
FUNCTIONAL GRAPHS OF POLYNOMIALS OVER
FINITE FIELDS

SERGEI V. KONYAGIN, FLORIAN LUCA, BERNARD MANS,
LUKE MATHIESON, MIN SHA, AND IGOR E. SHPARLINSKI

Abstract. Given a function f in a finite field IFq of q elements,
we define the functional graph of f as a directed graph on q nodes
labelled by the elements of IFq where there is an edge from u to v
if and only if f(u) = v. We obtain some theoretical estimates on
the number of non-isomorphic graphs generated by all polynomials
of a given degree. We then develop a simple and practical algo-
rithm to test the isomorphism of quadratic polynomials that has
linear memory and time complexities. Furthermore, we extend
this isomorphism testing algorithm to the general case of func-
tional graphs, and prove that, while its time complexity deviates
from linear by a (usually small) multiplier dependent on graph pa-
rameters, its memory complexity remains linear. We exploit this
algorithm to provide an upper bound on the number of functional
graphs corresponding to polynomials of degree d over IFq. Finally,
we present some numerical results and compare function graphs of
quadratic polynomials with those generated by random maps and
pose interesting new problems.

1. Introduction

Let IFq be the finite field of q elements and of characteristic p. For a
function f : IFq → IFq we define the functional graph of f as a directed
graph Gf on q nodes labelled by the elements of IFq where there is an
edge from u to v if and only if f(u) = v.

Clearly each connected component of Gf contains one cycle (possibly
of length 1 corresponding to a fixed point) with several trees attached
to some of the cycle nodes.

We note that when we talk about connectivity in a directed graph
we always mean the connectivity of the indirected graph it induces in
a natural way.

2010 Mathematics Subject Classification. 05C20, 05C85, 11T06, 11T24.
Key words and phrases. polynomial maps, functional graphs, finite fields, char-

acter sums, algorithms on trees.
1

2 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

Here we are mostly interested in the graphs Gf associated with poly-
nomials f ∈ IFq[X] of given degree d.

Some of our motivation comes from the natural desire to better un-
derstand Pollard’s ρ-algorithm (see [6, Section 5.2.1]). We note that
although this algorithm has been used and explored for decades, there
is essentially only one theoretical result due to Bach [1]. In fact, even a
heuristic model adequately describing this algorithm is not quite clear,
as the model of random maps, analysed by Flajolet and Odlyzko [9],
does not take into account the restrictions on the number of preim-
ages. The model analysed by MacFie and Panario [23] approximates
Pollard’s algorithm better but it perhaps still does not capture it in
full. Polynomial maps can also be considered as building blocks for
constructing hash functions. For these applications, it is important to
understand the intrinsic randomness of such maps.

Further motivation to investigation of the graphs Gf comes from the
theory of dynamical systems, as Gf fully encodes many of the dynamical
characteristics of the map f , such as the distribution of period (or cycle)
and pre-period lengths.

In particular, we denote by Nd(q) the number of distinct (that is,
non-isomorphic) graphs Gf generated by all polynomials f ∈ IFq[X]
of degree deg f = d. Since there are exactly (q − 1)qd polynomials of
degree d, we have a trivial upper bound:

Nd(q) < qd+1.

Here, we use some ideas of Bach and Bridy [2] together with some new
ingredients to obtain nontrivial bounds on Nd(q). We also refer to a
recent work of Ostafe and Sha [29] with several more related results on
statistic of functional graphs.

We also design simple and practical, yet efficient, algorithms to test
the isomorphism of graphs Gf and Gg associated with two maps f and g.
Furthermore, we design an efficient algorithm that generates a unique
label for each functional graph. We use these algorithms to design an
efficient procedure to list all Nd(q) non-isomorphic graphs generated
by all the polynomials f ∈ IFq[X] of degree deg f = d.

We conclude by presenting some numerical results for functional
graphs of quadratic polynomials. These results confirm that many
(but not all, see below) basic characteristics of these graphs, except
the total number of inner nodes, resemble those generated by random
maps, as analysed by [9]. A probabilistic model of the distribution
of cycles for functional graphs generated by polynomials (and more
generally, by rational functions) has been also developed and numeri-
cally verified in [3], see also [11]. Here, besides cycle lengths, we also

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 3

examine other characteristics of functional graphs generated by qua-
dratic polynomials, for example, the number of connected components
and the distribution of their sizes. Furthermore, these numerical re-
sults exhibit some interesting statistical properties of the graphs Gf for
which either there is no model in the setting of random graphs, or they
deviate, in a regular way, from such a model.

We also note that the periodic structure of functional graphs associ-
ated with monomial maps x 7→ xd over finite fields and rings has been
extensively studied (see [5, 12, 14, 21, 24, 31, 33, 36, 37] and references
therein). However, these graphs are expected to be very different from
those associated with generic polynomials.

In characteristic zero, graphs generated by preperiodic points of a
map ψ (that is, by points that lead to finite orbits under iterations of
ψ), have also been studied, (see, for example, [7, 8, 10, 27, 28, 30]).

We note that throughout the paper all implied constants in “O”
symbols are absolute, unless stated otherwise.

2. Bounds on the number of distinct functional graphs
of polynomials

2.1. Upper bound. To estimate Nd(q) from the above, we use an
idea of Bach and Bridy [2] which is based on the observation that
for any polynomial automorphism ψ the composition map ψ−1 ◦ f ◦ ψ
has the same functional graph as f . So the idea is that if we can
count the polynomials that are inequivalent under affine conjugations,
this gives an upper bound for the number of dynamically inequivalent
polynomials and therefore also for Nd(q).

Thus, it needs to be shown that for any d there exists a rather small
set of polynomials Fd such that for any polynomial f ∈ IFq[X] of degree
d there is a polynomial automorphism ψ such that ψ ◦ f ◦ ψ−1 ∈ Fd.
Then we have Nd(q) ≤ #Fd. To construct the set Fd we introduce a
group of certain transformations (see φλ,µ in the proof of Theorem 2.1)
on the set of polynomials and show that

• polynomials in each orbit generate isomorphic graphs;
• each orbit is sufficiently long, see the bounds (2.6) and (2.8)
on the “defect” of each orbit compared to the size of the above
group;

• most of the orbits are of the size of the above group, see (2.6).

This approach has been used in [2] for d = 2 and q = 2n, in which case
it is especially effective and leads to the bound

(2.1) N2(2
n) = exp

(
O

(
n

log log n

))
= qO(1/ log log log q).

4 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

For general pairs (d, q) this approach loses some of its power but still
leads to nontrivial results, explicitly in both d and q. Recall that p is
the characteristic of IFq.

Theorem 2.1. For any d ≥ 2 and q, we have

Nd(q) ≤
{
qd−1 + (s− 1)qd−1−ϕ(d−1), if p - d,
qd−1 + (s− 1)qd−1−ϕ(d−1) + (q − 1)qd/p−1, if p | d,

where s = gcd(q − 1, d− 1) and ϕ is the Euler function.

Proof. For λ ∈ IF∗
q and µ ∈ IFq, we define the automorphism

(2.2) φλ,µ : X 7→ λX + µ

with inverse φ−1
λ,µ : X 7→ λ−1(X − µ). Particularly, these automor-

phisms form a group of order (q − 1)q in the usual way, which acts on
the set of polynomials of degree d as the map

f(X) → φ−1
λ,µ ◦ f ◦ φλ,µ(X).

The number of the orbits of this group action can be calculated by the
Burnside counting formula. This implies that

(2.3) Nd(q) ≤
1

(q − 1)q

∑
(λ,µ)

Md(λ, µ),

where the sum runs through all the pairs (λ, µ) ∈ IF∗
q×IFq, andMd(λ, µ)

is the number of polynomials of degree d fixed by φλ,µ.
Trivially, we have

(2.4) Md(1, 0) = (q − 1)qd.

In the following, we want to estimate Md(λ, µ) by fixing a pair
(λ, µ) ∈ IF∗

q × IFq \ {(1, 0)}.
For any polynomial f of degree d satisfying φ−1

λ,µ◦f ◦φλ,µ(X) = f(X),
we have

f(λX + µ) = λf(X) + µ.

Comparing the leading coefficients we derive

(2.5) λd−1 = 1,

which implies that

(2.6) Md(λ, µ) = 0

for those pairs (λ, µ) not satisfying (2.5).
First, suppose that λ = 1. Note that µ 6= 0. Comparing the coeffi-

cients of Xd−1 in f(X + µ) and f(X) + µ, we obtain

(2.7) dad = 0.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 5

Thus, p | d. Moreover, comparing the coefficients of Xj−1 in f(X + µ)
and f(X) + µ for every j = 1, . . . , d, we also obtain relations of the
form

jajµ = Fj(ad, . . . , aj+1, µ), j = 1, . . . , d,

for some polynomials

Fj ∈ IFq[Zd, . . . , Zj+1, V],

where in the case j = d we have Fd(V) = 0, which corresponds to (2.7).
In particular, for every j = 1, . . . , d with gcd(j, p) = 1, we see that aj
is uniquely defined by ad, . . . , aj+1, µ. Hence, for µ 6= 0 we get that

Md(1, µ) ≤
{

0, if p - d,
(q − 1)qd/p, if p | d.(2.8)

Assume now that λd−1 = 1 but λ 6= 1, which implies that d ≥ 3. We
see that for every j = 0, 1, . . . , d there are polynomials

Gj ∈ IFq[Zd, . . . , Zj+1, U, V]

such that

aj(λ
j − λ) = Gj(ad, . . . , aj+1, λ, µ).

Since λ 6= 0, 1, and λd−1 = 1, it follows that for every j with gcd(j −
1, d − 1) = 1 we have λj 6= λ and thus aj is uniquely defined by
ad, . . . , aj+1, λ, µ. So, for d ≥ 3 and any pair (λ, µ) satisfying λd−1 = 1
and λ 6= 1, we have

(2.9) Md(λ, µ) ≤ (q − 1)qd−1−ϕ(d−1).

