
ar
X

iv
:1

20
6.

24
36

v2
 [

cs
.C

C
]

 2
7

Ju
l 2

01
2

A Proof Checking View of Parameterized

Complexity

Luke Mathieson

Abstract

The PCP Theorem is one of the most stunning results in com-
putational complexity theory, a culmination of a series of results re-
garding proof checking it exposes some deep structure of computa-
tional problems. As a surprising side-effect, it also gives strong non-
approximability results. In this paper we initiate the study of proof
checking within the scope of Parameterized Complexity. In particular
we adapt and extend the PCP[n log logn, n log logn] result of Feige et
al. to several parameterized classes, and discuss some corollaries.

1 Introduction

The straight-forward view of most computational complexity classes is one
of what problems can solved given certain computing power and resource
restrictions. Alongside this is the verification view of complexity, where we
ask not what can be computed within a given set of restrictions, but whether
a given solution can be verified under certain restrictions. The most famous
of these is of course the equivalent definitions of NP as the class of all
problems that can be solved in nondeterministic polynomial time or verified
in deterministic polynomial time. This definition may be thought of as a
proof system, where a Turing Machine (the verifier) has access to the input
and a proof, and in polynomial time checks that the proof is correct.
With access to a random bit string, it is possible to reduce the number of
bits that the verifier reads from the proof. In fact, in the case of NP, this is
quite a surprising reduction; with only a logarithmic number of random bits,
we need only a constant number of bits from the proof to verify the proof.
The trade-off being that if the proof is false, we may incorrectly accept it,
but with probability at most one half.
Such proof systems have been well studied for traditional complexity classes
such as NP, PSPACE and NEXP. In this paper we begin to look at param-
eterized complexity through the same lens. In particular we demonstrate
a relatively simple but non-trivial proof system for W [1]. We also extend
this to W [2], M [1], the bounded classes EW [1], EXPW [1] & S[1] and the
classes of the A-hierarchy up to AW [∗].

1

http://arxiv.org/abs/1206.2436v2

1.1 Useful History

This idea of classifying languages by membership proofs began to attract
serious attention in the early to mid eighties, with Goldwasser, Micali &
Rackoff’s [24] introduction of the idea of interactive proofs (later published
in a more complete form [25]) and Babai’s [5, 9] Arthur-Merlin games. Both
probabilistic approaches to proof verification.
Over time these classes were linked back to traditionally defined complexity
classes. The class of problems with interactive proofs is precisely PSPACE [30].
The class of problems with Arthur-Merlin style verifiers that use a polyno-
mial number of rounds turns out to be the same as the class of problems
with interactive proofs [26]. If multiple, non-communicating provers (de-
fined in [10]) are allowed we obtain NEXP [7, 8] (Ben-Or et al. [10] also
showed that for any number of provers, there was an equivalent protocol
with at most two provers).
This work culminated in the development of probabilistically checkable proofs [3]
and what is now known as the PCP Theorem:

Theorem 1 (The PCP Theorem [2, 4]). NP is the class of all languages
that can be verified by a polynomial-time probabilistic Turing Machine (the
verifier) that can access at most O(log n) random bits and at most O(1) bits
of an oracle string (the proof) such that any input that is in the language
is accepted with probability 1 and any input that is not in the language is
accepted with probability at most 1

2 .

Dinur [17] gives more accessible proof, via constraint satisfaction.
Far from being a theoretical curiosity, PCPs have a number of applications
across computer assisted mathematics [6] and cryptology [25] but possibly
most interestingly PCP results have implications for approximation algo-
rithms. It is PCP results that led to inapproximability results for Max-
Word [16], Max-3SAT [2], Max-Clique [20] and in general that if P 6= NP
then no MAXSNP-hard problem is in PTAS.

2 Parameterized Complexity Theory

A parameterized problem is a decision problem augmented with a special
input, the parameter. This may be more formally viewed as a language
over some alphabet with a parameterization that provides a positive integer
parameter for each instance.

Definition 2 (Parameterized Problem). A parameterized problem over al-
phabet Σ is a pair (Π, κ) where Π ⊆ Σ∗ and κ : Σ∗ → N is a parameteriza-
tion.

Typically given an instance, the parameterization (as a function) is implied
and we treat inputs as being accompanied by a integer, usually denoted k.

2

Parameterization allows a more relaxed notion of tractability:

Definition 3 (Fixed-parameter Tractability). A parameterized problem (Π, κ)
is fixed-parameter tractable if there is an algorithm A and a computable func-
tion f such that for all inputs (x, κ(x)) the algorithm A decides if x ∈ Π in
time bounded by f(κ(x)) · |x|O(1). The class of all fixed-parameter tractable
problems is FPT.

This then gives a natural reduction schema:

Definition 4 (FPT Reductions). Given two parameterized problems (Π1, κ1)
over Σ1 and (Π2, κ2) over Σ2, an fpt reduction from (Π1, κ1) to (Π2, κ2) is
a mapping R : Σ∗

1 → Σ∗
2 such that for all x ∈ Σ∗

1:

1. x ∈ Π1 ⇔ R(x) ∈ Π2.

