the same branch and bound framework.  
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g=0.3, d=0.3 : DMEAN
g=0.3, d=0.3 : MEAN
g=0.3, d=0.3 : PROP
g=0.3, d=0.6 : DMEAN
g=0.3, d=0.6 : MEAN
g=0.3, d=0.6 : PROP
g=0.6, d=0.3 : DMEAN
g=0.6, d=0.3 : MEAN
g=0.6, d=0.3 : PROP
g=0.6, d=0.6 : DMEAN
g=0.6, d=0.6 : MEAN
g=0.6, d=0.6 : PROP

 
Figure 6 Computation times versus time horizon (C++ implementation) for a 15×15 OSP grid and 
combinations of g=0.3,0.6 and d=0.3,0.6. For context, solving with DMEAN when T=20, g=0.6 and 

d=0.6 requires 10.9 seconds here and 170 seconds in the previous MATLAB implementation. 
 
6. Optimal Searcher Path Problem with Non-uniform Travel Times 

This section introduces the Optimal Searcher Path Problem with non-uniform 
Travel times (OSPT), which generalises the OSP for the search of structured 
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environments where the redeployment of effort from one cell to another may not be 
necessarily instantaneous. The previously outlined DMEAN bound for the OSP will 
also be extended to accommodate the OSPT. 
 
6.1 The OSPT problem 

The OSPT is identical to the OSP formulation in Section 2 except that a 
searcher in cell i  at time  can only start searching the next cell t j S( i )∈  at time 

 The integer value  represents the length of time needed for a searcher to 

travel between the two referenced cells, during which no detection can occur. Travel in 
different directions may be assigned dissimilar values to capture specific travel or 

terrain constraints; without loss of generality, we assign  by default. 

1 ijt W+ + .

C

ijW

0iiW , i= ∀ ∈

Figure 7 illustrates an example representation of the search space for this new problem.  

 
Figure 7 An OSPT search space depicted as a graph. The time required to move from building to 

building varies with distance. 
 

Note that the number of one-time-unit searches in an OSPT search plan, ,ψ  

can now be less than  since some time may be needed for travel between the cells. 

For example, both 

,T

[ 0 1 2 ] [3 2 1]a a a a( ), ( ), ( ) , ,ψ ψ ψ ψ= =  and 

[ 0 1 2 3 4 ] [3 3 2 2 2]b b b b b b( ), ( ), ( ), ( ), ( ) , , , ,ψ ψ ψ ψ ψ ψ= =

.

 are valid plans for the problem 

in Figure 7 when  Accordingly, the target distribution5T = p can be more generally 

updated via: 
1

1

1

1                 if 

 if 1n

n

t

t T
n ( n )T n n

p( , ) , t T
p( ,t )

p( ,T ) M , T t T , nψ ψ

−

−
+

⎧ ⋅ ⋅Γ ≤⎪⋅ = ⎨ ⋅ ⋅ ⋅Γ < ≤ ≤ <⎪⎩
     (5) 

Where  denotes the time period when the  search occurs. nT thn

The objective for the Optimal Searcher Path problem with non-uniform Travel 
times (OSPT) is then:   

1

| |

n n
n

max PD( ) p( ( n ),T ) g( ( n ),T )
ψ

ψ
ψ ψ ψ

=

= ⋅∑  
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Subject to: 
1( n ) S( ( n ))ψ ψ+ ∈           (6) 

( ) ( )1 1 1  0 1n n n nT T W , n ,...,ψ ψ ψ+ += + + = −        (7) 

| |T Tψ ≤            (8) 

We assume  for the purposes of constraint 0 0T = (7) and now employ equation 

(5) to obtain the undetected target probability .np( ( n ),T )ψ  When 

, the problem naturally specialises to an OSP. 0ijW , i C, j S( i= ∀ ∈ ∈ )

As the target is still treated as being in a cell at each time step, longer travel 
times between regions are represented by setting lower (but non-zero) transition 
probabilities in its motion model. The problem also assumes that there may be 
different routes for the target to take in the environment when moving between the 
regions, such that there is little chance for it to be encountered as the searcher travels. 
An alternative model is formulated in Lau et al. (2006) for cases where the searcher 
may glimpse the target during movement. 