Notice that since λd−1 = 1 and λ 6= 1, the element λ can take at most
gcd(q − 1, d− 1)− 1 values.

Using (2.3) together with (2.4), (2.6), (2.8) and (2.9), we complete
the proof. ut

In particular, N2(q) ≤ 2q − 1, and for any d ≥ 3 we have Nd(q) ≤
3qd−1. Furthermore, Nd(q) ≤ qd−1 if p - d and gcd(q − 1, d− 1) = 1.

2.2. Lower bound: Idea of the proof. Here we give a lower bound
on Nd(q) in the case of gcd(d, q − 1) ≥ 2 and gcd(d − 1, q) = 1. In
particular, this bound shows that (2.1) does not hold for fields of odd
characteristic.

The idea is based on the following observation. Let Ha be the func-
tional graph of fa(X) = Xd + a ∈ IFq[X] with a ∈ IF∗

q. We note that
the node a is the only node with in-degree 1, because the in-degree of
every other node is

e = gcd(d, q − 1) ≥ 2.

6 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

We now define the iterations of fa

f (0)
a (X) = X and f (k)

a (X) = fa
(
f (k−1)
a (X)

)
, k = 1, 2, . . . ,

and consider the path of length J

(2.10) a = f (0)
a (a) → fa(a) = f (1)

a (a) → · · · → f (J)
a (a)

originating from a. Then, the (j + 1)-th node of this path has e − 1

edges towards it from γf
(j)
a (a), where γ runs through the elements of

the set

Γ∗
e = Γe \ {1},

where

Γe = {γ ∈ IFq : γe = 1}.
Finally, we observe that γf

(j)
a (a) is an inner node if and only if the

equation

zd + a = γf (j)
a (a)

has a solution.
We now note that if two graphs Ha and Hb are isomorphic then,

since a and b are unique nodes with the in-degree 1 in Ha and Hb,
respectively, the paths of the form (2.10) originating at a and b, and
their neighbourhoods have to be isomorphic too.

For j = 1, 2, . . ., we define ηj(a) as the number of γ ∈ Γ∗
e for which

γf
(j)
a (a)− a is an e-th power nonresidue. Thus, ηj(a) is the number of

leaves amongst the nodes γf
(j)
a (a), γ ∈ Γ∗

e.
Therefore, for any J , the number of distinct vectors

(2.11) (η1(a), . . . , ηJ(a)) , a ∈ IF∗
q,

gives a lower bound on Nd(q). Our approach is to find a proper choice
of J when q is sufficiently large such that each ηj(a) (j ≥ 2) can run
through the set {0, 1, . . . , e− 1}, then we can get a lower bound of the
form

Nd(q) ≥ eJ−1.

The idea is illustrated in Figure 2.1, where each “ i ” (1 ≤ i ≤ e− 1) in

the circles represents a node defined by some γf
(j)
a (a), γ ∈ Γ∗

e.
We can express the appearance of a particular “pattern” among the

leaves (2.11) algebraically, and use the Weil bound of multiplicative
character sums (see [16, Theorem 11.23]) to show that, when J is not
too large, all possible patterns appear; see Theorem 2.8 and its proof
for more details. Note that this is similar to the well-known use of the
Weil bound for showing that a sequence {1, . . . , p} contains any desired
pattern of J consecutive residues and non-residues.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 7

a - · · · - f (j)(a) - f (j+1)(a) - · · ·

����
1

�
�
�>

· · · ����
e− 1

Z
Z

Z}

leaf or
inner node

leaf or
inner node︸ ︷︷ ︸

Total number of leaves among
the nodes {1, 2, · · · , e− 1}

Figure 2.1. Idea of lower bound

2.3. Lower bound: Technical details. In order to realise the above
approach, we need several technical statements.

As usual, we use IFq to denote the algebraic closure of IFq.
Let us consider the sequences of polynomials

F0(X) = X and Fk(X) = (Fk−1(X))d +X, k = 1, 2, . . . ,

and also

Gk,γ(X) = γFk(X)−X.

Note that the roots of Gk,γ are exactly those z ∈ IFq for which Fk

twists z by γ−1.
We now investigate some arithmetic properties of polynomials Gk,γ

which we present in larger generality than we actually need for our
purposes.

Lemma 2.2. For any positive integers k and h and γ, δ ∈ Γe, we have

Gk+h,γ ≡ Gh,γ (mod Gk,δ).

Proof. We fix γ, δ ∈ Γe and prove the desired statement by induction
on h = 1, 2,

We note that for δ ∈ Γe we have

(2.12) (Fk(X))d =
(
δ−1 (Gk,δ(X) +X)

)d
= (Gk,δ(X) +X)d .

For h = 1 we have G1,γ(X) = γXd + (γ − 1)X. Hence, using (2.12),
we derive

Gk+1,γ(X) = γ
(
(Fk(X))d +X

)
−X

= γ (Gk,δ(X) +X)d + (γ − 1)X

≡ γXd + (γ − 1)X ≡ G1,γ(X) (mod Gk,δ(X)),

so the desired congruence holds for h = 1.

8 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

Now assume that it also holds for h = `. Then

Gk+`+1,γ(X) = γ (Gk+`,γ(X) +X)d + (γ − 1)X

≡ γ (G`,γ(X) +X)d + (γ − 1)X

≡ G`+1,γ(X) (mod Gk,δ(X)),

which implies the desired result. ut

Lemma 2.3. For any positive integers k and m, we have

gcd(Gk,γ, Gm,γ) = Ggcd(k,m),γ.

Proof. If k = m, then there is nothing to prove. Otherwise we note
that for m > k, Lemma 2.2 implies Gm,γ ≡ Gm−k,γ (mod Gk,γ). Thus

gcd(Gk,γ, Gm,γ) = gcd(Gk,γ, Gm−k,γ),

which immediately implies the desired result. ut

Now, from Lemma 2.3 we derive that for d = 2 (and odd q), products
of polynomials Gj,−1 over distinct integers are not perfect squares; see
Lemma 2.4.

Lemma 2.4. For d = e = 2, odd q, and any non-empty set J of
positive integers, we have ∏

j∈J

Gj,−1 6= P 2

for any polynomial P ∈ IFq[X].

Proof. Assume that m is the largest element of J . Since d = e = 2,
we have

F0(X) = X, Fk(X) = Fk−1(X)2 +X, Gk,−1(X) = −Fk(X)−X,

and thus

G1,−1(X) = −X(X + 2) and G2,−1 = −X(X + 2)(X2 + 1).

So, the cases m = 1 and m = 2 can be verified by direct calculations.
Now, we assume that m ≥ 3. It suffices to show that Gm,−1(X) has

a simple root which is not a root of

Qm−1(X) =
m−1∏
j=1

Gj,−1(X).

Let f(m) be the number of distinct roots of gcd(Gm,−1(X), Qm−1(X)).
By Lemma 2.3, these distinct roots are to be found among the distinct

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 9

roots of∏
1≤k≤m−1

gcd(Gm,−1(X), Gk,−1(X)) =
∏

1≤k≤m−1

Ggcd(m,k),−1(X),

and the distinct roots of this last polynomial are the same as the dis-
tinct roots of the polynomial∏

k|m
1≤k<m

Gk,−1(X),

which implies that

(2.13) f(m) ≤
∑
k|m

1≤k<m

2k ≤
∑

1≤k≤m/s

2k = 2m/s+1 − 2,

where s is the minimal prime factor of m. More precisely, since the
polynomial G1,−1(X) divides any other polynomial Gk,−1(X), k ≥ 1,
we have

(2.14) f(6) ≤ degG1,−1 + degG2,−1 + degG3,−1 − 2 degG1,−1 = 10.

Now let us write

Gm,−1(X) = A(X)2B(X),

where A(X), B(X) ∈ IFq[X] are monic polynomials and B(X) has only
simple roots.

We claim that

(2.15) degB(X) > f(m)

whenm ≥ 5. So, ifm ≥ 5, thenGm,−1(X) has a root of odd multiplicity
which is not a root of Qm−1(X), thus the desired result follows.

We prove the claim by contradiction. Hence, we suppose that

(2.16) degB(X) ≤ f(m) and m ≥ 5.

Note that since X = 0 is a simple root of Gm,−1(X), we have
degB(X) ≥ 1. Since A(X) divides gcd(Gm,−1(X), G′

m,−1(X)) and

Gm,−1(X) = −Fm−1(X)2 − 2X, we obtain

Fm−1(X)2 + 2X ≡ Fm−1(X)F ′
m−1(X) + 1 ≡ 0 (mod A(X)),

which yields that

0 ≡ Fm−1(X)2F ′
m−1(X) + Fm−1(X)

≡ −2XF ′
m−1(X) + Fm−1(X) (mod A(X)).

Moreover, since

(2.17) Fm−1(X) = F 2
m−2(X) +X ≡ X2 +X (mod X3)

10 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

and

F ′
m−1(X) = 2Fm−2(X)F ′

m−2(X) + 1

≡ 2X(2X + 1) + 1 ≡ 2X + 1 (mod X2),

it follows that

Fm−1(X)− 2XF ′
m−1(X) ≡ X2 +X − 2X(2X + 1)

≡ −3X2 −X (mod X3),

so this last polynomial is not the zero polynomial. In particular, there
is a non-zero polynomial C(X) ∈ IFq[X] such that

Fm−1(X)− 2XF ′
m−1(X) = A(X)C(X).

Because the degree of Fm−1(X) − 2XF ′
m−1(X) is at most 2m−1, we

deduce that

(2.18) degC(X) ≤ 2m−1 − degA(X) =
1

2
degB(X).

We can also write

A(X) =
Fm−1(X)− 2XF ′

m−1(X)

C(X)
.

Thus, we get that

−Fm−1(X)2 − 2X = Gm,−1(X) =
(Fm−1(X)− 2XF ′

m−1(X))2B(X)

C(X)2
,

and

(2.19) −(Fm−1(X)2+2X)C(X)2 = (Fm−1(X)−2XF ′
m−1(X))2B(X).