2. R can be computed in time bounded by f(κ(x)) · |x|O(1).

3. There is a computable function g such that κ2(R(x)) ≤ g(κ1(x)).

The last condition results in a very rich intractability theory for parameter-
ized complexity. We will give details of the classes relevant for this paper,
but a much fuller treatment can be found in the monographs of Downey &
Fellows [19] and Flum & Grohe [22].
We first define a hierarchy of propositional logic formulæ. Let {ai} be a set
of boolean literals, then we define the following formula classes:

Γ0,d := { a1 ∧ . . . ∧ ac | c ≤ d }

∆0,d := { a1 ∨ . . . ∨ ac | c ≤ d }

These can then be recursively stacked to give the classes Γt,d and ∆t,d:

Γt,d := {
∧

i∈I

φi | φi ∈ ∆t−1,d }

∆t,d := {
∨

i∈I

φi | φi ∈ Γt−1,d }

In addition we denote by Φ+ the subclass of a class of propositional formulæ
Φ where no literals are negated and by Φ− the subclass of Φ where all
literals are negated. Given a propositional formula over a variable set X a
truth assignment that sets k variables of X to TRUE is called a weight k
assignment1 or an assignment of weight k.

1This use of “weight” is standard in the parameterized complexity literature, but may
conflict with definitions from other areas. In this paper, when we refer to the weight of
an assignment, this is the meaning we intend.

3

The fundamental problem for many parameterized intractability classes is
the Weighted Satisfiability problem:

WSAT(Φ)
Instance: A boolean formula φ ∈ Φ and a positive integer k.
Parameter: k.
Question: Is there a satisfying assignment for φ of weight k?

We can then define the W -hierarchy:

W [t] = [WSAT(Γt,d)]
FPT

where t+d > 2 and [X]FPT denotes the closure of a parameterized problem
X under fpt reductions.
Even though we do not have quite the latitude to reduce the structure of the
formula as in classical complexity (where everything in NP can be reduced to
a formula in 3-CNF), we can impose slightly more restriction to the formulæ.
In particular:

W [1] =
[

WSAT(Γ−
1,2)

]FPT

and

W [2] =
[

WSAT(Γ+
2,1)

]FPT

So for every problem in W [1] we can convert any instance into an instance
of the Weighted Satisfiability problem where the formula is in 2-CNF
and all literals are negated and for every problem in W [2] we can convert
any instance into a CNF formula (of unbounded clause length) where all
literals are positive (similar statements can be made for the other classes in
the W -hierarchy, q.v. [22]).
At the other end of the parameterized intractability scale is the direct defi-
nitional analog of NP:

Definition 5 (para-NP). A parameterized problem (Π, κ) is in para-NP if
there is a computable function f and nondeterministic Turing Machine that
on input (x, κ(x)) decides x ∈ Π in time bounded by f(κ(x)) · |x|O(1).

It turns out however that para-NP-complete problems seem much harder
than W [1]-complete problems and that W [1] provides a more natural analog
of NP2.
The class XP provides an alternate perspective on parameterized intractabil-
ity:

2Very loosely speaking, barring a collapse, para-NP-complete problems correspond to
problems with time complexity (κ(x))|x| or worse, whereas W [1]-complete problems have
complexity |x|κ(x) (this bound is more formal than the given para-NP one as the W -
hierarchy is contained in XP [22].)

4

Definition 6. A parameterized problem (Π, κ) is in XP if there exists a
computable function f such that every instance (x, κ(x)) is decidable in time

|x|f(κ(x)) + f(κ(x))

The entirety of the W -hierarchy is contained in para-NP ∩ XP.
XP in a certain sense plays a role similar to a parameterized version of
EXPTIME, and as such contains a hierarchy that bears a relationship to
the polynomial hierarchy and PSPACE, the A-hierarchy.
Similar to the polynomial hierarchy, the A-hierarchy can be characterized
by alternating quantified satisfiability problems. In this case of course, there
is a parameterized flavour:

AWSATl(Φ)
Instance: A boolean propositional formula φ ∈ Φ, with the vari-
able set X partitioned into l sets X1, . . . ,Xl and positive integers
k1, . . . , kl.
Parameter: k =

∑

i∈[l] ki.
Question: Is there a k1-sized subset of X1 such that for all k2-
sized sets of X2 there exists a k3-sized subset of X3... (&c. for
l alternations) such that setting those variables to true satisfies
φ?

If we employ the notation ∀k and ∃k to denote “for all k-sized subsets”
and “there exists a k-sized subset” respectively, we can reframe the slightly
awkward definition of AWSATl by asking if

∃k1X1∀k2X2 . . . QklXlφ

is true, where Q ∈ {∀,∃}. If we remove the bound on l, then we obtain the
AWSAT problem, which has the same essential structure. When talking
about this family of problems informally, we will omit the subscript and
refer to them generally as AWSAT problems. These classes then provide
the basis for the A-hierarchy:

A[l] =

{

[AWSATl(Γ
−
1,2)]

FPT for l odd

[AWSATl(∆
+
1,2)]

FPT for l even

One interesting superclass of the A-hierarchy is AW [∗]:

AW [∗] = [AWSAT(Γ−
1,2)]

FPT

Thus AW [∗] is not entirely dissimilar to PSPACE3, however in the param-
eterized setting, there is no single analog of PSPACE, with its role being
spread between AW [∗], AW [SAT], AW [P], XL and para-PSPACE [22].