 
6.2 Branch and bound for the OSPT 

Since the OSP branch and bound algorithm described in Section 3 already 
maintains the time expended for each prospective path, it can accommodate the OSPT 
by replacing step 6 with: 

6’.  Else Branch: For each cell  if  obtain ,c sS( )σ σ∈ ,
s cs Wσ στ + < T ,cp  the upper 

PD bound for any plan beginning with the path  Add tuple 

 to  

0 s c{ ,..., , }.σ σ σ

1
s cc s c{ , W , pσ σσ τ + + } 1K( s )+

Figure 8 shows an example expansion of search plans using the adapted algorithm 
for the problem in Figure 7, when the searcher begins in cell 3.  

 

 
Figure 8 All feasible search plans for the example in Figure 7 when T=7. 
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6.3 Choice of bounds for the OSPT 
As existing OSP bounding methods presume that travel times between cells are 

zero, they cannot directly help solve the OSPT without first transforming the non-
uniform regions into a series of suitably uniform cells, by adding an artificial cell for 
each travel time unit between regions. This would clearly scale poorly if travel times 
are large. Hence we seek a bounding method that functions for the OSPT without 
redefining the search area or sacrificing the corresponding travel constraints that 
ensure bounds remain tight.  

FAB-based methods appear incompatible for the problem without enlarging the 
map in the manner mentioned. One possible exception is the algorithm by Dambreville 
and Le Cadre (2002) that optimally allocates a search resource that self-renews after a 
certain amount of time steps. For the narrow case when all the travel times are 
identical, this algorithm might therefore be used in a similar way as the continuous 
FABC to give an upper bound of a discrete path’s PD. Nevertheless, the inability to 
incorporate cell-specific, non-uniform travel times renders the method unsuitable for 
use with the OSPT. 

Given that multiple time steps may elapse as the searcher travels from one cell 
to another, it is also more likely for the same first-order Markov target to have changed 
location between successive searches than if travel times were not considered at all. In 
light of their better performance with energetic targets, PROP and MEAN thus appear 
to be the best candidates of the OSP bounds for extension. In particular, it can be seen 
from Section 3.2 that MEAN has a structure amenable to preserving the new time 
constraints; the next section describes one such generalisation of the MEAN and 
DMEAN bounds for the OSPT. While PROP (Washburn, 1998) bounds can be 
calculated by solving an even simpler graph problem, it was not adapted as its form of 
path relaxation could not be meaningfully extended in the same direct way.  

 
6.4 Generalised MEAN and DMEAN bounds for the OSPT

In the following OSPT example (Figure 9), assume that searching a cell i  and 

then moving to cell  requires one time period for travel, reaching  expends 
two time periods, while remaining in the same cell causes no delay.  

1i − 1i +
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Time Period

Tk Tk+1 Tk+2 Tk+3 T

1

2

3

4

5

RDMEAN(1,Tk+2)

RDMEAN(3,Tk+3)

 
Figure 9 Generalised MEAN/DMEAN bound calculation after k searches ( ). Arcs can 
now span multiple time steps (dotted lines) if corresponding searcher travel incurs a time delay.  

2( k )σ =

 
Using the same set of graph nodes as previously defined, the MEAN and 

DMEAN bounds can be generalised for the OSPT by forming DAGs in which arcs 
denote valid searcher transitions from one cell to another, taking also into account the 
amount of travel time required (Figure 9). The calculation of the generalised DMEAN 
bound for the OSPT is summarised below: 

  
Algorithm for the generalised DMEAN Bound 

1. For each time step from  to  create a graph node per cell at that time. 

Mark node  as valid. 

kT ,T

k{ ( k ),T }σ

2. Use  to calculate  for  kt T
kP( ,t ) ( T )π −⋅ = ⋅ Γ P( ,t )⋅ .kT t T< ≤

3. From each valid node  extend arcs to all nodes  

 Mark the head nodes { j  valid. 

,{ i,t } ,{ j, }τ

1ijj S( i ), t W Tτ∈ = + + ≤ .

τ

, }τ

If  assign a weight of for each new arc. Else use ,kt T= P( j, ) g( j, )τ ⋅

.t
DMEANR ( j, ) ( P( j, ) P( i,t ) g( i,t ) ) g( j, )ττ τ −= − ⋅ ⋅ Γ ⋅ τ

t

 

4. Repeat 3 until arcs have been extended from all valid nodes. 
5. Apply a DAG longest path algorithm to find the maximum reward for paths 

leading from node  Add the reward to the PD of following 

sequence  to form the upper bound of any continuation. 