Using the relation

Fm−1(X) = Fm−2(X)2 +X, F ′
m−1(X) = 2Fm−2(X)F ′

m−2(X) + 1,

we reduce (2.19) modulo Fm−2(X) to obtain

−(X2 + 2X)C(X)2 ≡ X2B(X) (mod Fm−2(X)).

Notice that by (2.18) the polynomial on the left hand side has degree
at most degB(X) + 2, and the polynomial on the right hand side has
degree degB(X)+2. Thus, in view of (2.16), if degFm−2(X) > f(m)+
2, then the above congruence must in fact be an equality. Using (2.13)
and (2.14), the above inequality is satisfied if

2m−2 > 2m/s+1 or m = 6,

where s is the minimal prime factor of m. The above inequality is also
true for m = 5 and any integer m ≥ 7.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 11

So, if m ≥ 5, we must have

−(X2 + 2X)C(X)2 = X2B(X).

Furthermore,
B(X)

C(X)2
= −X + 2

X
,

so that

−Fm−1(X)2 − 2X =
(Fm−1(X)− 2XF ′

m−1(X))2B(X)

C(X)2

= −(X + 2)

X
(Fm−1(X)− 2XF ′

m−1(X))2,

and then

X(Fm−1(X)2 + 2X) = (X + 2)(Fm−1(X)− 2XF ′
m−1(X))2.

We reduce the above relation modulo Fm−3(X) using the fact that

Fm−1(X) = Fm−2(X)2 +X = (Fm−3(X)2 +X)2 +X

≡ X2 +X (mod Fm−3(X))

and

F ′
m−1(X) = 2(F 2

m−3(X) +X)(2Fm−3(X)F ′
m−3(X) + 1) + 1

≡ 2X + 1 (mod Fm−3(X)),

to get that

X((X2+X)2+2X) ≡ (X+2)(X2+X−2X(2X+1))2 (mod Fm−3(X)).

This leads to

(2.20) 8X5 + 22X4 + 12X3 ≡ 0 (mod Fm−3(X)),

which is impossible when m ≥ 5. Indeed, for k ≥ 0 we obviously have
Fk(X) ≡ X (mod X2), so (2.20) implies

8X3 + 22X2 + 12X ≡ 0 (mod Fm−3(X))

(see also (2.17)), which is impossible as m ≥ 5 we have

deg(8X3 + 22X2 + 12X) = 3 < 2m−3 = degFm−3(X),

so (2.16) is impossible. Thus, (2.15) holds and we have the desired
result for such values of m.

Finally, in order to finish the proof, it remains to handle the cases
m = 3, 4. We need to show that form = 3, 4, the polynomial Gm,−1(X)
has a simple root which is not a root of Gk,−1(X) for any proper di-
visor k of m. For this we treat such Gm,−1(X) as polynomials with
integer coefficients and compute their discriminants. Notice that only

12 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

the prime factors ` of such discriminants can be characteristics of fields
where Gm,−1(X) has double roots. Then, we factor such Gm,−1(X)
over the corresponding finite fields IF` for such primes `, and can see
that there is always an irreducible factor of Gm,−1(X) with multiplicity
1 which is not a factor of any Gk,−1(X) (k|m, k < m) over IF`. This
completes the proof. ut

When d > 2 we can study the arithmetic structure of the polynomials
Gk,γ by use a polynomial version of the ABC-conjecture of Mason [25,
page 156, Corollary]. We note that it has also been discovered indepen-
dently by Silverman [32] and Stothers [35, Theorem 1.1], see also [34]).
We present it in Lemma 2.5 below.

For a polynomial F ∈ IFq[X] we use rad (F) to denote the product
of all monic irreducible divisors of F .

Lemma 2.5. Let A, B, C be nonzero polynomials in IFq[X] satisfying
A+B+C = 0 and gcd (A,B,C) = 1. If degA ≥ deg rad (ABC), then
A′ = B′ = C ′ = 0.

We are now ready to prove our main technical statement that we use
for d ≥ 3 which asserts that some general products of polynomials Gk,γ

over distinct integers are not perfect e-th powers.

Lemma 2.6. Suppose that gcd(d − 1, q) = 1. Then, for d ≥ 3, e =
gcd(d, q−1) ≥ 2, any J ≥ 2 and any collection of integers not all equal
to zero

A = {αj,γ ∈ {0, . . . , e− 1} : 2 ≤ j ≤ J, γ ∈ Γ∗
e},

we have
J∏

j=2

∏
γ∈Γ∗

e

G
αj,γ

j,γ 6= P e

for any polynomial P ∈ IFq[X].

Proof. Clearly, we observe that for j = 1, 2, . . . we have X | Gj,γ but
X2 - Gj,γ for any γ ∈ Γ∗

e. Hence, define

G∗
j,γ = Gj,γ/X, j = 1, 2, . . . , γ ∈ Γ∗

e.

By counting the common roots, for distinct γ, δ ∈ Γ∗
e we have

(2.21) gcd(G∗
j,γ, G

∗
j,δ) = 1.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 13

Therefore, applying Lemma 2.2, for any positive integers k and h and
δ ∈ Γ∗

e we obtain

deg gcd

G∗
k+h,δ,

∏
γ∈Γ∗

e

Gk,γ

 = deg gcd

G∗
k+h,δ,

∏
γ∈Γ∗

e

G∗
k,γ

= deg gcd

G∗
h,δ,

∏
γ∈Γ∗

e

G∗
k,γ

 ≤ dh − 1.

(2.22)

For any k ≥ 1 and γ ∈ Γ∗
e, since X | Fk−1 and gcd(d − 1, q) = 1, we

get that (F d
k−1/X)

′ 6= 0; then applying Lemma 2.5 with A = −G∗
k,γ,

B = γF d
k−1/X and C = γ − 1, we derive

dk − 1 < deg rad
(
G∗

k,γF
d
k−1/X

)
= deg rad

(
G∗

k,γFk−1

)
≤ deg rad

(
G∗

k,γ

)
+ dk−1.

Thus,

(2.23) deg rad
(
G∗

k,γ

)
≥ (d− 1)dk−1, k = 1, 2, . . . , γ ∈ Γ∗

e.

Denote

QJ,A =
J∏

j=2

∏
γ∈Γ∗

e

G
αj,γ

j,γ ,

and assume that QJ,A = P e for some P ∈ IFq[X]. Let

Q̃J,A =
J∏

j=2

∏
γ∈Γ∗

e

G
α̃j,γ

j,γ ,

where α̃j,γ = e − αj,γ if αj,γ 6= 0 and α̃j,γ = 0 otherwise. Then, since
each αj,γ ≤ e− 1, we have

P |
J∏

j=2

∏
γ∈Γ∗

e , αj,γ 6=0

Gj,γ.

Noticing that

Q̃J,A =

(∏J
j=2

∏
γ∈Γ∗

e , αj,γ 6=0Gj,γ

P

)e

,

we conclude that Q̃J,A is also a perfect e-th power. Let k ≥ 2 be the
largest j ∈ {2, . . . , J} for which one of the integers αj,γ, γ ∈ Γ∗

e is

positive. Considering, if necessary, Q̃J,A we can always assume that

α = min
γ∈Γ∗

e

{αk,γ : αk,γ > 0} ≤ e/2.

14 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

We now fix some δ ∈ Γ∗
e with αk,δ = α, 1 ≤ α ≤ e/2. If a polynomial

H ∈ IFq[X] is such that the product H(G∗
k,δ)

αk,δ is a perfect e-th power,
then

rad (G∗
k,δ)

e | H(G∗
k,δ)

αk,δ .

So,

rad (G∗
k,δ)

e−αk,δ | H
(
G∗

k,δ/rad (G
∗
k,δ)
)αk,δ ,

which, combining with (2.23), implies that

deg gcd
(
(G∗

k,δ)
e−αk,δ , H

)
≥ deg gcd

(
rad (G∗

k,δ)
e−αk,δ , H

)
≥ (e− αk,δ) deg rad (G

∗
k,δ)− αk,δ

(
degG∗

k,δ − deg rad (G∗
k,δ)
)

≥ e(d− 1)dk−1 − αk,δ(d
k − 1) ≥ e

2
(d− 2)dk−1.

(2.24)

If k = 2, that is J = 2 and

QJ,A =
∏
γ∈Γ∗

e

G
αk,γ

k,γ = P e,

then by (2.24), we obtain

deg gcd
(
(G∗

k,δ)
e−αk,δ , QJ,A/

(
G∗

k,δ

)αk,δ
)
≥ e

2
(d− 2)dk−1 > 0.

However, combining (2.21) with x - G∗
k,δ, we have

deg gcd
(
(G∗

k,δ)
e−αk,δ , QJ,A/

(
G∗

k,δ

)αk,δ
)
= 0,

which leads to a contradiction. So, we must have k 6= 2, that is k ≥ 3.
Now, combining (2.21) with (2.24), we have

deg gcd

(G∗
k,δ

)e−αk,δ ,
k−1∏
j=2

∏
γ∈Γ∗

e

G
αj,γ

j,γ

= deg gcd

((
G∗

k,δ

)e−αk,δ , QJ,A/
(
G∗

k,δ

)αk,δ

)
≥ e

2
(d− 2)dk−1.

(2.25)

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 15

On the other hand, we deduce that

deg gcd

(G∗
k,δ

)e−αk,δ ,

k−1∏
j=2

∏
γ∈Γ∗

e

G
αj,γ

j,γ

≤ deg gcd

(G∗
k,δ

)e−αk,δ ,
∏
γ∈Γ∗

e

G
αk−1,γ

k−1,γ

+
k−2∑
j=2

∑
γ∈Γ∗

e

αj,γ degGj,γ

≤ deg gcd

(G∗
k,δ

)e−1
,
∏
γ∈Γ∗

e

Ge−1
k−1,γ

+ (e− 1)2
k−2∑
j=2

dj.

