
ar
X

iv
:1

51
0.

03
48

2v
2

 [
cs

.C
C

]
 3

 M
ar

 2
01

7

Graph Editing Problems with Extended Regularity

Constraints

Luke Mathieson

Centre for Information Based Medicine, Bioinformatics and Biomarker Discovery,

University of Newcastle, Australia

Abstract

Graph editing problems offer an interesting perspective on sub- and super-
graph identification problems for a large variety of target properties. They
have also attracted significant attention in recent years, particularly in the
area of parameterized complexity as the problems have rich parameter ecolo-
gies.

In this paper we examine generalisations of the notion of editing a graph
to obtain a regular subgraph. In particular we extend the notion of reg-
ularity to include two variants of edge-regularity along with the unifying
constraint of strong regularity. We present a number of results, with the cen-
tral observation that these problems retain the general complexity profile of
their regularity-based inspiration: when the number of edits k and the max-
imum degree r are taken together as a combined parameter, the problems
are tractable (i.e. in FPT), but are otherwise intractable.

We also examine variants of the basic editing to obtain a regular subgraph
problem from the perspective of parameterizing by the treewidth of the input
graph. In this case the treewidth of the input graph essentially becomes a
limiting parameter on the natural k + r parameterization.

Keywords: graph algorithms, computational complexity, algorithms,
parameterized complexity, graph editing

1. Introduction

Graph editing problems — problems where editing operations are applied
to an input graph to obtain a graph with a given property — provide an
interesting and flexible framework for considering many graph problems. For

Preprint submitted to Theoretical Computer Science March 6, 2017

http://arxiv.org/abs/1510.03482v2

example virtually any problem whose witness structure is a subset of the
vertices of the input graph can be alternatively phrased as a problem regard-
ing the deletion of vertices to obtain a suitable property. k-Vertex Cover
can be viewed as the problem of deleting at most k vertices such that the
resultant graph has no edges. This target property can be viewed as a degree
contraint ; the degree of all vertices in the final graph should be zero. The
nature of the resulting graph can also be defined by which editing operations
are allowed; vertex deletion alone results in induced subgraphs, edge deletion
alone produces spanning subgraphs, and so on.

Degree contraint editing problems have long been of interest to comupu-
tational complexity theorists and this interest has been echoed in the param-
eterized complexity context. The proof of the NP-completeness of Cubic
Subgraph was attributed to Chvátal by Garey and Johnson [16]. This nat-
urally generalises to r-Regular Subgraph, which we can consider as the
problem of removing vertices and edges to obtain an r-regular graph. r-
Regular Subgraph is NP-complete [30] for r ≥ 3, even under a number
input constraints [6, 33, 34, 35]. The problem of finding a maximum induced
r-regular subgraph is NP-complete for r ≥ 0 [5] (r = 0 is Maximum Inde-
pendent Set and the removed vertices form a minimum vertex cover). If
we allow only edge deletion, we have the r-Factor problem. For r = 1 this
is the basic matching problem, well known to be polynomial [11, 12, 21, 22].
If r > 1, or indeed if each vertex has a different target degree (the f-Factor
problem), Tutte gives a reduction a polynomial-time solvable matching prob-
lem [37, 38]. This problem can be further generalised by giving each vertex
a range of target degrees (the Degree Constrained Subgraph problem)
and is polynomial-time solvable [39]. If the edges of the graph have capac-
ities (the (Perfect) b-Matching problem), the problem remains in P,
using Tutte’s f-Factor algorithm [20]. In the General Factor [23, 24]
problem allows each vertex to have a list of target degrees. If the lists con-
tain gaps of greater than 1, the problem is NP-complete and polynomial-time
solvable otherwise [7]. The problem of adding at most 2 vertices and a min-
imum number of edges to obtain a ∆-regular supergraph, where ∆ is the
maximum degree of the input graph, is polynomial-time solvable [2].

In the parameterized complexity setting, deleting k vertices to obtain
an r regular graph is W[1]-hard for r ≥ 0 with parameter k [26], but FPT

with parameter k + r [27]. Mathieson and Szeider [26] give a series of re-
sults for similar problems, which is extended further in Mathieson’s doctoral
thesis [25]. In this they examine the Weighted Degree Constrained

2

Editing (WDCE) problem where the vertices and edges are weighted and
each vertex has a set of target degrees, for combinations of vertex deletion,
edge deletion and edge addition. When parameterized by the number k of
edits allowed, the problem is W[1]-hard, when parameterized by the number
of edits and the maximum value r in any of the degree lists, the problem is
FPT. When the target degree sets are singletons and the editing operations
include only edge deletion and addition, the problem is in P. The problem
remains W[1]-hard with parameter k even in the unweighted case where each
vertex has the same target degree r. In the singleton case, where vertex dele-
tion or vertex deletion and edge deletion is allowed, the problem has a kernel
of size polynomial in k + r (and hence is in FPT for parameter k + r). The
more general WDCE problem with vertex deletion and/or edge deletion has
a kernel of size exponential in k + r, and hence is FPT for parameter k + r.
Froese et al. [15] prove that no polynomial kernel is possible in these cases
unless NP ⊆ coNP/poly. For the general weighted case with degree lists
where the editing operations are any combination of vertex deletion, edge
deletion and edge addition Mathieson and Szeider [26] give a logic based
proof of FPT membership. Mathieson [25] shows that if vertex deletion and
edge addition are allowed (and perhaps edge deletion), then in the weighted
case (even with singleton vertex lists), no polynomial kernel is possible unless
NP ⊆ coNP/poly. In particular they give the following central theorem:

Theorem 1 (Mathieson and Szeider [26] Theorem 1.1). For all non-empty
subsets S of {v, e, a} the problem WDCE(S) is fixed-parameter tractable for
parameter k + r, and W[1]-hard for parameter k. If v ∈ S then WDCE(S)
remains W[1]-hard for parameter k even when all degree lists are restricted
to {r} and all vertices and edges have unit weight 1.

Golovach [18] gives a concrete FPT algorithm for the unweighted case
with parameter k+r where vertex deletion and edge addition are allowed and
shows that this case has no polynomial kernel unless NP ⊆ coNP/poly. Froese
et al., in addition to the results mentioned above, show that the unweighted
case with degree lists and edge addition has a kernel of size polynomial in
k+ r. In fact they show that either the instance is polynomial-time solvable
or the kernel is polynomially-sized in r alone. Golovach [17] looks at the case
where the target graph must also remain connected. Dabrowski et al. [8] look
at the case where the input is planar and vertex deletion and edge deletion are
allowed, and show that although still NP-complete, a kernel polynomially-
sized in the number of deletions is obtainable. Belmonte et al. [1] study the

3

problem of using edge contraction to fulfil degree constraints.
More recently, Bulian and Dawar [4] demonstrated a powerful meta-

theorem based approach showing (amongst other results) that for a large
collection of classes C of sparse graphs, determining the edit distance of an
input graph G from some graph in C is fixed-parameter tractable. This
meta-theorem gives many (if not all) of the results discussed here as a corol-
lary, with the obvious caveat being essentially non-constructive in algorithmic
terms.

