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Abstract 

Flocculation using titanium tetrachloride (TiCl4) as a coagulant is an efficient and economical 

application because the flocculated sludge can be recycled to produce a valuable byproduct, 

namely titanium dioxide (TiO2) nanoparticles. However, toxicity of TiCl4 has not yet been 

assessed while it is used in water treatment. The aquatic toxicity of TiCl4 flocculation process 
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was investigated to assess the environmental safety of the coagulant. D. magna and V. fischeri 

bioassays were carried out to evaluate the supernatant toxicity after TiCl4 flocculation. Artificial 

wastewater, biologically treated sewage effluent and seawater were used to study the toxicity of 

TiCl4 flocculation. Results showed that supernatant toxicity was very low when TiCl4 

flocculation was conducted (no observed effect concentration = 100 mg/L and lowest observed 

effect concentration = 150 mg/L exposed to D. magna and V. fischeri, respectively). Similarly, 

TiO2 nanoparticles recovered from wastewater and seawater flocculated sludge were also found 

to have low toxicity. The regenerated TiO2 nanoparticles indicated low toxicity values when 

compared to the commercial-TiO2 nanoparticle, P-25.  
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Introduction 

 

Chemical treatments of wastewater, surface water and seawater involve the removal or the 

conversion of contaminants either by the addition of chemicals or through other chemical 

reactions. Flocculation is one of the most commonly used chemical treatments of water. 

Flocculation can be applied to remove organic matter from contaminated water, which may cause 

trihalomethane formation during disinfection in waste or drinking water treatment plants. 

Aluminium sulfate, iron salt and polyaluminum chloride are mainly used as coagulants (DeWolfe 

et al., 2003). The flocculation processes using these salts produce a large amount of sludge that is 

disposed of either into a landfill and/or dumped into the ocean. However, the disposal of 

chemical sludge into landfills is no longer acceptable as it could cause secondary contamination 



due to landfill leachate. In addition, landfills are being exhausted at a fast rate, therefore they are 

not considered to be a viable and/or sustainable option for the disposal of the large amount of 

sludge produced. On the other hand, serious coastal environmental consequences are making 

ocean disposal of sludge a limited option.  Besides, sludge dumping into the ocean will be 

prohibited by the year 2010 according to the international law of London Dumping treaty.  

 

Upton and Buswell (1937) were the first to investigate Ti-salt coagulant. They reported that Ti-

salt coagulant had no advantage over aluminum sulfate in terms of fluoride removal but it was 

better in color removal. Recently, Lokshin and Belikov (2003) reported the lowest F- 

concentration achievement after Ti-salt flocculation. The Ti-salt can be used in a wide range of p

H for producing high quality of water and fast settling floc. Shon et al. (2007) investigated the 

possibility of sludge recovery using the Ti-salt as a coagulant. Sludge produced during TiCl4 

flocculation processes of wastewater can be incinerated to produce a valuable nanoparticle, 

namely TiO2. An amount as high as 40 mg-TiO2/L-wastewater of TiO2 nanoparticle was 

produced from wastewater sludge generated by the TiCl4 flocculation (Shon et al., 2007). The 

significant increase of TiO2 demand due to its wide range of applications such as environmental 

technology, cosmetics, paints, paper and solar cells can be partially overcome through this TiO2 

recovery process. However, it is also important to investigate the toxic effect of the remaining Ti 

ions in the supernatant after TiCl4 flocculation and in TiO2 produced from sludge before its use in 

water treatment. 