Using (2.22) (with h = 1) we get

deg gcd

(G∗
k,δ

)e−1
,
∏
γ∈Γ∗

e

Ge−1
k−1,γ

 ≤ (e− 1)(d− 1).

Collecting the above estimates, we obtain

deg gcd

(G∗
k,δ

)e−αk,δ ,
k−1∏
j=2

∏
γ∈Γ∗

e

G
αj,γ

j,γ

≤ (e− 1)(d− 1) + (e− 1)2

dk−1 − 1

d− 1
.

(2.26)

It is now easy to verify that (2.26) contradicts (2.25) when d > 3.
Indeed, combining (2.25) with (2.26), we get

e

2
(d− 2)dk−1 ≤ (e− 1)(d− 1) + (e− 1)2

dk−1 − 1

d− 1
.

Then, since d > 3, we can get

e(d− 1)dk−1 ≤ (e− 1)(d− 1)2 + (e− 1)2dk−1 − (e− 1)2,

and thus

(e− 1)dk−1 ≤ (e− 1)(d− 1)2 − (e− 1)2,

which is impossible by noticing that k ≥ 3.
Finally, we take d = 3. Then, e = 3. From (2.24), we have

deg gcd

(G∗
k,δ

)e−αk,δ ,
k−1∏
j=2

∏
γ∈Γ∗

e

G
αj,γ

j,γ

≥ e(d− 1)dk−1 − αk,δ(d

k − 1) ≥ 3k + 1,

which contradicts (2.26). The desired result now follows. ut

16 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

Let Xe be the group of all multiplicative characters of IF∗
q of order e,

that is, characters χ with χe = χ0, where χ0 is the principal character.
We also define X ∗

e = Xe \ {χ0}.
We recall the following special case of the Weil bound of character

sums (see [16, Theorem 11.23]).

Lemma 2.7. For any polynomial Q(X) ∈ IFq[X] with Z distinct zeros
in IFq and which is not a perfect e-th power in the ring of polynomials
over IFq, and χ ∈ X ∗

e , we have∣∣∣∣∣∣
∑
a∈IFq

χ (Q(a))

∣∣∣∣∣∣ ≤ Zq1/2.

We are now ready to establish a lower bound on Nd(q).

Theorem 2.8. Suppose that gcd(d − 1, q) = 1. Then, for any d ≥ 2
and e = gcd(d, q − 1) ≥ 2, we have

Nd(q) ≥ qρd,e+o(1)

as q → ∞, where

ρd,e =
1

2(e− 1 + log d/ log e)
.

Proof. We define J by the inequalities

(dee−1)J+1 ≤ q1/2/ log q < (dee−1)J+2.

Note that for the fixed d, we have J ≥ 2 when q is sufficiently large.
For each j = 2, . . . , J and γ ∈ Γ∗

e we choose a representative σj,γ of
the quotient group IF∗

q/∆e, where ∆e is the group of e-th powers, and
consider the collection

σ = {σj,γ : j = 2, . . . , J, γ ∈ Γ∗
e}.

Let A(σ) denote the number of a ∈ IF∗
q such that

γf (j)
a (a)− a ∈ σj,γ∆e, for all j = 2, . . . , J, γ ∈ Γ∗

e.

Clearly, if for any σ as in the above we have

(2.27) A(σ) > 0,

then the vector (2.11) takes all eJ−1 possible values and thus we have

Nd(q) ≥ eJ−1,

which implies the desired result. So, it remains to prove (2.27) for
sufficiently large q and the above choice of J .

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 17

Let χ be a primitive character of order e (that is, a generator of Xe).
We can now express A(σ) using character sums

A(σ) =
∑
a∈IF∗

q

1

e(e−1)(J−1)

J∏
j=2

∏
γ∈Γ∗

e

e−1∑
αj,γ=0

χαj,γ (Gj,γ(a)/σj,γ) .

This follows directly from the relation Gj,γ(a) = γf
(j)
a (a) − a and the

following orthogonality relation

e−1∑
αj,γ=0

χαj,γ (Gj,γ(a)/σj,γ) =

{
e if Gj,γ(a)/σj,γ ∈ ∆e,
0 otherwise,

by noticing that χ is of order e and is a generator of Xe (see, also [16,
Section 3.1]).

Expanding the product, and changing the order of summation we
obtain e(e−1)(J−1) character sums parametrized by different choices of
αj,γ ∈ {0, . . . , e− 1}, j = 2, . . . , J , γ ∈ Γ∗

e.
Note that χ0 (Gj,γ(a)/σj,γ) = 1 if and only if Gj,γ(a) 6= 0, and each

polynomial Gj,γ has degree d
j. So, by estimating the number of distinct

zeros of the polynomial
∏J

j=2

∏
γ∈Γ∗

e
Gj,γ, the term corresponding to the

choice αj,γ = 0, j = 2, . . . , J , and γ ∈ Γ∗
e, is not less than q − 1− (e−

1)dJ+1.
For the other terms, using Lemma 2.4 (if d = 2) and Lemma 2.6

(if d ≥ 3), we apply Lemma 2.7 to each of them by noticing that each
corresponding polynomial has at most (e−1)dJ+1 distinct zeros. Hence,
we obtain

A(σ) ≥ q − 1− (e− 1)dJ+1 − (e(e−1)(J−1) − 1)(e− 1)dJ+1q1/2

e(e−1)(J−1)

≥ 1

e(e−1)(J−1)

(
q − 1− (dee−1)J+1q1/2

)
,

which implies (2.27) for sufficiently large q and the above choice of J .
ut

We remark that

max
d, e|d

ρd,e = ρ2,2 = 1/4

is the exponent corresponding to quadratic polynomials over IFq with
an odd q.

18 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

3. Isomorphism testing of functional graphs

3.1. Preliminaries. In this section, we give a practical and efficient
isomorphism testing algorithm for functional graphs of quadratic poly-
nomials that is linear (in time and memory). We also extend this
isomorphism testing algorithm from quadratic polynomials to any ar-
bitrary function with only a slight increase in the time complexity.

We note that the class of functional graphs over IFq coincides with
the class of directed graphs on q nodes with all out-degrees equal to 1.
However, the in-degrees depend on the particular function f associated
with this graph.

Our algorithms do not depend on the arithmetic structure of q (for
example, that this is a prime power) or on algebraic properties of the
underlying domain (for example, that it has a structure of a field).
Hence we present them for functional graphs over an arbitrary set of n
elements.

Clearly, any functional graph is extremely sparse (with exactly n
arcs) and the size of the input that is to be considered for efficient
isomorphism testing is linear in the size of an adjacency list (that is,
O(n log n)), rather than an adjacency matrix (that is, O(n2)). We first
introduce several graph related notations.

3.2. Notations and graph input size. Given two functions f and h,
we denote the functional graph Gf of f as G and the functional graph
Gh of h as H. Given a functional graph G, we collect its connected
components of the same size in the sets CG

i with 1 ≤ i ≤ sG, where sG

is the total number of distinct sizes of components of G. For each set
CG

i we denote the size of the components in the set by kGi and the size
of the set itself by cGi = #CG

i . Let

(3.1) kG∗ = max
1≤i≤sG

kGi and cG∗ = max
1≤i≤sG

cGi .

One can think of the component sizes as a kind of “spectrum” of G,
kG∗ as the larges entry in this spectrum (that is, the size of the largest
component of G) and with cG∗ as the largest occurring multiplicity. In
particular, cG∗ is bounded by the number of components (which is small
in expectation for random graphs), and if G is connected then cG∗ = 1
and kG∗ = #G.

To give a small example, the function f(X) = X2 + 6 over the field

F13 has 3 components, of sizes (2, 2, 9). Hence sGf = 3, c
Gf

1 = 2, c
Gf

2 = 1,

k
Gf

1 = 2, k
Gf

2 = 9. This gives c
Gf
∗ = 2 and k

Gf
∗ = 9.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 19

When there is no ambiguity, we omit the superscript G. For con-
venience we denote the in-degree of a vertex v as d−(v) and the cor-
responding in-neighbourhood as N−(v). Since the out-degree of any
vertex is 1, each connected component C in a functional graph has
exactly one cycle (which may be a self-loop), which we denote Cyc(C).
Each vertex is the root of a (possibly empty) tree.

3.3. Isomorphism testing of functional graphs of quadratic po-
lynomials. We now present our meta-algorithm to test the isomor-
phism. It comprises three phases:

Phase 1: Given two functional graphs G and H, we first identify
the connected components in each graph, and the associated
cycle and trees in each component.

Phase 2: For each component we produce a canonical encoding.
Phase 3: Finally we construct a prefix tree (formally a trie [20]),

using the encodings of G, noting at each vertex of the trie the
number of code strings that terminate at that vertex. Then
for each encoded component of H we match the code string
against the trie, and decrement the counter at the appropriate
trie vertex.

If all counters are zero after this is complete, the two graphs are
isomorphic.

The first phase is achieved by combining a cycle detection algorithm
and depth-first search, as laid out in Algorithm 1.

Algorithm 1 Identification of Connected Components

1: while unassigned vertices remain do
2: Pick an unassigned vertex v.
3: Perform Floyd’s cycle detection algorithm starting at v.
4: for each cycle vertex u do
5: Perform a depth-first search on the tree attached at u.
6: end for
7: end while

The cycle detection algorithm can be done in linear time and space
(in the size of each connected component) with Floyd’s algorithm [19]
using only two pointers. The depth-first search is a simple pre-order
traversal of the tree and thus only requires linear time and space [18].
In total, the complexity of the first phase is thus linear in time and
space with the size of the graph. Note that this phase is independent
of the function f (it has linear complexity for any function f), leading
to the following lemma.

20 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

Lemma 3.1. For any functional graph G of n vertices, Algorithm 1
identifies all Connected Components and has linear time and memory
complexities.