1.1. Our Contribution

In this paper we look at problems with alternative forms of degree con-
straints: edge-degree-regularity, edge-regularity and strong-regularity (q.v.
Section 2 for definitions). We show that for these constraints, and with
any combination of vertex deletion, edge deletion and edge addition, these
problems are typically fixed-parameter tractable with the combined parame-
ter k+ r, para-NP-complete with parameter r and W[1]-hard with parameter
k.

We also consider the parameterization of certain WDCE problems by
the treewidth of the input graph where the number of editing operations is
unbounded and show that finding an (induced) r-regular subgraph of graphs
of bounded treewidth is in FPT. When both vertex deletion and edge addition
is allowed, the problem becomes trivially polynomial-time solvable by simply
editing the graph into a Kr+1 if possible, and answering no otherwise.

2. Definitions and Notation

We denote the closed (integer) interval from a to b by [a, b]. If a = 0, we
denote the interval [0, b] by [b]. We denote the power set of a set X by P(X).

In this paper we consider only simple, undirected graphs. Given a graph
G = (V,E) and two vertices u and v we denote the edge {u, v} ∈ E by
uv or vu. The open neighbourhood NG(u) of a vertex u is the set {v |
uv ∈ E}. The closed neighbourhood NG[u] of a vertex u is NG(u) ∪ {u}.
The degree of a vertex u is denoted d(u) and d(u) = |NG(u)|. Given an
edge uv ∈ E, the edge-degree dG(uv) is the sum of the degrees of u and
v, i.e. dG(uv) = dG(u) + dG(v). A graph is r-regular if for all u ∈ V we
have dG(u) = r. If a graph is r-regular for some r, it is regular. If for
every edge uv ∈ E we have dG(uv) = r, we say G is edge-degree-r-regular.
A graph is (r, λ)-edge-regular if every vertex has degree r and every edge

4

uv has |NG(u) ∩NG(v)| = λ. A graph is (r, λ, µ)-strongly-regular if it is
(r, λ)-edge-regular and for every pair u, v of non-adjacent vertices we have
|NG(u) ∩NG(v)| = µ. The definitions are generalised to degree contraints in
the problems we consider, see Section 2.3.

We consider three graph editing operations: vertex deletion, edge deletion
and edge addition. For brevity we denote these by v, e and a respectively.
In a weighted graph, the cost of deleting a vertex with weight w is w, the
cost of deleting an edge with weight w and the cost of adding an edge with
weight w is w. In an unweighted graph, the cost of each editing operation
is 1.

Throughout this paper we consider a number of variants graph editing
problems. In each case the input is a graph G along with a weight func-
tion ρ and a degree function δ. We extend the normal notation for the
degree of a vertex to the weighted degree of a vertex, denoted dρ(v) where
dρ(v) =

∑

u∈NG(v) ρ(uv). We also use this notation for the weighted edge-

degree dρ(uv).
For a given base editing problem Π, we denote by Π1 the unweighted

variant where ρ(x) = 1 for every x in the domain of ρ, by ∞Π we denote
the variant where the editing cost is removed (i.e. k is no longer part of the
problem), by Πr the variant where δ(x) = r (equivalently δ(x) = {r}) for a
fixed r and all x in the domain of δ and by Π∗ the variant where δ(x) = kx
(equivalently δ(x) = {kx}) for some kx for all x in the domain of δ.

2.1. Reduction Rules, Kernelization and Soundness

A reduction rule is a self mapping from an instance of a problem to
another instance of the same problem that reduces the instance size. In par-
ticular, in the Parameterized Complexity context, reduction rules typically
form the basis of Kernelization algorithms. This technique is often called
a “reduction to problem kernel”. While we refer the reader to standard
texts [9, 10, 13, 28] for the technical details of reduction rules and kernel-
ization, we note here in particular the definition of soundness of a reduction
rule. A reduction rule is sound if and only if it preserves yes instances and no
instances, i.e. it maps any yes instance to a yes instance and any no instance
to a no instance of the given problem.

2.2. Compositional Problems and Polynomial Sized Kernels

For some problems we may suspect that they may not have kernels
bounded by a polynomial in the parameter. Of course fixed-parameter tractabil-

5

ity guarantees that they have a kernelization of some form, however this may
also be impractical. Bodlaender et al. [3] develop a tool aimed at show-
ing that problems do not have a polynomially sized kernel, based on some
complexity theoretic assumptions.

Definition 2 (Composition). A composition algorithm for a parameter-
ized problem (P, κ) is an algorithm that receives as input a sequence
((x1, k), . . . , (xt, k)) of instances of (P, κ) and outputs in time bounded by a
polynomial in

∑t

i=1 |xi|+ k an instance (x′, k′) where:

1. (x′, k′) is aYes-instance of (P, κ) if and only if (xi, k) is aYes-instance
of (P, κ) for some i ∈ {1, . . . , t}.

2. k′ = p(k) where p is a polynomial.

This definition is then accompanied by the key lemma:

Lemma 3 ([3]). Let (P, κ) be a parameterized problem with a composition
algorithm where the non-parameterized version of the problem P is NP-
complete. Then if (P, κ) has a polynomially sized kernel, the Polynomial
Hierarchy collapses to the third level.

For details of the Polynomial Hierarchy we refer to Stockmeyer [36], and
note that a collapse in the Polynomial Hierarchy seems unlikely [29].

Therefore any demonstration of the existence of a composition algorithm
for a fixed-parameter tractable problem indicates that the problem is unlikely
to have a polynomially sized kernel.

2.3. Problem Definitions

We now define the constraints of interest in this paper, and the consequent
graph editing problems.

2.3.1. Edge-Degree Regularity

Edge-degree constraints naturally extend vertex based degree constraints,
notably any r-regular graph is edge-degree 2r-regular. However an edge-
degree regular graph may not be regular. Therefore the class of edge-degree
regular graphs forms a proper superclass of the class of regular graphs.

We define the Weighted Edge Degree Constraint Editing prob-
lem, or WEDCE similarly to the WDCE problem.

6

WEDCE(S):
Instance: A graph G = (V,E), two integers k and r, a

weight function ρ : V ∪E → {1, 2, . . . }, and a
degree list function δ : E → P([r]).

Question: Can we obtain from G a graph G′ = (V ′, E ′)
using editing operations from S only, such that
for all uv ∈ E ′ we have dρ(uv) ∈ δ(uv), with
total editing cost at most k?

We write WEDCE1(S) to indicate that the given graph is unweighted,
and we write WEDCE∗(S) if all degree lists are singletons; if all singletons
are {r} then we write WEDCEr(S). We omit set braces whenever the con-
text allows, and write, for example, WEDCE(v) instead of WEDCE({v}).

2.3.2. Edge Regularity

A graph G is (r, λ)-edge regular if every vertex has degree r and every
edge uv ∈ E(G) has |N(u) ∩N(v)| = λ. We define the Weighted Edge
Regularity Editing (WERE) problem.

WERE(S):
Instance: A graph G = (V,E), three integers k, r and

λ ≤ r, a weight function ρ : V ∪ E →
{1, 2, . . . }, a degree function δ : V → P([r]),
and a neighbourhood function ν : V × V →
P([λ]).

Question: Can we obtain from G a graph G′ = (V ′, E ′)
using editing operations from S only, such that
for all v ∈ V ′ we have dρ(v) ∈ δ(v) and for ev-
ery uv ∈ E ′ we have |N(u) ∩N(v)| ∈ ν(u, v),
with total editing cost at most k?