3Or something between PSPACE and PH, though this also imprecise as natural param-
eterized versions of some PSPACE-complete problems are AW [∗]-complete. Conversely
AWSAT(PROP), the parameterized alternating satisfiability problem for the class of all
propositional formulæ, is AW [SAT]-complete and AW [∗] ⊆ AW [SAT].

5

2.1 Bounded Parameterized Complexity Classes

In the definition of FPT the function f that gives the dependence on the
parameter is only restricted to being computable. We can define analogs of
FPT and its intractability hierarchies with stronger restrictions on F that
still retain very similar structures.

Definition 7 (EXPT). A parameterized problem (Π, κ) is in EXPT if there
is an algorithm A and such that for all inputs (x, κ(x)) the algorithm A

decides if x ∈ Π in time bounded by 2κ(x)
O(1)

· |x|O(1).

Definition 8 (EPT). A parameterized problem (Π, κ) is in EPT if there is
an algorithm A and such that for all inputs (x, κ(x)) the algorithm A decides
if x ∈ Π in time bounded by 2O(κ(x)) · |x|O(1).

Definition 9 (SUBEPT). A parameterized problem (Π, κ) is in SUBEPT if
there is an algorithm A and such that for all inputs (x, κ(x)) the algorithm

A decides if x ∈ Π in time bounded by4 2o
eff (κ(x)) · |x|O(1).

Typically the parameterizations of problems in SUBEPT are of a different
character to normal parameterizations. In the subexponential theory the
parameterizations play the role of “size measures” for the problem, rather
than being independent of the size of the problem. Such measures may be
for example the number of variables in a logic sentence or the number of
edges and vertices in a graph (this is also in contrast to the length of the
encoding of the problem).
These classes are accompanied by analogs of fpt reductions. These reduction
schemes have slight technical differences to fpt reductions (q.v. [31], [23]
and [27], or [22] for a collected survey of these and other related work),
however they still produce hierarchies akin to the W -hierarchy, for t ≥ 2:

EXPW [t] = [WSAT(Γt,1)]
EXPT

EW [t] = [WSAT(Γt,1)]
EPT

Although the first levels of these hierarchies are more technically delicate
than the W -hierarchy, we still have the following key identities:

EXPW [1] =
[

WSAT(Γ−
1,2)

]EXPT

and

EW [1] =
[

WSAT(Γ−
1,2)

]EPT

4f ∈ oeff (g) if there exists a computable, nondecreasing, unbounded function h : N →

N such that f(k) ≤ g(k)
h(k)

.

6

The hierarchy corresponding to SUBEPT is mildly different5:

S[t] =
⋃

d≥1

[SAT(Γt,d)]
serf

However we fortunately we also have that:

S[1] = [s-var-WSAT(Γ1,2)]
serf

Where s-var-WSAT is a different parameterization of the weighted satisfi-
ability problem:

s-var-WSAT(Φ)
Instance: A formula φ ∈ Φ, an integer k.
Parameter: var(φ) (the number of variables in φ).
Question: Does φ have a satisfying assignment where k variables
are set to True?

2.2 The Miniaturization Isomorphism and the M-Hierarchy

The S-hierarchy, despite being a bounded hierarchy of parameterized classes,
reflects structure in the unbounded theory. This structure can be elucidated
via the miniaturization isomorphism. Given a parameterized problem (Π, κ)
over Σ∗ the miniaturization of the problem is

Mini-(Π, κ)
Instance: x ∈ Σ∗, and m ∈ N in unary such that |x| ≤ m.

Parameter: ⌈ κ(x)
logm⌉.

Question: Decide whether x ∈ Π.

Under this mapping we have the following:

(Π, κ) ∈ SUBEPT ⇔ Mini-(Π, κ) ∈ FPT

Consequently we can define an intractability hierarchy via this relationship,
the M -hierarchy. For the purposes of this paper we need only the following:

(Π, κ) ∈ S[t]-complete ⇔ Mini-(Π, κ) ∈ M [t]-complete

However the M -hierarchy is closed under normal fpt reductions. The proofs
of these results, and much more technical detail can be found in [22], or the
original papers [1, 12, 14, 15, 13, 18, 21], for context however, it is known
that for all t ≥ 1 we have M [t] ⊆ W [t] ⊆ M [t+ 1].

5Incidentally SUBEPT and the S-hierarchy correspond to parameterizations of the
Exponential Time Hypothesis, making them particularly interesting parameterized classes.
In fact, the entire S-hierarchy is contained in EPT, with EPT and SUBEPT bearing a
similar relationship as XP and FPT.

7

3 Proof Checking, Interactive Proofs and PCPs

3.1 Notation and Notes

For convenience we denote by B the set {0, 1}.
The proof systems will often be phrased somewhat like interactive proofs, as
this often seems an intuitive, natural presentation, however the proof string
is in effect a table of polynomial coefficients indexed by length m vectors
over a field F , along with the values of a truth assignment at points over
this space.

3.2 Basic Definitions

Definition 10 (PCP). A Probabilistically Checkable Proof System (a PCP)
for a problem Π over alphabet Σ is a probabilistic polynomial-time Turing
Machine V that given input x and access to a proof string σ ∈ Σ∗ satisfies
the following conditions:

1. If x is a Yes-instance of Π, there is a σ such that V σ accepts x with
probability 1.

2. If x is a No-instance of Π, for every σ the probability that V σ accepts
x is at most 1

2 .