 

Titanium tetrachloride (TiCl4) has been widely used in the industrial process as an intermediate 

in the production of titanium rutile, titanium oxide and titanium pigments. The cost of TiCl4 is 



comparable to iron chloride or aluminium sulphate so the flocculation processes followed by 

sludge incineration offer an efficient and economical method for the removal of organic matte

r and sludge recovery. Protocols for the safe handling and use of bulk TiCl4 are well docum

ented due to its existing industrial uses (Kapias and Griffiths, 2005). Risk levels of TiCl4 

were mostly through inhalation exposure (Lee et al., 1986; Lewis, 1996). The minimum risk 

levels for TiCl4 were 0.01 mg/m3 for intermediate inhalation exposure and 0.0001 mg/m3 for 

chronic inhalation exposure. However, no references have been found on the toxic effect of Ti 

ion in an aqueous phase, because it was not widely used in water treatment processes.  

 

The toxicity of TiO2 has been investigated by several bioassay procedures using D. magna and V. 

fischeri (Bozzi et al., 2004; Lovern and Klaper, 2006; Schaefer and Scott-Fordsmand, 2006). D. 

magna is one of the widely used bio-indicators as it is a critical medium in the food chain 

between the algae and fish (Lovern and Klaper, 2006). Lovern and Klaper (2006) investigated 

the toxicity of aggregated and 0.22-μm filtered TiO2 (average size of 10 – 20 nm) in terms of 

Median Lethal Concentration (LC50) and 100% mortality using D. magna. They found that the 

aggregated TiO2 is not toxic, while the LC50 and the 100% mortality of the filtered TiO2 were 

5.5 mg/L and 10 mg/L, respectively. Here, LC50 stands for the lethal concentration of the 

chemical that kills 50% of D. magna in a given time (48 hrs). Microtox® test depends on the 

attenuation of bioluminescence of V. fischeri. This test is a rapid and inexpensive technique for 

screening of contaminants (Jennings et al., 2001). The bioluminescence of V. fischeri decreases 

in the presence of toxic chemicals and experimental values of relative light intensity (light 

intensity normalized with respect to initial light intensity) at various concentrations of toxic 

chemicals are calculated in terms of EC50 values at which a 50% loss of bioluminescence is 



obtained after 15 min exposure. Gellert (2000) reported that the decrease of bioluminescence 

intensity may be due to i) biomechanisms, which are responsible for the toxic chemical uptake 

by V. fischeri (diffusion across membrane, transport process and composition of the cell wall), ii) 

interactions of toxic chemicals with enzymes or allosteric effectors at critical steps of metabolic 

pathways which supply cell energy, and/or iii) interactions with the luciferase complex, which is 

responsible for the luminescence. 

 

In this study, TiCl4 flocculation was conducted with Artificial Wastewater (AW), Biologically 

Treated Sewage Effluent (BTSE) and Seawater (SW). TiO2 produced from TiCl4 flocculation of 

different water sources was characterized in terms of X-ray diffraction, surface area, 

photocatalytic activity and scanning electron microscopy. To secure the efficiency of the Ti-salt 

flocculation process, the toxicity of Ti ion in the supernatant after TiCl4 flocculation and in TiO2 

recovered from the sludge was evaluated in terms of LC50 and mortality of D. magna and EC50 

of Microtox® test. No Observed Effect Concentration (NOEC) and Lowest Observed Effect 

Concentration (LOEC) values for D. magna and V. fischeri on exposure of TiCl4 and TiO2 

produced from different water sources were also investigated. 

 

 

Experimental 

 

Water sources 

 

Three water samples representing various water sources (i.e., AW, BTSE and SW) were used in 



this study. The composition of AW can be found elsewhere (Seo et al., 1997). The AW 

represents effluent organic matter generally found in domestic wastewater after the biological 

treatment. Tannic acid, peptone, sodium lignin sulfornate, sodium lauryle sulfate and arabic acid 

represent the larger molecular weight portion, while peptone, beef extract and humic acid 

comprise the organic matters of lower molecular weight (Shon et al., 2005). BTSE was drawn 

from Gaya sewage treatment plant in South Korea. It had the following characteristics: 

concentration of dissolved organic matter = 7.8 mg/L; chemical oxygen demand = 20 mg/L; pH 

= 7.3; total nitrogen = 23.8 mg/L; total phosphorus = 2.4 mg/L; and conductivity = 430 µS/cm. 