Again we write WERE1 when we consider unweighted graphs, and
WERE∗ when δ and ν are restricted to singletons. If δ and ν are restricted
to {r} and {λ} respectively we write WEREr,λ.

2.3.3. Strong Regularity

(r, λ, µ)-strongly regular graphs are (r, λ)-edge regular graphs where for
all vertices u, v ∈ V (G) such that uv /∈ E we have |N(u) ∩N(v)| = µ.
For this set of constraints, our problem becomes the Weighted Strongly
Regular Editing (WSRE) problem.

7

WSRE(S):
Instance: A graph G = (V,E), four integers k, r and

λ, µ ≤ r, a weight function ρ : V ∪ E →
{1, 2, . . . }, a degree function δ : V → P([r]),
and two neighbourhood functions ν : V ×V →
P([λ]) and ξ : V × V → P([µ]).

Question: Can we obtain from G a graph G′ = (V ′, E ′)
using editing operations from S only, such that
for all v ∈ V ′ we have dρ(v) ∈ δ(v), for every
uv ∈ E ′ we have |N(u) ∩N(v)| ∈ ν(u, v), and
for every uv /∈ E ′ we have |N(u) ∩N(v)| ∈
ξ(u, v), with total editing cost at most k?

We denote the case where δ, ν and ξ are restricted to singletons by
WSRE∗.

3. Edge-Degree Regular Graphs

Edge addition as a general operation is ill-defined for this probem, much
as vertex addition makes little sense in the WDCE context, as the addition
of a new edge requires the invention of constraints for that edge. Thus we
restrict ourselves to vertex deletion and edge deletion.

The NP-completeness and W[1]-hardness for parameter k of
WEDCEr

1(S) where v ∈ S follow from the proof of Theorem 3.3
in [26] as the graph constructed will be edge-degree 2r-regular if and only if
the same set of vertex deletions can be made as for the r-regular case.

When S = {e} the NP-completeness of WEDCE3
1(e) is established by

the NP-completeness of Maximum H-Packing [19], and more particularly
by the K1,2-Packing subproblem [31], obtained by setting δ(uv) = {3} for
all edges uv ∈ E(G).

K1,2-Packing:
Instance: A graph G, an integer k.
Question: Does G contain at least k vertex-disjoint

copies of the complete bipartite graph K1,2?

Of course this immediately gives the following:

Proposition 4. WEDCEr
1(e) is para-NP-complete for parameter r.

8

It is a necessary condition for edge-degree r-regularity that the line graph
is r-regular, however we cannot simply convert the graph to the line graph
and perform the editing there, as the deletion of a vertex in the original graph
does not have the same effect as the deletion of an edge in the line graph.

3.1. A Bounded Search Tree Algorithm for WEDCE(v, e)

Consider the case where both edge deletion and vertex deletion are al-
lowed. Any isolated vertex can be discarded, as it will play no part in the
edge-degree of any edge (this can be done without reducing k).

The algorithm, again based on Moser and Thilikos’ [27], runs as follows:

1. If k ≥ 0 and for all edges uv, dρ(uv) ∈ δ(uv), answer Yes. If k ≤ 0
and there exists an edge uv with dρ(uv) /∈ δ(uv), answer No.

2. Choose an edge uv with dρ(uv) /∈ δ(uv).

3. Arbitrarily select a set M ⊆ N(u) ∪ N(v) \ {u, v} of at most r + 1
vertices. Let EM denote the edges with one endpoint in M and the
other as either u or v.

4. Branch on all possibilities of deleting u, v, uv, one element x of M or
reducing the weight of one edge in EM by 1. Reduce k by the weight
of the deleted element in the first four cases, and by one if an edge is
reduced in weight.

5. Return to step 1.

The branching set consists of an edge uv where dρ(u) + dρ(v) /∈ δ(uv), u,
v at most r + 1 neighbours of u and v, and the edges between u and v and
the r + 1 neighbours. The branching set has at most 2r + 5 elements, thus
the tree has at most tr(2r + 5, k) = ((2r + 5)k+1 − 1)/(2r + 4) vertices.

This gives the following result:

Lemma 5. WEDCE(S) is fixed-parameter tractable for parameter (k, r)
where ∅ 6= S ⊆ {v, e}.

If only vertex deletion is allowed, the branching set may be reduced,
resulting in a tree with at most tr(r+3, k) = ((r+3)k+1−1)/(r+2) vertices.

3.2. A Kernelization for WEDCE∗(v, e)

WEDCE∗(v, e) admits a kernelization similar to WDCE(v, e).

9

3.2.1. Reduction Rules

Reduction Rule 1. Let (G, (k, r)) be an instance of WEDCE∗(S). If
there is a vertex v in G such that dρ(v) > k+ r, then replace (G, (k, r)) with
(G′, (k′, r)) where G′ = G− v and k′ = k − ρ(v).

Reduction Rule 1 for the WDCE∗ problem [26] states that given a vertex
v of degree greater than k+ r, if there is a solution with at most k deletions,
v must be deleted and k reduced by ρ(v). This rule also holds for WEDCE∗.

Claim 6. Reduction Rule 1 is sound for WEDCE∗(S) with {v} ⊆ S ⊆
{v, e}.

Proof. Assume there is a vertex v ∈ V (G) with d(v) > k+r, then every edge
uv has edge-degree at least k+ r+1 therefore at least k+1 vertices or edges
must be deleted if we do not delete v, but we may only perform at most k
deletions.

Thus (G, (k, r)) is a Yes-instance of WEDCE∗(S) if and only if
(G′, (k′, r)) is a Yes-instance of WEDCE∗(S).

We now adapt the notion of a clean region [27, 26] for WEDCE. An edge
uv is clean if δ(uv) = dρ(uv). Let X be the set of vertices only incident on
clean edges. A clean region C is a maximal connected subgraph of G whose
vertices are all in X (or equivalently, a connected component of G[X]). We
denote the vertices (resp. edges) of C by V (C) (resp. E(C)). As before
let the i-th layer of C be the subset Ci = {c ∈ V (C) | minb∈B dG(c, b) = i}
where dG(c, b) denotes the distance between c and b in G. Note that all the
neighbors of a vertex of layer Ci belong to Ci−1 ∪ Ci ∪ Ci+1.

Reduction Rule 2 forWDCE∗ holds immediately with this new definition
of a clean region as independent clean regions will not have any elements
deleted in a minimal solution.

Reduction Rule 2. Let (G, (k, r)) be an instance of WDCE∗(S), let C be
a clean region of G with empty boundary B(C) = ∅, and let G′ = G−V (C).
Then replace (G, (k, r)) with (G′, (k, r)).

If any element of a clean region is deleted, then the entire region must
be, however with both v and e it is not clear as to the most efficient way to
delete a clean region. We do know that if any element from a layer with index
greater than k+1 is deleted, either there is a solution where that element is
not deleted, or there have been more than k deletions.

10

Reduction Rule 3. Let (G, (k, r)) be an instance of WEDCE∗(S) and
let C be a clean region of G such that Ck+2 6= ∅. Replace (G, (k, r)) with
(G′, (k, r)) as follows:

1. Delete all layers Ci where i ≥ k + 2.

2. For each edge uv such that u ∈ Ck+1 and v ∈ Ck+1 ∪ Ck set δ(uv) to
dρ(uv).

Claim 7. Reduction Rule 3 is sound for WEDCE∗(S) with ∅ 6= S ⊆ {v, e}.