The choice of 1 and 1
2 as the probabilities for the completeness and soundness

of the verifier are in a sense somewhat arbitrary, for example, Babai, Fortnow
& Lund [7] use probabilities that vary with the length of the input, however
the majority of results are stated directly with these probabilities, or are
otherwise compatible.

Definition 11 (Restricted PCP). Given two functions r, p : N → N, a PCP
is (r, p)-restricted if for every input x, V uses at most O(r(|x|)) random bits
and O(p(|x|)) bits of the proof string σ.

The set of all problems with a (r, p)-restricted PCP is typically denoted
PCP[r, p]. With this notation we can thus succinctly restate Theorem 1:

Theorem 12 (PCP Theorem [2, 4]). NP = PCP[log n, 1].

3.3 Arithmetization Protocols

Lund et al. [28] introduced a protocol for demonstrating PCP and interactive
proof results which they used to show that every problem in P#P has an
interactive proof (a key step in motivating Shamir’s [30] result).
This protocol has proven to be extremely useful and has been used in whole
or part for many of the PCP related results [2, 4, 7, 20, 30]. It is worthwhile
to sketch an outline of this protocol to give an intuition for the working of
the main result of this paper.

8

Given a complexity class C we select a suitable C-complete problem Π and
produce a verifier that completes the following tasks:

1. For input x, the verifier constructs an arithmetical representation φ of
x such that the value of φ is dependent on whether x is a Yes-instance
of Π or not. For example we may construct an arithmetic formula from
a boolean formula such that the arithmetic formula is non-zero if and
only if the boolean formula is satisfiable.

2. A sufficiently large field over which to do the arithmetic is chosen.
Typically this will be Zp for some sufficiently large prime p.

3. The verifier then checks the arithmetical representation a variable at a
time by instantiating a single variable and obtaining a simplified rep-
resentation in one variable from the proof which it can use to compare
against the expected value. If the simplified representation is satis-
factory, the verifier picks a random value from the field, permanently
sets the variable to this value and replaces the expected value by the
evaluation of the simplified expression with that random value.

4. Step 3 is repeated until some value does not match expectation, at
which point the proof is rejected, or until all variables have been in-
stantiated at which point the expression is checked explicitly using
elements of the solution obtained from the proof (e.g. values from a
truth assignment).

The key to the effectiveness of this protocol is in the restriction on the
arithmetic representation and the size of the field. For clarity of discussion
we will assume the representation to be a multinomial and the field to be
Zp for a sufficiently large prime p.
If the multinomial is of constant degree d, and the polynomial simplification
over one variable obtained from the proof is false, it can agree with the true
polynomial in at most d places [29]. So if the proof is false, it can “look
true” for only a small number of values (d), and eventually some iteration of
checking will observe an erroneous value with high probability (1− dr

p
where

r is the number of iterations).

4 Parameterized PCPs

Clearly we can adapt PCP notions to parameterized complexity.

Definition 13 (Parameterized PCP). A Parameterized Probabilistically
Checkable Proof System (parameterized PCP, or p-PCP) for parameterized
problem Π over alphabet Σ is a probabilistic FPT-time Turing Machine V

that given input (x, k), an instance of Π, and access to an proof string σ ∈ Σ∗

satisfies the following conditions:

9

1. If (x, k) is a Yes-instance of Π, there is a σ such that V σ accepts
(x, k) with probability 1.

2. If (x, k) is a No-instance of Π, for any choice of σ the probability that
V σ accepts (x, k) is no greater than 1

2 .

As with non-parameterized PCPs, the completeness and soundness prob-
abilities need not be 1 and 1

2 , however these values are sufficient for our
purposes and confusing the notation thus serves no purpose.

Definition 14 (Restricted p-PCP). Given two functions r, p : N×N → N a
p-PCP is (r, p)-restricted if for every input (x, k) it uses O(r(|x|, k)) random
bits and at most O(p(|x|, k)) bits of the proof string σ.

We denote the set of all problems with an (r, p)-restricted p-PCP by p-
PCP[r, p].
For certain extreme values of the parameters, we can use the p-PCP[r, p]
notation to express some of the parameterized classes.

• FPT = p-PCP[0, 0], by definition problems in FPT have no access to
a proof and need no randomness.

• FPT = p-PCP[f(k) + log n, 0]. An FPT -time algorithm can try all
possible f(k) + log n random strings.

• FPT = p-PCP[0, f(k)+ log n]. An FPT -time algorithm can generate
all proofs of length f(k) + log n.

• para-NP = p-PCP[0, f(k)nO(1)]. By definition.

4.1 A Non-trivial Parameterized PCP for W[1]

Theorem 15. Let (φ, k) be an instance of WSAT(2-CNF−) where
max{var(φ), cl(φ)} ≤ 2m. There is an (m logm,m logm)-restricted prob-
abilistic FPT -time Turing Machine that rejects (φ, k) with high probability
if (φ, k) is a No-instance of WSAT(2-CNF−). That is, WSAT(2-CNF−)
∈ p-PCP[m logm, m logm].