Seawater was drawn from south-western Korea and it was found to have the following 

characteristics: pH = 8.10; conductivity = 48.9 mS/cm; total dissolved solid = 32827 mg/L; 

dissolved organic matter concentration = 1.56 mg/L; and alkalinity = 78 mg/L as CaCO3.  

 

Flocculation with TiCl4 coagulant 

 

Flocculation was carried out with TiCl4 as a coagulant for the three different water samples. 

Water samples were stirred rapidly for 1 minute at 100 rpm, followed by 20 minutes of slow 

mixing at 30 rpm, and finally 30 minutes of settling. The optimum concentration of TiCl4 was 

determined based on the organic removal results obtained.  

 

 

Preparation of TiO2 

 

Sludge produced from different water samples was dried and the dried sludge was placed in 



furnace at 600°C for 24 hrs (Shon et al., 2007). After incineration, the color of powder changed 

from black to white indicating TiO2 formation. 

 

Characterization of TiO2 

 

Aggregated particle size of produced TiO2 was studied by Scanning Electron Microscopy (SEM, 

Rigaku, Japan). Nitrogen adsorption–desorption isotherms were recorded using an ASAP 2020 

model (Micromeritics Ins., U.S.A.) and the specific surface area was determined by the 

Brunauer–Emmett–Teller (BET) method. X-Ray Diffraction (XRD) images of anatase and rutile 

TiO2 photocatalysts were analyzed to identify the particle structure using MDI Jade 5.0 

(Materials Data Inc., USA). The crystallite size of powders was determined from the broadening 

of the corresponding XRD peaks by using Scherrer’s formula. The photocatalytic activity test of 

TiO2 was investigated under UV irradiation (Sankyo, F10T8BLB, three 10 W lamps) and visible 

light (Kumbo, FL10D, three 10 W lamps) using the method of photodecomposition of gaseous 

acetaldehyde. The concentration of acetaldehyde was measured by gas chromatography 

(Youngin, M600D, Korea).  

 

D. magna toxicity test 

 

D. magna obtained from the Korea Institute of Toxicology were cultured and experimentally 

maintained according to the method described in the US Environmental Protection Agency 

(USEPA) manual (USEPA, 1993). Culture water for D. magna was reconstituted with 

moderately hard water (120 mg/L of CaSO4·H2O, 192 mg/L of NaHCO3, 120 mg/L of MgSO4 



and 8 mg/L of KCl) at pH 7.8±0.2. D. magna were fed with a mixture of Selenastrum 

capricornutum (algae), yeast, trout chow and cerophyll. Acute 48 hrs toxicity tests using D. 

magna were conducted under static conditions (T = 25±1oC under 16 hrs light and 8 hrs dark 

photocycle. The fed D. magna were transferred into test cups. Four replicates holding five 

neonates of less than 24 hrs of age, were used to test different TiCl4 and TiO2 concentrations in 

water. Each set of test comprised of different concentrations and a control. The mortality was 

defined as the number of dead organisms after 48 hrs of exposure. The mortality was analyzed 

using a probit method analysis (USEPA Probit Analysis Program). This allowed LC50 to be 

calculated. NOEC and LOEC values for D. magna exposured to different concentrations of TiCl4 

and TiO2 produced from different water sources were also calculated using Dunnett’s test using 

TOXSTAT software. 

 

Microtox® test 

 

The Microtox® test was performed according to the protocol described by Azur Environmental. 

This has been adopted as a standard method by ASTM International (2002). V. fischeri colonies 

were seeded onto samples with an adjusted osmotic pressure using an osmotic adjusting solution 

composed of sodium chloride. The luminescence inhibition after 15 min of exposure was 

considered as the endpoint, and it was measured using a Microtox® Model 500 Analyzer (AZUR 

Environment). USEPA probit analysis was used to calculate EC50 (the concentration that 

reduced light production by 50%). NOEC and LOEC values for the Microtox® test were also 

measured using Dunnett’s test using TOXSTAT software. 