Proof. Let D be the set of vertices and edges deleted in a minimal solution
for (G, (k, r)). Let G(D) be the subgraph induced by all the vertices of D or
incident to edges of D. Each connected component X of G(D) that contains
an element of a clean region C must also contain an element of the boundary
B(C), otherwise we could obtain a solution of lower cost by not deleting X .
Therefore each vertex v ∈ D ∩ V (C) must be of distance at most |D| from a
vertex in B(C), thus there is no vertex v ∈ Ci where i ≥ k+1. Similarly any
endpoint of an edge in e ∈ D ∩ E(C) must belong to some layer Ci where
i ≤ k + 1. Conversely any solution D′ for (G′, (k, r)) is also a solution for
(G, (k, r))

If the editing operations are restricted to e, we can apply the following
reduction rule. In this case we may contract the clean regions significantly.
Note that here the weights of the vertices are irrelevant.

Reduction Rule 4. Let (G, (k, r)) be an instance of WEDCE∗(S). Let C
be a clean region with boundary B(C) and |V (C)| ≥ 2. We replace (G, (k, r))
with (G′(k, r)) by contracting C to a single edge as follows:

1. Add two vertices u and v and the edge uv.

2. For each b ∈ B(C) add an edge bu with weight ρ(bu) = min(k +
1,
∑

c∈V (C) ρ(bc)).

3. For each b ∈ B(C) set δ(bu) = dρ(b) + dρ(u).

4. Let ρ(uv) = min(k + 1,
∑

x,y∈V (C),xy∈C ρ(xy)).

5. Let δ(uv) = dρ(u) + dρ(v) = dρ(u) + 1.

6. Delete C.

Claim 8. Reduction Rule 4 is sound for WEDCE∗(e).

11

Proof. Let (G, (k, r)) be an instance of WEDCE∗(e) with clean region C
having boundary B(C). Let (G′, (k, r)) be the instance obtained by applying
Reduction Rule 4.

If an edge incident on a vertex of V (C) ∪ B(C) is deleted, then an edge
of C will no longer be clean. Therefore the edge must be deleted, similarly
rendering other edges of C no longer clean. This cascades, and all the edges
of the clean region must be deleted with total cost equal to the sum of the
cost of all the edges in the clean region. Therefore any solution for (G, (k, r))
either deletes all edges in C or none. Therefore C can be represented by a
single edge of appropriate weight, which we can limit to k+1, as this weight
or higher prevents deletion.

3.2.2. Kernelization Lemmas

Lemma 9. Let {v} ⊆ S ⊆ {v, e}. Let (G, (k, r)) be a Yes-instance of
WEDCE∗(S) reduced under Reduction Rules 1, 2 and 3. Then |V (G)| ≤
k(1 + (k + r)(1 + rk+1)) = O(k2rk+1 + krk+2).

Proof. The proof runs identically to Lemma 6.4 in [26].

For WEDCE∗(e) we can do much better.

Lemma 10. Let (G, (k, r)) be a Yes-instance of WEDCE∗(e) reduced under
Reduction Rules 1, 2 and 4. Then |V (G)| ≤ 2k + 4kr = O(kr).

Proof. Let D be the set of edges deleted in the solution. Let H be the set of
vertices incident to elements of D and let X be the remaining vertices of the
graph . |D| ≤ k by definition. As e is the only operation, D consists entirely
of edges. Therefore H ≤ 2 · |D| ≤ 2k.

Claim 11. |X| ≤ 2r · |H|.

As G−D is clean, the edges of G−D incident to vertices of H must have
edge-degree at most r. Therefore the vertices of H have degree at most r in
G−D and all neighbours in X must be vertices of clean regions. Furthermore
Reduction Rule 7 any clean regions in the graph have at most 2 vertices. The
claim follows.

As |V (G)| = |H| = |X|, |V (G)| ≤ 2k + 4kr.

Combining these kernelizations, we obtain the following Theorem:

Theorem 12. Let ∅ 6= S ⊆ {v, e}. WEDCE∗(S) is fixed-parameter tractable
with a kernel with O(k2rk+1 + krk+2) vertices. If S = {e}, the kernel has
O(kr) vertices.

12

4. Edge Regular Graphs

The W[1]-hardness and NP-completeness of WERE∗
1(S) and subse-

quently WERE(S) with {v} 6= S ⊆ {v, e, a} follow immediately from Theo-
rem 3.3 in [26], as the solution required for the proof must be edge regular.

4.1. A Bounded Search Tree Algorithm for WERE(v, e)

If any vertex v has dρ < h for all h ∈ δ(v) it can only be deleted, and k
reduced by ρ(v). Then the algorithm is:

1. If k ≥ 0 and for every vertex v we have dρ(v) ∈ δ(v) and for every edge
uv we have |N(u) ∩N(v)| ∈ ν(u, v) answer Yes. If k ≤ 0 and there
exists a vertex v with dρ(v) /∈ δ(v) or an edge uv with |N(u) ∩N(v)| /∈
ν(u, v) answer No.

2. Choose a vertex v with dρ(v) /∈ δ(v), or incident to an edge uv with
|N(u) ∩N(v)| /∈ ν(u, v).

3. Arbitrarily select a set M of at most r+1 vertices from N(v). Let EM

denote the edges incident on v with the other endpoint in M .

4. Branch on all possibilities of deleting, v, one element x ofM or reducing
the weight of one edge in EM by 1. Reduce k by the weight of the
deleted element in the first two cases, and by one if an edge is reduced
in weight.

5. Return to step 1.

The branching set for this problem is more complex. In both cases we
choose an element from V (G) ∪ E(G). If the element chosen is a vertex v
with dρ(v) /∈ δ(v), it consists of v, at most r+1 neighbours of v and the edges
between v and the chosen neighbours. If the element chosen is an edge uv
with |N(u) ∩N(v)| /∈ ν(u, v), it consists of uv, u, v, at most r+1 neighbours
of u and v, and the edges between u and v and the chosen neighbours.
Therefore the tree has at most tr(3r + 6, k) = ((3r + 6)k+1 − 1)/(3r + 5)
vertices. As with previous cases, restricting the available operations to v

gives a smaller bound on the tree size. With only v the branching set is
reduced to at most r + 3 elements, so the maximum number of vertices in
the tree is reduced to tr(r + 3, k) = ((r + 3)k+1 − 1)/(r + 2).

Lemma 13. WERE(S) is fixed-parameter tractable with paramter (k, r)
with ∅ 6= S ⊆ {v, e}.

13

4.2. A Kernelization for WERE∗(v, e)

As before the WDCE∗(v, e) kernelization can be adapted for
WERE∗(v, e) using an adapted definition of a clean region. As we are deal-
ing with singleton sets for the degree function δ (resp. the neighbourhood
function ν) we write d = δ(v) (resp. d = ν(u, v)) instead of d ∈ δ(v) (resp.
d ∈ ν(u, v)).

4.2.1. Reduction Rules

As an edge regular graph is by definition regular, Reduction Rule 1 (q.v.
Section 3.2.1) applies immediately.