On the other hand, the second phase depends on the nature of the
function. In this section, we focus on quadratic polynomials which pro-
vide an especially interesting case when considering the isomorphism
of functional graphs. A k-ary tree is full (or proper) if every non-leaf
vertex has exactly k children. (Note that, here, a full k-ary tree need
not have all root-leaf paths have the same length.) As a quadratic
polynomial can have at most one repeated root, the functional graph
is almost a full binary tree. This allows certain savings in building a
canonical labelling of the graph. We note that if there is a repeated
root, we can deal with the containing component specially by noting
which vertex has one child, and adding a dummy second child, then
in the two graphs under consideration the dummy vertices must be
matched to each other in any isomorphism.

We recall that the number of different binary trees on n nodes is
the n-th Catalan number, which for large n is roughly proportional to
4n/n3/2. It is well-known that binary trees can be encoded with ex-
actly 2n + 1 bits [18]: by first extending the original tree by adding
“special” nodes whenever a null subtree is present (two for leaves and
one for non-full internal nodes), and then doing a pre-order traversal
of the tree labelling original nodes with ones and special nodes with
zeroes. When the binary tree is full (which is our case with quadratic
polynomials), only n bits suffice to encode the original tree by using a
similar technique (simply making the original leaves the special nodes
and then performing a pre-order traversal of the tree labelling inter-
nal nodes with ones and leaves with zeroes). Our canonical labelling
extends this bound by including the cycle with a minimal number of
extra bits.

To produce the canonical labelling of a functional graph derived from
a quadratic polynomial we employ Algorithms 2 and 3, where ε is the
empty string, si is the string s after circular shift to the bit position
i, and val(s) is the interpretation of the string s as a number. In the
description of the algorithms we denote string concatenation by ◦.

Algorithm 2 runs on each component in turn and produces a canon-
ical label for the component by applying Algorithm 3, that is, function
Label(v), to each tree rooted on a vertex of the component’s cycle
(Figure 3.1 gives an example), concatenating these labels in the order
given by the cycle, then shifting circularly the concatenated label to
begin with the cycle vertex that gives the greatest value. Note that

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 21

Algorithm 2 Canonical Labelling

Require: component C
s := ε
for each vertex v in Cyc(C) do
s := s ◦ Label(v)

end for
max := val(s1)
maxpos := 1
for i := 2 to #Cyc(C) do
if val(si) > max then
max := val(si)
maxpos := i

end if
end for
return smaxpos

Algorithm 3 Label(v)

Require: vertex v.
1: if d−(v) = 0 then
2: return “0”
3: else
4: left := Label(left(v))
5: right := Label(right(v))
6: if left < right then
7: return 1 ◦ right ◦ left
8: else
9: return 1 ◦ left ◦ right
10: end if
11: end if

if t such vertices exist (that is, t possible circular shifts leading to the
greatest value), the component must have at least a t-fold symmetry of
rotation around the cycle. Thus, this maximal orientation of the cycle
is unique up to automorphism.

Algorithm 3 encodes a full, rooted, binary tree by assigning each
vertex a single bit: 1 if the vertex is internal, 0 if it is a leaf. The
label is then recursively built by concatenating the assigned bit of the
current vertex v to the lexicographically sorted labels of its left child,
left(v), and right child, right(v). In effect this produces a traversal of
the tree where we traverse higher weight subtrees first. As each vertex

22 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

A

B

C D

E

F

G H

I

1 11000︸ ︷︷ ︸
from E

from B︷︸︸︷
100

100

0 0

1 100︸︷︷︸
from F

0

100

0 0

0

Figure 3.1. An example binary tree labelled with the
canonical coding generated at each level by Algorithm 3.

contributes one bit to the label, the total length of the label is k bits
for a component of size k and thus n bits for the entire graph.

Lemma 3.2. For any functional graph G of a quadratic polynomial
over IFq with n = q vertices, Algorithms 2 and 3 build an n-bit size
canonical labelling of G and have linear time and memory complexities.

Proof. From the description of the traversal process in Algorithms 2
and 3, it is clear that each node v in the tree is associated with a
canonical coding Label(v) of size |Tv| bits, where Tv is the subtree
with root v. All leaves are labelled with 0, and the canonical label
of the whole tree Tv has exactly k = |Tv| bits. The overall memory
requirement remains linear: both child labels can be discarded, on the
fly, as a parent label is generated.

The worst-case time complexity is slightly more involved, a (lexico-
graphic) sorting is required at each internal node. More precisely, each
internal node v requires a number of (lexicographic) bit comparisons
comp(v) equal to the size of the smallest label among both children:

comp(v) = min {|Label(left(v))|, |Label(right(v))|}

= min {|Tleft(v)|, |Tright(v)|} ≤
⌊
|T (v)| − 1

2

⌋
.

(3.2)

Hence, we see that the worst case for the number of bit comparisons
occurs when each subtree is balanced, that is when the full binary tree
is complete. Using this simple recurrence, it is easy to see that this
leads to less than n log n bit comparison s for any binary tree of size n,
which is linear in the size of the input and completes the proof. ut

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 23

Note that to finally test the isomorphism between two graphs G and
H, it remains to compare the canonical labellings of each connected
components of each graph with one another (Phase 3). A general
brute-force approach (by comparing canonical labellings of connected
components pair-wise) could be ineffective (as shown in the next sec-
tion). To keep it linear in the size of the input, the third phase builds
a trie (or prefix tree) using the encodings of the functional graph G
by inserting the canonical labelling of each connected components, ob-
tained after Phase 2, one after the other. Each node in the trie is also
equipped with a counter initialised to zero and incremented each time
the node represents the terminating node of a newly inserted canonical
labelling of a connected component. It then suffices to check that each
canonical labelling of each connected component of H is represented
in the trie, decrementing the respective counter each time there is a
match. The two functional graphs are isomorphic if there is no mis-
match for all canonical labellings of H (all counters are zero after all
components have been considered), and are non-isomorphic otherwise.

Lemma 3.3. For any functional graph G and H, each with an n-bit
canonical labelling, Phase 3 tests their isomorphism by comparing the
canonical labelling of G and H and has linear time and memory com-
plexities.

Proof. It is easy to see that the trie built for the functional graph G has
at most n nodes. This case is only possible if all canonical labellings of
connected components are disjoint (that is, generate disjoint branches
in the tree). As more canonical labels overlap, fewer nodes are cre-
ated. If the labels match, the respective counter (and its size) are
incremented, but the cost of increasing the counter remains lower than
the cost of creating a distinct branch in the trie. Thus, the overall size
remains O(n) in memory space. It is also easy to see that creating the
initial trie with the canonical labels of G takes O(n) time and memory,
and the same cost occurs for matching all canonical labels of H (and
may stop before if the two graphs are not isomorphic). ut

Again it is interesting to note that the complexity of Phase 3 does
not depend on the type of functional graph but depends solely on the
size of the canonical labelling.

Combining Lemmas 3.1, 3.2 and 3.3, we obtain the following theo-
rem.

Theorem 3.4. For any functional graphs G and H of quadratic func-
tions with n vertices, Phases 1, 2 and 3 combined provide an isomor-
phism test that has linear time and memory complexities.

24 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

It is also interesting to note that the trie built in Phase 3 provides
a canonical representation of size O(n) for any functional graph of size
n. We exploit this property to present an algorithm to enumerate all
functional graphs corresponding to polynomials of degree d over IFq in
Section 3.5.

3.4. General functional graph isomorphism. In a general setting,
there are numerous standard results that can be used. The graph
isomorphism problem can be solved in time linear in the number of
vertices for connected planar graphs [15] and (rooted) trees [17]. Also
the fact that our graphs are directed is not an issue as there is a linear-
time reduction from directed graph isomorphism to undirected graph
isomorphism [26].

We first give a simple example of how these techniques can be com-
bined to prove a simple upper bound for Functional Graph Isomor-
phism for arbitrary functions. Other combinations of these standard
techniques are possible to give similar near-linear time. However we
prove in the remainder of this section that simple and practical, yet
efficient (in time and memory), techniques can be used by extending
the algorithms of Section 3.3 to arbitrary functions.

Theorem 3.5. For any functional graphs G and H of arbitrary func-
tions with n vertices, there is an isomorphism test using standard algo-
rithms with O(c∗n) time complexity, where c∗ = max{cG∗ , cH∗ } and cG∗ ,
cH∗ are defined by (3.1).

Proof. A simple approach that can be applied to functional graphs is
to run Algorithm 1 (that builds each connected component) and then
compare the connected components of the two graphs pairwise, using
the appropriate algorithm as a subroutine (for components with a cycle,
we can use the planar graph algorithm, for components with a self-loop,
we can use the rooted tree algorithm where we treat the vertex with
the self-loop as the root). This involves at most

(
n
2

)
comparisons and

thus gives an O(n2) algorithm overall.
Using the sizes of the various components, we can refine this analysis

slightly. Given two functional graphs G and H, if we have the isomor-
phism G ∼= H then sG = sH and for all i ∈ [1, sG] we also have cGi = cHi
and kGi = kHi . (If the graphs are isomorphic, c∗ = cG∗ = cH∗ .) On the
other hand, if one of these pairs of values disagree then G 6∼= H. Then,
denoting these common values as s and ci, ki, 1 ≤ i ≤ s, clearly for
both graphs we have

s∑
i=1

ciki = n,

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 25

where n is the order of the graphs.
Clearly we only need to compare components in the same size class.

This gives a running time proportional to:
s∑

i=1

c2i ki ≤ c∗

s∑
i=1

ciki = c∗n,

where c∗ = maxi=1,...,s ci. ut

If each size class Ci is bounded, then this näıve algorithm is linear
in the number of vertices. In the general case however it is likely there
are numerous components of the same size [9] thus possibly leading to
a worst-case bound of O(n2) time. Fortunately even in this case, as we
now show that we can still solve the isomorphism problem with linear
memory complexity and by increasing slightly the cost of building the
canonical labels.