 



 

 

Results and discussion 

 

TiO2 characterization 

 

Jar test was conducted to identify the optimum dose of TiCl4 in terms of organic removal in AW, 

BTSE and SW. The optimum doses of Ti-salt with AW, BTSE and SW were found to be 9.79 Ti-

mg/L, 6.57 Ti-mg/L and 3.23 Ti-mg/L, respectively. In order to obtain TiO2 nanoparticles, the 

settled floc produced by TiCl4 flocculation of AW, BTSE and SW was incinerated at 600 ºC. 

After incineration, the nanoparticles produced were characterized in terms of XRD, BET surface 

area, photocatalytic activity and SEM.  

 

XRD images were made to identify the particle structure of the settled floc after incineration at 

600 ºC (Figure 1). The TiO2 produced from sludge was compared with the commercially 

available P-25. The P-25 showed both antase (65%) and rutile (25%) structures. On the other 

hand, TiO2 nanoparticles from AW, BTSE and SW were found to have only anatase structures 

after incineration at 600 °C. Shon et al., (2007) reported that the anatase TiO2 produced from 

wastewater sludge changed to rutile when the incineration temperature was increased more than 

1000 °C. It was due to the presence of C and P atoms in the incinerated sludge. At temperatures 

lower than 600 °C, amorphous structures were observed due to the remaining organic matter.  

 

Table 1 shows the characteristics of TiO2 produced from AW, BTSE and SW in terms of 



crystallite size and BET surface area. The crystallite size was calculated by the Scherrer’s 

formula (Suryanarayana, 1995). The crystallite size of TiO2 from AW, BTSE, SW and P-25 was 6, 

15, 40 and 25 nm, respectively. The difference in crystallite sizes among different water sources 

are probably due to impurities in the flocculated sludge after TiCl4 flocculation and incineration. 

The BET surface area of TiO2 nanoparticles from AW, BTSE, SW and P-25 were 76.3, 103.5, 

68.1 and 42.3 m2/g, respectively. The BET specific surface areas of TiO2 nanoparticles produced 

from different waters were higher than that of the P-25. 

 

The photocatalytic properties of TiO2 nanoparticles produced from different water sources were 

investigated in terms of UV photodecomposition of gaseous acetaldehyde (Figure 2). The 

concentration of acetaldehyde was measured by gas chromatography. The photodecomposition 

rate of acetaldehyde by TiO2-SW was compared to that by the P-25 photocatalyst. During the 

first 15 minutes, TiO2-SW showed the highest adsorption rate among tested TiO2.It was 

sequentially followed by TiO2–AW, TiO2-BTSE and TiO2-P-25. The removal of acetaldehyde 

differed among tested TiO2. Results showed that TiO2–SW was the best photocatalysis followed 

by TiO2-AW, then  TiO2-P-25 and finally TiO2-BTSE. On the other hand the photocatalytic 

activity of all tested TiO2 under visible light irradiation was nil. 

 

Figure 3 shows SEM images of the TiO2 powder obtained from different water sources. TiO2 

produced from AW and BTSE indicated an irregular crystal structure. The P-25 powder and the 

TiO2 obtained from SW relatively consisted of a regular grain size. The irregular crystal structure 

may be due to the larger amount of impurities (in terms of organic compounds) found in AW and 

BTSE compared to that in SW. Shon et al. (2007) reported that the impurity ratio of TiO2 

nanoparticles produced from wastewater was about 20%. The TiO2 obtained from BTSE was 



found to be doped with carbon and phosphorus.  