We redefine a clean region as a maximal connected set C ⊆ V (G) of
vertices such that for every vertex v ∈ C we have dρ(v) = δ(v) and for every
edge uv ∈ E(G) incident to v we have |N(u) ∩N(v)| = ν(u, v). The layers
of C are defined as in Section 3.2.1. We note that it follows immediately that
for u ∈ B(C) and v ∈ C if uv ∈ E then N(u) ∩N(v) ⊆ B(C) ∪ C1.

With this modified definition of a clean region, Reduction Rule 2 (q.v.
Section 3.2.1) also applies with no change.

We now only require an appropriate alternative for Reduction Rule 4.

Reduction Rule 5. Let (G, (k, r)) be an instance of WERE∗(S). Let C be
a clean region with boundary B(C). We replace (G, (k, r)) with (G′, (k, r))
by shrinking C to a single layer of vertices as follows:

1. Delete all vertices v ∈ C \ C1.

2. Add all edges uv where u, v ∈ C1.
3. For all edges uv where u, v ∈ C1, set ν(u, v) to |N(u) ∩N(v)|.
4. For all vertices v ∈ C1, set δ(v) to d

ρ(v).

5. Arbitrarily choose a vertex v ∈ C1 and set ρ(v) to min(k + 1, ρ(v) +
∑

u∈C\C1
ρ(u)).

Claim 14. Reduction Rule 5 is sound for WERE∗(S) with {v} ⊆ S ⊆ {v, e}.

Proof. As with Reduction Rule 4, if a neighbour, incident edge, or vertex
of clean region is deleted, the entire clean region must be deleted. As the
replacement clean region is connected, ν is satisfied for all vertices in C, and
the weight is the same or k + 1, this property and the cost of deletion is
preserved.

As all vertices in B(C) have their neighbours in the clean region confined
to C1, the retention of C1 ensures that the neighbourhoods with regard to ν
are also preserved.

14

4.2.2. Kernelization Lemma

Lemma 15. Let {v} ⊆ S ⊆ {v, e}. Let (G, (k, r)) be a Yes-instance of
WERE∗(S) reduced under Reduction Rules 1, 2 and 5. Then |V (G)| ≤
k + k(k + r) + kr(k + r) = O(kr(k + r)).

Proof. We partition G into disjoint sets D, H and X where D is the set of
vertices and edges deleted to obtain the edge regular graph, H is the set of
vertices incident or adjacent to elements of D that are not themselves in D
and X is the set of remaining vertices in neither D nor H . H separates D
from X . By definition |D| ≤ k.

We also have |H| ≤ |D| · (k + r).

Claim 16. |X| ≤ r · |H|.

As removing D leaves the graph edge regular, the vertices of H can have
at most r neighbours outside of D, in particular they can have at most r
neighbours in X . Furthermore all vertices in X must belong to some clean
region in the original graph, therefore by Reduction Rules 2 and 8, all the
vertices in X must be adjacent to some vertex in H . The claim follows.

We have |V (G)| ≤ |D|+ |H|+ |X| ≤ k + k(k + r) + kr(k + r).

Subsequently we have the following:

Lemma 17. WERE∗(S) is fixed parameter-tractable with parameter (k, r)
where {v} ⊆ S ⊆ {v, e}.

As we only have deletion operations, we can represent an unweighted
graph as a weighted graph where all elements have weight 1.

Corollary 18. WEREr,λ(S), WERE∗
1(S) and WEREr,λ

1 (S) are fixed
parameter-tractable with parameter (k, r) where {v} ⊆ S ⊆ {v, e}.

5. Strongly Regular Graphs

5.1. A Kernelization for WSRE∗(v, e)

5.1.1. Reduction Rules

Again Reduction Rule 1 (q.v. Section 3.2.1) holds with no change, and
once the appropriate notion of clean region has been defined, Reduction
Rule 2 also holds.

In this case the definition of a clean region is the obvious extension of the
clean region for WERE, where for each vertex v in the clean C region and
every vertex u where uv /∈ E we have |N(u) ∩N(v)| = ξ(u, v).

15

Reduction Rule 6. Let (G, (k, r)) be an instance of WSRE∗(S). Let C be
a clean region with boundary B(C). We replace (G, (k, r)) with (G′, (k, r))
by shrinking C by removing all but C1 and C2 as follows:

1. Delete C \ (C1 ∪ C2).

2. Add all edges uv where u, v ∈ C1 ∪ C2.

3. For every vertex v ∈ C2 set δ(v) to dρ(v).

4. For every vertex v ∈ C1 ∪C2 and every vertex u ∈ V (G), if uv ∈ E set
ν(u, v) to |N(u) ∩N(v)|, if uv /∈ E set ξ(u, v) to |N(u) ∩N(v)|.

5. Arbitrarily choose a vertex v ∈ C1 ∪ C2 and set ρ(v) to min(k +
1,
∑

u∈C\(C1∪C2)
ρ(u)).

Claim 19. Reduction Rule 6 is sound for WSRE∗(S) with {v} ⊆ S ⊆ {v, e}.

Proof. The new clean region remains a clean region, and the total weight, if
less than k+1 is the same. Any total weight greater than k is equivalent, as
we cannot delete the clean region in any of those cases.

As C is a clean region, if there is a vertex v with xi(u, v) > 0 for some
vertex u ∈ C, then d(u, v) ≤ 2. Therefore we do not affect vertices outside
of the clean region by removing all layers Ci for i ≥ 3.

5.1.2. Kernelization Lemma

Lemma 20. Let {v} ⊆ S ⊆ {v, e}. Let (G, (k, r)) be a Yes-instance of
WSRE∗(S) reduced under Reduction Rules 1, 2 and 6. Then |V (G)| ≤
k + k(k + r) + kr(r + 1)(k + r) = O(kr2(k + r)).

Proof. We partition G into disjoint sets D, H and X where D is the set of
vertices and edges deleted to obtain the edge regular graph, H is the set of
vertices incident or adjacent to elements of D that are not themselves in D
and X is the set of remaining vertices in neither D nor H . H separates D
from X . By definition |D| ≤ k.

Further, |H| ≤ |D| · (k + r).

Claim 21. |X| ≤ r(r + 1) · |H|.

As removing D leaves the graph edge regular, the vertices of H can have
at most r neighbours outside of D, in particular they can have at most r
neighbours in X . Furthermore all vertices in X must belong to some clean
region in the original graph, therefore by Reduction Rules 2 and 9, all the
vertices in X must be at most distance 2 from some vertex in H . Therefore

16

the first layer C1 of a clean region C is of size at most r · |H|, and the second
is of size at most r2 · |H|. The claim then follows.

We have |V (G)| ≤ |D|+ |H|+ |X| ≤ k+ k(k+ r) + kr(r+1)(k+ r).

This gives the following:

Lemma 22. WSRE∗(S) is fixed-parameter tractable with parameter (k, r)
where {v} ⊆ S{v, e}.

As before the employment of only deletion operations allows the repre-
sentation of an unweighted graph as a weighted graph.

Corollary 23. WSREr,λ,µ(S), WSRE∗
1(S) and WSREr,λ,µ

1 (S) are fixed
parameter-tractable with parameter (k, r) where {v} ⊆ S ⊆ {v, e}.