Proof. The protocol will follow the same general format as those of Lund
et al. [28], Babai, Fortnow & Lund [7] and particularly Feige et al. [20] in
that we will construct an arithmetic representation of φ and use the proof
to evaluate this function pointwise.
Let φ be a 2-CNF− with smallest m such that 2m ≥ {var(φ), cl(φ)}. Denote
each clause and variable by a binary string over m bits.
For v ∈ B

m and i ∈ {1, 2} define a set of functions Cc,i : B
m → B as

Cc,i(v) =

{

1 if v is the ith variable of clause c

0 otherwise

10

This can be done in such a fashion that each Cc,i is multilinear inm variables.
We sketch an example; say that v = v1v2v3 = 101 is the 1st variable of clause
c, then Cc,1 = v1(1− v2)v3. Then the only place (over B3) where this is 1 is
at 101.
Let A : Bm → B be a truth assignment to the variables of φ.
We then define the following function over some sufficiently large field.

SC(A, y) =
∑

x1,x2∈Bm

∏

i∈{1,2}

Cy,i(xi)A(xi)

This evaluates to 0 if and only if A is a satisfying assignment for clause y.
Then φ in its entirety, can be expressed as:

S(A) =
∑

z∈Bm

SC(A, z) ·
∏

i∈[1,m]

rzir

Where zi is the i
th bit of the binary representation of z and (r1, . . . , rm) is a

set of independently chosen random numbers from F . This additional term
is included to ensure with high probability that in the extended function the
sum is zero only when all clauses evaluate to zero under A (again, Feige et
al. [20] demonstrate the correctness of this method). However we must also
verify that:

∑

z∈Bm

A(z) = k

The first function now evaluates to zero if and only if all the clauses are
satisfied and the second evaluates to k if and only if the weight of the truth
assignment is k.
We now employ the following proposition:

Proposition 16 ([7], [20]). Given a field F , every boolean function f has
a unique multilinear extension over F . Moreover the value the extension at
any point can be computed in time 2arity(f).

In particular we can compute the multilinear extension of C in any field of
our choosing. Then assuming that A is close to multilinear, S is a multino-
mial of constant degree. Of course we cannot simply compute A in FPT -
time, otherwise we’d have no reason for a p-PCP! However Babai, Fortnow
& Lund [7] demonstrate a procedure for testing multilinearity of a function
that fails with high probability if the function is not multilinear and suc-
ceeds otherwise. Feige et al. [20] improve this test, reducing the number of
random and proof bits required to O(m logm).
We may now apply a protocol in the style of Lund et al. [28], though Feige
et al.’s [20] version of the protocol is the direct inspiration.
Given a multinomial h of constant degree d over q variables the function
gi(xi) where the first i− 1 variables are randomly instantiated

gi(xi) =
∑

xi+1,...,xq∈B

h(r1, . . . , ri−1, xi, . . . , xq)

11

is a polynomial of degree d.
Assuming A is multilinear with high probability (to ensure the degree bound
of the multinomial), given an expected value ai−1 we perform the ith iteration
of the proof check as follows:

1. Obtain from the proof the d coefficients of the polynomial g′i that is
purported to be gi.

2. Check that g′i(0) + g′i(1) = ai−1, if not, then reject.

3. If the first check passes, we may still have gi 6= g′i. However they
can agree at at most d points in F . We can check this with high
probability (1− d

|F|) by randomly picking a value ri, setting ai := g′i(ri)
and verifying the formula recursively.

Initially we have a0 = 0. The process continues until all variables have been
randomly instantiated, at which point we can check the final function di-
rectly by obtaining the two values of A at the randomly generated points
described by the instantiated variables and computing the value. By choos-
ing F such that |F| > md

ε
, the probability of accepting at some point over

the m rounds is ε.
The function checking the weight of the satisfying assignment can be checked
using the same protocol.
As log |F| ∈ O(logm), this protocol uses O(m logm) proof bits to obtain
the polynomial coefficients and O(m logm) random bits in instantiating the
function.

Corollary 17. For every parameterized problem Π ∈ W [1] there exists
a function f : N → N such that Π ∈ p-PCP[(f(k) + log n) log(f(k) +
log n), (f(k) + log n) log(f(k) + log n)] and hence W [1] ⊆ p-PCP[(f(k) +
log n) log(f(k) + log n), (f(k) + log n) log(f(k) + log n)] where n is the size
of the instance and k is the parameter.

Proof. As WSAT(2-CNF−) is W [1]-complete, every problem in W [1] can
be reduced to an instance of WSAT(2-CNF−) in time bounded by f(k)nO(1)

for some computable function f . Hence the instance of WSAT(2-CNF−)
produced by the reduced has at most f(k)nO(1) variables and f(k)nO(1)

clauses.

4.2 Unbounded Clauses and W [2]

The class Γ+
2,1 of propositional formulæ can be more naturally thought of

as the class of all propositional CNF formulæ. The protocol given for W [1]
in the previous section, although defined for Γ−

1,2, does not depend on the
clause length — the bounds on the number of bits used may change, but

12

the clause length is not fundamental to the structure, unlike say, that the
formula is in CNF as this restriction ensures that the arithmetization is
multilinear.

Theorem 18. Let (φ, k) be an instance of WSAT(Γ+
2,1) where

max{var(φ), cl(φ)} ≤ 2m and p is the length of the longest clause. There
is an (p ·m logm, p ·m logm)-restricted probabilistic FPT -time Turing Ma-
chine that rejects (φ, k) with high probability if (φ, k) is a No-instance of
WSAT(Γ+

2,1). That is, WSAT(Γ+
2,1) ∈ p-PCP[p ·m logm, p ·m logm].