 

D. magna mortality of TiCl4 

 

Aquatic toxicity of TiCl4 coagulant was investigated using D. magna mortality with different 

TiCl4 concentrations (Figure 4). D. magna was exposed to TiCl4 concentrations ranging from 0 

mg/L to 200 mg/L. The exposure of D. magna to TiCl4 concentrations of less than 80 mg/L 

showed no fatality. However, TiCl4 concentrations of 100 mg/L and 200 mg/L exhibited 15% and 

25% mortality, respectively.  

 

Median lethal concentration of TiCl4 was investigated in terms of LC5, LC10, LC15 and LC50. 

The LC5, LC10, LC15 and LC50 of TiCl4 were 68.1 mg/L, 98.4 mg/L, 126.1 mg/L and 359.9 

mg/L, respectively. LOEC and NOEC of TiCl4 to D. magna were 100 mg/L and 150 mg/L, 

respectively. This means that TiCl4 coagulant has low toxicity in water. 

 

D. magna mortality of TiO2 produced from different water sources 

 

Figure 5 shows the aquatic toxicity of TiO2 produced from different water sources based on D. 

magna mortality. TiO2 concentrations varied from 0 mg/L to 200 mg/L. The maximum mortality 

recorded for TiO2 produced from AW, BTSE and SW was less than 15%, while that of P-25 TiO2 

was 25% for a concentration of 100 mg/L. As all the TiO2 particles indicated low mortality, the 

LC50 was not determined. Therefore, LC5, LC10 and LC15 were compared using USEPA Probit 

analysis program (Figure 6). The commercially available P-25 TiO2 showed lower values of LC5 



(5.9 mg/L), LC10 (28.4 mg/L) and LC15 (81.3 mg/L) compared to TiO2 produced from AW, 

BTSE and SW.  

 

The LOEC and NOEC values of TiO2 produced from AW, BTSE, SW and P-25 to D. magna 

were calculated using Dunnett’s test. LOEC and NOEC of P-25 were 80 mg/L and 100 mg/L, 

and those of TiO2 from AW, BTSE and SW were not obtained due to low mortality of D. magna. 

This result clearly indicates that TiO2 nanoparticles produced from AW, BTSE and SW have low 

toxicity in aqueous condition. This agrees with previous studies on TiO2 toxicity in aqueous 

media (Johnson et al., 1986; Lovern and Klaper 2006). Johnson et al. (1986) reported that mean 

concentration values of TiO2 required to immobilize 50% of D. magna was more than 1 g/L. On 

the other hand, Lovern and Klaper (2006) found that mortality with sonicated TiO2 was less than 

9% and the LC50 was zero for the sonicated TiO2 solution. However, when exposed to the 

filtered TiO2 with 0.22 μm microfilter, the LC50 was calculated to be 5.5 mg/L with the NOEC 

(1 mg/L) and LOEC (2.0 mg/L). Thus, when the filtered TiO2 was used, more attention has to be 

paid when assessing the acute toxicity. 

 

Microtox® bioassay of TiCl4 

 

Figure 7 shows the dose-response curve of V. fischeri exposed to different TiCl4 concentrations. 

The results are based on Whole Effluent Toxicity (WET) test (15 min exposure). Light emission 

rapidly decreased with the increase of TiCl4 concentration. The inhibition percentages at 62.5 

mg/L and 1000 mg/L of TiCl4 concentration were 5.84% and 72.3%, respectively. Based on 

USEPA probit analysis program, the inhibition of bioluminescence of V. fischeri (EC50) was at 



739.3 mg/L of TiCl4 concentration.  

 

Microtox® bioassay of TiO2 produced from different water sources 

 

Figure 8 shows inhibition of bioluminescence on TiO2 produced from different water sources. 

Here, the toxicity values (expressed in terms of percentage inhibition of bioluminescence) 

represent loss of relative bioluminescence emission. The percentage of inhibition significantly 

increased with the increase in concentration of TiO2 produced from AW, BTSE and P-25. The 

percentage of inhibition of TiO2 produced from SW at 125 mg/L, 500 mg/L and 1000 mg/L was 

5.6%, 11.9% and 13.7%, respectively. Microtox® result suggests that the TiO2 produced from 

SW had the lowest toxicity. 