5.2. Fixed-Parameter Tractability for WSRE and WERE with Edge Addition

If we consider the case of WSRE(S) where {v, a} ⊆ S, and for every
vertex v we have ν(v) = ξ(v) = {0, . . . , r}, then the problem is reduced to
WDCE(S). By the NP-completeness and compositionality of Edge Re-
placement Set (q.v. [25, 26]) we would expect that in general WSRE∗(S)
and subsequently WSRE(S) would have no polynomial time kernelization
that relied upon choosing vertices from clean regions to delete to obtain edge
addition points, and that WSRE∗(S) and subsequently WSRE(S) would
have no polynomial sized kernel unless the Polynomial Hierarchy collapses
to the third level, by Lemma 3. The same arguments apply to WERE.

However we can still apply the logic approach used in [26] to demonstrate
fixed-parameter tractability for WSRE(S) and WERE(S) with ∅ 6= S ⊆
{v, e, a}. In fact as we still require the graphs to satisfy the basic degree
constraint δ, we can extend the existing formulæ from [26]. We represent
a graph by its incidence structure, with the additional relations Wi and Di

as in [26]. To the vocubulary we add a further two sets of binary relations
Ni with 0 ≤ i ≤ r and Mj with 0 ≤ j ≤ r which encode the functions ν
and ξ respectively, i.e., for a pair of vertices u, v ∈ V (G) Niuv is true if and
only if i ∈ ν(uv), similarly Miuv is true if and only if i ∈ ξ(uv). By setting
ξ(u, v) = {0, . . . , r} for all vertices u, v we can represent WERE with no
change to the logic (in fact we may represent another otherwise undefined
problem where ν(v) = {0, . . . , r} but ξ(u, v) does not).

To each formula φk as defined in [26], we add two subformulæ ∀uvψ′
k and

∀uvψ′′
k by conjunction.

17

First we repeat the construction of φk, presented as in the previous
work [26]:

φk =
∨

k′, k′′, k′′′ ∈ [k] such that
k′ + k′′ + k′′′ ≤ k

∃u1, . . . , uk′,e1, . . . , ek′′,

∃a1, . . . , ak′′′ ,b1, . . . , bk′′′

(φ′
k ∧ ∀v φ′′

k)]

where φ′
k and φ′′

k are given below. The subformula φ′
k is the conjunction

of the clauses (1)–(3) and ensures that u1, . . . , uk′ represent deleted vertices,
e1, . . . ek′′ represent deleted edges, ai, bi, 1 ≤ i ≤ k′′′ represent end points of
added edges, and the total editing cost is at most k. Note that since added
edges are not present in the given structure we need to express them in terms
vertex pairs. For the unweighted case we must also include subformulæ (4)
and (5) to ensure that the addition of edges does not produce parallel edges.
By restricting k′, k′′ or k′′′ to zero as appropriate we can express which editing
operations are available.

(1)
∧

i∈[k′] V ui ∧
∧

i∈[k′′]Eei “ui is a vertex, ei is an edge;”

(2)
∧

i∈[k′′′] V ai ∧ V bi ∧ ai 6= bi ∧
∧

j∈[k′](uj 6= ai ∧ uj 6= bi) “ai and bi are
distinct vertices and not deleted;”

(3)
∨

w1,...,wk′
∈[k′] such that

∑
i∈[k′] wi+k′′+k′′′≤k

∧

i∈[k′]Wwi
ui “the weight of

deleted vertices is correct;”

(4)
∧

1≤i<j≤k′′(ai 6= bj ∨ aj 6= bi)∧ (ai 6= aj ∨ bi 6= bj) “the pairs of vertices
are mutually distinct;”

(5)
∧

i∈[k′′′] ∀y(¬Iaiy ∨ ¬Ibiy) “ai and bi are not adjacent.”

The subformula φ′′
k ensures that after editing each vertex v has degree

l ∈ δ(v).

φ′′
k = (V v ∧

∧

i∈[k′]

v 6= ui) →
∨

l∈[r]

Dlv ∧
∨

l′, l′′ ∈ [l]
l′ + l′′ = l

∃x1, . . . , xl′, y1, . . . , yl′′ φ
′′′
k ,

where φ′′′
k is the conjunction of the clauses (6)–(12).

(6)
∧

i∈[l′] Ivxi “v is incident with l′ edges;”

(7)
∧

1≤i<j≤l′ xi 6= xj “the edges are all different;”

18

(8)
∧

i∈[l′],j∈[k′′] xi 6= ej “the edges have not been deleted;”

(9)
∧

i∈[l′],j∈[k′] ¬Iujxi “the ends of the edges have not been deleted;”

(10) ∀x(Ivx →
∨

i∈[l′] x = xi ∨
∨

i∈[k′′] x = ei ∨
∨

i Ixui) “v is not incident
with any further edges except deleted edges;”

(11)
∧

i∈[l′′]

∨

j∈[k′′′](yi = aj ∧ v = bj)∨ (yi = bj ∧ v = aj) “v is incident with
at least l′′ added edges;”

(12)
∧

j∈[l′′](v = aj →
∨

i yi = bj) ∧ (v = bj →
∨

j∈[l′′] yi = aj) “v is incident
with at most l′′ added edges.”

To this we include further subformulæ to accomodate the edge con-
straints. The subformula ψ′

k ensures that if two vertices u and v are adjacent,
then ν(u, v) is satisfied.

ψ′
k = (V u ∧ V v ∧

∧

i∈[k′]

(ui 6= u ∧ ui 6= v)

∧ ∃e(Iue ∧ Ive ∧
∧

i∈[k′′]

(ei 6= e))) →

∨

l∈[r]

Nluv∧

∨

l′, m′, l′′, m′′ ∈ [l]
l′ +m′ = l′′ +m′′ = l

∃n1 . . . nlx1 . . . xl′y1 . . . ym′w1 . . . wl′′z1 . . . zm′′ψ′′′
k

Where ψ′′′
k is the conjuction of clauses (13)–(30):

(13)
∧

i 6=j∈[l] V ni ∧ ni 6= nj ∧ u 6= ni ∧ v 6= nj “the nis are distinct vertices,
different from u and v;”

(14)
∧

i∈[l],j∈[k′] ni 6= uj “the nis have not been deleted;”

(15)
∧

i 6=j∈[l′]Exi ∧ xi 6= xj “the xis are distinct edges;”

(16)
∧

i∈[l′],j∈[k′′] xi 6= ej “the xis have not been deleted;”

(17)
∧

i 6=j∈[m′] V yi ∧ yi 6= yj “the yis are distinct vertices;”

(18)
∧

i∈[m′],j∈[k′] yi 6= uj “the yis have not been deleted;”

(19)
∧

i∈[m′]

∨

j∈[l] yi = nj “the yis are equal to some nj;”

(20)
∧

i∈[l′](Iuxi ∧
∨

j∈[l] Injxi ∧
∧

t∈[m′] nj 6= yt) “the xis are adjacent to u
and some nj which is not equal to any yt;”

19

(21)
∧

i∈[m′]

∨

j∈[k′′′](u = aj ∧ yi = bj) ∨ (u = bj ∧ yi = aj) “yi and u are the
endpoints of some added edge;”

(22)
∧

i∈[k′′′] ai = u∨ bi = u→
∨

j∈[m′] ai = yj ∨ bi = yj “u is incident on no
other added edges.”