The challenge is that, in the general case, we cannot assume that the
trees associated with each component are full, nor necessarily have any
particular bound on the number of children (note that polynomials of
degree d do however have at most d children in the trees).

For the general case we replace Algorithm 3 with Algorithms 4 and 5,
and replace the call to Label in Algorithm 2 with a call to LeftLabel
with the root vertex of the tree.

Algorithm 4 LeftLabel

Require: vertex v
1: labelv := ε
2: labelSet := ∅
3: finalLabel := ε
4: if v is not a leaf then
5: labelv := 1 ◦ LeftLabel(left(v))
6: if v has a right child then
7: labelSet := RightLabel(right(v))
8: end if
9: labelSet := labelSet ∪ {labelv}
10: Sort(labelSet)
11: for i := 1 to #labelSet do
12: finalLabel := finalLabel ◦ labelSet[i]
13: end for
14: else
15: finalLabel := 0
16: end if
17: return finalLabel

26 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

A

B C

D E

F

G

A

B

C

D

E

F

G

1 110100︸ ︷︷ ︸
from C

1100︸︷︷︸
from F

10︸︷︷︸
from B

0

10

110100

10

10

1100

10

0

0

0 0

0 0

0

Figure 3.2. An example non-binary tree (left) and the
equivalent binary tree (right) labelled with the canonical
coding generated at each level by Algorithms 4 and 5.
The black vertices in the binary tree on the right are the
ad ded vertices.

Algorithm 5 RightLabel

Require: vertex v
1: labelv := ε
2: labelSet := ∅
3: if v is not a leaf then
4: labelv := 1 ◦ LeftLabel(left(v))
5: else
6: labelv := 0
7: end if
8: if v has a right child then
9: labelSet := RightLabel(right(v))
10: end if
11: return labelSet ∪ {labelv}

That is, the second phase, in the general case, is achieved by Algo-
rithms 2, 4 and 5, which take each component of the input graph(s),
produce a canonical label by first labelling each tree rooted at a cycle
vertex, concatenating these labels then shifting the label to obtain the
maximum value. Ultimately, we consider these labels as bit strings with
the final label of a component taking 2k bits where k is the number of
vertices in the component. We can then encode the graph as a whole
with 2n bits. To obtain this bound we represent the trees attached to
the cycles with left-child-right-sibling binary trees (e.g. see Knuth [18]
for binary representation of trees), in which the right child of a vertex

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 27

is a sibling and the left child is the first child (we can take any ordering
for our purposes).

The two tree labelling algorithms (LeftLabel and RightLabel)
together produce the canonical labelling of the tree in several steps.
First the tree is implicitly extended to a full binary tree by adding leaf
vertices whenever a vertex is missing a child, except at the root, as
it cannot have siblings, so the terminating leaf is superfluous. Each
internal vertex is labelled with “1” and each leaf with “0”. Each vertex
extends its label by concatenating its label with the label of its left
subtree, then adding this label to the set of labels received from its
right subtree. If a vertex is a left child (that is, it is the first child
of its parent in the normal representation), it sorts this set of labels,
largest to smallest, concatenates them and passes this label to its parent
(Figure 3.2 illustrates the process).

Lemma 3.6. The combined Algorithms 4 and 5 perform at most O(k2)
bit comparisons and use linear memory space to build a canonical label
of size 2k bits for any component of size k.

Proof. We only need to prove that these two algorithms perform at
most O(k2) bit comparisons. Notice that the main cost at each inter-
nal node is to lexicographically sort the labels of its children, and the
lexicographic sort of m labels of size n bits costs O(mn) bit compar-
isons. Fix an arbitrary component C of size k. Suppose that there are
t trees rooted at the cycle of C with sizes di, 1 ≤ i ≤ t. Then, for
labelling C, the number of bit comparisons is proportional to

t∑
i=1

di · k = k
t∑

i=1

di = k2,

which concludes the proof. ut

Combining the costs of labelling for all components, with the rest of
the meta-algorithm, we obtain the following result for testing isomor-
phism.

Theorem 3.7. For any functional graphs G and H of arbitrary func-
tions with n vertices, there is an isomorphism test using O(k∗ · n) bit
comparisons and linear memory complexity, where k∗ = max{kG∗ , kH∗ }
and kG∗ , k

H
∗ are defined by (3.1).

Proof. We need to label all components. Using the sizes of various
classes of components in the graph, that is, Lemma 3.6, the overall

28 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

running time is proportional to:
s∑

i=1

cik
2
i ≤ k∗

s∑
i=1

ciki = k∗n,(3.3)

where

k∗ = max
i=1,...,s

|ki|.

Combining this result with Lemmas 3.1 and 3.3 completes the proof.
ut

It is interesting to note the trade-off between c∗, the maximum num-
ber of components of same size used in Theorem 3.5 and k∗, the largest
component, used in Theorem 3.7, as it seemingly provides a choice
among algorithms to test the isomorphism depending of related features
of the graph. However, it should be emphasized that the comparison
is not straightforward as the algorithm of Theorem 3.7 considers bit
comparisons as the metric of the time cost, while Theorem 3.5 employs
more involved algorithms.

We note that the bound (3.3) used in the proof of Theorem 3.7
together with Lemma 3.6 also lead to an upper bound on the size of
the labelling of any functional graph.

Corollary 3.8. The meta-algorithm used for isomorphism testing in
Theorem 3.7 uses at most O(k∗ ·n) bit comparisons and linear memory
space to build canonical labels of size of 2n bits that can be represented
in a trie of size O(n) for any functional graph of size n, where k∗ is
defined by (3.1).

Proof. As each connected component of k vertices contributes 2k bits
to the final labelling of the graph of size n, the total number of bits for
representing all components is 2n. Finally, using Phase 3, we can built
a trie of at most 2n nodes to encode all canonical encodings. ut

3.5. Counting functional graphs. We now present an algorithm to
enumerate all functional graphs corresponding to polynomials of degree
d over IFq except that d = 2 and 2 | q.

Theorem 3.9. For any d and q except for d = 2 and 2 | q, we can
create a list of all Nd(q) distinct functional graphs generated by all
degree d polynomials f ∈ IFq[X] in O(d2qd log2 q) arithmetic operations
and comparisons of bit strings of length O(q2).

Proof. Let m = gcd(d− 1, q − 1) and let Ω = {ω1, . . . , ωm} be a set of
representatives of the quotient group IF∗

q/Hm, where Hm is the group

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 29

of m-th powers in IFq, that is

Hm = {ηm : η ∈ IF∗
q}.

Recall the automorphism φλ,µ defined in (2.2) for any λ ∈ IF∗
q and

µ ∈ IFq. We verify that for a polynomial

(3.4) f(X) =
d∑

j=0

ajX
j ∈ IFq[X], deg f = d,

we have

φ−1
λ,µ ◦ f ◦ φλ,µ(X) = λ−1 (f(λX + µ)− µ)

=
d∑

j=0

AjX
j,

for some coefficient Aj ∈ IFq, j = 0, . . . , d. In particular, we have

Ad = λd−1ad,

Ad−1 = λd−2µdad + λd−2ad−1,

Ad−2 = λd−3µ2d(d− 1)

2
ad + λd−3µ(d− 1)ad−1 + λd−3ad−2.

(3.5)

We claim that for any polynomial f ∈ IFq[X] of the form (3.4) we can
find λ ∈ IF∗

q such that Ad(ad;λ, µ) ∈ Ω. Indeed, we can assume that
ad = ωiη

m for some i (1 ≤ i ≤ m) and η ∈ IF∗
q. Since there exist two

integers s, t such that s(d− 1) + t(q − 1) = m, we have ad = ωiη
s(d−1).

Then choosing λ = η−s, we get Ad(ad;λ, µ) = ωi ∈ Ω.
If gcd(d, q) = 1, then we can find an element µ ∈ IFq such that

Ad−1 = 0. Thus, it suffices to consider the polynomial F of the form
F (X) = AdX

d + g(X) where Ad ∈ Ω and g(X) ∈ IFq[X] is of degree
d− 2. Therefore, it is enough to examine the graphs GF only for such
mqd−1 < dqd−1 polynomials F .

Assume that gcd(d, q) 6= 1. Then, we must have d > 2. Noticing
that d(d − 1)/2 is divisible by the characteristic p of IFq, if Ad−1 6= 0
(that is ad−1 6= 0), we can choose µ ∈ IFq such that Ad−2 = 0. So, it
is enough to examine the graphs GF only for such 2mqd−1 < 2dqd−1

polynomials F (that is satisfying Ad ∈ Ω together with Ad−1 = 0 or
Ad−2 = 0).

Given such a polynomial f ∈ IFq[X] of degree d, we can construct
the graph Gf in time O(dq log2 q) (see [4]). After this, by Corollary 3.8,
for each graph, in time O(q2) we compute its canonical label. Using the
above discussion and inserting these labels in an ordered list of length

30 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

at most Nd(q) (or discarding if the label already in the list) gives an
overall time of O(dqd−1 · dq log2 q) = O(d2qd log2 q). ut

In particular, the running time of the algorithm of Theorem 3.9 is
at most d2qd+2+o(1).

4. Numerical results

4.1. Preliminaries. We note that the periodic structure of functional
graphs has been extensively studied numerically (see, for example, [3]).
These results indicate that “generic” polynomials, even of degree which
is relatively smaller then q, lead to graphs with cycle lengths with the
same distribution as of those associated with random maps (see [3,
Section 5]). It is useful to recall that if the degree is not restricted
than any map over IFq is represented by a polynomial.

It is not difficult to see that for an odd q, the functional graph of any
quadratic polynomial over IFq has (q−1)/2 leaves. Indeed, for f(X) =
X2+a the node a is always an inner node with in-degree 1 while other
nodes are of in-degree 0 or 2. Thus there are 1 + (q− 1)/2 = (q+ 1)/2
inner nodes and (q − 1)/2 leaves. On the other hand, the graph of a
random map on p nodes is expected to have p/e ≈ 0.3679 p leaves. It is
possible that there are some other structural distinctions. Motivated by
this, we have studied numerically several other parameters of functional
graph.