 

Figure 9 presents the threshold of TiO2 concentration values (EC50) obtained after 15 min 

exposure. For the TiO2 produced from SW, the EC50 value was not found. The maximum loss of 

bioluminescence was 14%. However, the EC50 values of TiO2 produced from AW, BTSE and P-

25 were 650.6 mg/L, 940.6 mg/L and 830.8 mg/L, respectively. The EC50 values showed the 

following decreasing trend for TiO2 obtained from different water sources: TiO2-BTSE > P-25 > 

TiO2-AW > TiO2-SW.  

 

Table 2 shows the NOEC and LOEC values of the Microtox® test for the exposure to TiO2 

produced from AW, BTSE, SW and P-25. The NOEC and LOEC values of TiO2 from AW, BTSE 

and SW were similar or higher than those of P-25. The relatively high EC50, NOEC and LOEC 

values indicate that there is no significant toxic effect on TiO2. Schaefer and Scott-Fordsmand 



(2006) reported similar results on TiO2 exposure to V. fischeri. They found no toxic effect of TiO2 

(< 100 nm size) on V. fischeri even at a TiO2 concentration of 1000 mg/L.  

 

 

Conclusions 

 

TiO2 produced from flocculated sludge of AW, BTSE and SW were characterized in terms of X-

ray diffraction, surface area, photocatalytic activity and scanning electron microscopy. TiO2 from 

AW, BTSE and SW consisted of anatase structure after incineration at 600 °C. The size of TiO2 

from AW, BTSE and SW was 6 nm, 15 nm and 40 nm, respectively. The surface area of TiO2 

from AW, BTSE and SW was 76.3 m2/g, 103.5 m2/g and 68.1 m2/g, respectively. The 

photocatalytic removal of acetaldehyde under UV irradiation showed the following decreasing 

sequence: TiO2-SW > TiO2-AW > TiO2-BTSE.  

 

Aquatic toxic effect of Ti ion in the supernatant after TiCl4 flocculation and TiO2 recovered from 

the sludge was examined in terms of LC50 and mortality of D. magna and EC50 of Microtox® 

test. The NOEC and LOEC of TiCl4 using D. magna were 100 mg/L and 150 mg/L, respectively. 

The NOEC and LOEC values of D. magna exposed to TiO2 produced from different water 

sources were not found. Regarding the Microtox® test, the inhibition of bioluminescence of V. 

fischeri (EC50) was at 739.3 mg/L of TiCl4 concentration. The maximum loss of 

bioluminescence of V. fischeri exposed to TiO2 produced from SW was 14%. The EC50 of TiO2 

produced from AW and BTSE was 650.6 mg/L and 940.6 mg/L, respectively. Based on the two 

toxicity tools, it can be concluded that TiCl4 coagulant and TiO2 produced from AW, BTSE and 



SW have very low toxicity in aqueous condition. 

 

Acknowledgements 

 

This research was supported by UTS internal, ARC and NRL (NOM Ecology lab: ROA-2007-

000-20055-0) grants.  

 

 

References 

 

ASTM International (2002) Standard test method for assessing the microbial detoxification of 

chemically contaminated water and soil using a toxicity test with a luminescent marine 

bacterium. Document number: ASTM D5660-96. ASTM International. West Conshohocken, 

PA. 

Bozzi, A., Dhananjeyan, M., Guasaquillo, I., Parra, S., Pulgarin, C., Weins, C., Kiwi, J. (2004) 

Evolution of toxicity during melamine photocatalysis with TiO2 suspensions. Journal of 

photochemistry and photobiology A-Chemistry 162(1), 179-185. 