Proof. We can modify the SC function to cope with greater clause length
and positive rather than negative literals:

SC(A, y) =
∑

x1,...,xp∈Bm

∏

i∈{1,p}

Cy,i(xi)(1−A(xi))

The family of functions Cc,i is also extended in the obvious way.
Then the protocol continues for p ·m rounds rather than the 2 ·m as for the
Γ−
1,2 case. We then need a factor of p extra random bits, and we require p

values of the satisfying assignment A for the final evaluation.

Corollary 19. For every parameterized problem Π ∈ W [2] there exists a
function f : N → N such that Π ∈ p-PCP[p · (f(k)+ log n) log(f(k) + log n),
p · (f(k) + log n) log(f(k) + log n)] and hence W [2] ⊆ p-PCP[p · (f(k) +
log n) log(f(k) + log n), p · (f(k) + log n) log(f(k) + log n)] where n is the
size of the instance and k is the parameter and p is the length of the longest
clause in the equivalent WSAT(Γ+

2,1) instance.

The catch with this of course is that p may, in principle, be as long as the
formula and hence O(f(k)nO(1)), in which case we do no better (actually,
clearly worse) than the trivial p-PCP guaranteed by the fact that W [2] ⊆
para-NP.

4.3 Extension to Bounded Parameterized Classes

As WSAT(2-CNF−) is complete for both EXPW [1] [31] and EW [1] [23],
we can easily adapt the W [1] result. We omit the formal particulars of
the restriction on the running time and reduction structures denoting them
simply by prepending the bound to the nomenclature.

Corollary 20. EXPW [1] ⊆ 2k
O(1)

-p-PCP[(2k
O(1)

+log n) log(2k
O(1)

+log n),

(2k
O(1)

+ log n) log(2k
O(1)

+ log n)] where n is the size of the instance and k

is the parameter.

Corollary 21. EW [1] ⊆ 2O(k)-p-PCP[(2O(k) + log n) log(2O(k) + log n),
(2O(k) + log n) log(2O(k) + log n)] where n is the size of the instance and
k is the parameter.

13

As WSAT(2-CNF−) is not S[1]-complete, we need to adjust the formula
CS used in Theorem 1 as we can no longer assume that all variables are
negated. Fortunately we can simply use the formula of Feige et al. [20]
more directly (adjusted for 2-CNF, rather than 3-CNF). Recall that 2m ≥
max{var(φ), cl(φ)} (of course we are really just interested in taking a power
of two so that the logarithms work neatly). As var(φ) = k′ is the parameter
we know that m ≤ log(4k′2). Given that k is the parameter of the initial
problem and n is the size, the reduction scheme that closes the S-hierarchy
gives k′ = g(l)(k + log n) for some SUBEPT -time computable function g

over N.

Corollary 22. S[1] ⊆ 2o
eff (k)-p-PCP[log(g′(l)(k + log n)2) log log(g′(l)(k +

log n)2), log(g′(l)(k + log n)2) log log(g′(l)(k + log n)2)] where n is the size
of the instance, k is the parameter and g′ is a SUBEPT -time computable
function over N.

Then from the miniaturization isomorphism we get:

Corollary 23. M [1] ⊆ p-PCP[log(f(k
logn)n

O(1)) log log(f(k
logn)n

O(1)),

log(f(k
logn)n

O(1)) log log(f(k
logn)n

O(1))] where n is the size of the instance

and k
logn is the parameter.

5 Proof Checking for the A-Hierarchy

Looking at the classes of the A-hierarchy, one may be put in mind of
Shamir’s [30] proof that IP=PSPACE via a Lund et al. [28] style proto-
col over instances of the Quantified Boolean Satisfiability problem.
However, the restriction of the weight of the solution poses some interest-
ing problems. While in Shamir’s case, the universal quantification is truly
universal, in ours it is universal only in the “for all subsets of size k” sense,
hence it is difficult to translate an instance of AWSAT in the same fashion
— dealing with each universally quantified variable individually becomes
complicated by the fact that its possible values depend on how many of the
previous variables have been set to TRUE, which is further complicated by
the assignment of a random value out of a much larger field.
From the parameterized perspective, it is also perhaps not sensible that we
ask to verify a membership proof of an AWSAT problem in FPT-time. If
we consider a certificate for such an instance (with the technical consider-
ation that l ≥ 2) then we must verify not only a single weight k satisfying
assignment, but for those variables that are universally quantified, we must
verify that all weight ki assignments have accompanying assignments from
the existentially quantified variables following them. That is, we are in effect
expected to check on the order of nk assignments. This is reflected in the
structure of the parameterized classes — while the W -hierarchy is contained

14

in para-NP, apart from A[1], there is no evidence that the A-hierarchy is.
However the A-hierachy is contained in XP, hence we can solve these prob-
lems in time f(k)+nf(k) and naturally can thus check solutions within that
bound.
With this in mind we suggest a slightly relaxed version of a parameterized
PCP, where we make the obvious changes from FPT-time to f(k) + nf(k).
For simplicity we will denote this as a nk-p-PCP.