Our tests have been limited to quadratic polynomials in prime fields,
which can be further limited to polynomials of the form f(X) = X2+a,
a ∈ IFp. Various properties of the corresponding function graphs Gf

have been tested for all p polynomials of this form for the following
sequences of primes:

• all odd primes up to 100 (mostly for the purpose of testing our
algorithms, but this has also revealed an interesting property of
N2(17));

• for the sequence of primes between 101 and 102407 where each
prime is approximately twice the size of its predecessor;

• for the sequence of 30 consecutive primes between 204803 (which
could also be viewed as the last element of the previous group)
and 205171;

• for the sequence of 10 consecutive primes between 500009 and
500167;

• for the prime 1000003.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 31

For these primes, we tested the number of distinct primes and also
average and extreme values of several basic parameters of the graphs
Gf .

Our numerical results revealed that some of these parameters are the
same as those of random graphs, but some (besides the aforementioned
number of inner nodes) deviate in a rather significant way. More im-
portantly (and as far as we are aware), some of these parameters of
graphs have never been discussed in the literature before this work.
Using our practical algorithms of Section 3 we have initiated the study
of these interesting parameters.

We present some of our numerical results (limited to those that show
some new and unexpected aspects in the statistics of the graphs Gf),
only for the primes of the last two groups, that is, for the set of primes

{500009, 500029, 500041, 500057, 500069, 500083,
500107, 500111, 500113, 500119, 500153, 500167, 1000003}.

4.2. Number of distinct graphs. We recall that Theorems 2.1 and 2.8
imply that

p1/4+o(1) ≤ N2(p) ≤ p

for all odd primes p. For all tested primes we have N2(p) = p except
for p = 2, 17 in which cases N2(2) = 3 and N2(17) = 16. This indicates
that most likely we have N2(p) = p for any odd prime p, except for
p = 17. However, proving this may be difficult as the case of p = 17
shows that there is no intrinsic reason for this to be true (apart from the
fact that, as p grows, it is natural to expect that the “probability” for a
coincidence of two functional graphs of p distinct quadratic polynomials
becomes smaller).

Finally, we note that p = 17 is a Fermat prime. Hence we have also
checked the two next Fermat primes p = 257 and p = 65537 for which
we still have N2(257) = 257 and N2(65537) = 65537. Note the no
larger Fermat primes are known or expected to exist.

4.3. Cyclic points and the giant components. Our numerical tests
show that the average values of

• the number of cyclic points,
• the size of the largest connected components,

behave like expected from random maps, which are predicted to be√
πp/2, (see [9, Theorem 2 (ii)]) and γp where γ = 0.75788 . . ., (see [9,

Theorem 8 (ii)]), respectively.

32 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

It is also interesting to investigate the extreme values. More precisely,
let c(f) be the number of cyclic points of Gf and let

C(p) = max{c(f) : f(X) = X2 + a, a ∈ IFq}.

In all our tests, except for the primes p = 5, 13, 17, the value of c(f) is
maximised on the function graphs of one of the polynomials f0(X) =
X2 and f−2(X) = X2 − 2, for which

c(f0) = r + 1 and c(f−2) = (r + s)/2,

where r is the largest odd divisor of p − 1 and s is the largest odd
divisor of p + 1, see [36, Theorem 6 (b)] and [36, Corollary 18 (b)],
respectively (note that in [36] the polynomials are considered as acting
on IF∗

p). In particular, if p ≡ 3 (mod 4) then the function graph of X2

has the largest possible number of cyclic points, which is (p + 1)/2.
Hence,

C(p) = (p+ 1)/2, for p ≡ 3 (mod 4).

We also note that for any p ≥ 3,

(4.1) C(p) ≥ max{r + 1, (r + s)/2} ≥ (p+ 3)/4.

Furthermore, if f(X) = X2 + a with a ∈ IF∗
p then the number of cyclic

points of Gf is at most 3p/8+O(1). Indeed, let Vf = {f(x) : x ∈ IFp}
be the value set of f (that is, the set of inner nodes of Gf). Clearly,
v ∈ Vf if v − a is quadratic residue modulo p. Since for the sums of
Legendre symbols modulo p we have∣∣∣∣∣∣

∑
v∈IFp

(
(v − a)(−v − a)

p

)∣∣∣∣∣∣ = 1

(see [22, Theorem 5.48]), we see that there are p/4 + O(1) values of
v ∈ IFp with v,−v ∈ Vf . However, because f(v) = f(−v), it is clear
that only one value out of v and −v can be a cyclic point. Hence, the
number of cyclic points in Gf for f(X) = X2 + a with a ∈ IF∗

p is at
most 3p/8 +O(1). In particular, we now see from (4.1) that

C(p) = 3p/8 +O(1), for p ≡ 5 (mod 8).

The smallest number of cyclic points has achieved the value 2 for all
tested primes except p = 3 and p = 7 (for which this is 1).

In Table 4.1, we provide some numerical data for the number of
cyclic points taken over all polynomials except for the above two special
polynomials. In particular, we give the results for

C∗(p) = max{c(f) : f(X) = X2 + a, a ∈ IFq \ {0,−2}}.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 33

We remark using the transformation φλ,µ of the proof of Theorem 2.1
one can reduce the study of arbitrary quadratic polynomials to poly-
nomials of the above shape.

Prime p Min Max Average Expected
500009 2 3578 886.2239149 886.2349015
500029 2 3620 885.9897086 886.2526257
500041 2 3798 885.0688786 886.2632600
500057 2 3468 884.9626481 886.2774389
500069 2 3556 885.8313906 886.2880730
500083 2 3596 884.9700189 886.3004792
500107 2 3527 884.5065536 886.3217460
500111 2 3732 884.3407057 886.3252912
500113 2 3805 885.1602624 886.3270634
500119 2 3873 884.5585953 886.3323802
500153 2 3472 884.8337362 886.3625078
500167 2 3644 884.7563204 886.3749130
1000003 2 5101 1252.451837 1253.316017

Table 4.1. Statistics of the number c(f) of cyclic points
for polynomials X2 + a, a 6= 0,−2, over IFp for different
primes p

It is quite apparent from Table 4.1 (and from our results for smaller
primes) that both the maximum values (that is, C∗(p)) and the average
values behave regularly and, as we have mentioned, the average value
fits the model of a random map quite precisely. We have not attempted
to explain the behaviour of C∗(p).

The size of the largest component achieved the largest possible value
p in all tested cases (thus, for any p some quadratic polynomial gener-
ates a graph with just one connected component, see Table 4.2 below).
On the other hand, the smallest achieved size of the largest component
does not seem to have a regular behaviour or even monotonicity.

4.4. Number of components. On the other hand, the average num-
ber of connected components has exhibited a consistent (but slowly de-
creasing) positive bias of about 9.5% over the predicted value 0.5 log p,
see [9, Theorem 2 (i)].

For every tested prime, at least one graph Gf has just 1 compo-
nent, while the largest number of components has been behaving quite
chaotically in all tested ranges.

The above is illustrated in Table 4.2:

34 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

Prime p Min Max Average Expected Ratio
500009 1 135 7.19772 6.561190689 1.097014298
500029 1 631 7.20138 6.561210688 1.097568778
500041 1 58 7.19640 6.561222687 1.096807766
500057 1 139 7.19259 6.561238685 1.096224409
500069 1 48 7.19785 6.561250684 1.097024081
500083 1 56 7.19328 6.561264682 1.096325228
500107 1 129 7.19792 6.561288677 1.097028397
500111 1 104 7.19801 6.561292676 1.097041445
500113 1 160 7.19402 6.561294676 1.096432999
500119 1 81 7.19518 6.561300675 1.096608791
500153 1 143 7.19312 6.561334665 1.096289150
500167 1 77 7.19699 6.561348661 1.096876629
1000003 1 22 7.54330 6.907756779 1.092004285

Table 4.2. Statistics of the number of connected com-
ponents for polynomials X2 + a ∈ IFp[X] for different
primes p

4.5. Most popular component size. As we have mentioned, mo-
tivated by the complexity bounds of the algorithms of Section 3, we
calculated the most popular size of the connected components of Gf .
That is, in the notation of Section 3.2 we present the statistics of

KG
∗ = max{kGi : cGi = cG∗ , 1 ≤ i ≤ sG}.

for functional graphs of quadratic polynomials over finite fields (note
that if there are several most popular sizes, then we chose the largest
one).

Our results for large primes are given in Table 4.3, where we present
some numerical data for

K∗(f) = K
Gf
∗ .

Say, for the example of Section 3.2 we have K∗(f) = 2. For all tested
primes p, the minimal value of the most common size is 1 or 2 (in fact, 2
becomes more common than 1 as p grows), while the largest value is p,
as in accordance with Table 4.2, for every p there is always a connected
graph Gf . The average value certainly shows a regular growth. How-
ever, there does not seem to be any results for this parameter for graphs
of random maps, so we have not been able to compare the graphs Gf

with such graphs. Our numerical results seems to suggest that the av-
erage of the most common size is proportional to p1/2. However, we
believe that more numerical experiments are needed before one can

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 35

confidently formulate any conjectures. One can also consider

κG∗ = min{kGi : cGi = cG∗ , 1 ≤ i ≤ sG},

that is, the smallest one out most popular sizes.

Prime Min Max Average
500009 1 500009 1689.24
500029 2 500029 1642.27
500041 2 500041 1604.86
500057 1 500057 1670.49
500069 2 500069 1638.32
500083 2 500083 1628.07
500107 2 500107 1635.19
500111 2 500111 1657.12
500113 2 500113 1655.44
500119 2 500119 1573.22
500153 2 500153 1690.84
500167 2 500167 1638.63
1000003 2 1000003 2272.39

Table 4.3. Statistics of the number of the values K∗(f)
of the most common size of connected components for
polynomials X2 + a ∈ IFp[X] for different primes p

Furthermore, we have also computed the number of components of
the most popular size (see Table 4.4), that is,

c∗(f) = c
Gf
∗ .