DeWolfe, J., Dempsey, B., Taylor, M. and Potter, J.W. Guidance manual for coagulant 

changeover, American Water Works Association Press, Denver, 2003. 

Gellert, G. (2000) Sensitivity and significance of luminescent bacteria in chronic toxicity testing 

based on growth and bioluminescence. Ecotoxicoloty and Environmental Safety 45, 87-91. 

Jennings, V.L.K., Rayner-Brandes, M.H. and Bird, D.J. (2001) Assessing chemical toxicity with 

the bioluminescent photo-bacterium (Vibrio fischeri): a comparison of three commercial 

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235267%232004%23998379998%23476598%23FLA%23&_cdi=5267&_pubType=J&view=c&_auth=y&_acct=C000021558&_version=1&_urlVersion=0&_userid=450829&md5=7bfbaa940dfce4cf3f85164a24fc5560


systems. Water Research 14, 3448-3456. 

Johnson, D.W., Haley, M.V., Hart, G.S., Muse, W.T. and Landis, W.G. (1986) Acute tocixity of 

brass particles to Daphnia magna. Journal of Applied Toxicology 6(3), 225-228. 

Kapias, T., Griffiths, R.F. (2005) Accidental releases of titanium tetrachloride (TiCl4) in the 

context of major hazards – spill behaviour using REACTPOOL. Journal of Hazardous 

Materials 119(1-3), 41-52. 

Lee, K.P., Kelly, D.P., Schneide, P.W., (1986) Inhalation toxicity study on rats exposed to 

titanium tetrachloride atmospheric hydrolysis products for two years. Toxicology and 

Applied Pharmacology 83(1), 30-45. 

Lewis, R.J., Sax’s Dangerous properties of industrial materials. 9th ed., 1996. 

Lokshin, E.P. and Belikov, M.L. (2003) Water purification with titanium compounds to remove 

fluoride ions. Russian Journal of Applied Chemistry 76(9), 1466-1471.  

Lovern, S.B. and Klaper, R. (2006) Daphnia magna mortality when exposed to titanium dioxide 

and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry 25(4), 1132-

1137. 

Schaefer, M. and Scott-Fordsmand, J. (2006) Nanoparticles: Does Size Matters? 16th Annual 

Meeting of SETAC Europe, The Hague, Netherlands, 07-11-05-2006, p. 222. eeting; Lille 

(France), 2005-05-22/ 2005-05-26. 

Seo, G.T. Ohgaki, S, Suzuki, Y. (1997)Sorption characteristics of biological powdered activated 

carbon in BPAC-MF (biological activated carbon-microfiltration) system for refractory 

organic removal. Water Science and Technology 35(7), 163-170. 



Shon, H.K., Vigneswaran, S. and Ngo, H.H. (2005) Is semi-flocculation effective to 

ultrafiltration? Water Research 39(1), 147-153. 

Shon, H.K., Vigneswaran, S., Kim, In S., Cho, J., Kim, G.J., Kim, J-.B. and Kim, J-.H. (2007) 

Preparation of functional titanium oxide (TiO2) from sludge produced by titanium 

tetrachloride (TiCl4) flocculation of wastewater. Environmental Science & Technology 

41(4), 1372-1377. 

Suryanarayana, C. (1995) Nanocrystalline materials. International Materials Reviews, 40, 41-64. 

Upton, W.V. and Buswell, A.M. (1937) Titanium salts in water purification. Industrial and 

Engineering Chemistry, August, 870-871. 

USEPA Methods for measuring the acute toxicity of effluents and receiving waters to freshwater 

and marine organisms. Cinciniti, EPA/600/4-90/027F, 1993. 

 



List of Tables 

 

Table 1. Crystallite size and BET surface area of TiO2 produced from different water sources 

 

Table 2. NOEC and LOEC values for the Microtox® test on exposure of TiO2 produced from AW, 

BTSE, SW and P-25. 