Theorem 24. Let (φ,X1, . . . ,Xl, k = k1 + . . . + kl) be an instance of
AWSATl(Γ

−
1,2) where max{var(φ), cl(φ)} ≤ 2m with l odd and k′ = k2 +

k4+. . .+kl−1. There is an (nk′ ·m logm,nk′ ·m logm)-restricted probabilistic
(f(k)+nf(k))-time Turing Machine that rejects (φ, k) with high probability if
(φ,X1, . . . ,Xl, k = k1 + . . .+ kl) is a No-instance of AWSATl(Γ

−
1,2). That

is, AWSATl(Γ
−
1,2) ∈ p-PCP[nk′ ·m logm, nk′ ·m logm].

Proof. The verifying TM V begins by generating the O(nk′) assignments to
the variables of Xeven = X2 ∪X4 ∪ . . . Xl−1. In effect we can treat this as
a simple string s over {0, 1}|Xeven |, which we will use to index elements of
the truth assignment given in the proof string (which again we can treat as
a table). For each assignment to Xeven we can reduce the input formula φ

appropriately in polynomial time, substituting in the values of the literals
and simplifying the formula to φ′.
We then have a series of Γ−

1,2 formulæ with only existential qualification,

but this is equivalent to an instance of WSAT(Γ−
1,2), only with the slight

constraint that the truth assignment is required to consist of l+1
2 parts,

corresponding to the odd indexed variable sets X1, . . . ,Xl.
Thus we can apply the protocol used for W [1], with the slight change that
instead of checking simply that

∑

xi
A(xi) = k, we check the sequence of

truth assignments As
j where j ∈ { 2h − 1 | h ∈ N

+ }, ensuring that for each
the weight is kj .

Corollary 25. A[l] ⊆ p-PCP[f(k)ng(k) · log(f(k)nO(1)) log log(f(k)nO(1)),
f(k)ng(k) · log(f(k)nO(1)) log log(f(k)nO(1))] for all l ≥ 1, where n is the size
of the input, k is the parameter and g and f are computable functions.

Proof. As A[l] is closed under fpt-reductions, if l is odd, we can reduce the
input instance to an instance of AWSATl(Γ

−
1,2) with at most f(k)nO(1)

clauses and variables, with parameter g(k).
By containment, if l is even, we can reduce the input to an instance of
AWSATl+1(Γ

−
1,2).

We note particularly that this p-PCP has the nice property of reducing to the
W [1] p-PCP in the case where l = 1. This is a generally desirable property
as A[1] = W [1] (though in general we only expect that W [t] ⊆ A[t]).

15

Corollary 26. AW [∗] ⊆ p-PCP[f(k)ng(k)·⌊ l
2
⌋·log(f(k)nO(1)) log log(f(k)nO(1)),

f(k)ng(k)·⌊ l
2
⌋ · log(f(k)nO(1)) log log(f(k)nO(1))]

Proof. Any problem in AW [∗] can be reduced to an instance of AWSAT(Γ−
1,2).

In this case l is not fixed, but part of the input. However for a given instance,
the number of even-index variable sets is at most ⌊ l

2⌋.

6 Conclusion

The development of parameterized PCPs, of which this is simply a first
step, may have interesting results, particularly for parameterized approxi-
mation theory. Currently non-trivial parameterized approximations are few,
and the status of key problems such as Clique and Dominating Set are
essentially unknown. For parameterized PCPs to have an impact on this
however, results need to be improved and extended. By employing directly
the construction of Feige et al. [20] for Max-Clique we could obtain results
if we can reduce the number of random bits of a p-PCP containing W [1] to
a function of k alone. This seems possible for the main part of the checking
protocol — we can simply randomly generate only k of the values, and take
all others as constant (say 0), with a corresponding alteration in the size of
the field over which the values are generated, the probability of incorrectly
accepting is in essence no different. A similar alteration to the multilinearity
testing however is much more difficult. Another possible approach would be
to explore the intersection of Dinur’s [17] proof of the PCP theorem which
employs certain constraint satisfaction problems and recent hardness results
for parameterized versions of constraint satisfaction [11].
Extending the result of this paper to cover other classes also seems to be non-
trivial, the alternation of boolean operators of unbounded arity in propo-
sitional classes that define the classes W [t] seems to preclude retaining the
constant degree property essential to the protocol presented here (this is
not a problem for NP as we do not need to keep track of the weight of the
satisfying assignment, so the polynomial expansion experienced in reducing
a formula to 3-CNF creates no problem). However it seems likely that a
tight p-PCP for W [1] would be part of a broader p-PCP that generalizes
to W [t] for all t, implying that t will play an important role in the final
complexity description.
In the other direction it would be interesting to obtain a more general p-PCP
for the other PSPACE related parameterized classes, particularly AW [SAT]
and AW [P].

16

References

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-
parameter tractability and completeness IV: On completeness for W[P]
and PSPACE analogs. Annals of Pure and Applied Logic, 73:235–276,
1995.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and
Mario Szegedy. Proof verification and the hardness of approximation
problems. Journal of the ACM, 45(3):501–555, 1998.

[3] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; a
new characterization of np. In 33rd Annual Symposium on Foundations
of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October
1992, pages 2–13. IEEE Computer Society, 1992.

[4] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A
new characterization of NP. Journal of the ACM, 45(1):70–122, 1998.

[5] László Babai. Trading group theory for randomness. In Robert
Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, May 6-8, 1985, Providence, Rhode Island,
USA, pages 421–429. ACM, 1985.

