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A novel multiscale combined radial basis function (RBF) collocation method, as a truly meshless method, is presented to overcome the 
shortage of general RBF collocation method and is applied to analyze eddy currents in high-speed moving conductors in this paper. A 
typical example is set here to illustrate the accuracy and affectivity of the proposed method, including a comparison with general RBF 
collocation method and finite element method (FEM). 
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I.  INTRODUCTION 
 

ADIAL BASIS FUNCTION (RBF) methods, as a truly 
meshless method for approximating the solutions of par- 

tical differential equations (PDEs), have drawn much of the 
attention of many researchers in science and engineering. In 
this class of truly RBF meshless methods, the RBF collocation 
method is ranked the best based on its high accuracy, ease of 
implementation, good visual aspect, low execution time, and 
storage requirements. Therefore, it has been used in solving 
and analyzing three-dimensional (3-D) electromagnetic prob- 
lems [1] and transient eddy current problems [2]. 

An obvious characteristic of RBF is that each RBF has its 
shape parameter  , and via it, its shape is only determined. In 
the RBF collocation method, we adjust the shape parameter 
to solve PEDs and get accurate solution. Generally, the solu- 
tions of PDEs are somewhat flat curves; the RBF collocation 
method with a suitable shape parameter can get accurate solu- 
tion. However, in analyzing convection-diffusion problems with 
high Peclet number, such as solving moving conductor eddy cur- 
rent problems in electromagnetics, RBF collocation method, by 
choosing a suitable shape parameter, cannot get satisfied solu- 
tions because the solutions to these problems are including flat 
curve part and high-gradient curve part, and no single a shape 
parameter of a chosen RBF can describe all the characteris- 
tics of the solutions. Traditional finite element method (FEM) 
cannot overcome the oscillations either because that ordinary 
Galerkin method uses linear-shape functions to approximate the 
local solution in an element, but in fact the solution is an expo- 
nential-type function. Chen proposed a finite analytic element 
method (FAEM) on analyzing this problem [3]. However, the 
FAEM is too complex for implementation in practical appli- 
cations because the method needs obtaining exact solutions of 
the characteristic equation to any a type of convection-diffusion 
problem before meshing and solving procedures. 

In this paper, a novel multiscale combined RBF collocation 
method, as a truly meshless method, is proposed to overcome 

 
 

the shortage of general RBF collocation method. It is also ap- 
plied to analyze eddy current problems in high-speed moving 
conductors. An example is set in the paper to illustrate the accu- 
racy and effectivity of the proposed method, including a com- 
parison to other numerical methods. 
 

II.  MOVING CONDUCTOR EDDY CURRENT PROBLEMS 

When electromagnetic field computation involves moving 
conductors, eddy currents due to the movement of conductors 
should be taken into account. For the         method, the 
governing equations are 
 

                                                 (1.a) 

                                                                                (1.b) 

where  and      are magnetic vector potential and electrical 
scalar potential, respectively;   and     are permeability and 
conductivity, respectively; and     is the velocity of the media 
relative to the source. 

Equation (1.b) is the constrained eddy current equation for 
(1.a). 

For linear conductive medium, with Lorentz gauge that  
                , the equivalent form of (1) can be written as follows: 

 
                                              (2.a) 

(2.b) 
 

To a moving conductor with uniform speed             , define 
two parameters as 
 

                                                   (3.a) 
(3.b) 

 

then (2.a) becomes 

                                                  (4) 

The typical governing equations of (4) in one-dimensional 
(1-D) and two–dimensional (2-D) cases are respectively 

(5.a) 

(5.b) 



 

 

III.  GENERAL RBF COLLOCATION METHOD 
 

Consider a set of nodes . The RBFs 
centered at are defined as 

 
                                                   (7) 

 
where  is the Euclidian norm, and   is shape parameter. 

Let ; we consider a linear partial differential equation 
with boundary value problem as the form 

 

in (8) on 
 
 

Fig. 1.  A portion of exponential function      in          . 
where is a bounded domain with the boundary is a 
linear partial differential operator as 

 
 

Equations (5.a) and (5.b) are typical convection-diffusion 
equations. When it is solved by using the ordinary Galerkin 
finite element method, particularly in the case that the speed 

of moving conductors and the relative permeability of the 
conductors are relatively high, the element Peclet number is 

 
 
 

 
 
 
and is a boundary operator. 

(9.a) 

(9.b) 

typically greater than unity number, and the numerical solu- 
tions will contain spurious oscillations [4]. The element Peclet 
number is defined as 

 
 

                                                     (6) 
 

where  is the length of the element in the direction of the 
velocity. Therefore, in order to eliminate the spurious oscilla- 
tions, the mesh must be refined to insure that              in 
tradi- tional FEM. This requirement greatly increases the 
requirement of both the computer memory and the CPU time. 
In order to solve this problem of oscillations, the upwind 
methods had great development in the past decades. The 
upwind scheme uses an unsymmetric weight function, with its 
upwind side weakened and the downwind side strengthened. 
This method successfully precludes the spurious oscillations, 
but introduces excessive dif- fusion. The source of the spurious 
oscillations is that ordinary Galerkin method uses linear-shape 
functions to approximate the local solution in an element, but in 
fact the solution is an expo- nential-type function. The solutions 
of (1) are exponential func- tions. A portion of such a solution    
in the interval 
is shown in Fig. 1. 