Clearly, the minimal value has been 1 for all tested primes (as before, we
appeal to Table 4.2 that provied some numerical data for that shows
that for every p there is connected graph Gf). However, the largest
multiplicity exhibits a surprising chaotic behavior.

The average value clearly converges to a certain constant. However,
we made no attempt to conjecture the nature of this constant.

As above with the case of the most common size, this parameter
has not been studied and there is no random map model to compare
against our results.

36 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

Prime Min Max Average
500009 1 75 1.18909
500029 1 465 1.18856
500041 1 18 1.18776
500057 1 104 1.18739
500069 1 18 1.18811
500083 1 24 1.18729
500107 1 56 1.18853
500111 1 40 1.18767
500113 1 80 1.18835
500119 1 24 1.18710
500153 1 108 1.18818
500167 1 54 1.18826
1000003 1 4 1.18843

Table 4.4. Statistics of the number c∗(f) of compo-
nents of the most common size for polynomials X2+a ∈
IFp[X] for different primes p

5. Further Directions

It is certainly interesting to study multivariate analogues of our re-
sults, that is, to study graphs on qm vertices, generated by a system of
m polynomials in m variables over IFq. It is possible that some results
and ideas of [13] can be useful here.

Polynomial graphs over residue rings are also interesting and appar-
ently totally unexplored objects of study. They may also exhibit some
new and rather unexpected features.

Finally, we pose an open question of obtaining reasonable approxi-
mations to the expected values of the quantities kG∗ and cG∗ for a graph
associated with a random map.

Acknowledgement

The authors are very grateful to Domingo Gómez-Pérez and to the
referees for many useful comments and suggestions.

The research of S. V. K. was partially supported by Russian Fund
for Basic Research, Grant N. 14-01-00332, and Program Supporting
Leading Scientific Schools, Grant Nsh-3082.2014.1; that of F. L. by
a Marcos Moshinsky fellowship; that of B. M. by Australian Research
Council Grants DP110104560 and DP140100118 ; that of M. S. by Aus-
tralian Research Council Grant DP130100237; and that of I. E. S. by
Australian Research Council Grants DP130100237 and DP140100118.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 37

References

[1] E. Bach, ‘Toward a theory of Pollard’s rho method’, Inform. and Comp., 90
(1991), 139–155.

[2] E. Bach and A. Bridy, ‘On the number of distinct functional graphs of affine-
linear transformations over finite fields’, Linear Algebra Appl., 439 (2013),
1312–1320.

[3] R. L. Benedetto, D. Ghioca, B. Hutz, P. Kurlberg, T. Scanlon and
T. J. Tucker, ‘Periods of rational maps modulo primes’, Math. Ann., 355
(2013), 637–660.

[4] R. Brent and P. Zimmerman, Modern computer arithmetic, Cambridge Univ.
Press, 2010.

[5] W.-S. Chou and I. E. Shparlinski, ‘On the cycle structure of repeated expo-
nentiation modulo a prime’, J. Number Theory , 107 (2004), 345–356.

[6] R. Crandall and C. Pomerance, Prime numbers: A computational perspec-
tive, 2nd edition, Springer-Verlag, New York, 2005.

[7] J. R. Doyle, X. Faber and D. Krumm, ‘Preperiodic points for quadratic
polynomials over quadratic fields’, New York J. Math., 20 (2014), 507–605.

[8] X. Faber, ‘Benedetto’s trick and existence of rational preperiodic structures
for quadratic polynomials’, Proc. Amer. Math. Soc., to appear.

[9] P. Flajolet and A. M. Odlyzko, ‘Random mapping statistics’, Lecture Notes
in Comput. Sci., vol. 434, Springer-Verlag, Berlin, 1990, 329–354.

[10] E. V. Flynn, B. Poonen, and E. F. Schaefer, ‘Cycles of quadratic polynomials
and rational points on a genus-2 curve’, Duke Math. J., 90 (1997), 435–463.

[11] R. Flynn and D. Garton, ‘Graph components and dynamics over finite fields’,
Intern. J. Number Theory , 10 (2014), 779–792.

[12] J. B. Friedlander, C. Pomerance and I. E. Shparlinski, ‘Period of the power
generator and small values of Carmichael’s function’, Math. Comp., 70
(2001), 1591–1605.

[13] G. Fusco and E. Bach, ‘Phase transition of multivariate polynomial systems’,
Mathem. Struct. Comp. Sci., 19 (2009), 9–23.

[14] T. A. Gassert, ‘Chebyshev action on finite fields’, Discr. Math., 315–316
(2014), 83–94.

[15] J. E. Hopcroft and J. K. Wong, ‘Linear time algorithm for isomorphism of
planar graphs (Preliminary Report)’, Proc. 6th Ann. ACM Symp. on Theory
of Comp., 1974, 172–184.

[16] H. Iwaniec and E. Kowalski, Analytic number theory , Amer. Math. Soc.,
Providence, RI, 2004.

[17] P. J. Kelly, ‘A congruence theorem for trees’, Pacific J. Math., 7 (1957),
961–968.

[18] D. E. Knuth, The art of computer programming, vol. I: Fundamental algo-
rithms, Addison-Wesley, 1968.

[19] D. E. Knuth, The art of computer programming, vol. II: Seminumerical
algorithms, Addison-Wesley, 1969.

[20] D. E. Knuth, The art of computer programming, vol. III: Sorting and Search-
ing , Addison-Wesley, 1973.

[21] P. Kurlberg and C. Pomerance, ‘On the period of the linear congruential
and power generators’, Acta Arith., 119 (2005), 149–169.

38 KONYAGIN, LUCA, MANS, MATHIESON, SHA, AND SHPARLINSKI

[22] R. Lidl and H. Niederreiter, Finite fields, Cambridge Univ. Press, Cam-
bridge, 1997.

[23] A. MacFie and D. Panario, ‘Random mappings with restricted preimages’,
Lecture Notes in Comput. Sci., vol. 7533, Springer-Verlag, Berlin, 2012,
254–270.

[24] G. Martin and C. Pomerance, ‘The iterated Carmichael λ-function and the
number of cycles of the power generator’, Acta Arith., 118 (2005), 305–335.

[25] R. C. Mason, ‘Equations over function fields’, Lecture Notes in Math.,
vol. 1068, Springer-Verlag, Berlin, 1984, 149–157.

[26] G. L. Miller, ‘Graph isomorphism, general remarks’, JCSS , 2 (1979),
128–142.

[27] P. Morton, ‘Arithmetic properties of periodic points of quadratic maps. II’,
Acta Arith., 87 (1998), 89–102.

[28] P. Morton and J. H. Silverman, ‘Rational periodic points of rational func-
tions’, Internat. Math. Res. Notices, 2 (1994), 97–110.

[29] A. Ostafe and M. Sha, ‘Counting dynamical systems over finite fields’, Con-
temp. Math., Amer. Math. Soc., (to appear).

[30] B. Poonen, ‘The classification of rational preperiodic points of quadratic
polynomials over Q: a refined conjecture’, Math. Zeit., 228 (1998), 11–29.

[31] M. Sha and S. Hu, ‘Monomial dynamical systems of dimension one over
finite fields’, Acta Arith., 148 (2011), 309–331.

[32] J. H. Silverman, ‘The S-unit equation over function fields’, Proc. Camb.
Philos. Soc., 95 (1984), 3–4.

[33] L. Somer and M. Kř́ıžek, ‘The structure of digraphs associated with the
congruence xk ≡ y (mod n)’, Czechoslovak Math. J., 61 (2011), 337–358.

[34] N. Snyder, ‘An alternate proof of Mason’s theorem’, Elemente Math., 55
(2000), 93–94.

[35] W. W. Stothers, ‘Polynomial identities and hauptmoduln’, Quart. J. Math.
32 (1981), 349–370.

[36] T. Vasiga and J. O. Shallit, ‘On the iteration of certain quadratic maps over
GF(p)’, Discr. Math., 277 (2004), 219–240.

[37] A. M. Zubkov and V. E. Tarakanov, ‘Cycle structure of power mappings in
a residue classes ring’, Discrete Math. Appl., 23 (2013), 273–298.

FUNCTIONAL GRAPHS OF POLYNOMIALS OVER FINITE FIELDS 39

Steklov Mathematical Institute, 8, Gubkin Street, Moscow, 119991,
Russia

E-mail address: konyagin@mi.ras.ru

School of Mathematics, University of the Witwatersrand, P. O.
Box Wits 2050, South Africa

E-mail address: florian.luca@wits.ac.za

Department of Computing, Macquarie University, Sydney, NSW 2109,
Australia

E-mail address: bernard.mans@mq.edu.au

Department of Computing, Macquarie University, Sydney, NSW 2109,
Australia

E-mail address: luke.mathieson@mq.edu.au

School of Mathematics and Statistics, University of New South
Wales, Sydney, NSW 2052, Australia

E-mail address: shamin2010@gmail.com

School of Mathematics and Statistics, University of New South
Wales, Sydney, NSW 2052, Australia

E-mail address: igor.shparlinski@unsw.edu.au

	1. Introduction
	2. Bounds on the number of distinct functional graphs of polynomials
	2.1. Upper bound
	2.2. Lower bound: Idea of the proof
	2.3. Lower bound: Technical details

	3. Isomorphism testing of functional graphs
	3.1. Preliminaries
	3.2. Notations and graph input size
	3.3. Isomorphism testing of functional graphs of quadratic polynomials
	3.4. General functional graph isomorphism
	3.5. Counting functional graphs

	4. Numerical results
	4.1. Preliminaries
	4.2. Number of distinct graphs
	4.3. Cyclic points and the giant components
	4.4. Number of components
	4.5. Most popular component size

	5. Further Directions
	Acknowledgement
	References