(23)
∧

i 6=j∈[l′′]Ewi ∧ wi 6= wj “the wis are distinct edges;”

(24)
∧

i∈[l′′],j∈[k′′]wi 6= ej “the wis have not been deleted;”

(25)
∧

i 6=j∈[m′′] V zi ∧ zi 6= zj “the zis are distinct vertices;”

(26)
∧

i∈[m′′],j∈[k′] zi 6= uj “the zis have not been deleted;”

(27)
∧

i∈[m′′]

∨

j∈[l] zi = nj “the zis are equal to some nj ;”

(28)
∧

i∈[l′′](Iuwi ∧
∨

j∈[l] Injwi ∧
∧

t∈[m′′] nj 6= zt) “the wis are adjacent to
u and some nj which is not equal to any zt;”

(29)
∧

i∈[m′′]

∨

j∈[k′′′](u = aj ∧ zi = bj) ∨ (u = bj ∧ zi = aj) “zi and u are the
endpoints of some added edge;”

(30)
∧

i∈[k′′′] ai = u∨ bi = u→
∨

j∈[m′′] ai = zj ∨ bi = zj “u is incident on no
other added edges.”

The subformula ψ′′
k ensures that for two nonadjacent vertices u and v,

ξ(u, v) is satisfied. ψ′′
k is essentially identical to ψ′

k, and we can re-use the
subformula ψ′′′

k .

ψ′′
k = (V u ∧ V v ∧

∧

i∈[k′]

(ui 6= u ∧ ui 6= v)∧

∀e(¬Iue ∨ ¬Ive ∨
∧

i∈[k′′]

(ei 6= e))) →

∨

l∈[r]

Mluv∧

bigvee l′, m′, l′′, m′′ ∈ [l]
l′ +m′ = l′′ +m′′ = l

∃n1 . . . nlx1 . . . xl′y1 . . . ym′w1 . . . wl′′z1 . . . zm′′ψ′′′
k

Lemma 24. Let (G, (k, r)) be an instance of WSRE(S) (resp. WERE(S))
where ∅ 6= S ⊆ {v, e, a} with associated incidence structure SG. There exist
first order formulæ φk, for k ≥ 0, such that SG is a model for φk if and only
if (G, (k, r)) is a Yes-instance of WSRE(S) (resp. WERE(S)).

By Frick and Grohe’s metatheorem [14] and Lemma 24:

Theorem 25. The problems WSRE(S) and WERE(S) are fixed-parameter
tractable for parameter (k, r) where ∅ 6= S ⊆ {v, e, a}.

20

6. WDCE and Treewidth

We now return to the WDCE problem with an alternate parameteriza-
tion, the treewidth tw(G) of the input graph G. There are several options
for parameterizing, dependent on what combination of the treewidth, the
degree bound r and the editing cost k is chosen. Of course if both k and
r are part of the parameterization, we already have a complete classifica-
tion in Theorem 1. It can also be observed that if a graph G has treewidth
tw(G) ≤ t, then there is some vertex v ∈ V (G) with d(v) ≤ t. Therefore for
WDCEr

1(v, e) if r > t we may immediately answer No. The vertex v with
d(v) ≤ t must be deleted, however the resultant graph G′ has tw(G′) ≤ t,
therefore this process cascades and the entire graph must be deleted. Fur-
thermore if r ≤ t and k is also a parameter, then Theorem 1 applies. As
WDCE∗(S) for ∅ 6= S ⊆ {e, a} is in P, parameterization by any combination
of treewidth, k and r does not affect the complexity.

Samer and Szeider [32] show that theGeneral Factor =∞ WDCE1(e)
problem isW[1]-hard when parameterized by treewidth alone. We can extend
this to WDCE(e).

Proposition 26. WDCE1(e) is W[1]-hard when parameterized by the
treewidth of the input graph. Furthermore it remains W[1]-hard when the
input graphs are bipartite and the degree constraints of one partite set are
limited to {1}.

Proof. Samer and Szeider’s proof [32] establishes the W[1]-hardness of

∞WDCE1(e) when restricted to bipartite graphs where the degree con-
straints of one partite set are {1}. We simply choose k =

∑

uv∈E(G) ρ(uv),
where G is the input graph.

If we set the vertex weights appropriately, we can also allow vertex dele-
tion. However we can no longer claim unit weights.

Corollary 27. WDCE(v, e) is W[1]-hard when parameterized by the
treewidth of the input graph. Furthermore it remains W[1]-hard when the
input graphs are bipartite and the degree constraints of one partite set are
limited to {1}.

Proof. For all vertices v ∈ V (G) set ρ(v) = k + 1. Then no vertex can be
deleted within the cost.

21

By subdividing the edges and weighting the original vertices we can re-
strict the operations to vertex deletion alone.

Corollary 28. WDCE(v) is W[1]-hard when parameterized by the treewidth
of the input graph. Furthermore it remains W[1]-hard when the input graphs
are bipartite and the degree constraints of one partite set are limited to {1}.

6.1. Parameterizations Excluding k

If we consider version of the problem where the number of edit operations
is unbounded, we can obtain some further results for limited cases. In this
setting, as the number of deletions is unbounded, we do not consider the
trivial case where V (G) = ∅ as a valid solution.

Lemma 29. ∞WDCEr
1(v) is fixed-parameter tractable when parameterized

by the treewidth of the input graph.

Proof. As noted earlier, if r > tw(G) for a graph G, then (G, tw(G)) is a
No-instance of ∞WDCEr

1(v), as the entire graph would have to be deleted.
However if r ≤ tw(G), we may apply Courcelle’s Theorem with the following
second order sentence:

∃S∀v∀u(V v → Sv ∨ ∃v1, . . . , vr(
∧

i 6=j∈[r](vi 6= vj)∧
∧

i∈[r](¬Svi ∧Avvi ∧ v 6= vi)∧

(Avu→ Su ∨
∨

i∈[r] u = vi)))

where Axy is shorthand for ∃e(Ee ∧ V x ∧ V y ∧ Ixe ∧ Iye) (i.e, x and y are
adjacent). The sentence ensures that there is a set S (the deleted vertices)
such that for every vertex v and every vertex u, either v is deleted, or it is
adjacent to r distinct vertices that haven’t been deleted, and if u is adjacent
to v, then it is one of these vertices, or it has been deleted.

This can be extended to include edge deletion.

Lemma 30. ∞WDCEr
1(v, e) is fixed-parameter tractable when parameterized

by the treewidth of the input graph.

Proof. As before if r > tw(G), the instance is a No-instance. Then we need
only construct a second order logic sentence that encodes the problem.

∃S∀v∀e(V v → Sv ∨ (∃e1, . . . , er, v1, . . . , vr(φ1 ∧ φ2)))

where φ1 is the conjunction of subclauses (1)–(5):

22

(1)
∧

i∈[r] ¬Sei ∧ ¬Svi “ei and vi have not been deleted;”

(2)
∧

i∈[r]Eei ∧ V vi “ei is an edge and vi is a vertex;”

(3)
∧

i∈[r] vi 6= v “v is not equal to any vi;”

(4)
∧

i∈[r] Iviei ∧ Ivei “v and vi are adjacent;”

(5)
∧

i 6=j∈[r] vi 6= vj “the vis are distinct.”

and
φ2 = Ive→ (

∨

i∈[r]

(e = ei) ∨ Se ∨ ∃u(Iue ∧ u 6= v ∧ Su))

φ2 ensures that if there is an edge incident to v, then either it is one of the
r edges making up the the regular degree of v, it was deleted, or its other
endpoint was deleted.