.k{ ( k ),T }σ

1( ),..., ( k )σ σ

 
The proof for the generalised DMEAN bound is omitted here as it is identical 

to the proof in Section 4.3, given that values for  are as defined for the OSPT 

and  is used in place of  for finding  In practice, 

tT , t k>

1

1

t t

t

T T
( T ) ( T )ψ ψ

−

−

−Γ 1( t ) ( t )ψ ψ−Γ 1 .t tE( I I )−⋅
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discounting still does not impose much extra computation as  

can be cached in advance. The algorithm also functions for non-homogenous Markov 

chains when  is replaced with the probability of the target moving from cell 

1 1k
iji , j S( i )

,k { ... max W }
∈

Γ = +

1

1

t t

t

T T
( T ) ( T )ψ ψ

−

−

−Γ
t

1( t )ψ −  at time  to cell 1tT − ( t )ψ  at time   .tT

The generalised MEAN bound (not shown) functions in the same way as 

DMEAN but instead uses MEANR ( j, ) P( j, ) g( j, )τ τ= ⋅ τ  as a weight. As with any such 

problems, there may be many possible ways to obtain bounds for the OSPT. Of the 
two techniques available, however, the DMEAN bound is clearly the preferred option. 

 
6.5 OSPT example

Figure 10 illustrates an example search environment that requires the use of the 
OSPT framework. Each node in the figure represents an individual region of interest, 
for example a specific building or room in the search area, while arcs describe their 
connectivity and corresponding searcher travel time. Such times are assumed to be 
symmetric for each transition in this case.  

 
Figure 10 Example OSPT search environment with non-uniform travel times 

 
Consider the case where the searcher begins in cell 1 and the target could begin 

in cells 2, 5, 8, 17 or 18 with equal probability. The target follows a random walk with 
 amongst the regions. The optimal plan when  and  is to 

follow the sequence [3 3 3 3 3 3 3 3 3 3 7 12 12 12 18 13 13 14 14 14 15 17 17], which 
yields a PD of 0.50823 and is computed in 29.47 seconds in a C++ branch and bound 
implementation using the DMEAN bound. In comparison, the same implementation 
with the MEAN bound requires 535.55 seconds to compute. Given the inevitable 

0 8d .= 0 6g( , ) .⋅ ⋅ = 40T =
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exponential problem complexity growth with increasing search duration, it can be seen 
that the use of the DMEAN bound allows larger problems to be solved to optimality 
within a manageable time frame.  

In addition to target movement and glimpse probabilities, the values of the 
travel times along the likely optimal paths also influence the computational effort 

required. Varying  or  for example can alter the relative merits of plans that 

begin with travel along the top or bottom of the map and accordingly affects how 
easily either branch could be fathomed.  

13W 14W

For large scale problems,  solutions that provide an approximately 

optimal plan with a payoff guaranteed to be within  of the true optimal can be 
computed in a fraction of the time required to find the true optimal plan (Washburn, 
1995). This can be achieved by changing the fathoming criteria in step 5 of the 

algorithm given in Section 3 to  For this particular OSPT example, the 

solution time falls below 5 seconds when  with a corresponding PD reduction 

to 0.44392. Using an appropriate balance between guaranteed plan quality and 
computation time, large scale problems could be solved even in cases where the time 
available for planning is limited. 

-optimalε

ε

.sp p* ε≤ +

0 1,.ε =

 
7. Discussion 
7.1 Choice of bounds for the OSP 

The effectiveness of a branch and bound solution process depends primarily on 
the tightness of a chosen bound against its ease of computation. The results show 
DMEAN to have superior performance to existing bounds for the OSP when the target 
is reasonably energetic. FABC may still be the preferred bound however for the OSP 
when the target is known to be very slow and the time horizon is large. Although the 
choice of bounds always depends on the particular case at hand, the DMEAN bound’s 
ease of computation and ability to better retain tightness across a range of problem 
parameter values renders it competitive for a broader number of situations. 

 
7.2 Further discounting 
 The DMEAN method proposed in this paper may be described as a MEAN 
bound with a single step look-back, in that the projected gain for searching a cell at a 
particular time is reduced with respect to the immediate last cell visited. Since this can 
be calculated by finding a longest path in the same  node network as the original 
MEAN method, a tighter bound is obtained at little extra computation cost. Looking 

N T×
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back one more step using the same approach would however require increasing the 
size of the ED network, because additional nodes would be needed to uniquely 
associate the reward of searching a cell to the two previous cells visited instead of one. 
Figure 11 shows an example of the nodes required for an OSP problem with two cells. 