[6] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy.
Checking computations in polylogarithmic time. In Cris Koutsougeras
and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 21–31. ACM, 1991.

[7] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic
exponential time has two-prover interactive protocols. Computational
Complexity, 1:3–40, 1991.

[8] László Babai, Lance Fortnow, and Carsten Lund. Addendum to non-
deterministic exponential time has two-prover interactive protocols.
Computational Complexity, 2:374, 1992.

[9] László Babai and Shlomo Moran. Arthur-merlin games: A random-
ized proof system, and a hierarchy of complexity classes. Journal of
Computer and System Sciences, 36(2):254–276, 1988.

[10] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson.
Multi-prover interactive proofs: How to remove intractability assump-
tions. In Janos Simon, editor, Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 113–131. ACM, 1988.

17

[11] Andrei A. Bulatov and Dániel Marx. Constraint satisfaction param-
eterized by solution size. In Luca Aceto, Monika Henzinger, and Jiri
Sgall, editors, Automata, Languages and Programming - 38th Interna-
tional Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,
Proceedings, Part I, volume 6755 of Lecture Notes in Computer Science,
pages 424–436. Springer, 2011.

[12] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W.
Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain
parameterized np-hard problems. In 19th Annual IEEE Conference on
Computational Complexity (CCC 2004), 21-24 June 2004, Amherst,
MA, USA, pages 150–160. IEEE Computer Society, 2004.

[13] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear fpt
reductions and computational lower bounds. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, June 13-16, 2004, pages 212–221. ACM,
2004.

[14] Yijia Chen and Jörg Flum. On miniaturized problems in parameter-
ized complexity theory. In Rodney G. Downey, Michael R. Fellows, and
Frank K. H. A. Dehne, editors, Parameterized and Exact Computation,
First International Workshop, IWPEC 2004, Bergen, Norway, Septem-
ber 14-17, 2004, Proceedings, Lecture Notes in Computer Science, pages
108–120. Springer, 2004.

[15] Yijia Chen and Martin Grohe. An isomorphism between subexponential
and parameterized complexity theory. SIAM Journal of Computing,
37(4):1228–1258, 2007.

[16] Anne Condon. The complexity of the max word problem. In Christian
Choffrut and Matthias Jantzen, editors, STACS 91, 8th Annual Sym-
posium on Theoretical Aspects of Computer Science, Hamburg, Ger-
many, February 14-16, 1991, Proceedings, volume 480 of Lecture Notes
in Computer Science, pages 456–465. Springer, 1991.

[17] Irit Dinur. The PCP theorem by gap amplification. Journal of the
ACM, 54(3):44, 2007.

[18] Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena
Prieto, and Frances A. Rosamond. Cutting up is hard to do: the pa-
rameterized complexity of k-cut and related problems. Electronic Notes
on Theoretical Computer Science, 78:209–222, 2003.

[19] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer, 1999.

18

[20] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario
Szegedy. Interactive proofs and the hardness of approximating cliques.
Journal of the ACM, 43(2):268–292, 1996.

[21] Jörg Flum and Martin Grohe. Parametrized complexity and subex-
ponential time (column: Computational complexity). Bulletin of the
EATCS, 84:71–100, 2004.

[22] Jörg Flum and Martin Grohe. Parameterized complexity theory.
Springer, 2006.

[23] Jörg Flum, Martin Grohe, and Mark Weyer. Bounded fixed-parameter

tractability and log2n nondeterministic bits. Journal of Computer and
System Sciences, 72(1):34–71, 2006.

[24] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In Robert
Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 291–304. ACM, 1985.

[25] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal of Computing,
18(1):186–208, 1989.

[26] Shafi Goldwasser and Michael Sipser. Private coins versus public coins
in interactive proof systems. In Juris Hartmanis, editor, Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA, pages 59–68. ACM, 1986.

[27] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
problems have strongly exponential complexity? Journal of Computer
and System Sciences, 63(4):512–530, 2001.

[28] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems. Journal of the ACM,
39(4):859–868, 1992.

[29] J. T. Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. Journal of the ACM, 27(4):701–717, 1980.

[30] Adi Shamir. IP=PSPACE. In 31st Annual Symposium on Foundations
of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 11–15. IEEE Computer Society, 1990.

[31] Mark Weyer. Bounded fixed-parameter tractability: The case 2poly(k).
In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne,
editors, Parameterized and Exact Computation, First International

19

Workshop, IWPEC 2004, Bergen, Norway, September 14-17, 2004,
Proceedings, volume 3162 of Lecture Notes in Computer Science, pages
49–60. Springer, 2004.

20

	1 Introduction
	1.1 Useful History

	2 Parameterized Complexity Theory
	2.1 Bounded Parameterized Complexity Classes
	2.2 The Miniaturization Isomorphism and the M-Hierarchy

	3 Proof Checking, Interactive Proofs and PCPs
	3.1 Notation and Notes
	3.2 Basic Definitions
	3.3 Arithmetization Protocols

	4 Parameterized PCPs
	4.1 A Non-trivial Parameterized PCP for W[1]
	4.2 Unbounded Clauses and [2]
	4.3 Extension to Bounded Parameterized Classes

	5 Proof Checking for the A-Hierarchy
	6 Conclusion