It is obvious that a linear function only provides a good local 
approximation to   when the interval is sufficiently small. Fig. 1 
also indicates that the derivative of    at the point     is close to 
the slope of line AB, the result of a backward difference, rather 
than the slope of line AC, the result of a central difference. The 
usual statement—central difference takes with a second-order 
accuracy, but backward difference only gets a first order accu- 

We use      distinct nodes in and on the boundary of    , of 
which                 and                   are interior 
nodes and boundary points, respectively. We look for the 
approximate solution  to (8) in the form 
 

 

                                                                           (10) 
 
 
where are unknown coefficients to be deter- 
mined. Substituting    into (8) and using collocation at the 

nodes, we can get the finite dimensional problem 
 

 

                                       (11.a) 

                                   (11.a) 

This corresponds to the system of equations with a coefficient 
matrix; its matrix form and solution are 
 
 

(12.a) 

                                                        (12.b) 

In (12), we have 

racy—is not always true without set a presupposition that the in- 
terval                     is sufficiently small. This is the fundamental 
reason that spurious oscillations appear in ordinary Galerkin so- 
lutions of the convection-diffusion equation when         . This 
also helps to understand why upwind method can be considered 
an artificial modification of linear FEM. 

. . . 
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(13.a) 

(13.b) 



 

 

 
 

Fig. 2.  Diagram of multiquadrics (MQ) under different shape parameters. 
 
 

RBF is only dependent on spatial coordinates, namely dis- 
tributed nodes; it has no relationship with any mesh procedure, 
and this characteristic can make its procedures for solving PDEs 
simple. 

There are three main types of global RBFs usually used in 
computational electromagnetics as follows: 

•  Multiquadrics (MQ) 
 

                                      (14.a) 
 

•  Inverse multiquadrics (IMQ) 
 

(14.b) 

 
Fig. 3.  MQ collocation method solving 1-D moving conductor eddy current 
problem under different shape parameters. 
 
 
 

 

(16) 
 
 
where       and       are different 
RBFs centered at node and node , respectively, and 

 and   are unknown coefficients to 
be determined. Substituting into (8), we can get the finite 
dimensional problem as follows: 

 

 

•  Gaussians (RBF-Gauss) 
 

 
 
(14.c) 

 

 
(17.a) 

 

 

Fig. 2 is the shape diagram of multiquadrics under different 
shape parameters. 

 
IV.  MULTISCALE COMBINED RBF COLLOCATION METHOD 

A classical convection-diffusion equation is set as 
 

in (15) 
 

 
to  verify  general  RBF  collocation  methods,  where 

                       (17.b) 

This corresponds to the system of equations with a coefficient 
matrix; its matrix form and system matrix is 
 
 

(18) 

is the Peclet number,  is nodes 
scale, and     and     are conductivity and permeability, respec- 
tively. 

There are a total of 21 nodes distributed in the solving do- 
main: 19 nodes for interior and 2 nodes for boundary, respec- 
tively. Peclet number       is investigated here to compare the 
exact solution and the numerical solutions by using MQ collo- 
cation method under different shape parameters as described in 
Fig. 3. It indicates that general RBF collocation methods cannot 
get good numerical results to moving conductors eddy currents 
problems as (15). 

In the proposed combined RBF collocation method, approx- 
imate solution   are composed with two different types of 
RBFs as the form 
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(19.a) 

(19.b) 

(19.c) 

(19.d) 

 
 

                                                                                                  There are unknown coefficients   and 
                           in (18), but only nodes for collocation. In 



 

 

 
 

Fig. 4.  Comparison of FEM, MQ collocation method, the proposed method, 
and the exact solutions under                   . 

 

 
 

order to determine all the unknown coefficients, we set a con- 
strict condition as 

 
 
 

                                        (20) 
 
 

and its matrix form is 

                                 (21) 

Combining (18) and (21), a new system matrix can be obtained 
as 

 

 

                                 (22) 

The solution matrix for unknown parameters is 

                 (23) 

V.  NUMERICAL EXAMPLE 

Fig. 5.  Comparison of MQ collocation method, the proposed method, and the 
exact solutions under                      . 
 
 

We still distribute a total of 21 nodes in the solving domain: 
19 nodes for interior and 2 nodes for boundary, respectively. In 
order to emphasize the impact brought by moving speed    of 
the conductors,          is set here. The Peclet number  
and                 are investigated here to compare the exact 
solu- 
tion and the numerical solutions by using the proposed method 
and other numerical methods. In this paper, MQ from (14.a) 
and RBF-Gauss from (14.c) are composed as a couple of hy- 
brid RBFs for solving typical governing (15), and     and     are 
shape parameters for MQ and RBF-Gauss, respectively. In the 
comparison diagram in Fig. 4, shape parameters                 and 

, and in Fig. 5,                    and                    . FEM 
solution, with spurious oscillations, is omitted in Fig. 5. It indi- 
cates that the proposed method is greatly superior to FEM and 
the general RBF collocation method. 
 

VI.  CONCLUSION 

A novel multiscale combined RBF collocation method is pre- 
sented to analyze eddy currents in high-speed moving conduc- 
tors. Numerical example proved it is greatly superior to FEM 
and the general RBF collocation methods. This method, as a 
truly meshless method, has very large potential for analyzing 
much more complex 2-D and 3-D moving conductors eddy cur- 
rents problems. 

 

In moving conductors eddy currents analysis for 1-D and 2-D 
problems, their typical governing equations are described as in 
(5). No matter in 1-D, 2-D, or 3-D problems, the main differ- 
ence between moving conductors eddy currents analysis and 
linear elliptic problems is that the motion of conductors with 
speed   existed in the former problems, but not in the later ones. 
Therefore, the classical convection-diffusion equation described 
in (15) reflects the common nature of 1-D, 2-D, and 3-D moving 
conductors eddy currents problems. The exact solution for (15) 
is 

 
(24) 

 

 

 
where                                 and and  are defined in (3). 
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