In this case, the total number of nodes in the ED network is  instead of 
for the MEAN bound and DMEAN bound computation. 

22 4T⋅ = T
2T

In general, discounting  steps for a map of  meshed cells would require 

an ED network with  nodes; it is clear that the exponentially increasing number of 
nodes in the ED network translates to significant computation burden to obtain the 
required bounds. A number of problems were solved via bounds that discount for more 
than one step and the results confirm the high computation cost required. 

1d ≥ n
dn T

Time Period

Tk Tk+1 Tk+2 T

1:1

1:2

2:1

2:2
R

 
Figure 11 Two-step discounting for a two-cell problem. Each node’s label signifies both the cell to 
be searched at that time and the previous one visited. For example, the reward of the arc entering 

node {2:2,Tk+2} (black) is linked to the prior searches of cell 2 at time Tk+1 and cell 1 at Tk. 
 

Certainly, there are particular situations where advantage can be gained by 
discounting additional steps. From our preliminary simulation results, problems with 
very small number of cells and a high glimpse probability and/or a slow target 
(situations in which MEAN/DMEAN perform less well compared with FABC) 
appeared to benefit. The solution time of the OSPT scenario in Section 6.5 is also 
halved when an additional discounting step is taken. On the other hand, problems with 
OSP grids (Section 5.1) larger than 13×13 cells required more time to solve. The 
choice of the number of discounting steps therefore depends on the individual trade off 
between the extra complexity and the potential for tighter bounds.  

 
7.3 Application issues 

The problem proposed in this paper captures situations where the searcher can 
most appropriately sense at distinct locations in the environment before moving on to 
the next, such as buildings in a cluster or rooms with specific vantage points. Under 
similar assumptions, DasGupta et al. (2006) aggregated a continuous search space into 
discrete tiles. An alternative problem is formulated in (Lau et al., 2006) for the case 
where the searcher senses at every time step but must spend sufficient time in each cell 
as necessary to physically travel to another, with respect to the previous cell visited. 
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Targeted more towards the search of office environments, the generalised optimal 
searcher path problem (GOSP) is also amenable to the use of a modified DMEAN 
bound. An even more generalised framework was provided by Kierstead and DelBalzo 
(2003), which uses a genetic algorithm to construct continuous paths through arbitrary 
search environments. One added advantage of the method lies in its ability to support 
reactive targets when an appropriate target motion model is supplied. 

Noting that simple Markov models can lead to seemingly nonsensical 
movements even for a wandering person when directly applied to structured 
environments, Moors and Schulz (2006) sampled target paths planned with random 
destinations before approximating the recorded target intentions in a second-order 
Markov model. Although time-consuming to learn, the improved models evolve 
visually more convincing target distributions for indoor areas while remaining 
principally compatible with existing OSP approaches. Given modifications to account 
for the multi-step passage of a target through the larger cells, the opportunity exists for 
a similar approach to be adapted for the OSPT. 

Notwithstanding the improved performance provided by the DMEAN bound, 
whether the time needed to compute the optimal solution is acceptable naturally 
depends on the individual application. From an implementation perspective, drastically 
quicker solution times can be obtained with minimal change by accepting suboptimal 
solutions in the branch and bound process (Washburn, 1995) or implementing a rolling 
horizon technique and computing individually shorter plans (Dell et al., 1996). 
Additionally, the number of regions itself can be kept manageable by first 
hierarchically grouping related regions (Lau et al., 2005). For problems of even larger 
sizes, alternative heuristics such as genetic algorithms (Kierstead and DelBalzo, 2003; 
Dell et al., 1996) may then be required. 

 
8. Conclusion and Future Work 

This paper proposed an improved bounding method, Discounted MEAN 
(DMEAN), which is superior to MEAN for solving the optimal searcher path problem 
(OSP) and also leads to faster branch and bound computation times than other known 
bounding methods when searching for quick-moving targets. The optimal searcher 
path problem with non-uniform travel times (OSPT) was formulated in addition to 
better model the search of structured environments, with solutions found via an 
adapted OSP branch and bound framework using a generalised DMEAN relaxation. 

Future work includes adapting more realistic target motion models for use with 
the OSPT formulation and the DMEAN method. Plans are also underway to extend the 
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problem to involve multiple heterogeneous searchers, whereby less capable platforms 
may be able to help find but not “engage” a moving target. Due to the enlarged state 
space, heuristics and other suboptimal techniques for solving this problem will also be 
examined. 
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