If vertex deletion and edge addition are allowed, then the problem be-
comes trivially polynomial.

Lemma 31. ∞WDCEr
1(v, e, a) and ∞WDCEr

1(v, a) are polynomial-time
solvable.

Proof. As the number of edit operations is unlimited, we can simply delete
all but r + 1 vertices, and make the graph a Kr+1.

If there are less than r + 1, it is not possible to have an r-regular graph,
and we answer No immediately.

7. Conclusion

We have examined a series of editing problems with constraints based
on natural extensions of regularity. As with the WDCE series of problems,
problems with extended edge-degree based constraints are in FPT with com-
bined parameter k+r, butW[1]-hard with parameter k and para-NP-complete
with paramter r. There are a number of avenues of further research open
with these problems, the mostprominent being the development of a concrete
algorithm for WSRE(v, e, a). The techniques of [18] may be applicable, how-
ever this is certainly not trivial.

We also consider parameterizations of variants of the WDCE problem
by the treewidth of the input graph and demonstrate tractability for these
problems.

23

[1] Rémy Belmonte, Petr A. Golovach, Pim van ’t Hof, and Daniël
Paulusma. Parameterized complexity of three edge contraction prob-
lems with degree constraints. Acta Informatica, 51(7):473–497, 2014.

[2] H. Bodlaender, R. Tan, and J. van Leeuwen. Finding a △-regular su-
pergraph of minimum order. 131(1):3–9, 2003.

[3] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny
Hermelin. On problems without polynomial kernels. J. Comput. Syst.
Sci., 75(8):423–434, 2009.

[4] Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to
sparse graph classes. Algorithmica, pages 1–20, 2016.

[5] Domingos M. Cardoso, Marcin Kamiński, and Vadim Lozin. Maximum
k-regular induced subgraphs. 14(4):455–463, 2007.

[6] F. Cheah and D. G. Corneil. The complexity of regular subgraph recog-
nition. 27(1–2):59–68, 1990.

[7] G. Cornuéjols. General factors of graphs. 45(2):185–198, 1988.

[8] Konrad K. Dabrowski, Petr A. Golovach, Pim van ’t Hof, Daniël
Paulusma, and Dimitrios M. Thilikos. Editing to a planar graph of
given degrees. In CSR, 2015.

[9] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
1999.

[10] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Texts in Computer Science. Springer, 2013.

[11] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices.
Journal of Research of the National Bureau of Standards, 69B:125–130,
1965.

[12] J. Edmonds. Paths trees and flowers. 17:449–467, 1965.

[13] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. 2006.

[14] M. Frick and M. Grohe. Deciding first-order properties of locally tree-
decomposable structures. Journal of the ACM, 48(6):1184–1206, 2001.

24

[15] Vincent Froese, André Nichterlein, and Rolf Niedermeier. Win-win ker-
nelization for degree sequence completion problems. In Proceedings
of the Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT’14), Lectures Notes in Computer Science. Springer, 2014.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. 1979.

[17] Petr A. Golovach. Editing to a connected graph of given degrees. In
Proceedings of the Conference on the Mathematical Foundations of Com-
puter Science (MFCS’14), volume 8635 of Lectures Notes in Computer
Science, pages 324–335. Springer, 2014.

[18] Petr A. Golovach. Editing to a graph of given degrees. Theor. Comput.
Sci., 591:72–84, 2015.

[19] Pavol Hell and David G. Kirkpatrick. On the completeness of a gen-
eralized matching problem. In Conference Record of the Tenth Annual
ACM Symposium on Theory of Computing (STOC’78), pages 240–245,
1978.

[20] Bernhard Korte and Jens Vygen. Combinatorial Optimization, vol-
ume 21 of Algorithms and Combinatorics. Berlin, fourth edition, 2008.

[21] Harold W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2(2):83–97, 1955.

[22] Harold W. Kuhn. Variants of the Hungarian method for assignment
problems. Naval Research Logistics Quarterly, 3(4):253–258, 1956.

[23] L. Lovász. The factorization of graphs. In Combinatorial Structures
and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta.,
1969), pages 243–246. Gordon and Breach, New York, 1970.

[24] L. Lovász. The factorization of graphs. II. Acta Math. Acad. Sci. Hun-
gar., 23:223–246, 1972.

[25] Luke Mathieson. The Parameterized Complexity of Degree Constrained
Editing Problems. PhD thesis, University of Durham, 2010.

25

[26] Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree
constraits: A parameterized approach. J. of Computer and System Sci-
ences, 78:179–191, 2012.

[27] Hans Moser and Dimitrios Thilikos. Parameterized complexity of finding
regular induced subgraphs. 2008. Article in Press.

[28] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. 2006.

[29] Christos H. Papadimitriou. Computational Complexity. Addison Wesley,
1994.

[30] J. Plesńık. A note on the complexity of finding regular subgraphs.
49(2):161–167, 1984.

[31] Elena Prieto and Christian Sloper. Looking at the stars. Theoretical
Computer Science, 351(3):437–445, 2006.

[32] Marko Samer and Stefan Szeider. Tractable cases of the extended global
cardinality constraint. In Computing: The Australasian Theory Sympo-
sium (CATS’08), volume 77 of CRPIT, pages 67–74. ACS, 2008.

[33] Iain A. Stewart. Deciding whether a planar graph has a cubic subgraph
is NP-complete. 126(1–3):349–357, 1994.

[34] Iain A. Stewart. Finding regular subgraphs in both arbitrary and planar
graphs. 68(3):223–235, 1996.

[35] Iain A. Stewart. On locating cubic subgraphs in bounded-degree con-
nected bipartite graphs. 163(1–3):319–324, 1997.

[36] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):1–22, 1976.

[37] W. T. Tutte. A short proof of the factor theorem for finite graphs.
6:347–352, 1954.

[38] W. T. Tutte. Spanning subgraphs with specified valencies. 9(1):97–108,
1974.

[39] R. J. Urquhart. Degree Constrained Subgraphs of Linear Graphs. PhD
thesis, University of Michigan, Ann Arbor, USA, 1967.

26

	1 Introduction
	1.1 Our Contribution

	2 Definitions and Notation
	2.1 Reduction Rules, Kernelization and Soundness
	2.2 Compositional Problems and Polynomial Sized Kernels
	2.3 Problem Definitions
	2.3.1 Edge-Degree Regularity
	2.3.2 Edge Regularity
	2.3.3 Strong Regularity

	3 Edge-Degree Regular Graphs
	3.1 A Bounded Search Tree Algorithm for WEDCE(v, e)
	3.2 A Kernelization for WEDCE*(v,e)
	3.2.1 Reduction Rules
	3.2.2 Kernelization Lemmas

	4 Edge Regular Graphs
	4.1 A Bounded Search Tree Algorithm for WERE(v,e)
	4.2 A Kernelization for WERE*(v, e)
	4.2.1 Reduction Rules
	4.2.2 Kernelization Lemma

	5 Strongly Regular Graphs
	5.1 A Kernelization for WSRE*(v, e)
	5.1.1 Reduction Rules
	5.1.2 Kernelization Lemma

	5.2 Fixed-Parameter Tractability for WSRE and WERE with Edge Addition

	6 WDCE and Treewidth
	6.1 Parameterizations Excluding k

	7 Conclusion