 

 

 



Table 1. Crystallite size and BET surface area of TiO2 produced from different water sources 

 Crystallite size (nm) Surface area (m2/g) 

TiO2 from AW 6±0.3 76.3±1.1 

TiO2 from BTSE 15±0.6 103.5±0.9 

TiO2 from SW 40±0.8 68.1±1.0 

P-25 TiO2 25±0.4 42.3±0.9 

 

 

 

 

 

 



Table 2. NOEC and LOEC values for the Microtox® test on exposure of TiO2 produced from AW, 

BTSE, SW and P-25. 

 

 

 

 

 

 

 

 

 

 NOEC (mg/L) LOEC (mg/L) 

TiO2 from AW 250 500 

TiO2 from BTSE 250 500 

TiO2 from SW 500 1000 

P-25 250 500 



 

List of Figures 

 

Figure 1. XRD image of particles produced from the settled Ti-salt floc after incineration from 

different water sources 

Figure 2. Adsorption and photodegradation of acetaldehyde under UV light using different TiO2 

(initial concentration of acetaldehyde = 1000 mg/L; UV irradiation = black light three 10 W 

lamps with a light power of 0.9 mW/cm2) 

Figure 3. SEM images of the TiO2 powders obtained from (a) AW, (b) BTSE and (c) SW as 

compared to (d) P-25 

Figure 4. (a) Mortality of D. magna on exposure to TiCl4 coagulant and (b) median lethal 

concentration of TiCl4 

Figure 5. Mortality of D. magna exposed to TiO2 produced from (a) AW, (b) BTSE, (c) SW and 

(d) P-25. 

Figure 6. Concentration values of LC5, LC10 and LC15 for TiO2 produced from AW, BTSE and 

SW 

Figure 7. Dose-response curves of TiCl4 coagulant in terms of light emission of V. fischeri 

exhibited by the whole effluent toxicity test (15 min exposure) 

Figure 8. Inhibition of bioluminescence using V. fischeri exposed to TiO2 produced from (a) AW, 

(b) BTSE, (c) SW and (d) P-25 

Figure 9. Threshold concentration values (EC50) after 15 min exposure of V. fischeri to different 

TiO2  

 

 



 

2 theta

20 30 40 50 60 70 80

In
te

ns
ity

0

200

400

600

800

1000

1200

A

R

A: Anatase

AAA
A

A
A

A AA AR R
R

R

R: Rutile

P-25 TiO2

TiO2 from AW

TiO2 from BTSE

TiO2 from SW

 

Figure 1. XRD image of particles produced from the settled Ti-salt floc after incineration from 

different water sources 
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Figure 2. Adsorption and photodegradation of acetaldehyde under UV light using different TiO2 

(initial concentration of acetaldehyde = 1000 mg/L; UV irradiation = black light three 10 W 

lamps with a light power of 0.9 mW/cm2) 
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d) 
Figure 3. SEM images of the TiO2 powders obtained from (a) AW, (b) BTSE and (c) SW as 

compared to (d) P-25 
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Figure 4. (a) Mortality of D. magna on exposure to TiCl4 coagulant and (b) median lethal 

concentration of TiCl4 
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c) P-25 TiO2 concentration (mg/L)
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Figure 5. Mortality of D. magna exposed to TiO2 produced from (a) AW, (b) BTSE, (c) SW and 

(d) P-25. 
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Figure 6. Concentration values of LC5, LC10 and LC15 for TiO2 produced from AW, BTSE and 

SW 
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Figure 7. Dose-response curves of TiCl4 coagulant in terms of light emission of V. fischeri 

exhibited by the whole effluent toxicity test (15 min exposure) 
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Figure 8. Inhibition of bioluminescence using V. fischeri exposed to TiO2 produced from 

(a) AW, (b) BTSE, (c) SW and (d) P-25 
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Figure 9. Threshold concentration values (EC50) after 15 min exposure of V. fischeri to 

different TiO2  
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